
Collocation Software for Boundary-Value
ODEs

U. ASCHER
University of British Columbia, Canada
and
J. CHRISTIANSEN and R. D. RUSSELL
Simon Fraser University, Canada

The use of a general-purpose code, COLSYS, is described. The code is capable of solving mixed-order
systems of boundary-value problems in ordinary differential equations. The method of spline collo-
cation at Gaussian points is implemented using a B-spline basis. Approximate solutions are computed
on a sequence of automatically selected meshes until a user-specified set of tolerances is satisfied. A
damped Newton's method is used for the nonlinear iteration. The code has been found to be
particularly effective for difficult problems.

It is intended that a user be able to use COLSYS easily after reading its algorithm description. The
use of the code is then illustrated by examples demonstrating its effectiveness and capabilities.

Key Words and Phrases: ordinary differential equations, boundary-value problems, collocation, B-
spline, mesh selection, error estimates, damped Newton's method, general-purpose code
CR Categories 5.17

The Algorithm: COLSYS" Collocation Software for Boundary-Value ODEs, ACM Trans. Math.
Softw. 7, 2 (June 1981), 223-229.

1. INTRODUCTION

W h i l e r e s e a r c h in n u m e r i c a l m e t h o d s for so lv ing b o u n d a r y - v a l u e p r o b l e m s
(BVPs) for o r d i n a r y d i f f e r en t i a l e q u a t i o n s {ODEs) h a s b e e n v e r y a c t i v e for s o m e
t ime , r o b u s t s o f t w a r e for so lv ing t h e s e p r o b l e m s h a s on ly r e c e n t l y b e e n d e v e l o p e d
a n d p a r t i a l l y t e s t ed . A few c o d e s b a s e d on s h o o t i n g [11], m u l t i p l e s h o o t i n g [5, 9],
o t h e r i n i t i a l - va lue t e c h n i q u e s [15, 16], a n d f in i te d i f f e rences w i t h d e f e r r e d co r rec -
t i ons [13, 14] h a v e b e e n r e p o r t e d . S e e [5a] for f u r t h e r de ta i l s .

D e s p i t e t h e s e advances , t h e a cce s s ib i l i t y of B V P s o f t w a r e is a t t h i s t i m e
c o n s i d e r a b l y b e h i n d t h a t for i n i t i a l - va lue p r o b l e m s (IVP) , as e v i d e n c e d b y t h e
f ac t t h a t t h e l a rge n u m e r i c a l l ib ra r i e s , for e x a m p l e , N A G a n d I M S L , c o n t a i n
e i t h e r a s i m p l e s h o o t i n g code o r n o t h i n g a t a l l for B V P s whi le h a v i n g s e v e r a l

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permlseion.
Authors' addresses: U. Ascher, Department of Computer Scmnce, University of British Columbia,
Vancouver, B.C. V6T 1W5, Canada; J. Christiansen and R. D. Russell, Mathematics Department,
Simon Fraser University, Burnaby, B.C. V5A 1S6, Canada.
© 1981 ACM 0098-3500/81/0600-0209 $00.75

ACM Transactions on Mathematmal Software, Vol 7, No 2, June 1981, Pages 209-222.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355945.355950&domain=pdf&date_stamp=1981-06-01

210 U. Ascher, J. Christ~ansen, and R. D. Russell

advanced packages for IVPs. This is part ial ly due to the fact tha t most of the
above-ment ioned codes are undergoing fairly regular modification.

We consider here a co/location package for solving mixed-order s y s t e m s of
mult ipoint BVPs (COLSYS) [2, 3]. T h e (FORTRAN-wri t t en) code COLSYS has
proved to be competi t ive with the o ther robust software for solving BVPs and to
be part icularly effective for difficult problems. T h e aim of this paper is to
demons t ra te the usefulness of COLSYS while describing how to use it th rough
examples.

After a brief description of the class of problems admi t ted by COLSYS (Section
2) and the numerical techniques used to solve these problems (Section 3), the use
of the code is demonst ra ted through three examples, ranging f rom simple to more
sophist icated (Section 4). We conclude with a number of remarks concerning the
use and usefulness of COLSYS.

2. PROBLEM DEFINITION

Consider a mixed-order sys tem of d nonlinear differential equat ions of orders
l_<ml_< m2_< . . . <_rod<_4,

u~m")(X) ffi Fn(x; Z(U)), a < x < b n - 1 d, (1)

where the sought solution u(x) ffi (ul(x) Ud(X)) is an isolated solution vector
and z (u) = (u l , u~ u~m'-I), U2 U d , . . . , U~ m~-l)) is the vector of unknowns
tha t would result f rom convert ing (1) to a f irst-order system. T h e system is
subject to m* = ~dffil m~ nonlinear mult ipoint separa ted boundary conditions

g:(~j; z(u)) ffi 0, j ffi 1, . . . , m*, (2)

where ~: is the location of the j t h boundary (or side) condition, a -- ~'~ --< ~2 --<
• . . < ~m* --< b. For the simple example u" + e ~ ffi 0, u(0) ffi u(1) ffi 0, we have d
= 1, m~ = 2, a ffi 0 , b ffi 1, F I = - e ~', z (u) ffi (u , u ') , m * ffi 2 , ~ ffi 0 , ~z ffi 1, g~ = g2

21 .

Unlike the previously ment ioned general-purpose codes, COLSYS does not
explicitly convert (1) to a first-order system. Also, while (2) does not explicitly
allow for nonsepara ted boundary conditions, such problems can be conver ted to
the form (1), (2) at the expense of increasing the order of the system [2].

3. THE METHOD

The me thod of spline collocation at Gaussian points, as described in detail in [2]
and references therein, is implemented in COLSYS to solve (1), (2). T h e problem
is solved on a sequence of meshes until a user-specified set of tolerances is
satisfied. For a part icular mesh qr:a ffi Xl < x2 < . - - < XN+~ ffi b with h, = x,+~ -
x,, h - - m a x l _ _ L N h~, and an integer k > md, a collocation solution v(x) ffi (v~,
. . . . Vd) is de termined with each v,,(x) E C mÈ-I [a, b] being a polynomial of degree
< k + m, on each subinterval (x,, x,+~), i ffi 1 , . . . , N. Specifically, v(x) is required
to satisfy the differential equat ions (1) at the images of the k Gauss-Legendre
points in each subinterval and the conditions
tions.) Provided the problem (1), (2) is smooth
error for x ~ [x,, x,+l) is

II u~ ') (x) - v~2(x) ll.~ = c.,~l u~+m"}(X,) I

/ f f i 0 m , - 1 ,

ACM TransacUons on Mathematmal Software, Vol. 7, No 2, June 1981

(2). (This gives N k d + m* equa-
enough, the local behavior of the

hk,+m~ - l + o(hk+m~-l+l) ,

n ffi 1 , . . . , d , (3)

Collocation Software for Boundary-Value ODEs • 211

where c.,z are known constants and for any appropriate function #,

II ~11(, := maxxetx,,=,+p I ~b(x)1. (4)

The expression (3) is used both for estimating the error (using mesh halving)
to check against user-prescribed tolerances and for mesh refinement. By approx-
imating U(nk+m")(X,) using v,(x) , a rough approximation for the error in each
subinterval is obtained. If deemed worthwhile, a redistribution of the mesh points
is performed to roughly equidistribute the error (i.e., roughly equalize the error
in each subinterval), and v(x) is recomputed. If not, each subinterval is halved, a
new solution v*(x) is computed, and the error in v*(x) is estimated using v(x),
v* (x), and (3). See [2, 3] for more detailed expositions and theoretical justification.
The sound basis for the adaptive mesh-selection procedure helps make COLSYS
competitive with the initial-value-type codes that rely on robust IVP solvers [2].

The components v, (x) of the collocation solution are expressed in terms of a B-
splint basis. The evaluation of the B-splines and their derivatives is done using
de Boor's algorithms [6] appropriately modified to make use of various savings
for our particular application [4]. The B-splines are used, besides evaluating the
solution v(x) and its derivatives, to construct the collocation equations. This
results in a linear (or linearized) system of equations, the unknowns being the B-
spline coefficients. The system is "almost block diagonal" [2] and the package of
de Boor-Weiss [7] is used for its decomposition and solution.

Nonlinear problems are solved using the damped Newton's method of quasi-
linearization [3]. Thus at each iteration a linearized problem is solved by collo-
cation as described above. The damping or relaxation factor is controlled by a
scheme that is a slight modification of that suggested by Deuflhard [8]. If the
problem (1), (2) is not prespecified by the user as being "sensitive", and if
nonlinear convergence on a mesh has just been obtained, then on the next mesh
a modified Newton method with a fixed Jacobian is performed as long as the
residual monotonically decreases at a sufficiently rapid rate [3].

To use COLSYS, the user must specify a set of tolerances tolj and pointers
ltolj, j = 1 ntol. The successful stopping criterion for COLSYS is that

H z / C a) - - z l i v) [l (t) ----- tol, + H zdv)II(. • tolj,

l = l t o l j , j = l ntol, i = l , . . . , N . (5)

4. USE OF COLSYS THROUGH EXAMPLES

It is intended that a user be able to use COLSYS easily, including its more
sophisticated features if needed, after reading its algorithm description. Here we
demonstrate the use of the code on three examples.

All three examples presented here were run on an Amdahl V/6-II computer
using double precision (14 hexadecimal digits). The listings, though, are of the
single-precision version.

Example 1. The following problem describes a uniformly loaded beam of
variable stiffness, simply supported at both ends [10]

(x3u ")" = xau "" + 6x2u " ' + 6xu" = 1, 1 < x < 2. (6)

u = u " = O at x = 1 , 2 . (7)
ACM Transactmns on Mathematical Software, Vol. 7, No. 2, June 1981

212 • U. Ascher, J. Christiansen, and R. D. Russell

Th~ has the exact solution

u(x)=~(lOln2-3)(1-x)+~ ~ + (3 + x) l n x - x . (8)

We begin with thin very easy problem in order to demonstrate a complete
problem setup, with tolerances on u and u" only, and then to verify the error
estimates using the exact solution. We use (the default) five coUocation poin~
per subintervM and the first mesh contains only one subinterv~; that is, it is
initially a polynomiM colocation (of order 9). The maximum error magnitude in
the approximate solution is evMuated at 100 equidistant poin~ after returning
~om COLSYS and compared to the estimates ~om the code. The complete
problem setup folows.

REAL FSPACE(2000), ZETA(4), TOL(2), Z(4), U(4), ERR(4)
INTEGER ISPACE(200), M(1), IFAR(II), LTOL(2)
EXTERNAL FSUB, DFSUB, GSUB, DGSUB, DUMMY

C
WRITE (6,99)

99 FORMAT(IHI, 35H EXAMPLE OF A SIMPLE PROBLEM SETUP.
/ 46H UNIFORMLY LOADED BEAM OF VARIABLE STIFFNESS,
/ 32H SIMPLY SUPPORTED AT BOTH ENDS. /)

C
C ONE DIFFERENTIAL EQUATION OF ORDER 4.

M(1) = 4
C GIVE LOCATION OF BOUNDARY CONDITIONS

ZETA(1) = i.
ZETA(2) = i.
ZETA(3) = 2.
ZETA(4) = 2.

C SET UP PARAMETER ARRAY.
C USE DEFAULT VALUES FOR ALL PARAMETERS EXCEPT FOR INITIAL
C MESH SIZE, NO. OF TOLERANCES AND SIZES OF WORK ARRAYS

DO i0 I=l,ll
I0 IPAR(I) = 0

IPAR(3) = 1
IPAR(4) - 2
IPAR(5) = 2000
IPAR(6) = 200

C TWO ERROR TOLERANCES (ON U AND ITS SECOND DERIVATIVE)
LTOL(1) = i
LTOL(2) = 3
TOL(1) = I.E-7
TOL(2) = I.E-7

C
CALL COLSYS (i, M, i., 2., ZETA, IPAR, LTOL, TOL,

FIXPNT, ISPACE, FSPACE, IFLAG, FSUB,
DFSUB, GSUB, DGSUB, DUMMY)

C
IF (IFLAG .NE. i) STOP

C CALCULATE THE ERROR AT I01 POINTS USING THE KNOWN
C EXACT SOLUTION

X = l .

DO 20 I=i,4
20 ERR(I) = O.

DO 40 J=l,101
CALL APPSLN (X, Z, FSPACE, ISPACE)
CALL EXACT (X, U)
DO 30 I=i,4

30 ERR(1) = AMAXI(ERR(I), ABS(U(1)-Z(I)))

ACM Transactio~ on Mathema~c~ Softw~e, Vol 7, No. 2, June 1981.

Collocation Software for Boundary-Value ODEs • 213

40 X = X + .01
WRITE(6,100) (ERR(1),I=I,4)

I00 FORMAT(/27H ERROR TOLERANCES SATISFIED//22H THE EXACT ERRORS ARE,
/ 7X,4E12.4)

STOP
END

C

SUBROUTINE FSUB (X, Z, F)
REAL Z(4), F(1), X
F(1) = (i. - 6.*X**2*Z(4)
RETURN
END

6.*X'Z(3)) / X**3

SUBROUTINE DFSUB (X, Z, DF)
REAL Z(4), DF(I,4), X
DF(I,I) = 0.
DF(I,2) = 0.
DF(I,3) = -6./X*'2
DF(I,4) = -6./X
RETURN
END

SUBROUTINE GSUB (I, Z, G)
REAL Z(4), G
GO TO (i, 2, i, 2), I

i G = Z(1) - 0.
RETURN

2 G = Z(3) - 0.
RETURN
END

SUBROUTINE DGSUB (I, Z, DG)
REAL Z(4), DG(4)
DO I0 J=l,4

i0 DG(J) = 0.
GO TO (i, 2, i, 2), I

i DG(1) = Z.
RETURN

2 DG(3) = i .

RETURN
END

SUBROUTINE EXACT(X, U)
REAL U(4)
EXACT SOLUTION
U(1) = .25* (10.*ALOG(2.)-3.) * (I.-X) ÷

.5* (l./X+ (3.+X)*ALOG(X) - X)
U(2) = -.25* (10.*ALOG(2.) - 3.) + .5 *

(-l./X/X + ALOG(X) + (3.+X)/X - i.)
U(3) = .5 * (2./X*'3 ÷ I./X -3./X/X)
U(4) = .5 * (-6./X*'4 - l./X/X + 6./X*'3)
RETURN
END

SUBROUTINE DUMMY
END

The resulting output is listed next. Owing to the simplicity of this problem, no
mesh selection is found necessary.

ACM Transactions on Mathematical Software, Vol 7, No 2, June 1981.

214 U. Ascher, d. Christiansen, and R. D. Russell

EXAMPLE OF A SIMPLE PROBLEM SETUP:
UNIFORMLY LOADED BEAM OF VARIABLE STIFFNESS,
SIMPLY SUPPORTED AT BOTH ENDS.

THE NEW MESH (OF 1 SUBINTERVALS):
1.000000 2.OOOOOO

THE NEW MESH (OF 2 SUBINTERVALS):
1.000000 1.500000 2.0000O0

THE ESTIMATED ERRORS ARE:
U(1): 0.7611E-08 0.2033E-06 0.2141E-05 0.5427E-04

THE NEW MESH (OF 4 SUBINTERVALS):
1.000000 1.250000 1.500000 1.750000 2.000000

THE ESTIMATED ERRORS ARE:
U(1): 0.6982E-10 0.3171E-08 0.8164E-07 0.3777E-05

ERROR TOLERANCES SATISFIED

THE EXACT ERRORS ARE:
0.1739E-09 0.6268E-08 0.2184E-06 0.9574E-05

Example 2. Consider the following pair of second-order differential equations
for ¢ and 4,

[, 0 ,] (1) (,) E4/v ¢ " + x V ¢ + 4 1 - - ¢ - ¢ = - ~ x 1 - ~ x 2 , (9)
x 0 < x < l

[1 4 ' 1] (1)
4"+x ~ 4 ¢ 1 ~ ¢ 0, (10)

subject to the boundary conditions

~k=x4'-0.34+O.7x=O, at x = 0 , 1 . (11)

These equations describe the small finite deformation of a thin shallow spher-
ical cap of constant thickness subject to a quadratically varying axisymmetric
external pressure distribution superimposed on a uniform internal pressure dis-
tribution [17]. Here ¢ is the dimensionless meridianal angle change of the
deformed shell and 6 is a stress function. For y = 1.1 and t~ = O(¢) << 1, there is
the possibility that a dimple will form, corresponding to an interior transition
layer in ¢. Also a boundary layer appears in ¢ at the clamped edge x = 1. The
mesh refinement procedure in COLSYS automatically adapts the subinterval
distribution to accommodate the solution behavior. Also, nothing needs to be
done about the singular coefficients in (9), (10).

For ¢ = # = 10 -3, two solutions for (9)-(11) are obtained by starting the
nonlinear iteration from two different points.

A. The initial approximation is ¢ = 4 - 0. The corresponding driver contains
the following segment:

GAMM~ = I.i
EPS = .001
DMU = EPS
EPS4MU = EPS**4/DMU
XT = SQRT(2.*(GAMMA-I.)/GAMMA)

ACM Transacho~ on Mat~matmM Software, V~ 7, No. 2, June l~l

Collocation Software for Boundary-Value ODEs " 215

i0

IPAR VALUES
A NONLINEAR PROBLEM
IPAR(1) = 1
4 COLLOCATION POINTS PER SUBINTERVAL
IPAR(2) - 4
INITIAL UNIFORM MESH OF i0 SUBINTERVALS
IPAR(3) = i0
IPAR(8) - 0
DIMENSION OF REAL WORK ARRAY FSPACE IS 40000
IPAR(5) = 40000
DIMENSION OF INTEGER WORK ARRAY ISPACE IS 2500
IPAR(6) = 2500
(THESE DIMENSIONS OF FSPACE AND ISPACE
ENABLE COLSYS TO USE MESHES OF UP TO 192 INTERVALS.)

PRINT FULL OUTPUT.
IPAR(7) - -i
INITIAL APPROXIMATION FOR NONLINEAR ITERATION IS 0 (DEFAULT)
IPAR(9) - 0
A REGULAR PROBLEM
IPAR(10) - 0
NO FIXED POINTS IN THE MESH
IPAR(II) - 0
TOLERANCES ON ALL COMPONENTS
IPAR(4) - 4
DO 10 I-I,4

LTOL(1) = I
TOL(I) - I.E-5

SUBROUTINE FSUB (X, Z, F)
DIMENSION Z(4), F(2)
COMMON EPS, DMU, EPS4MU, GAMMA, XT
F(1) = Z(1)/X/X - Z(2)/X + (Z(1) - Z(3)*(I.-Z(1)/X) -

GAMMA*X*(I.-X*X/2.)) / EPS4MU
F(2) = Z(3)/X/X - Z(4)/X + Z(1)*(I.-Z(1)/2./X) / DMU
RETURN
END

SUBROUTINE DFSUB (X, Z, DF)
DIMENSION Z(4), DF(2,4)
COMMON EPS, DMU, EPS4MU, GAMMA, XT
DF(I,I) ~ I./X/X +(i. + Z(3)/X) / EPS4MU
DF(I,2) = -I./X
DF(I,3
DF(I,4
DF(2,1
DF(2,2
DF(2,3
DF(2,4
RETURN
END

= -(1.-z(1)/x) / EPS4MU
= 0.
= (i. - z(1)/x) / DMU
= 0.
= I.IXlX

= -i./X

The obtained solution ~ is plotted in Figure 1 (number I). There is no dimple.
The last mesh for this computation has 38 subintervals, 22 of which are contained
in {0.999, 1].

ACM Transactmns on Mathematmal Software, Vol. 7, No 2, June 1981

~~.

216

.90

60

30

0

" 07

U. Ascher, J. Christiansen, and R. D. Russell

I\
I

25

Fig. 1.

50 75 1 0

X

E x a m p l e 2.

B. T h e initial approx imat ion is

X < - - X t o'L o x' x>x,

= [- y x (1 x > x,

where xt = J 2 (y - 1) /y (cf. [17]). T h e driving p rog ram is identical to the previous
one except t ha t we set IPAR(9) = i and define

SUBROUTINE SOLUTN (X, Z, DMVAL)
COMMON EPS, DMU, EPS4MU, GAMMA, XT
DIMENSION Z(4) , DMVAL(2)
CONS = GAMMA * X * (1.-.5*X'X)
DCONS = GAMMA * (i. - 1.5*X'X)
D2CONS - -3. * GAMMA * X
IF (X .GT. XT) GO TO i0
Z(1) = 2. * X

Z(2) = 2.
Z(3) = -2.*X + CONS
Z(4) = -2. + DCONS
DMVAL(2) - D2CONS
GO TO 20

I0 Z(1) - 0.
Z(2) = 0.
Z(3) = -CONS

ACM TransaeUo~ on MathematmM So~w~e, Vol 7, No 2, June 1981

Collocation Software for Boundary-Value ODEs • 217

20

Z(4) = -DCONS
DMVAL(2) = -D2CONS
DMVAL(1) = 0.
RETURN
END

The solution 4, obtained in this case has a dimple. I t is plot ted in Figure 1 (number
II). T h e last mesh for this computat ion has 160 subintervals, 85 of which are in
{0.41, 0.45) and 36 in (0.999, 1].

E x a m p l e 3. The following model describes the velocities in a boundary layer
produced by the rotat ing flow of a viscous incompressible fluid over a s ta t ionary
infinite disk [12].

3 - n H G ' G" + - - ~ + (n - 1) H ' G - s(G - 1) ffi 0 (12)

3 - n ,,)2 G 2
H " ' + - - T H H + n (H ' - 1 + - s H ' = O (13)

G(0) = H(0) = H'(0) = 0, G(oo) = i, H'(oo) -- 0. (14)

The solution functions G and H oscillate, and it is difficult to find initial
approximate solutions and meshes that lead to convergence of the nonlinear
iteration when n I' 1 and s ~ 0. Also, the finite right end of the interval of
integration, L, which adequately represents o% increases with n.

We start with the initial approximation G = 1 - e -x, H = -x2e -x, and solve for
n = 0.2, s = 0.2, L = 60. We then use simple continuation: The obtained solution
is used as an initial approximation to solve for n = 0.2, s = 0.I, L = 120, and this
solution in turn is used to solve for n = 0.2, s = 0.05, L = 200. In order to facilitate
this process, all problems are first mapped from [0, L] onto the unit interval.
Thus the problems solved are

0 < x < l

G(O) = H(O) = / / ' (0) ffi O, G(1) ffi 1, / / ' (1) -- 0. (17)

The program which does all of this follows.

REAL ZETA(5), FSPACE(40000), TOL(2), SVAL(3), ELVAL(3)
INTEGER M(2), ISPACE(2500), LTOL(2), IPAR(II)
REAL Z(5)
COMMON EN, S, EL, CONS
EXTERNAL FSUB, DFSUB, GSUB, DGSUB, SOLUTN
DATA SVAL/.2, .i, .05/, ELVA5/60., 120., 200./

EN = .2
CONS = .5 *
NCOMP ffi 2
M(1) ffi 2

(3. -EN)

ACM Transactions on MathemaUcal Software, Vol. 7, No. 2, June 1981

218 • U. Ascher, J. Christiansen, and R. D. Russell

C

C

701

i00

M(2) = 3

ALEFT - 0.
ARIGHT - i.

ZETA(I) - 0.
ZETA(2) = 0.
ZETA(3) - 0.
ZETA(4) = i.
ZETA(5) - i.

IPAR, I) - 1
IPAR, 2) - 4
IPAR3) = i0
IPAR4) = 2
IPAR 5) = 40000
IPAR 6) - 2500
IPAR7) = 0
IPAR8) = 0
IPAR9) = 1
IPARI0) = 0
IPARII) = 0

LTOL(1) = i
LTOL(2) = 3
TOL(1) = I.E-5
TOL(2) = I.E-5

SOLVE A CHAIN OF 3 PROBLEMS

DO 777 IJK = 1,3
S = SVAL(IJK)
EL = ELVAL(IJK)
IF (IJK .EQ. I) GO TO 701
SET CONTINUATION PARAMETERS
IPAR(9) = 3
IPAR(3) - ISPACE(1)
CONTINUE
WRITE (6,100) EN, S, EL
FORMAT(IHI,38H ROTATING FLOW OVER A STATIONARY DISK.

• /19H PARAMETERS - N -,F5.2, 6H S -,F5.2,
6H L -,F6.1/)

CALL COLSYS (NCOMP, M, ALEFT, ARIGHT, ZETA, IPAR, LTOL,
TOL, FIXPNT, ISPACE, FSPACE, IFLAG,
FSUB, DFSUB, GSUB, DGSUB, SOLUTN)

c
IF (IFLAG .NE. i) STOP

C HERE WE MAY PRINT OUT OR PLOT VALUES OF THE
C SOLUTION FOR EACH OF THE 3 PROBLEMS SOLVED

777 CONTINUE
STOP
END

The obtained G and H for n = 0.2, s = 0.05, L = 200 are graphed in Figure 2.

5. ADDITIONAL COMMENTS

The code COLSYS has been designed to handle a variety of difficulties arising in
practical problems. Consequently, documentat ion is provided to facilitate sophis-
ticated as well as straightforward usages. Example I presents a simple use of the
code, while Examples 2 and 3 demonstrate some of the more advanced features.
ACM Transactions on Mathematmal Software, Vol. 7, No 2, June 1981.

Collocation Software for Boundary-Value ODEs • 219

1 G

O' i ~ t 25 50

. o-I A ^ x

I I
.75 .10

- 5 0 -

H /

-80-

-110

Fig. 2. Example 3.

In general COLSYS performs effectively [1], [2], [3]. Still, a number of addi-
tional features could be incorporated in the code to improve its performance and
reliability. Specifically, there is currently no facility for handling singular Jaco-
bians or detecting excessive roundoff errors. For very large problems the storage
requirements may become excessive (as is typical of non-initial-value codes), and
proper modification of the linear system solver can reduce these requirements
somewhat [2]. Furthermore, the only error tolerances that have been extensively
tested are in the intermediate range 10 -4 to 10 -9 in - 16 decimal digit arithmetic.
Also, harmless underflows (occurring particularly in the B-spline subroutines) are
ignored. We intend to address some of these issues in the near future.

COLSYS does not incorporate automatic continuation; however, enough infor-
mation is returned to allow convenient implementation of simple continuation by
the user, as demonstrated in Example 3. For this purpose, use of IPAR(9) -- 3 is
recommended so that the first mesh for the current problem is constructed from
every second point of the final mesh for the former problem and the initial
approximation for the current nonlinear iteration is just the solution of the
previous problem. Thus continuation is not used for linear problems.

Unlike other codes the mesh selection procedure is free to change every interior
mesh point during refinement. This provides for flexible adjustment of meshes to
incorporate extreme characteristics of the solution with relatively small meshes,

ACM Transactmns on Mathematmal Software, Vol. 7, No. 2, June 1981.

220 • U. Ascher, J. Christmnsen, and R. D. Russell

as demonstrated in Example 2. In some cases, however, it may be desirable to
alter this process. This can be done in two ways:

(a) Setting IPAR(8) = 2 results in repeated mesh halving and prevents mesh
redistribution altogether. An initial mesh can be defined by the user in
FSPACE (see Section 4). It should be pointed out, however, that usually the
automatic mesh selector produces better meshes than user-generated ones as
the error becomes small.

(b) Using IPAR(11) and the array FIXPNT, certain specified points are forced
to be part of every mesh. This can be used to indicate boundary layers,
interior boundary points (interfaces) where the solution has less smoothness,
or any points where the user does not want the differential equation evalu-
ated. However, fixed points should be used sparingly, as they may downgrade
the performance of the mesh refinement algorithm.

Even given the power of the automatic mesh selection, as demonstrated in the
last section, a good initial mesh provided by the user (using IPAR(8) ffi 1) can
improve performance considerably. In fact, the nonlinear iteration may not
converge on an inadequate initial mesh, causing repeated mesh halvings until a
sufficiently fine mesh in the region(s) of difficulty is obtained. It can also happen
that an initial user-provided mesh having a few well-placed points gives a crude
approximation such that the next automatically selected mesh "loses" this desir-
able placement. It is important to realize that a sufficiently good start for the
nonlinear iteration must sometimes consist of both a good initial solution profile
and an adequate initial mesh. Failure to have one of these may cause the code to
repeatedly halve the mesh without obtaining convergence of the nonlinear
iteration until storage limitations are reached. This should not be interpreted by
the user as a storage problem.

The user is required to provide two Jacobians: a rectangular NCOMP ×
MSTAR matrix DF(I, J) in subroutine DFSUB and a set of MSTAR vectors DG
of length MSTAR in subroutine DGSUB. The partial derivatives required may
at times be difficult or impossible to evaluate, and they can instead be approxi-
mated by numerical differentiation. The following FORTRAN segment could
then be used for DFSUB:

DIMENSION DF(NCOMP, MSTAR), WORKI(NCOMP),
+ WORK2(NCOMP), Z(MSTAR)

C THE DIMENSION VALUES HAVE TO BE EXPLICITLY INSERTED
EPS -- 1.E - 7
DO 10 J = 1, MSTAR

Z(J) = Z(J) + EPS
CALL FSUB(X, Z, WORK1)
Z(J) -- Z(J) - 2. * EPS
CALL FSUB(X, Z, WORK2)
Z(J) = Z(J) + EPS
DO 10 1 -- 1, NCOMP

10 DF(I, J) = (WORKI(J) - WORK2(J)) * .5/EPS

Here, EPS is roughly the square root of the machine unit roundoff; a more
sophisticated differencing could adapt EPS to the size of Z(J). While the numer-
ACM Transactions on Mathematical Software, Vol. 7, No. 2, June 1981.

Collocation Software for Boundary-Value ODEs 221

ical differentiation gives only an approximate Jacobian and may be computation-
ally less efficient, the accuracy of the final computed solution is generally not
affected.

To control the nonlinear iteration, we suggest that a user always use the regular
mode (IPAR(10) = 0) first. If no convergence occurs, particularly after conver-
gence on a previous mesh has been obtained and/or a good initial approximation
was given, then the sensitive mode (IPAR(10) = 1) may be useful.

Unlike other codes, COLSYS is designed to handle a mixed-order system
without explicitly converting to a first-order system (as long as the orders are
<_4). For collocation, this direct treatment is more efficient both in terms of
storage requirements and execution time. However, the requirement k > m d
causes the order of the method to be at least 2rod + 1, and for higher orders the
error estimates may tend to be less reliable (cf. Example 1). The restriction
m~ <_ 4, required for efficient implementation, is adequate for most practical
problems. An equation of order higher than 4 should be converted by the user
to lower order ones that satisfy the above restriction, with d being kept minimal
for efficient execution (cf. [2]).

An important feature of the code is that the approximate solution values at
any points, and hence solution plots, are readily available. Plots with high
resolution such as those in Figures 1 and 2 can be easily generated by using the
mesh points plus a sufficient number of equally spaced points. In fact, solution
values at mesh points are frequently more accurate than elsewhere, since the
theoretical rate of convergence at these points is higher [2].

For the value of IPAR(2) = k, the number of collocation points per subinterval,
a reasonable choice is the default value k -- max(m~ + 1, 5 - rod), obtained by the
user setting IPAR(2) = 0. Note that the order of the method does not vary during
a run of COLSYS.

The restrictions d = NCOMP <_ 20 and m* = MSTAR <_ 40 currently imposed
are sufficient to accommodate most usages. In case they need to be increased, the
following changes should be made in COLSYS: (a) For arrays in every subroutine
currently dimensioned 20 and 40, modify their dimensions to the new limits on
NCOMP and MSTAR, respectively; (b) modify the checks on input correctness
in subroutine COLSYS appropriately; (c) in LSYSLV, change the dimension of
DF from 800 to the new limit on NCOMP * MSTAR; (d) in BLDBLK, change
the dimension of BASEF from 620 to the new desired limit on

8 * MSTAR + 7 * NCOMP + max
NCOMP

M(J) ~-
]--1

Finally, various output options are available for COLSYS [using IPAR(7)].
Restricted output is displayed in Example 1. The "full output" option also
displays the input data, nonlinear iteration and mesh-selection control param-
eters, and the solution values at the mesh points for intermediate meshes.

Note Added in Proof: Many practical problems that are not in the standard
form accepted by COLSYS can be converted into such form. For a survey of
conversion devices see, for example, [4a].

ACM Transactions on Mathematmal Software, Vol. 7, No. 2, June 1981

222 U. Ascher, J. Christiansen, and R. D. Russell

REFERENCES
1. ASCmZR, U. Solving boundary value problems with a spline-collocatlon code. J Comput. Phys.

34 (1980), 401-413.
2. ASCHER, U., CHRISTIANSEN, J., AND RUSSELL, R.D. A collocation solver for mixed order systems

of boundary value problems. Tech. Rep. 77-13, Computer Science Dep., Univ British Columbia,
Vancouver, Canada, 1977. (See also Math. Comput. 33 (1979), 659-679.)

3. ASCHER, U., CHRISTIANSEN, J., AND RUSSELL, R.D. COLSYS-A collocation code for boundary
value problems. In Codes for Boundary Value Problems, B. Childs et al. (Eds.), Lecture Notes in
Computer Science 76, Springer-Verlag, New York, 1979

4. ASCHER, U., AND RUSSELL, R.D. Evaluation of B-splines for solving systems of boundary value
problems. Tech. Rep. 77-14, Computer Science Dep., Univ. British Columbia, Vancouver, Canada,
1977.

4a. ASCHER, U., AND RUSSELL, R.D. Reformation of boundary value problems in "standard" form.
SIAM Rev 23 (April 1981).

5. BULIRSCH, R., STOER, J , AND DEUFLHARD, P. Numerical solution of nonlinear two-point
boundary value problems I. Numer. Math. Handbook Sertes Approximation (1976).

5a. CODES FOR BOUNDARY VALUE PROBLEMS B. Childs et al (Eds.), Lecture Notes in Computer
Science 76, Springer-Verlag, New York, 1979.

6. DE BOOR, C. On calculating with B-splines. J. Approx. Theory 6 (1972), 50-62
7. DE BOOR, C., AND WEISS, R. SOLVEBLOK: A package for solving almost block diagonal hnear

systems. ACM Trans Math. Softw. 6, 1 (March 1980), 80-87.
8. DEUPLHARD, P. A stepsize control for continuation methods with special application to multiple

shooting techniques. TUM-Math-7627, Munchen, Germany, 1976.
9. DIEKOFF, H.J., LOR'~, P., OBERLE, H.J., PESCH, H.J., RENTROP, P., AND SEYDEL, R. Comparing

routines for the numerical solution of initial value problems of ordinary differential equations in
multiple shooting. Numer. Math. 27 (1977), 449--469.

i0. GAWAIN, T.H., AND BALL, R.E. Improved finite difference formulas for boundary value prob-
lems. Int. J. Numer. Meth. Eng. 12 (1978), 1151-1160.

11. GLADWELL, I. Shooting codes in the NAG library. In B. Clulds et al. (Eds.), Lecture Notes m
Computer Science 76, Sprmger-Verlag, New York, 1979.

12. HOLT, J.F. Numerical solution of nonlinear two-point boundary problems by finite difference
methods. Commun. ACM 7, 6(1964), 366-373.

13. LENTINI, M., AND PEREYRA, V An adaptive finite difference solver for nonlinear two point
boundary problems with mild boundary layers. SIAM J. Numer Anal 14 (1977), 91-111.

14 LENTINI, M., AND PEREYRA, V. PASVA3: An adaptive fimte difference program for first order,
nonlinear ordinary boundary problems. In B. Chflds et al. (Eds.), Lecture Notes in Computer
Science 76, Springer-Verlag, New York, 1979.

15. SCOTT, M.L., AND WATTS, H.A. Computational solutions of linear two-point boundary problems
via orthonormalization. SIAM J. Numer. Anal. 14 (1977), 40-70.

16. SCOTT, M.L., AND WATTS, H.A. Superposition, orthonormalization, quasilinearizatmn and two-
point boundary value problems. In B. Childs et al. (Eds.), Lecture Notes m Computer Sclence 76,
Sprmger-Verlag, New York, 1979.

17. WAN, F. The dimpling of spherical caps. Tech. Rep. 78-6, Inst. of Applied Mathematics, Univ.
British Columbia, Vancouver, Canada, 1978.

Received February 1979; revised April 1979; accepted October 1979.

ACM Transactlons on Mathematlcal Software, Vol. 7, No. 2, June 1981.

