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The general design of a set of routines for parabolic equations is considered, with partmular reference 
to the problem defimtlon and the user mterface. The algorithm is based on the method of hnes and 
is restricted to one space dimension, with a simple f'mite-dtfference approximation in space The basic 
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1. INTRODUCTION 

T h e  pu rpose  of th is  pape r  is to cons ider  the  des ign  of some l ib ra ry  r o u t i n e s  for 
the  n u m e r i c a l  so lu t ion  of a class of pa rabo l i c  pa r t i a l  d i f ferent ia l  equa t ions .  T h e  
r o u t i n e s  d iscussed here  are ava i lab le  in  the  DO3 c ha p t e r  of the  N u m e r i c a l  
A lgo r i t hms  G r o u p  l ib ra ry  (Mark  8). T h e  e q u a t i o n s  are l imi t ed  to one  space 
d imens ion ,  a n d  the  n u m e r i c a l  so lu t ion  is based  on  the  m e t h o d  of l ines,  us ing  
f in i te-d i f ference  a p p r o x i m a t i o n s  in  space to reduce  the  pa r t i a l  d i f ferent ia l  equa-  
t ions  to a sy s t em of o r d i n a r y  di f ferent ia l  equa t i ons  in  t ime.  

T h e  d isc re t iza t ion  r o u t i n e  is based  on  the  code p u b l i s h e d  by  S incovec  a nd  
M a d s e n  [13]. A n o t h e r  s u b r o u t i n e  package  i nco rpo ra t i ng  the  S incovec  a n d  Mad-  

sen  code has  b e e n  p roduced  by  H y m a n  [8]; th is  is des igned  to h a n d l e  ve ry  genera l  
pa r t i a l  d i f ferent ia l  e q u a t i o n s  in  one space va r i ab le  a n d  t ime,  a n d  as a r e su l t  i t  has  
a r a t h e r  compl i ca t ed  in te r face  for the  user.  T h e  r o u t i n e s  d iscussed in  th i s  r epor t  
are  de l ibe ra t e ly  res t r i c t ed  to e q u a t i o n s  of parabo l ic  type,  wi th  the  a i m  of m a k i n g  
t h e m  easier  to use  a n d  less l ikely to go wrong  because  of incons i s t enc ie s  i n  the  
p rob lem.  T h i s  pol icy also in f luences  the  choice of i n t e g r a t i o n  m e t h o d  d iscussed  
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296 P.M. Dew and J. E. Walsh 

below. Our design s t ra tegy is based on the assumpt ion  t ha t  l ibrary rout ines  are 
likely to be used by  a wide range of p r o g r a m m e r s  with very  different levels of  
ma thema t i ca l  background.  

2. DESCRIPTION OF THE PROBLEM 

A simple example  of  a parabol ic  equat ion in one space dimension is given by  the 
following 

Ot Ox g-~x + f u, Ox]' 

which we will use to i l lustrate the proper t ies  of  the  problem.  Equa t ion  (1) is first 
order  in t, which usually represents  a t ime  variable,  and second order  in the  space 
var iable  x. Typica l  boundary  conditions associated with (1) are of the fo rm 

u specified for a _ < x _ _ b ,  a t  t = 0 ,  

Ou (2) 
u or Ox specified a t  x a , b ,  for t > 0 .  

Thus  we have  an initial-value p rob lem in t, and  a boundary-va lue  p rob lem in x. 
We m a y  in terpre t  (1) as the equat ion of hea t  conduct ion in a bar, where  u is 

the t e m p e r a t u r e  and g the  conductivity.  In  general,  the  coefficient g m a y  be a 
funct ion of u, x, and t, bu t  we have  suppressed  the  a rguments  for simplicity. I f  
the mater ia l  proper t ies  change a t  some point  c in the interval  a < x < b, the  
coefficient g and the  source t e r m  f m a y  be discont inuous a t  this  point.  T h e  
differential  equat ion does not  hold a t  x = c, bu t  there  is usual ly a condit ion 

u continuous,  \ Ox] cont inuous (3) 

a t  c, which is sufficient to define the solution across the  interface. To  define the  
boundary  conditions at  a and b, the  general  fo rm m a y  be t aken  as 

Ou 
pu + q ~xx = r, (4) 

which includes the two forms in (2) as special cases. Th is  m a y  be used to represen t  
any  of the usual  types  of  boundary  condit ion for hea t -conduct ion  problems,  
including l inear and nonl inear  radia t ion conditions. 

To  ensure  the stabil i ty of  the  numer ica l  solution of (1), we have  to make  cer tain 
restr ic t ions on the coefficients. For  s tabi l i ty  in the  t ime  direct ion we need g > 0, 
wi th  integrat ion in the direction of t increasing. I f  g < 0, or if the in tegrat ion is 
backward  in time, the effect of  small  pe r tu rba t ions  is likely to grow exponential ly.  
We also exclude the case g = 0, for which the second der ivat ive  in x is absent.  In  
this case, the equat ion  takes  one of the  forms 

Ou 
- f ( u ,  x ,  t ) ,  

Ot (5) 

Ou Ou 
- -  = a - -  + ~ ( u ,  x ,  t ) ,  
Ot Ox 
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or variants of these. The first of (5) is essentially an ordinary differential equation 
in the time direction, and the second is an equation of hyperbolic type. In both 
cases, boundary conditions of the form (4) at x = a and x = b are not appropriate 
for defining the numerical solution of the differential equation; in particular, the 
second equation is hyperbolic and requires only one boundary condition. 

If we want to consider a similar problem in n space dimensions, we have an 
equation of the form 

_ _  = n ( OU Ou ) (6) 
au ~ a2u + F u, O--x . . . .  ' O X n  ' Ot ,a=1 a,j Ox,Oxj 

which is of parabolic type if the matrix [a,~] is positive definite. The region of 
integration is normally closed in space and open in the forward direction in time. 
The problem has an elliptic character in the space variables, and the forward 
integration in time requires the solution of large systems of implicit equations at 
each step. The numerical solution of (6) for n > 1 presents a major computational 
problem, mvolving geometrical difficulties and considerations of efficiency that  
are not present in (1). It was therefore decided to limit the algorithms discussed 
here to one space dimension, and to leave the problem of higher dimensions for 
later development. 

However, it is not necessary to restrict the parabolic equation to Cartesian 
coordinates, as given in (1). We therefore make an extension of the basic equation, 
and consider the following form: 

Ot x m Ox + f u, . (7) 

The values m = 0, 1, 2 correspond to problems in Cartesian, polar, and spherical 
polar coordinates, respectively. The coefficients g and f in (7) may be functions 
of x and t as well as of u and Ou/ax,  but these arguments are omitted for clarity. 
When the point x = 0 lies in the inter,-al of integration, we need the condition 

au 
- - = 0  at  x = 0 ,  (8) 
Ox 

for m > 0, to ensure that  there is no singularity at this point. 
We now consider a suitable form for systems of parabolic equations. In practical 

work, such systems often include elliptic equations, which represent the steady 
state of parabolic equations. We therefore want to allow for the case where the 
time derivative is absent for certain equations in the system, and so we introduce 
a coefficient on the left-hand side, giving 

ou, ° O ou, ox/ c, = j ~  g~  + f~, i, = 1, 2 . . . .  , n.  (9) 

{This can easily be generalized to other coordinate systems as in (7).) Taking 
u = (ul, u2 . . . . .  u~) T, system (9) may be written in matrix notation as follows: 

o(oo) 
Ot - Ox ~ + f' (10) 

where G is a general matrix, and D is a diagonal matrix. The diagonal form of D 
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is rather restrictive, but if we take a general D it becomes more difficult to 
determine whether the system is parabolic in the time direction. Assuming the 
form (9), suppose that  certain coefficients c, corresponding to elliptic equations 
are identically zero. Taking the zero c, to be the last n - p values, we can partition 
(10) as follows: 

[Dp 0] 0 [up]  0 ([Gpl Gp2] 0 [up]}+f, (11) 
~ Ue ~-~XX Gel Ce~ ~X Ue 

where roughly speaking the first p equations are parabolic, and the last (n - p )  
are elliptic. If we neglect the coupling terms Gp2, Ge,, we can give a condition for 
stability of the parabolic equations in the linear case, though this would not be 
adequate for the general case. We do not attempt a complete test for stability, 
but it is required by the routines that  at least one of the c, should be nonzero at 
each mesh point. Further conditions on the equations are discussed later. 

3. THE NUMERICAL ALGORITHM 

A general approach to the numerical solution of parabolic systems is given by the 
method of lines. For a single equation of the form of (1) or (7), we approximate 
the partial derivatives on the right-hand side in terms of discrete values of u at a 
set of mesh points in the interval a _< x _< b. By using these approximations to 
represent the partial differential equation at each mesh point, we reduce it to a 
system of ordinary differential equations in the time direction, which is then 
solved numerically. Clearly the same method can be applied to (9), but in this 
case some of the coefficients c, may be zero, and we therefore obtain a mixed 
system of ordinary differential equations and algebraic equations. 

The ordinary differential equations resulting from the method of lines form a 
stiff system when the original problem is parabolic. It is therefore appropriate to 
use a method of integration suitable for stiff systems. A characteristic of the most 
useful methods of this type is that any oscillations present in the solution are 
quickly damped out. This property is clearly not correct for hyperbolic equations 
where a different type of integration method is appropriate. Because of this, and 
because it is difficult to handle problems with a shock front, the restriction of the 
problem class to equations of parabolic type is important. For the routines 
discussed here, the discretization in the space direction is based on finite differ- 
ences, and a version of Gear's method is used for the time integration. We now 
consider these two parts of the algorithm in more detail. 

3.1 Fin i te-Di f ference Dtscret izatton 

The finite-difference discretization is based on the algorithm given by Sincovec 
and Madsen [13]. The reasons for selecting finite differences to represent the 
space derivatives are as follows: 

(i) Most users are familiar with finite differences, and they will be able to 
appreciate the problem of mesh selection. This is particularly important in 
the present routines because there is no error estimate or error control for 
the spatial discretization. 
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(ii) The method is versatile and can be applied to a large class of problems, 
including those with material discontinuities. 

(iii) On the basis of limited numerical testing [1], the performance of the finite- 
difference method is comparable with that of finite elements using linear 
basis functions. 

(iv) Higher order approximations (used, for example, in PDECOL written by 
Sincovec and Madsen) give more difficulties for problems that  have a 
discontinuity between the initial and boundary conditions, and the choice of 
a suitable mesh is less straightforward. However, it is intended that routines 
based on higher order approximations will be considered for future devel- 
opments of the chapter. 

A useful reference on finite-difference methods is [9]. 
The discretization routine has two main differences from the Sincovec and 

Madsen code. The approximation is modified so that the function gg in (9) is 
evaluated at mesh points only, in order to simplify the specification of the routine 
that defines the parabolic equations. This does not reduce the order of accuracy 
for a mesh with a smoothly varying step length, and numerical testing [1] suggests 
that it has little effect on the results. Further, a number of restrictions are 
imposed on the problem definition in order to reduce the possibility of failure in 
the routines and make the interface more straightforward. 

To illustrate the main features of the discretization, we consider first a single 
parabolic equation of the form (9), with coordinate system as in (7), 

C(U,X,t) OU=x-m 0 [xmg(u,x,t) ( OU t) a---[ OX ~X +f U'~x'X' ' a<x<b,  (12) 

subject to the boundary conditions 

Ou p(t)u+q(t)~x=r(u,t) at x = a  and x - . b .  (13) 

This form is chosen so that  simple Dirichlet and Neumann conditions can be 
represented easily. The mesh points are chosen so that  

a = x l  < x 2  < . . .  < X N p  = b, 
where Np is the number of mesh points. At internal mesh points xj the derivatives 
are replaced by central differences 

xj+l - xj-1 
x~ 

Ox xj 

m + l  - -  - - m + l  Xj+(1 /2 )  " " " 
X j+(1 /2 )  - -  X/--(1/2) " /  \ X j + I  X j  

"~" "]~ Xj--1] ( 1 4 )  
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where 

uj = u(xj, t), gj = g(uj, xj, t), xj,(112) ~" ½(x~+l + xj). 

I t  may  be shown by Tay lor  expansion tha t  this representa t ion has second-order  
accuracy when the step length varies smoothly  and g is continuous. The  difference 
replacement  requires modification at  the boundary,  and we consider J¢ = a as an 
example. The re  are two cases arising from (13). 

Case 1: Dirichlet Boundary Condition. In this case q (t) = 0 at  x =- a, and the 
value of u at  xl is obtained directly f rom the boundary  condition 

r(t) 
ul = p ( t )  " 

We make  the restr ict ion tha t  r mus t  be a function of t only. To  avoid complications 
(particularly for a system of parabolic equations),  the algori thm uses a dummy 
equation 

du~ 
dt  - - 0  

at  the boundary  point  x~. 

Case 2: General Boundary Condition. When q(t) # O, the  first mesh  point  
must  be included in the discretization. An expression for the derivative at  the 
boundary  is given by 

0U)x [r,u (~x 1 =- q(t) ix,' (15) 

and the spatial opera tor  is approximated  by 

m + l  m ( g 2 + g l ) ( u 2  ul) x~gl  (16) 
~ m+"i" - -  _--_m +1 X3/2 

x3/2 - xl 2 (x2 - xl) ~x  1" 

This  equat ion has only first-order accuracy. By using the above expressions it is 
easily seen tha t  (12) and (13) can be reduced to a system of ordinary differential 
equat ions of  the form 

du~ 
C ~ - ~  -- Fj, j - -  I, 2, . . . ,  Np. (17) 

T h e  me thod  extends natural ly  to a system of parabolic equat ions such as (9), 
subject  to boundary  conditions of the form 

OU~ 
p , ( t )u ,+q , ( t )~x  = r ' ( u ' t ) '  i = 1 , 2 , . . . , n ,  at x = a  and b. 

At a new t ime step, the coefficients p, ,  q,, r,, t = 1, 2 . . . . .  n, are first evalu- 
ated; then  if any q, -- 0, the corresponding u, is calculated and a d u m m y  equat ion 
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( d u , / d t )  = 0 is in t roduced as above. T h e  coefficients r~ are then  reevaluated.  
(When q, -- 0, the corresponding r, mus t  be independent  of  u.) 

3 2 Integration an the T~me DJrechon 

The  finite-difference discretization applied to a sys tem of parabolic  equat ions  (9) 
reduces  the p rob lem to tha t  of solving a sys tem of ordinary  differential  equat ions  
of the form (17), which m a y  be wri t ten 

du,~ 
C,j (u, t) - - ~  = F,j (u, t), ~ = 1, 2, . . . ,  n, j = 1, 2 . . . . .  Np, (18) 

where  the vector  u is now extended as follows 

u = , U g  = . ( 1 9 )  

LU.,,J 
N 

In the discretization routine,  the coefficients C,j and Fu are compu ted  f rom the 
definition of the  parabol ic  system, the  vector  of mesh  points,  the  cur rent  solution 
vector  u, and the t ime t. I f  c, in (9) is zero for some ~, then  C,j - 0 for the 
corresponding t and a l l / ,  so tha t  (18) represents  a mixed sys tem of algebraic and 
ordinary  differential  equations.  

To  invest igate  the behavior  of the  sys tem {18), we consider the  s imple hea t  
conduct ion equat ion (or diffusion equation) 

Ou 02u 
c - -  = g g / c  a posit ive constant ,  0 < x < 1, 

Ot Ox 2 ' 

subject  to Dir ichlet  boundary  conditions 

u(0, t) = u(1, t) = 0. 

The  central-difference rep lacement  leads to 

+1 - 2  +1 0 . . .  
d U _ g A u ,  A =  1 +1 - 2  +1 . . -  
d t  c ~-~ . . . . .  _ , (20) 

. . .  0 +1 - 

where  the mesh  points  are equally spaced a t  interval  h. T h e  eigenvalues of  A are 
all negative,  and a measure  of the  stiffness of (20) is given by  

S ( A )  max I eigenvalue o f A  I O(N2p)" 
= min eigenvalue of AI = 

T h e  sys tem is mildly stiff; nevertheless,  if we want  to avoid very  shor t  t ime-s teps  
it is necessary to use an implicit  me thod  to compute  the  solution. T h e  s implest  
implicit  m e t h o d  for parabol ic  equat]ons is the t r apez ium rule (or Crank-Nico l son  
method) .  However ,  this has a low fixed order, and for a general  in tegrat ion 
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routine it is more satisfactory to use one of the variable-order, variable-step 
methods,  which aim to integrate the system as efficiently as possible over a range 
while meeting a specified accuracy criterion. The  most  widely used variable-order 
routines for parabolic systems use Gear's method, with backward differentiation 
formulas tha t  are stiffly stable [5]. This method  has the effect of damping any 
oscillations in the numerical solution, which makes it suitable for purely parabolic 
problems. If  the solution is oscillatory, Gear's method will generally be less 
successful, and for systems tha t  do not  behave like parabolic equations some 
caution is necessary in estimating the accuracy of the results. 

Although Gear's method is normally implemented for systems written in the 
s tandard form y '  = f(t, y), it can be easily extended to a general implicit system 

(~(t, y, y') = 0, (21) 

as described in [5] and [2]. For simplicity, we describe the method in terms of a 
constant  t ime step t~t. The derivative y '( t)  at  t = tp is approximated by the 
backward-difference formula 

y~ = ~-~ V (')y(tp) --- 
t=l 

k 
y(~)  - ~ a ,y(G - i6t)  

t~l  

floS t 
, ( 2 2 )  

where the coefficients (al, a2 . . . .  , ak, rio} are those given by [5]. On substituting 
(22) into (21), we see tha t  an approximate solution yp = y(tp) is given implicitly 
by 

k ( ') ]=0. (23) 

The solution yp is computed iteratively using Newton's  method 

k 

( Y(m)--t~IOQYP-t~-~-'~i -- 
jm{y(pm+l, __ yp(m)} = --flo6t ~ tp, yp(m), "], m ---- 0, 1 . . . .  , 

where Jm is the Jacobian matrix defined by 

[_00] 
J m =  f lo~t°~ +-- - ;  

In practice the Jacobian matrix is recalculated only when the rate of convergence 
of the iteration is slow, and normally the same Jacobian matrix is used over a 
number  of steps. I t  can be shown tha t  (23) is a kth-order method.  

In Gear's implementat ion of the backward differentiation formula, the previous 
solution values yp-1 . . . . .  yp_~ are not  stored directly; instead, scaled estimates of 
the first k derivatives at  tp are retained. This simplifies the expressions for the 
error tha t  are used in controlling the order and step size. The construction of a 
routine for Gear's method (for systems of s tandard form) is fully described in [4]. 
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In the parabolic routines we want  to solve ordinary differential equat ions of 
the form (18). The  function 4) of (21) is given by 

du,~ 
~,1 = C,j(u, t) ~ - F, j (u,  t) (24) 

and hence the Jacobian mat r ix  is 

where ~ has the same ordering as u in (19), and D is a diagonal matr ix  with C,1 
(u, t) on the diagonal. Because F,~(u, t) involves only uj-l, uj, and uj+~, the 
Jaeobian matr ix  is block tridiagonal with each block of order  n. This  proper ty  is 
used to reduce the storage and computat ion time. If we make additional restric- 
tions on the problem specification as follows, 

(i) the coefficient g,~ in (9) satisfies 

g~j = O, if i # j ,  

g,, = g,,(u,, t); 

(ii) the functions f, and c, have limited dependence on the derivatives of u, 

~=~ u,---~,t, c , = c ,  u,  T x - , t  ; 

t hen  the bandwidth of the Jacobian matr ix can be reduced fur ther  to 
2 n +  1. 

3.3 El l iphc-Parabol ic  Solver 

The  routines are designed to handle systems tha t  may  include both  elliptic and 
parabolic equations. (As ment ioned earlier, a check is included to ensure tha t  at  
least one equation is parabolic.) It  has been found by exper iment  tha t  Gear 's  
method  is less robust  when solving the differential equations arising from an 
ell iptic-parabolic system. In certain cases a solution may  not  exist at  all, if the  
system is inconsistent. If  there  is a solution, the t ime integration may  be difficult 
because the Jacobian matr ix is nearly singular (since D is singular), and its 
condition cannot  be improved by reducing the t ime step, which is the usual 
expedient  when the i terat ion does not  converge satisfactorily. Numerica l  experi- 
ments  have indicated tha t  more Jacobian matr ix  evaluations are generally re- 
quired when solving a mixed system of algebraic and ordinary differential equa- 
tions. In an a t t empt  to make the code more robust, the  elliptic par t  of the system 
is isolated at  the initial stage and solved directly to obtain initial conditions for 
the  t ime integrat ion tha t  are consistent with the discretization. T h e  conditions 
specified by the user are taken  as a first estimate, which is then  improved by 
using Newton iteration. If the Jacobian matr ix of the elliptic par t  is singular, or 
if the i terat ion fails to converge, the routine is te rminated  with a suitable error  
indicator. This  has the advantage tha t  only an approximate solution to the elliptic 
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Table I General Layout of the Parabolic Routines 

. . . . . . . .  USER ENTRY POINTS - -  - 

I L I I 
This code is ~ J 
ChapterSpeclfiC tODo3 I DO3PTF I DO3PGF ~ 1 

This code can 
be shared with Gear's method Jacobian 
other sections {reverse commumcatlon) evaluation, 
of the library calculation 

of correction 

part has to be provided initially, and any inconsistency in the specification of the 
problem is likely to be revealed by lack of convergence. To start Gear's method, 
an estimate of the derivatives with respect to t is required, and for the elliptic 
part of the system this is set to zero. 

4. STRUCTURE OF THE ROUTINES 

In the design of a library routine it is essential that  the specification should be 
convenient and comprehensible to the user. The design of the interface is 
particularly difficult for partial differential equations because the definition of 
the problem requires a large amount of information, which has to be passed 
through the parameter list. In the NAG routines we have tried to balance the 
need for generality in the problem definition and the facilities provided, against 
the length of the parameter list and reasonable simplicity in use. 

The policy adopted is similar to that of the ordinary differential equations and 
optimization sections of the library, described by Gladwell [7] and Gill et al. [6]. 
There is a rather general routine (DO3PGF) at the lowest level, which is intended 
for use only by sophisticated programmers, and we supply simpler "drivers" that  
call this routine. One of the drivers provided (DO3PAF) is designed for a single 
parabolic equation, and the other (DO3PBF) for a simple system of parabolic 
equations. The detailed specification of each routine is given in the NAG library 
manual [10]. The general layout of the routines is shown in Table I, and we 
describe the main features below. 

4.1 DO3PAF Routine 

This is a simple routine for the user who wishes to solve a single parabolic 
equation, or to gain some experience of the routines in a simple case before trying 
to solve a more complicated system. DO3PAF is designed for a single equation of 
the form 

- -  ( ) Ou x -  ~_0 x ~ g ( u , x , t )  Ou + f  U,~xx, X,t , a < _ x ~  b, t > 0 ,  (25) 
Ot Ox 
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subject  to an initial condition and the boundary  conditions {13). T h e  mesh  points 
are taken to be equally spaced. T h e  user need only specify the ends of the range, 
the number  of mesh points, the initial values of u at  the mesh  points, and two 
subroutines P D E F  (to evaluate the functions g and f)  and B N D Y  (to evaluate 
the coefficients in the boundary  conditions). The  simple s t ructure  of (25) makes 
it possible to include a number  of checks to ensure tha t  the problem is correct ly 
posed for the routine. The  checks are as follows: 

(i) At each  mesh point  (including x = a and x = b) the funct ion g must  be 
positive, and the integration must  be in the forward direction in t. These  
checks should detect  an unstable problem (or more  commonly a problem tha t  
has been incorrectly specified). 

(ii) The  boundary  conditions must  have a reasonable form. Specifically, the 
coefficients p and q must  not  be zero simultaneously, and if q is zero, then  r 
must  be a function of t only. If m > 0, then  x = 0 must  not  lie within the 
range; if it is an endpoint,  the corresponding boundary  condition must  be 
ei ther  (Ou/Ox) = 0, or u = r ( t ) .  

) 

These  checks are made on every call of the discretization routine. T h e  parabolic 
equat ion is solved over a range; the user merely specifies the initial and final 
values of t. T h e  error conditions arising from the  t ime integrat ion are discussed 
below. 

Because DO3PAF is designed for a single equation, the pa ramete r  lists for the 
subroutines P D E F  and BNDY are shorter  than  the corresponding lists required 
in DO3PBF and DO3PGF.  This  creates a problem when the  simple driver calls 
the low-level routine. One solution is to use two sets of dummy subrout ine names 
in the main driver. All the routines DO3PAF, DO3PBF,  and DO3PGF then  call 
the main driver, which has an indicator to distinguish the cases. An al ternat ive 
solution is to ask the user to specify f i x e d - n a m e  subroutines for defining the 
equat ion and boundary  conditions in the simple driver DO3PAF. This  makes  it 
possible to use DO3PGF as the main driver. We preferred the  second solution 
because it simplifies the specification while not  unduly restricting the  user. 

4.2 DO3PBF Routine 

This  rout ine is designed to solve quite general parabolic (or parabolic-elliptic) 
systems, but  the number  of facilities provided has been kept  to a minimum. This  
ensures tha t  the parameter  list is as short  as possible. I t  is expected tha t  DO3PBF 
will be the most  widely used routine. The  actual system solved is 

I OU~ 
C~ U,-~X , x, t = x m g , ( u ,  x,  t)  + f ~ u ,  x, t , 

i = 1, 2, . . . ,  n, a < x_< b, 
(26) 

where the vector  u is defined as in eq. (10). The  restr ict ion imposed on the 
arguments  of the functions g,, f~, and c, are to ensure tha t  the bandwidth  of  the 
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Jacobian matr ix  is limited to 2n + 1. This  reduces bo th  storage and computa t ion  
time, which can be significant in a large problem. Th e  form (26) does not  seriously 
restr ict  the  practical problems tha t  can be solved, and we feel tha t  the bandwidth 
l imitation is worthwhile. (The al ternative would be to provide a pa ramete r  tha t  
allowed the user to specify the bandwidth,  but  this would make  an added difficulty 
for inexperienced programmers.)  

T he  user can specify certain s tandard  mesh  spacings (equally spaced points, or 
points projected from a circle at  equal angular  distances), or he can specify the 
individual mesh  points. As in DO3PAF, the routine integrates the problem over 
a specified range, with the user providing the  initial and final values of t. 

T o  ensure tha t  (26) is of parabolic type, we make  the following checks at  each 
mesh  point  

(i) there  is at  least one nonzero value of c,; 
(ii) if c, # 0, then  g, /c ,  > O. 

T he  first check is a simple test  to ensure tha t  the system includes at least one 
parabolic equation. I t  is not  applied at  the first and last mesh  points x = a and x 
= b. The  second check is a test  for stability; if it is not  satisfied, the integrat ion 
in the forward t direction is likely to be unstable. 

T he  boundary  conditions are of the form 

OUt 
pt(t)u, + add  ~x = r(u,, t), i = 1, 2 . . . . .  n, (27) 

and the restr ict ions given in (ii) of Sect ion 4.1 apply for each equat ion in {27). 

4.3 DO3PGF Rout ine 

As ment ioned  earlier, this rout ine is in tended for the sophist icated user and is 
designed to solve a general parabolic system (9), with coordinate  options as in 
(7). The  only restr ict ion on the functions c,, gv, and f, is tha t  c, must  be nonzero 
for at least one i at  each mesh  point. T h e  integration in the t variable may  be 
ei ther  forward or backward, and the user must  ensure tha t  the problem is 
correct ly posed for the routine.  Although (9) is not  as general as the specification 
in [13], it should be sufficiently general to cover a large number  of parabolic 
systems arising in practice. 

T he  boundary  conditions are of the form given by {27), with one minor  
extension: the coefficients p, and q, may  both  be zero at  e i ther  x = a or x = b. (It 
is then  assumed in the rout ine tha t  1", is also zero.) This  case corresponds to a null 
boundary  condition, and for the problem to be correct ly posed we require the 
corresponding gv to be zero for all j .  However,  there  is no guarantee tha t  the 
integrat ion will be successful in this case, and the option should be used with 
caution. The  position and nature  of the boundary  conditions are part icularly 
critical in determining the stability of such problems. A numerical  example 
illustrating these points is given in Sect ion 5. 

Although DO3PGF is wri t ten  to integrate  over  a specified range, extra facilities 
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BEGIN 
SET up the machine dependent constants (e g, relative precision), 
CHECK the initial parameters for consistency (e g., that mesh points are correctly ordered, 
Xt > X¢-I), 

SET up the parameters that partition the workspace, 
IF initial call of the routine (or a restart of the integration) 
THEN 

CALL the dlscretlzatlon routine DO3PTF to compute the coefficients C,~, F,j, 
IF there are any elhptic equations THEN 
BEGIN 

Isolate the elliptic part of the system and refine the initial solution vector so 
that it satisfies the discrete equations arising from the elliptic part to an 
accuracy of half the tolerance specified If convergence is not obtained then 
return to the user with the appropriate error flag set, 
RECOMPUTE the coefficients C,j, F,~ by recalling DO3PTF 

END; 
ESTIMATE the initial step size and the first derivative du/dt  at the initial value of t, 
for Gear's method 

ELSE fetch the integration parameters from the workspace, 
IF reqmred call the monitor output subroutine, 
START of main integration loop, 
STEP If sufficiently close to TOUT and not initial call THEN goto TE, 

CALL Gear's method to compute the solution at the next time step (see Table III), 
IF error flag set in Gear's method THEN goto ERROR; 
IF reqmred call the monitor output subroutine, 
go to STEP, 

TE INTERPOLATE the solution vector to give solution at TOUT, 
SAVE the integration parameters in the workspace, 
IF required call the momtor output subroutine, 
RETURN to the calling program, 

Set the error flag and return to the calling program ERROR 
END 

are p rov ided  so t h a t  the  so lu t ion  vec to r  c an  be m o n i t o r e d  af ter  each  successful  
s tep  in  the  t d i rec t ion .  T h e  i n t e g r a t i o n  can  also be t e r m i n a t e d  af ter  a n y  step.  
T h e r e  is f lexibi l i ty  in  the  choice of the  er ror  t es t  a n d  also in  specifying the  
b a n d w i d t h  of the  J a c o b i a n  matr ix .  

T h e  genera l  s t r uc tu r e  of the  D O 3 P G F  r o u t i n e  is g iven in  T a b l e  II. T h e  
i n t e g r a t i o n  is t e r m i n a t e d  w h e n  the  va r i ab le  t has  passed  the  specif ied e n d p o i n t  
T O U T .  (An op t ion  is p rov ided  to s top the  i n t eg ra t i on  w h e n  t is exact ly  T O U T ,  
to al low for the  case w h e n  the  so lu t ion  c a n n o t  proceed  b e y o n d  th is  poin t .  T h i s  
op t ion  is no t  s h o w n  in  T a b l e  I I  to avoid  giving too m u c h  detail.} 

4.4 DO3PTF Routine 

T h i s  is the  f in i te-di f ference  d i sc re t iza t ion  r o u t i n e  t h a t  c o m p u t e s  the  coeff icients  
C,j, F,j  in  (24), us ing  the  m e s h  poin ts ,  t he  c u r r e n t  so lu t ion  vector ,  a n d  the  
s u b r o u t i n e s  def in ing  the  parabol ic  sys tem.  T h e  r o u t i n e  is des igned  for the  p r o b l e m  
speci f ica t ions  g iven  in  D O 3 P A F ,  D O 3 P B F ,  a n d  D O 3 P G F ,  a n d  all t he  checks  are 
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performed within this routine. The structure of the routine is similar to that  of 
the code in [13], except that  the modification to evaluate the function g at mesh 
points only requires some reorganization of the calculation. This change was 
made so that  all the coefficients in the parabolic equation would be evaluated at 
the same points and the user could define them all in a single subroutine PDEF. 

4.5 The Gear Routine 

The Gear routine is written in "reverse communication" form; currently it is 
based on the code given in [4]. The use of "reverse communication" means that 
the evaluation of the Jacobian matrix and vector ~ of (24) are performed in the 
calling program as shown in Table III. This form is convenient for a general 
library, because the basic Gear routine can then be used in different contexts, for 
ordinary differential equations as well as for parabolic equations. 

Since the finite-difference discretization is of relatively low order, only modest 
accuracy is likely to be required in the t integration. Therefore we do not use the 
higher order backward difference formulas, and the maximum order in the Gear 
routine is restricted to four. This reduces the size of the workspace and improves 
the stability of the method. 

To make the integration robust, we include three standard error traps: 

(1) We have incorporated the limiting precision test discussed in [11] for the 
Adams method. Suppose the error test used in Gear's method is of the form 

II e I[ ~ ~ T O L ,  (28) 

where H • ][ w denotes the weighted error norm and TOL is the tolerance. Then 

(i) the tolerance must satisfy 

TOL ___ 20U]] u H ~, 

where U is the relative precision of the machine (the smallest number such 
that 1 + U ~ 1) and u is the solution vector, 

(ii) the step size must satisfy 

I tl >- 4 u I t J  + 

where t is the current value of the independent variable and a is the smallest 
positive number that can be stored in the machine. 

The integration is terminated with an error indication when either (i) or (ii) is 
not satisfied. This error often occurs when the solution is unstable. If the 
integration is to be continued, it is necessary to relax the accuracy requirement. 

(2) In Section 3.2 it was stated that  the Jacobian matrix was reevaluated when 
the rate of convergence of the iteration was slow. If at any step a second or third 
Jacobian evaluation is required, the step size is halved for each evaluation. If the 
iteration is unsuccessful after three such evaluations, the integration is termi- 
nated. Similarly, if the estimate of the local error fails the error test three times 
in one step, the integration is terminated. In both cases the routine can be recalled 
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calhng program 

E N T R Y  CALL GEAR ( , T. DT, BETA, Y, DY, COR, IND, ) 
IF IND = 0 T H E N  integration has finished, check error flag 
ELSE 

BEGIN 
IF IND = 2 T H E N  

BEGIN 

FORM the Jacoblan matrix J = { ~  - D T  BETA ~ ,  1 

C O M P U T E  the LU factors of  J 
END, 

FORM the correction COR, using the LU factors of J, from J .e  -- 
- D T  BETA ~(T, y, y ' ) ,  
goto E N T R Y  (to recall the GEAR code} 

E N D  

Note that  Y, DY, CORR are arrays containing the values of the vectors y, y '  and c, respectively 
The correction c is used to obtain the new est imate of the solution vector  and its derivative; that  
IS, 

y.o~ = y - DT BETA.e 
and 

Y~ew = y '  -- C 

to r e s t a r t  the  in t eg ra t ion  wi th  o rde r  1. T h i s  e r ro r  shou ld  no t  ar ise  v e r y  often;  
w h e n  it  does  it p r o b a b l y  m e a n s  t h a t  the  p r o b l e m  h a s  b e e n  inco r rec t ly  specif ied 
or t h a t  the  so lu t ion  is d i scon t inuous  for  s o m e  va lue  of  t. 

(3) T h e  in t eg ra t ion  is t e r m i n a t e d  if t he  J a c o b i a n  m a t r i x  is a l m o s t  s ingular .  T h e  
s tep  size is ha lved  and  the  use r  can  recal l  the  rou t ine  to con t inue  the  in tegra t ion .  
T h i s  e r ro r  m a y  occur  w h e n  solving an  e l l ip t i c -pa rabo l i c  sys t em,  in wh ich  case  
r educ ing  the  s tep  size m a y  no t  be  successful .  In  such  a case  it  is adv i sab le  to  
check  the  p r o b l e m  specif icat ion.  

In  genera l  the  user  c a n n o t  be  expec t ed  to p rov ide  an  ini t ial  e s t i m a t e  of  t he  s t ep  
size. S u p p o s e  we wish to solve the  l inear  d i f ferent ia l  s y s t e m  

u ' ( t )  = Au( t ) ,  

us ing  the  f i r s t -order  b a c k w a r d  di f ference  f o r m u l a  ( I  - 3tA)un+l ffi un. I t  c an  be  
s h o w n  t h a t  the  p r inc ipa l  t e r m  in the  local  t r u n c a t i o n  e r ro r  is 

T = (t~t)2A2 u( t )  - (tlt)2A u ' ( t ) .  

2 2 

T h e  e r ro r  t es t  (28) is sat isf ied if we use  T as the  e r ro r  e s t ima te ,  a n d  if 

[] W ]] ~ -- ½(St) 2 I] A u ' ( t )  ]] ~ __ ½((~t) 2 [] A [] ~ • ]1 u ' ( t )  ][ ~ ---- T O L ,  

so t h a t  

~ /  2 T O L  
16tl----- 

II A II ~ II u ' ( t )  II w 
(29) 
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The algorithm used to estimate the initial time step (or after a restart) for the 
system (18) is 

DT := range of integration in time; 
DUNORM := ][ F II w/max ] C,j I; 
ABSDT := ABS(DT); 
IF (DUNORM ~ 0) THEN 

ABSDT .= min{ABSDT, -~/ 2K.TOL 
~/DUNORM ) ; 

DT = sign(DT) * max {ABSDT, 4 U I t [ + o} ; 

The value of K used in the NAG code is 0.01. This should be related to 
1/11 A II w, and since II A II w depends on the stiffness and the scaling of the time 
variable it is possible that  the initial time step may be too large or too small. In 
the initial step, we therefore reduce the step size by a factor of 10 (rather than 2) 
if it is too large; if it is too small, it will be increased by the method. The algorithm 
above is similar to one used by Shampine in the Adams code (el. [12]). 

4.6 Matr ix Routines 

The Jacobian matrix, which is required for the solution of the implicit equations 
in Gear's method, is found by using forward differences to approximate the 
derivatives. Numerical differentiation is used here because it is often rather 
complicated to construct the Jacobian analytically and experience with other 
NAG routines suggests that errors are frequently made at this point. However, a 
facility may be introduced in later developments for using the exact Jacobian, if 
it is available. 

The matrix is of band form, as stated above, and in general it is block-triple- 
diagonal, with blocks of order n. The form is as follows: 

B2 C2 
J = A3 Ba Ca " 

The triple-diagonal structure arises because the space derivatives are approxi- 
mated on three neighboring points only. The detailed form of the submatrices Aj, 
Bj, Cj depends on the coupling between the equations of the system. In the 
restricted case that  is solved in DO3PBF, it is assumed that  the i th equation is 
of the form shown in (26), where the dependence of f,, g,, c, on the components 
of the solution is regtricted. I t  can be seen that  this reduces the matrices Aj, C1 to 
diagonal form, so that the bandwidth is 2n + 1. If the dependence is unrestricted, 
A1, Cj have to be treated as full matrices. 

In solving the equations for the Newton correction, it cannot be assumed that  
J is diagonally dominant, because there may be elliptic equations in the system 
or large coefficients in A~, Cj arising from f,. Interchanges are therefore needed 
in factorizing the matrix J. Table IV gives a summary of the storage and 
operations required for the principal cases. We consider n equations, Np mesh 
points, and give only the leading term of each expression. 
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Case Jacobian Bandwidth Storage Multiphcations 

Single equation Tndlagonal  3 4 • Np 5 • Np 
Equation (26) Band 2n + 1 3 N p  • n 2 2 N p  . n 3 

General equation Stepped band 3 n  4 N p  • n 2 ( 2 3 / 6 ) N p  • n 3 

General equation Treated as band 4n - 1 6N~, • n 2 8 N p  • n 3 

5. NUMERICAL TESTS 

Simple examples of the use of the routines are given in the NAG manual  [10]. 
The  testing tha t  was carried out  in developing the routines had three  objectives, 
to check the correctness of the coding, to test  the effectiveness of the approxi- 
mations used, and to t ry  out  ra ther  difficult cases which are not  s traightforward 
parabolic systems. Detai led results of tests on the mesh size and error  tolerance 
are given in [1]. It  should be noted tha t  the routines carry out  error  checks on the 
integration in the t ime direction, but  the space approximation is not  checked, 
and the user must  devise his own procedure  for validating the choice of mesh. 
Problems in which the distribution of mesh points is very  critical are those with 
marked boundary  layers, and those with the effect of a steep wavefront  moving 
across the region (e.g., Burgers '  equation).  In the t ime direction, part icular  
difficulties may  arise with problems tha t  have oscillatory solutions (for which 
Gear 's  me thod  is not  very effective) and with strongly nonlinear problems, such 
as those involving combust ion or explosion terms. 

We now consider two test  problems to illustrate some aspects of the routines. 

P r o b l e m  1. This  is an artificial problem, designed to test  the code for handling 
elliptic equations. The  system is as follows: 

OX 2 e-2U2,  

0U2 02U2 
Ot Ox 2 + e-U~ + e-2U2' 

for 0 _< x _< 1, t > 0, with boundary  conditions 

u 2 = l o g ( x + p )  at t = 0 ,  

Ou~ 

- -  e - u ~  a t  x =- 0, 
Ox 

u ~ = l o g ( l + p + t )  at x =  1, 

u2- - - - log(p+t )  at  x = 0 ,  

Ou2 
- -  e - u ~  a t  x = 1.  

Ox 

The  analytical solution is 

u~ -- u2 = log(x + p + t). 
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The parameter  p can be used to vary the difficulty of the problem. For p -- 1, the 
Jacobian matrix is singular at  t = 0, and the integration is terminated automati-  
cally. For p > 1 the integration is successful. 

Problem 2. The following system arises in the s tudy of the deposition of 
charged particles in tubes [3]: 

1 0  ---  (rul) = 4au2, 
r Or (30) 

( 1 - r  2) 0u2 10(rOU2 ) 
0--7 = r ~r \  -~r - rulu2_ , 

for 0 < r < 1, t > 0, with initial condition 

u2--1,  for 0 _ < r _ _ l ,  t = 0 ,  

and boundary conditions 

0u2 
u l = - - = 0  at  r = 0 ;  u2 - -0  at  r = l ,  t _ 0 .  

Or 

If  DO3PGF is used with the system in the form (30), the integration is unstable. 
We differentiate the first equation to make it second order and deduce another  
boundary condition. 

We multiply the first equation of (30) by r 2 and differentiate with respect to r. 
This  gives {after simplifying) 

10(r2OUl  ~ ( rOU2~ 
r ~ r \  --~-r] -- 4a u2 + --~-].  (31) 

From the original equation we obtain the second boundary condition 

O 
-~r(rUl)--O at r = l ,  for al l t .  

To obtain the initial values of ul, we solve eq. (31) at  t = 0, where 

0 
-:-(rui) -= 4ar, ul =- O at r = 0 ,  
or 

giving 

u~=2ar ,  at t = 0 .  

It  is not  essential to have the analytical solution at  t = 0, but  it is a convenient 
way of getting the required starting approximation. Writing the second equation 
of (30) in the form required for DO3PGF, we obtain 

u:u ) (1 - r 2) OU..~2 1 0  (r Ou2~ [ Ou2 Oul + (32) 
Ot = r ~r\ -~r ] ~ul "~r + u 2 0 7  

At the point r = 0, the term (ulu2)/r has to be evaluated from the limiting form. 
We have, as r-~, 0, 

UlU2 OU2 OUl 
r --* ul -~r + u2-~r = 2au22" 
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Table  V 

• 3 1 3  

Mesh 

Y~ 

10 20 40 80 

Resul t s  for Prob lem 2, r = 0 95, t = 0 0001 

Umform ul 1 7204 1.8417 1 8650 1 8706 
u2 0.4332 0.7108 0.6904 0.6854 

C~rcular u~ 1.8272 1.8614 1.8699 1.8719 
project ion u2 0 6855 0.6836 0.6840 0.6843 

Elhptm, u~ 1.8478 1.8672 1.8713 1.8721 

e = 0 9 u2 0.6837 0.6841 0 6845 0.6839 

Resu l t s  for Problem 2, r = 0 9, t = 0 0001 
Umform u~ 1 7123 1.7726 1.7916 1.7962 

u2 0.8664 0 9535 0.9719 0.9763 

Circular  u~ 1.7590 1.7889 1.7956 1.7971 

project ion u2 0 9156 0.9625 0.9752 0.9766 

El l ipnc,  u~ 1 7774 1 7934 1.7966 1.7974 
e = 0.9 u2 0.9468 0 9747 0.9761 0.9773 

Resul t s  for Prob lem 2, r = 0 95, t = 0.001 
Uniform u~ 1 6431 1 7138 1 7238 1.7261 

u2 0 3273 0 3399 0 3385 0.3382 

Circular  u~ 1 6888 1.7180 1 7248 1.7264 
projec tmn u2 0.3315 0.3371 0.3379 0.3381 

Elhptm,  u~ 1.6925 1 7192 1 7251 1.7264 
e = 0 9 u2 0.3391 0 3381 0 3382 0.3381 

This  example illustrates the use of analysis in setting up the equations for 
numerical  solution. The re  is a boundary  layer near  r = 1, and so we expect  t ha t  
a variable mesh will be needed, with points clustered in this region. 

In Table  V we give results for three different choices of mesh, 

(i) equally spaced points; 
(ii) points defined by projection from a circle, 

j - 1  
rj = sin 0j, 0~ = ½~r Np---Z-~_ 1,  j -- 1, 2, . . . ,  Np; 

(iii) points defined by project ion from an ellipse, 

sin 0~ 
rj = ~/(1 - e 2 cos 2 0j) ' 0j as in (ii). 

(The meshes (i) and (ii) correspond to options provided in DO3PBF.)  The  
tolerance for the t ime integration is ½ × 10 -5, and the solution values in the table 
are obtained by interpolat ion on the mesh. We see tha t  the accuracy for a fixed 
number  of points generally increases as the points are clustered more  closely near  
r = l .  
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