
-27-

ING SEPARATE COMPILATIONS IN PASCAL

ABSTRACT

PIC (Pascal Interface Controller) is a tool for the development of large,
modular software systems in Pascal. The new kind of modularity,
implemented by PIC, is analyzed in the paper. Two different versions of
PIC have been developed, to interface with Pascal compilers providing
different support to program decomposition into compilation units.

1. INTRODUCTION

Standard Pascal[l] programs exhibit a monolithical structure, a feature
which can be profitably employed especially in education. This feature,
however, is in contrast with modular programming, a vital technique for the
development of large software systems. Several proposals for Pascal
extensions were discussed and implemented. Most of these proposals rely on
specific compiler features, thereby limiting programs transportability.
For the many many different implementations of modularity presently
available in commercial Pascal systems, a large program can be partitioned
into several compilation units. A compilation unit is a file containing a
collection of constant, type, variable, procedure or function declarations.
Only one compilation unit, the main program, may contain an executable
part.

In the Pascal system by Kieburtz et al.[2], variables belonging to the
outermost scope of a compilation unit ('global level', in our terminology)
define a permanent environment for all procedures and functions declared in
the same unit. Procedure, functlon and variable identifiers can be
exported: a universal global environment for all units is made by all
exported identifiers of all units. When a unit is compiled, only its
internal congruence is checked; inter-unit checks are performed in a
pre-linking phase.

The 0MSI Pascal-2 system[3] implements a global environment composed by all
data structures, which is used by all compilation units for inter-unit
communication; global procedures and functions are selectively imported by
each unit. However, it is left to the programmer the responsibility of a
correct use of the declarations. To this purpose, it is recommended to
collect all global declarations in one file, which can be concatenated, at
compile time, with all compilation units.
This latter form of modularity is simple but sufficiently powerful for many
applications.

An alternative approach to the above has been experienced in the Source
Linker system [4,5,6], which ex%ends standard Pascal with module visibility
rules.
The functionalities of such proposal make it well suited for the design of

SIGPLAN NOTICES V22 #8, August 1987

http://crossmark.crossref.org/dialog/?doi=10.1145%2F35596.35598&domain=pdf&date_stamp=1987-08-01

-28-

library modules to be "synthesized" into small to medium size programs
(bottom-up programming).

The use of precompilation phases to enforce program modularity has been
exploited by C preprocessors [7]. Because of the lack of type checking
mechanisms in the C compiler, these tools cannot implement a separate
compilation mechanism, leaving interface consistency checks to the
programmer responsability.

2.THE PIC SYSTEM: GENERALITIES

We propose a tool, called Pascal Interface Controller (PIC), to extend
Pascal with the module concept. PIC [8] has been designed to support
"programming in the large", that is, it is well suited for the design and
development of medium to large software systems. To this purpose, PIC
limits the elaboration of non-declarative parts (procedure bodies) to a
minimum, in order to be efficient in large systems processing.

PIC implements a separate compilation mechanism upon the basic facilities
for independent compilation, which are already present in all commercial
Pascal systems. That is, PIC analyzes a collection of modules (each one
expressed according to a syntax which shall be detailed in Sect. 3), and
modifies their texts, producing a set of output modules (compilation units)
ready for being independently compiled by the underlying Pascal compiler.
If such compiler does not perform interface consistency checks among
modules, PIC ensures that their interfaces are consistent, because of the
way each compilation unit is built up.

Presently, two different versions of PIC have been implemented.
The first PIC implementation has been designed for interfacing with
compilers (such as OMSI Pascal-2 for DEC computers, VAX/VMS Pascal,
Berkeley Unix Pascal) providing
- directives to define global procedures <or functions> as external

identifiers (i.e., identifiers that can be referenced by other
compilation units);

- mechanisms for compile-time inclusion of a file containing data
declarations (i.e. variables being global to the whole program) to
allow correct "communication" across compilation units.

Only the first of the two above requirements is truly indispensable for a
correct transformation of modules, since, if automatic inclusion is not
supported by the compiler, the system can be extended so as to perform
inclusion directly (before compilation), or by the use of other system
utilities (e.g. editors).

The second version has been designed so as to interface with Pascal
systems, such as Kieburtz's and DEC VAX Pascal [9], supporting directives
to declare variables, procedures and functions as exportable from the
compilation unit in which they have been defined, and to selectively import
them in other units.

-29-

3. MODULARITY DEFINED BY PIC

The form of modularity introduced by PIC is closely related
Modula-2 [10,11]. As Modula-2, PIC has two kinds of modules:
module and an implementation module.

to that of
a definition

A definition module defines the outside interface of its corresponding
implementation module and represents the declarative part of this latter
one. Any definition module will contain:
(i) a heading: definition module "identifier" ;
(ii) type, constant, label and variable declarations, procedure or function

definitions
(iii) import and export lists, which define exchange of information with

the environment.

An export list is introduced by a define clause and specifies those
identifiers which are visible within the corresponding module and usable
from the outside. Each identifier mentioned in an export list must be
visible at a global level. A module may contain at most one export list.

The us@ clause introduces the set of import lists. A module may have
several import lists, each of which specifies those identifiers which are
used, but not defined, within the module itself. A module can be imported
as a whole, thus importing each exported identifier, or single entities may
be imported selectively.

Any type or constant identifier can be explicitely renamed, when it is
being imported, by means of the as clause. This feature, which can avoid
name conflicts, is supported in the second version of PIC only; it may also
be used to improve program readability.

The module name to which an object belongs must be specified in the import
list through the of clause. An identifier in an export or import list may
belong to a constant, type, variable, procedure or function. Predefined
identifiers are automatically imported in any definition module and thus
cannot be redefined at a global level.

In the following, an example of two definition modules is given.

definition module prstack;
define

stack,error,sizestack,tipostack;
use

initstack,push,pop o_~ 'stacklib';
const

sizestack = 6; [stack size }
type

tipostack = packed array [I..3] of char; [stack elements}
stack = record

pila : array [1..sizestack] of tlpostack;
top : integer

end;
var

pila0,pilal : stack; [stack instances }

-30-

• ° , •

procedure exit;
procedure error(i : integer);
endm

definition module stacklib;
define

initstack, push, pop;
use

sizestack, tipostack, stack, error of 'prstack';
procedure initstack (vat pst: stack);
procedure pop (var pst: stack; var ptipos: tipostack);
procedure push (var pst: stack; par : tipostack);

end.

An implementation module automatically imports its definition module and
contains the bodies of procedures or functions declared in the former one.
The implementation module of the main program is syntactically identified
by the heading

program "module identifier" body
and is the only one having an executable part.
Any other implementation module is headed by

"module identifier" body
The implementation modules corresponding to the above definition modules
are the following:

stacklib body
procedure initstack;

begin ... end;
procedure pop;

begin ... end;
procedure push;

begin ... @nd;

program prstack body
procedure exit;

begin ... end;
procedure error;

begin ... end;
begin

end.

Exchanges of information regulated by import/export mechanisms are
subjected to the following restrictions. Importing a procedure or function
identifier requires that the types of its formal parameters, and of the
function result, are explicitly imported. The type identifier of any
imported variable must be imported. In the case of varlables with
anonymous type declaration, all type or constant identifiers appearlng in
the same variable declaration must be imported.

-31-

By default, in the first version transparent export is assumed, i.e. the
internal structure of each exported object is visible. In more detail,
exporting an identifier makes any other identifier, which appears in the
right side of its declaration, automatically visible. We call public any
identifier globally defined in a module and exported. Because of the
export rules adopted here, an identifier defined at a global level must not
be in contrast with any public identifier <even a non-imported one) or with
any global non-public identifier, which appears in the right side of the
declaration of a public identifier. The constraints imposed to the
programmer are strictly connected to the compiler functional features and
are due to the fact that the first PIC version has been developed for a
class of Pascal compilers, which have a minimum set of functions to support
independent compilations.

Transparent export has a slightly different implementation in the second
version. Given the identifier 'id', its qualified notation is the
identifier obtained by prefixing 'id' with its module identifier, followed
by a special alphanumeric symbol (e.g. underscore, ' '). By exporting an
identifier, all identifiers occurring on the right side of its definition
are made visible in their respective qualified notation. However, an
identifier which is visible in qualified notation can always be explicitely
imported (and renamed), so as to be referenced as wished.

4. COMMENTS AND CONCLUSIONS

The paper has presented PIC, a tool for the development of large programs
in Pascal. The supported form of modularity is simple, yet sufficiently
powerful. It allows only explicit information exchange (thus being a
statical form of modularity) among modules, which is functionally similar
to that of Modula-2. The main difference with the latter lies in PIC
simplicity, which also gives a better homogeneity of modules treatment
<especially for the lack of local modules).

We concentrated on the possibility of supporting separate compilations of
program portions, rather than in the visibility <information hiding)
facilities of modular programming. This choice was due to the need of
designing a minimal set of functionalities to introduce modularity in the
Pascal language. These extensions are sufficient to implement a separate
compilation facility by means of the independent compilation facility
<which is supported by all commercially available Pascal implementations),
without extending Pascal too much.

Two PIC versions were developed, designed so as to interface with compilers
providing different features for indipendent compilation.
With respct to the second version of PIC, the first version is limited by
the assumption of the presence of a global environment, which is included
by all compilation units, and by the requirement to limit, as much as
possible, the elaboration on implementation modules.
Because of the functional characteristics of PIC, a modular implementation
of the system is required which enhances portability and the possibility of
adapting the system to any programming environment. Infact, the system can
be adapted to output suitable directives, according with the different
syntax for compilation unlts in the underlying compiler, by suitably
modifying the output procedures for the declarative reglons into which

-32-

definition modules have been transformed.

The whole system is written by use of its own form of modularity, and
consists of 10 definition modules <plus other 10 implementation modules>
comprising about 6000 code lines.
Up to now, PIC has been used in a few software projects; the largest of
them being the development for a modular ,easily transportable version, of
one already existing compiler.
By this way, a unique source code version need to be kept, from which the
Pascal-2 and/or Pascal-VAX versions can be automatically derived. We
experienced that this greatly simplifies the maintenance process for the
compiler.

From the above observations, and experiences, some concluding remarks can
be thus summarized:

- PIC is simple to be used
- PIC outputs readable modules
- PIC limits to a minimum elaboration over implementation modules, which
makes it efficient and of practical use in large software
implementations.

REFERENCES

[1] D. Cooper, "Standard Pascal User Reference Manual" ,W.W. Norton
Company , 1983.

[2] R.B. Kieburtz, W. Barabash and C.R. Hill, "A Type-checking Program
Linkage System for Pascal", Proc. 3rd Int. Con. on Software
Engeneering, Atlanta 1978.

[3] "Pascal-2 User Manual", Oregon Software, 1983.
[4] M.Ancona, L.De Floriani, G.Dodero, S.Mancosu, "Integrating library

modules into Pascal programs", Proc. 6th International Conference on
Software Engineering, Poster Session, IEEE, Tokyo, 13-16 September 1982.

[5] M. Ancona, L. De Floriani, G. Dodero, P. Thea "Program Development
by using a Source Linker" , Proceedings of the 4th Jerusalem Conference
Information Techonology , 1984.

[6] G. Nani , "Source Linker User Manual " , Tech. Rep. n. 160
Istituto per la Matematica Applicata, Genova, 1984 (in Italian).

[7] S. Boyd, "Modular C", SIGPLAN Notice, 18(4) , 1983.
[8] G. Nani, "Implementing separate compilation by means of independent

compilation", Tech. Rep. n. 206, Istituto per la Matematica
Applicata, Genova, 1986 (in Italian}.

[9] "VAX Pascal User Manual", Digital Equipment Corporation , 1982.
[10] N. Wirth , "Programming in Modula-2", Springer Verlag, 1982.
[11] N. Wirth, "The Module : a system structuring facility in high level

programming languages" , Proceedings Symposium on Language Design and
Programming Methodology , Sydney, 1979.

