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The use of a general-purpose code, COLSYS, is described. The code is capable of solving mixed-order 
systems of boundary-value problems in ordinary differential equations. The method of spline collo- 
cation at Gaussian points is implemented using a B-spline basis. Approximate solutions are computed 
on a sequence of automatically selected meshes until a user-specified set of tolerances is satisfied. A 
damped Newton's method is used for the nonlinear iteration. The code has been found to be 
particularly effective for difficult problems. 

It is intended that a user be able to use COLSYS easily after reading its algorithm description. The 
use of the code is then illustrated by examples demonstrating its effectiveness and capabilities. 
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1. INTRODUCTION 

W h i l e  r e s e a r c h  in  n u m e r i c a l  m e t h o d s  for  so lv ing  b o u n d a r y - v a l u e  p r o b l e m s  
(BVPs)  for  o r d i n a r y  d i f f e r en t i a l  e q u a t i o n s  {ODEs)  h a s  b e e n  v e r y  a c t i v e  for  s o m e  
t ime ,  r o b u s t  s o f t w a r e  for  so lv ing  t h e s e  p r o b l e m s  h a s  on ly  r e c e n t l y  b e e n  d e v e l o p e d  
a n d  p a r t i a l l y  t e s t ed .  A few c o d e s  b a s e d  on  s h o o t i n g  [11], m u l t i p l e  s h o o t i n g  [5, 9], 
o t h e r  i n i t i a l - va lue  t e c h n i q u e s  [15, 16], a n d  f in i te  d i f f e rences  w i t h  d e f e r r e d  co r rec -  
t i ons  [13, 14] h a v e  b e e n  r e p o r t e d .  S e e  [5a]  for  f u r t h e r  de ta i l s .  

D e s p i t e  t h e s e  advances ,  t h e  a cce s s ib i l i t y  of  B V P  s o f t w a r e  is a t  t h i s  t i m e  
c o n s i d e r a b l y  b e h i n d  t h a t  for  i n i t i a l - va lue  p r o b l e m s  ( IVP) ,  as  e v i d e n c e d  b y  t h e  
f ac t  t h a t  t h e  l a rge  n u m e r i c a l  l ib ra r i e s ,  for  e x a m p l e ,  N A G  a n d  I M S L ,  c o n t a i n  
e i t h e r  a s i m p l e  s h o o t i n g  code  o r  n o t h i n g  a t  a l l  for  B V P s  whi le  h a v i n g  s e v e r a l  
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advanced packages for IVPs. This  is part ial ly due to the  fact tha t  most  of the 
above-ment ioned codes are undergoing fairly regular modification. 

We consider here  a co/location package for solving mixed-order  s y s t e m s  of 
mult ipoint  BVPs (COLSYS) [2, 3]. T h e  (FORTRAN-wri t t en)  code COLSYS has 
proved to be competi t ive with the o ther  robust  software for solving BVPs and to 
be part icularly effective for difficult problems. T h e  aim of this paper  is to 
demons t ra te  the usefulness of COLSYS while describing how to use it th rough 
examples. 

After a brief  description of the class of problems admi t ted  by  COLSYS (Section 
2) and the numerical  techniques  used to solve these problems (Section 3), the use 
of the code is demonst ra ted  through three  examples, ranging f rom simple to more  
sophist icated (Section 4). We conclude with a number  of remarks  concerning the 
use and usefulness of COLSYS. 

2. PROBLEM DEFINITION 

Consider a mixed-order  sys tem of d nonlinear  differential equat ions of orders 
l_<ml_<  m2_< . . .  <_rod<_4, 

u~m")(X) ffi Fn(x;  Z(U)), a < x < b n - 1 . . . . .  d, (1) 

where the sought  solution u(x) ffi (ul(x)  . . . . .  Ud(X)) is an isolated solution vector  
and z ( u )  = ( u l ,  u~ . . . . .  u~m'-I), U2 . . . . .  U d , . . . ,  U~ m~-l)) is the vector  of unknowns 
tha t  would result  f rom convert ing (1) to a f irst-order system. T h e  system is 
subject  to m* = ~dffil m~ nonlinear mult ipoint  separa ted  boundary  conditions 

g:(~j; z(u))  ffi 0, j ffi 1, . . . ,  m*, (2) 

where ~: is the location of the j t h  boundary  (or side) condition, a -- ~'~ --< ~2 --< 
• . .  < ~m* --< b. For  the simple example u" + e ~ ffi 0, u(0) ffi u(1) ffi 0, we have d 
= 1, m~ = 2,  a ffi 0 ,  b ffi 1,  F I  = - e  ~', z ( u )  ffi (u ,  u ' ) ,  m *  ffi 2 ,  ~ ffi 0 ,  ~z ffi 1, g~  = g2 

21 .  

Unlike the previously ment ioned general-purpose codes, COLSYS does not  
explicitly convert  (1) to a first-order system. Also, while (2) does not  explicitly 
allow for nonsepara ted  boundary  conditions, such problems can be conver ted  to 
the form (1), (2) at  the expense of increasing the order  of the system [2]. 

3. THE METHOD 

The  me thod  of spline collocation at  Gaussian points, as described in detail  in [2] 
and references therein,  is implemented  in COLSYS to solve (1), (2). T h e  problem 
is solved on a sequence of meshes  until  a user-specified set  of tolerances is 
satisfied. For  a part icular  mesh  qr:a ffi Xl < x2 < . - -  < XN+~ ffi b with h, = x,+~ - 
x,, h - -  m a x l _ _ L N  h~, and an integer k > md, a collocation solution v(x) ffi (v~, 
. . . .  Vd) is de termined  with each v,,(x) E C mÈ-I [a, b] being a polynomial  of  degree 
< k + m,  on each subinterval  (x,, x,+~), i ffi 1 , . . . ,  N. Specifically, v(x) is required 
to satisfy the differential equat ions (1) at  the images of the k Gauss-Legendre  
points in each subinterval  and the conditions 
tions.) Provided the problem (1), (2) is smooth  
error  for x ~ [x,, x,+l) is 

II u~ ' ) (x)  - v~2(x) ll.~ = c.,~l u~+m"}(X,) I 

/ f f i 0  . . . . .  m , - 1 ,  
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n ffi 1 , . . . , d ,  (3) 
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where c.,z are known constants and for any appropriate function #, 

II ~11(, := maxxetx,,=,+p I ~b(x)1. (4) 

The expression (3) is used both for estimating the error (using mesh halving) 
to check against user-prescribed tolerances and for mesh refinement. By approx- 
imating U(nk+m")(X,) using v,(x) ,  a rough approximation for the error in each 
subinterval is obtained. If deemed worthwhile, a redistribution of the mesh points 
is performed to roughly equidistribute the error (i.e., roughly equalize the error 
in each subinterval), and v(x) is recomputed. If not, each subinterval is halved, a 
new solution v*(x) is computed, and the error in v*(x) is estimated using v(x), 
v* (x), and (3). See [2, 3] for more detailed expositions and theoretical justification. 
The sound basis for the adaptive mesh-selection procedure helps make COLSYS 
competitive with the initial-value-type codes that rely on robust IVP solvers [2]. 

The components v, (x) of the collocation solution are expressed in terms of a B- 
splint basis. The evaluation of the B-splines and their derivatives is done using 
de Boor's algorithms [6] appropriately modified to make use of various savings 
for our particular application [4]. The B-splines are used, besides evaluating the 
solution v(x) and its derivatives, to construct the collocation equations. This 
results in a linear (or linearized) system of equations, the unknowns being the B- 
spline coefficients. The system is "almost block diagonal" [2] and the package of 
de Boor-Weiss [7] is used for its decomposition and solution. 

Nonlinear problems are solved using the damped Newton's method of quasi- 
linearization [3]. Thus at each iteration a linearized problem is solved by collo- 
cation as described above. The damping or relaxation factor is controlled by a 
scheme that is a slight modification of that suggested by Deuflhard [8]. If the 
problem (1), (2) is not prespecified by the user as being "sensitive", and if 
nonlinear convergence on a mesh has just been obtained, then on the next mesh 
a modified Newton method with a fixed Jacobian is performed as long as the 
residual monotonically decreases at a sufficiently rapid rate [3]. 

To use COLSYS, the user must specify a set of tolerances tolj and pointers 
ltolj, j = 1 . . . . .  ntol. The successful stopping criterion for COLSYS is that 

H z / C a )  - -  z l i v ) [ l ( t )  ----- tol, + H zdv)II(. • tolj, 

l = l t o l j ,  j = l  . . . . .  ntol, i = l , . . . , N .  (5) 

4. USE OF COLSYS THROUGH EXAMPLES 

It is intended that a user be able to use COLSYS easily, including its more 
sophisticated features if needed, after reading its algorithm description. Here we 
demonstrate the use of the code on three examples. 

All three examples presented here were run on an Amdahl V/6-II computer 
using double precision (14 hexadecimal digits). The listings, though, are of the 
single-precision version. 

Example  1. The following problem describes a uniformly loaded beam of 
variable stiffness, simply supported at both ends [10] 

(x3u " )"  = xau ""  + 6x2u " '  + 6xu" = 1, 1 < x < 2. (6) 

u = u " = O  at x = 1 , 2 .  (7) 
ACM Transactmns on Mathematical Software, Vol. 7, No. 2, June 1981 
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Th~ has the exact solution 

u(x)=~(lOln2-3)(1-x)+~ ~ + ( 3 + x ) l n x - x  . (8) 

We begin with thin very easy problem in order to demonstrate a complete 
problem setup, with tolerances on u and u" only, and then to verify the error 
estimates using the exact solution. We use (the default) five coUocation poin~ 
per subintervM and the first mesh contains only one subinterv~; that is, it is 
initially a polynomiM colocation (of order 9). The maximum error magnitude in 
the approximate solution is evMuated at 100 equidistant poin~ after returning 
~om COLSYS and compared to the estimates ~om the code. The complete 
problem setup folows. 

REAL FSPACE(2000), ZETA(4), TOL(2), Z(4), U(4), ERR(4) 
INTEGER ISPACE(200), M(1), IFAR(II), LTOL(2) 
EXTERNAL FSUB, DFSUB, GSUB, DGSUB, DUMMY 

C 
WRITE (6,99) 

99 FORMAT(IHI, 35H EXAMPLE OF A SIMPLE PROBLEM SETUP. 
/ 46H UNIFORMLY LOADED BEAM OF VARIABLE STIFFNESS, 
/ 32H SIMPLY SUPPORTED AT BOTH ENDS. /) 

C 
C ONE DIFFERENTIAL EQUATION OF ORDER 4. 

M(1) = 4 
C GIVE LOCATION OF BOUNDARY CONDITIONS 

ZETA(1) = i. 
ZETA(2) = i. 
ZETA(3) = 2. 
ZETA(4) = 2. 

C SET UP PARAMETER ARRAY. 
C USE DEFAULT VALUES FOR ALL PARAMETERS EXCEPT FOR INITIAL 
C MESH SIZE, NO. OF TOLERANCES AND SIZES OF WORK ARRAYS 

DO i0 I=l,ll 
I0 IPAR(I) = 0 

IPAR(3) = 1 
IPAR(4) - 2 
IPAR(5) = 2000 
IPAR(6) = 200 

C TWO ERROR TOLERANCES (ON U AND ITS SECOND DERIVATIVE) 
LTOL(1) = i 
LTOL(2) = 3 
TOL(1) = I.E-7 
TOL(2) = I.E-7 

C 
CALL COLSYS (i, M, i., 2., ZETA, IPAR, LTOL, TOL, 

FIXPNT, ISPACE, FSPACE, IFLAG, FSUB, 
DFSUB, GSUB, DGSUB, DUMMY) 

C 
IF (IFLAG .NE. i) STOP 

C CALCULATE THE ERROR AT I01 POINTS USING THE KNOWN 
C EXACT SOLUTION 

X = l .  

DO 20 I=i,4 
20 ERR(I) = O. 

DO 40 J=l,101 
CALL APPSLN (X, Z, FSPACE, ISPACE) 
CALL EXACT (X, U) 
DO 30 I=i,4 

30 ERR(1) = AMAXI(ERR(I), ABS(U(1)-Z(I))) 

ACM Transactio~ on Mathema~c~ Softw~e, Vol 7, No. 2, June 1981. 
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40 X = X + .01 
WRITE(6,100) (ERR(1),I=I,4) 

I00 FORMAT(/27H ERROR TOLERANCES SATISFIED//22H THE EXACT ERRORS ARE, 
/ 7X,4E12.4) 

STOP 
END 

C 

SUBROUTINE FSUB (X, Z, F) 
REAL Z(4), F(1), X 
F(1) = (i. - 6.*X**2*Z(4) 
RETURN 
END 

6.*X'Z(3)) / X**3 

SUBROUTINE DFSUB (X, Z, DF) 
REAL Z(4), DF(I,4), X 
DF(I,I) = 0. 
DF(I,2) = 0. 
DF(I,3) = -6./X*'2 
DF(I,4) = -6./X 
RETURN 
END 

SUBROUTINE GSUB (I, Z, G) 
REAL Z(4), G 
GO TO (i, 2, i, 2), I 

i G = Z(1) - 0. 
RETURN 

2 G = Z(3) - 0. 
RETURN 
END 

SUBROUTINE DGSUB (I, Z, DG) 
REAL Z(4), DG(4) 
DO I0 J=l,4 

i0 DG(J) = 0. 
GO TO (i, 2, i, 2), I 

i DG(1) = Z. 
RETURN 

2 DG(3) = i .  

RETURN 
END 

SUBROUTINE EXACT(X, U) 
REAL U(4) 
EXACT SOLUTION 
U(1) = .25* (10.*ALOG(2.)-3.) * (I.-X) ÷ 

.5* (l./X+ (3.+X)*ALOG(X) - X) 
U(2) = -.25* (10.*ALOG(2.) - 3.) + .5 * 

(-l./X/X + ALOG(X) + (3.+X)/X - i.) 
U(3) = .5 * (2./X*'3 ÷ I./X -3./X/X) 
U(4) = .5 * (-6./X*'4 - l./X/X + 6./X*'3) 
RETURN 
END 

SUBROUTINE DUMMY 
END 

The resulting output is listed next. Owing to the simplicity of this problem, no 
mesh selection is found necessary. 

ACM Transactions on Mathematical  Software, Vol 7, No 2, June 1981. 
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EXAMPLE OF A SIMPLE PROBLEM SETUP: 
UNIFORMLY LOADED BEAM OF VARIABLE STIFFNESS, 
SIMPLY SUPPORTED AT BOTH ENDS. 

THE NEW MESH (OF 1 SUBINTERVALS): 
1.000000 2.OOOOOO 

THE NEW MESH (OF 2 SUBINTERVALS): 
1.000000 1.500000 2.0000O0 

THE ESTIMATED ERRORS ARE: 
U(1): 0.7611E-08 0.2033E-06 0.2141E-05 0.5427E-04 

THE NEW MESH (OF 4 SUBINTERVALS): 
1.000000 1.250000 1.500000 1.750000 2.000000 

THE ESTIMATED ERRORS ARE: 
U( 1): 0.6982E-10 0.3171E-08 0.8164E-07 0.3777E-05 

ERROR TOLERANCES SATISFIED 

THE EXACT ERRORS ARE: 
0.1739E-09 0.6268E-08 0.2184E-06 0.9574E-05 

Example 2. Consider the following pair of second-order differential equations 
for ¢ and 4, 

[ , 0 , ] ( 1 )  ( , )  E4/v ¢ " + x  V ¢ + 4  1 - - ¢  - ¢ = - ~ x  1 - ~ x  2 , (9) 
x 0 < x < l  

[ 1 4 ' 1 ]  ( 1 ) 
4"+x  . . . . .  ~ 4  ¢ 1 ~ ¢  0, (10) 

subject to the boundary conditions 

~k=x4'-0.34+O.7x=O, at x = 0 , 1 .  (11) 

These equations describe the small finite deformation of a thin shallow spher- 
ical cap of constant thickness subject to a quadratically varying axisymmetric 
external pressure distribution superimposed on a uniform internal pressure dis- 
tribution [17]. Here ¢ is the dimensionless meridianal angle change of the 
deformed shell and 6 is a stress function. For y = 1.1 and t~ = O(¢) << 1, there is 
the possibility that  a dimple will form, corresponding to an interior transition 
layer in ¢. Also a boundary layer appears in ¢ at the clamped edge x = 1. The 
mesh refinement procedure in COLSYS automatically adapts the subinterval 
distribution to accommodate the solution behavior. Also, nothing needs to be 
done about the singular coefficients in (9), (10). 

For ¢ = # = 10 -3, two solutions for (9)-(11) are obtained by starting the 
nonlinear iteration from two different points. 

A. The initial approximation is ¢ = 4 - 0. The corresponding driver contains 
the following segment: 

GAMM~ = I.i 
EPS = .001 
DMU = EPS 
EPS4MU = EPS**4/DMU 
XT = SQRT(2.*(GAMMA-I.)/GAMMA) 

ACM Transacho~ on Mat~matmM Software, V~ 7, No. 2, June l~l 
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i0 

IPAR VALUES 
A NONLINEAR PROBLEM 
IPAR(1) = 1 
4 COLLOCATION POINTS PER SUBINTERVAL 
IPAR(2) - 4 
INITIAL UNIFORM MESH OF i0 SUBINTERVALS 
IPAR(3) = i0 
IPAR(8) - 0 
DIMENSION OF REAL WORK ARRAY FSPACE IS 40000 
IPAR(5) = 40000 
DIMENSION OF INTEGER WORK ARRAY ISPACE IS 2500 
IPAR(6) = 2500 
(THESE DIMENSIONS OF FSPACE AND ISPACE 
ENABLE COLSYS TO USE MESHES OF UP TO 192 INTERVALS.) 

PRINT FULL OUTPUT. 
IPAR(7) - -i 
INITIAL APPROXIMATION FOR NONLINEAR ITERATION IS 0 (DEFAULT) 
IPAR(9) - 0 
A REGULAR PROBLEM 
IPAR(10) - 0 
NO FIXED POINTS IN THE MESH 
IPAR(II) - 0 
TOLERANCES ON ALL COMPONENTS 
IPAR(4) - 4 
DO 10 I-I,4 

LTOL(1) = I 
TOL(I) - I.E-5 

SUBROUTINE FSUB (X, Z, F) 
DIMENSION Z(4), F(2) 
COMMON EPS, DMU, EPS4MU, GAMMA, XT 
F(1) = Z(1)/X/X - Z(2)/X + (Z(1) - Z(3)*(I.-Z(1)/X) - 

GAMMA*X*(I.-X*X/2.)) / EPS4MU 
F(2) = Z(3)/X/X - Z(4)/X + Z(1)*(I.-Z(1)/2./X) / DMU 
RETURN 
END 

SUBROUTINE DFSUB (X, Z, DF) 
DIMENSION Z(4), DF(2,4) 
COMMON EPS, DMU, EPS4MU, GAMMA, XT 
DF(I,I) ~ I./X/X +(i. + Z(3)/X) / EPS4MU 
DF(I,2) = -I./X 
DF(I,3 
DF(I,4 
DF(2,1 
DF(2,2 
DF(2,3 
DF(2,4 
RETURN 
END 

= -(1.-z(1)/x) / EPS4MU 
= 0. 
= (i. - z(1)/x) / DMU 
= 0. 
= I.IXlX 

= -i./X 

The obtained solution ~ is plotted in Figure 1 (number I). There is no dimple. 
The last mesh for this computation has 38 subintervals, 22 of which are contained 
in {0.999, 1]. 

ACM Transactmns on Mathematmal  Software, Vol. 7, No 2, June 1981 
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B. T h e  initial approx imat ion  is 

X < - -  X t  o'L o x' x>x, 

= [ - y x ( 1  x > x,  

where  xt = J 2 ( y  - 1) /y (cf. [17]). T h e  driving p rog ram is identical  to the  previous 
one except  t ha t  we set  IPAR(9)  = i and  define 

SUBROUTINE SOLUTN (X, Z, DMVAL) 
COMMON EPS, DMU, EPS4MU, GAMMA, XT 
DIMENSION Z(4) , DMVAL(2) 
CONS = GAMMA * X * (1.-.5*X'X) 
DCONS = GAMMA * (i. - 1.5*X'X) 
D2CONS - -3. * GAMMA * X 
IF (X .GT. XT) GO TO i0 
Z(1) = 2. * X 

Z(2) = 2. 
Z(3) = -2.*X + CONS 
Z(4) = -2. + DCONS 
DMVAL(2) - D2CONS 
GO TO 20 

I0 Z(1) - 0. 
Z(2) = 0. 
Z(3) = -CONS 

ACM TransaeUo~ on MathematmM So~w~e,  Vol 7, No 2, June 1981 
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20 

Z(4) = -DCONS 
DMVAL(2) = -D2CONS 
DMVAL(1) = 0. 
RETURN 
END 

The  solution 4, obtained in this case has a dimple. I t  is plot ted in Figure 1 (number  
II). T h e  last mesh for this computat ion has 160 subintervals,  85 of which are in 
{0.41, 0.45) and 36 in (0.999, 1]. 

E x a m p l e  3. The  following model  describes the velocities in a boundary  layer  
produced by the rotat ing flow of a viscous incompressible fluid over  a s ta t ionary 
infinite disk [12]. 

3 - n H G '  G" + - - ~  + (n - 1 ) H ' G  - s(G - 1) ffi 0 (12) 

3 - n ,, )2 G 2 
H " '  + - - T  H H  + n ( H '  - 1 +  - s H '  = O (13) 

G(0) = H(0) = H'(0) = 0, G(oo) = i, H'(oo) -- 0. (14) 

The solution functions G and H oscillate, and it is difficult to find initial 
approximate solutions and meshes that lead to convergence of the nonlinear 
iteration when n I' 1 and s ~ 0. Also, the finite right end of the interval of 
integration, L, which adequately represents o% increases with n. 

We start with the initial approximation G = 1 - e -x, H = -x2e -x, and solve for 
n = 0.2, s = 0.2, L = 60. We then use simple continuation: The obtained solution 
is used as an initial approximation to solve for n = 0.2, s = 0.I, L = 120, and this 
solution in turn is used to solve for n = 0.2, s = 0.05, L = 200. In order to facilitate 
this process, all problems are first mapped from [0, L] onto the unit interval. 
Thus the problems solved are 

0 < x < l  

G(O) = H(O) = / / ' ( 0 )  ffi O, G(1) ffi 1, / / ' (1)  -- 0. (17) 

The  program which does all of  this follows. 

REAL ZETA(5), FSPACE(40000), TOL(2), SVAL(3), ELVAL(3) 
INTEGER M(2), ISPACE(2500), LTOL(2), IPAR(II) 
REAL Z(5) 
COMMON EN, S, EL, CONS 
EXTERNAL FSUB, DFSUB, GSUB, DGSUB, SOLUTN 
DATA SVAL/.2, .i, .05/, ELVA5/60., 120., 200./ 

EN = .2 
CONS = .5 * 
NCOMP ffi 2 
M(1) ffi 2 

( 3. -EN) 

ACM Transactions on MathemaUcal Software, Vol. 7, No. 2, June 1981 
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C 

C 

701 

i00 

M(2) = 3 

ALEFT - 0. 
ARIGHT - i. 

ZETA(I) - 0. 
ZETA(2) = 0. 
ZETA(3) - 0. 
ZETA(4) = i. 
ZETA(5) - i. 

IPAR, I) - 1 
IPAR, 2) - 4 
IPAR3) = i0 
IPAR4) = 2 
IPAR 5) = 40000 
IPAR 6) - 2500 
IPAR7) = 0 
IPAR8) = 0 
IPAR9) = 1 
IPARI0) = 0 
IPARII) = 0 

LTOL(1) = i 
LTOL(2) = 3 
TOL(1) = I.E-5 
TOL(2) = I.E-5 

SOLVE A CHAIN OF 3 PROBLEMS 

DO 777 IJK = 1,3 
S = SVAL(IJK) 
EL = ELVAL(IJK) 
IF (IJK .EQ. I) GO TO 701 
SET CONTINUATION PARAMETERS 
IPAR(9) = 3 
IPAR(3) - ISPACE(1) 
CONTINUE 
WRITE (6,100) EN, S, EL 
FORMAT(IHI,38H ROTATING FLOW OVER A STATIONARY DISK. 

• /19H PARAMETERS - N -,F5.2, 6H S -,F5.2, 
6H L -,F6.1/) 

CALL COLSYS (NCOMP, M, ALEFT, ARIGHT, ZETA, IPAR, LTOL, 
TOL, FIXPNT, ISPACE, FSPACE, IFLAG, 
FSUB, DFSUB, GSUB, DGSUB, SOLUTN) 

c 
IF (IFLAG .NE. i) STOP 

C HERE WE MAY PRINT OUT OR PLOT VALUES OF THE 
C SOLUTION FOR EACH OF THE 3 PROBLEMS SOLVED 

777 CONTINUE 
STOP 
END 

The obtained G and H for n = 0.2, s = 0.05, L = 200 are graphed in Figure 2. 

5. ADDITIONAL COMMENTS 

The  code COLSYS has been designed to handle a variety of difficulties arising in 
practical problems. Consequently,  documentat ion is provided to facilitate sophis- 
ticated as well as straightforward usages. Example I presents a simple use of the 
code, while Examples 2 and 3 demonstrate some of the more advanced features. 
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Fig. 2. Example  3. 

In general COLSYS performs effectively [1], [2], [3]. Still, a number of addi- 
tional features could be incorporated in the code to improve its performance and 
reliability. Specifically, there is currently no facility for handling singular Jaco- 
bians or detecting excessive roundoff errors. For very large problems the storage 
requirements may become excessive (as is typical of non-initial-value codes), and 
proper modification of the linear system solver can reduce these requirements 
somewhat [2]. Furthermore, the only error tolerances that have been extensively 
tested are in the intermediate range 10 -4 to 10 -9 in - 16 decimal digit arithmetic. 
Also, harmless underflows (occurring particularly in the B-spline subroutines) are 
ignored. We intend to address some of these issues in the near future. 

COLSYS does not incorporate automatic continuation; however, enough infor- 
mation is returned to allow convenient implementation of simple continuation by 
the user, as demonstrated in Example 3. For this purpose, use of IPAR(9) -- 3 is 
recommended so that the first mesh for the current problem is constructed from 
every second point of the final mesh for the former problem and the initial 
approximation for the current nonlinear iteration is just the solution of the 
previous problem. Thus continuation is not used for linear problems. 

Unlike other codes the mesh selection procedure is free to change every interior 
mesh point during refinement. This provides for flexible adjustment of meshes to 
incorporate extreme characteristics of the solution with relatively small meshes, 
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as demonstrated in Example 2. In some cases, however, it may be desirable to 
alter this process. This can be done in two ways: 

(a) Setting IPAR(8) = 2 results in repeated mesh halving and prevents mesh 
redistribution altogether. An initial mesh can be defined by the user in 
FSPACE (see Section 4). It should be pointed out, however, that  usually the 
automatic mesh selector produces better meshes than user-generated ones as 
the error becomes small. 

(b) Using IPAR(11) and the array FIXPNT, certain specified points are forced 
to be part of every mesh. This can be used to indicate boundary layers, 
interior boundary points (interfaces) where the solution has less smoothness, 
or any points where the user does not want the differential equation evalu- 
ated. However, fixed points should be used sparingly, as they may downgrade 
the performance of the mesh refinement algorithm. 

Even given the power of the automatic mesh selection, as demonstrated in the 
last section, a good initial mesh provided by the user (using IPAR(8) ffi 1) can 
improve performance considerably. In fact, the nonlinear iteration may not 
converge on an inadequate initial mesh, causing repeated mesh halvings until a 
sufficiently fine mesh in the region(s) of difficulty is obtained. It can also happen 
that  an initial user-provided mesh having a few well-placed points gives a crude 
approximation such that  the next automatically selected mesh "loses" this desir- 
able placement. It is important to realize that  a sufficiently good start for the 
nonlinear iteration must sometimes consist of both a good initial solution profile 
and an adequate initial mesh. Failure to have one of these may cause the code to 
repeatedly halve the mesh without obtaining convergence of the nonlinear 
iteration until storage limitations are reached. This should not be interpreted by 
the user as a storage problem. 

The user is required to provide two Jacobians: a rectangular NCOMP × 
MSTAR matrix DF(I, J) in subroutine DFSUB and a set of MSTAR vectors DG 
of length MSTAR in subroutine DGSUB. The partial derivatives required may 
at times be difficult or impossible to evaluate, and they can instead be approxi- 
mated by numerical differentiation. The following FORTRAN segment could 
then be used for DFSUB: 

DIMENSION DF(NCOMP, MSTAR), WORKI(NCOMP), 
+ WORK2(NCOMP), Z(MSTAR) 

C THE DIMENSION VALUES HAVE TO BE EXPLICITLY INSERTED 
EPS -- 1.E - 7 
DO 10 J = 1, MSTAR 

Z(J) = Z(J) + EPS 
CALL FSUB(X, Z, WORK1) 
Z(J) -- Z(J) - 2. * EPS 
CALL FSUB(X, Z, WORK2) 
Z(J) = Z(J) + EPS 
DO 10 1 -- 1, NCOMP 

10 DF(I, J) = (WORKI(J) - WORK2(J)) * .5/EPS 

Here, EPS is roughly the square root of the machine unit roundoff; a more 
sophisticated differencing could adapt EPS to the size of Z(J). While the numer- 
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ical differentiation gives only an approximate Jacobian and may be computation- 
ally less efficient, the accuracy of the final computed solution is generally not 
affected. 

To control the nonlinear iteration, we suggest that  a user always use the regular 
mode (IPAR(10) = 0) first. If no convergence occurs, particularly after conver- 
gence on a previous mesh has been obtained and/or a good initial approximation 
was given, then the sensitive mode (IPAR(10) = 1) may be useful. 

Unlike other codes, COLSYS is designed to handle a mixed-order system 
without explicitly converting to a first-order system (as long as the orders are 
<_4). For collocation, this direct treatment is more efficient both in terms of 
storage requirements and execution time. However, the requirement k > m d  
causes the order of the method to be at least 2rod + 1, and for higher orders the 
error estimates may tend to be less reliable (cf. Example 1). The restriction 
m~ <_ 4, required for efficient implementation, is adequate for most practical 
problems. An equation of order higher than 4 should be converted by the user 
to lower order ones that satisfy the above restriction, with d being kept minimal 
for efficient execution (cf. [2]). 

An important feature of the code is that the approximate solution values at 
any points, and hence solution plots, are readily available. Plots with high 
resolution such as those in Figures 1 and 2 can be easily generated by using the 
mesh points plus a sufficient number of equally spaced points. In fact, solution 
values at mesh points are frequently more accurate than elsewhere, since the 
theoretical rate of convergence at these points is higher [2]. 

For the value of IPAR(2) = k, the number of collocation points per subinterval, 
a reasonable choice is the default value k -- max(m~ + 1, 5 - rod), obtained by the 
user setting IPAR(2) = 0. Note that  the order of the method does not vary during 
a run of COLSYS. 

The restrictions d = NCOMP <_ 20 and m* = MSTAR <_ 40 currently imposed 
are sufficient to accommodate most usages. In case they need to be increased, the 
following changes should be made in COLSYS: (a) For arrays in every subroutine 
currently dimensioned 20 and 40, modify their dimensions to the new limits on 
NCOMP and MSTAR, respectively; (b) modify the checks on input correctness 
in subroutine COLSYS appropriately; (c) in LSYSLV, change the dimension of 
DF from 800 to the new limit on NCOMP * MSTAR; (d) in BLDBLK, change 
the dimension of BASEF from 620 to the new desired limit on 

8 * MSTAR + 7 * NCOMP + max 
NCOMP 

M(J) ~- 
]--1 

Finally, various output options are available for COLSYS [using IPAR(7)]. 
Restricted output is displayed in Example 1. The "full output" option also 
displays the input data, nonlinear iteration and mesh-selection control param- 
eters, and the solution values at the mesh points for intermediate meshes. 

Note Added  in Proof: Many practical problems that are not in the standard 
form accepted by COLSYS can be converted into such form. For a survey of 
conversion devices see, for example, [4a]. 
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