skip to main content
10.1145/3559613.3563209acmconferencesArticle/Chapter ViewAbstractPublication PagesccsConference Proceedingsconference-collections
short-paper

Secure Maximum Weight Matching Approximation on General Graphs

Published:07 November 2022Publication History

ABSTRACT

Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.

References

  1. Balamurugan Anandan and Chris Clifton. 2017. Secure Minimum Weighted Bipartite Matching. In 2017 IEEE Conference on Dependable and Secure Computing. 60--67. https://doi.org/10.1109/DESEC.2017.8073798Google ScholarGoogle Scholar
  2. Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. 2016. High-Throughput Semi-Honest Secure Three-Party Computation with an Honest Majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS '16). 805--817. https://doi.org/10.1145/2976749.2978331Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Toshinori Araki, Jun Furukawa, Kazuma Ohara, Benny Pinkas, Hanan Rosemarin, and Hikaru Tsuchida. 2021. Secure Graph Analysis at Scale. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (CCS '21). 610--629. https://doi.org/10.1145/3460120.3484560Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. David Avis. 1983. A Survey of Heuristics for the Weighted Matching Problem. Networks, Vol. 13, 4 (1983), 475--493. https://doi.org/10.1002/net.3230130404Google ScholarGoogle ScholarCross RefCross Ref
  5. Marina Blanton and Siddharth Saraph. 2015. Oblivious Maximum Bipartite Matching Size Algorithm with Applications to Secure Fingerprint Identification. In Computer Security -- ESORICS 2015 (Lecture Notes in Computer Science ). 384--406. https://doi.org/10.1007/978--3--319--24174--6_20Google ScholarGoogle Scholar
  6. Malte Breuer, Ulrike Meyer, and Susanne Wetzel. 2022. Privacy-Preserving Maximum Matching on General Graphs and its Application to Enable Privacy-Preserving Kidney Exchange. In Proceedings of the Twelfth ACM Conference on Data and Application Security and Privacy (CODASPY '22). 53--64. https://doi.org/10.1145/3508398.3511509Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Andreas Brüggemann, Malte Breuer, Andreas Klinger, Thomas Schneider, and Ulrike Meyer. 2022. Secure Maximum Weight Matching Approximation on General Graphs. Cryptology ePrint Archive, Paper 2022/1173. https://eprint.iacr.org/2022/1173.Google ScholarGoogle Scholar
  8. Octavian Catrina and Sebastiaan de Hoogh. 2010. Improved Primitives for Secure Multiparty Integer Computation. In Security and Cryptography for Networks (Lecture Notes in Computer Science ). 182--199. https://doi.org/10.1007/978--3--642--15317--4_13Google ScholarGoogle Scholar
  9. Ivan Damgård and Jesper Buus Nielsen. 2003. Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption. In Advances in Cryptology - CRYPTO 2003 (Lecture Notes in Computer Science ). Springer, Berlin, Heidelberg, 247--264. https://doi.org/10.1007/978--3--540--45146--4_15Google ScholarGoogle Scholar
  10. Jack Doerner, David Evans, and abhi shelat. 2016. Secure Stable Matching at Scale. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS '16). 1602--1613. https://doi.org/10.1145/2976749.2978373Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Doratha E Drake and Stefan Hougardy. 2003. A Simple Approximation Algorithm for the Weighted Matching Problem. Inform. Process. Lett. , Vol. 85, 4 (Feb. 2003), 211--213. https://doi.org/10.1016/S0020-0190(02)00393--9Google ScholarGoogle ScholarCross RefCross Ref
  12. Doratha E. Drake Vinkemeier and Stefan Hougardy. 2005. A Linear-Time Approximation Algorithm for Weighted Matchings in Graphs. ACM Transactions on Algorithms , Vol. 1, 1 (July 2005), 107--122. https://doi.org/10.1145/1077464.1077472Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Ran Duan and Seth Pettie. 2014. Linear-Time Approximation for Maximum Weight Matching. J. ACM, Vol. 61, 1 (Jan. 2014), 1:1--1:23. https://doi.org/10.1145/2529989Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. Jack Edmonds. 1965. Maximum Matching and a Polyhedron With 0,1-Vertices. Journal of Research of the National Bureau of Standards Section B Mathematics and Mathematical Physics , Vol. 69B (Jan. 1965), 125. https://doi.org/10.6028/jres.069B.013Google ScholarGoogle ScholarCross RefCross Ref
  15. Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl. 2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. In Advances in Cryptology -- CRYPTO 2020 (Lecture Notes in Computer Science ). 823--852. https://doi.org/10.1007/978--3-030--56880--1_29Google ScholarGoogle Scholar
  16. Philippe Golle. 2006. A Private Stable Matching Algorithm. In Financial Cryptography and Data Security (Lecture Notes in Computer Science ). 65--80. https://doi.org/10.1007/11889663_5Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. P. Hall. 1935. On Representatives of Subsets. Journal of the London Mathematical Society , Vol. s1--10, 1 (1935), 26--30. https://doi.org/10.1112/jlms/s1--10.37.26Google ScholarGoogle Scholar
  18. Sven Hanke and Stefan Hougardy. 2010. New Approximation Algorithms for the Weighted Matching Problem. http://www.or.uni-bonn.de/%7Ehougardy/paper.html Report No. 101010, Research Institute for Discrete Mathematics, University Of Bonn.Google ScholarGoogle Scholar
  19. Marcel Keller. 2020. MP-SPDZ: A Versatile Framework for Multi-Party Computation. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. 1575--1590. https://doi.org/10.1145/3372297.3417872Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. John Launchbury, Iavor S. Diatchki, Thomas DuBuisson, and Andy Adams-Moran. 2012. Efficient Lookup-Table Protocol in Secure Multiparty Computation. ACM SIGPLAN Notices, Vol. 47, 9 (Sept. 2012), 189--200. https://doi.org/10.1145/2398856.2364556Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Seth Pettie and Peter Sanders. 2004. A Simpler Linear Time $2/3-ε$ Approximation for Maximum Weight Matching. Inform. Process. Lett. , Vol. 91, 6 (Sept. 2004), 271--276. https://doi.org/10.1016/j.ipl.2004.05.007Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Robert Preis. 1999. Linear Time 1/2-Approximation Algorithm for Maximum Weighted Matching in General Graphs. In STACS 99 (Lecture Notes in Computer Science ). 259--269. https://doi.org/10.1007/3--540--49116--3_24Google ScholarGoogle Scholar
  23. M. Sadegh Riazi, Ebrahim M. Songhori, Ahmad-Reza Sadeghi, Thomas Schneider, and Farinaz Koushanfar. 2017. Toward Practical Secure Stable Matching. Proceedings on Privacy Enhancing Technologies, Vol. 2017, 1 (Jan. 2017), 62--78. https://doi.org/10.1515/popets-2017-0005Google ScholarGoogle ScholarCross RefCross Ref
  24. Dragos Rotaru and Tim Wood. 2019. MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security. In Progress in Cryptology -- INDOCRYPT 2019 (Lecture Notes in Computer Science ). 227--249. https://doi.org/10.1007/978--3-030--35423--7_12Google ScholarGoogle Scholar
  25. Abraham Waksman. 1968. A Permutation Network. J. ACM, Vol. 15, 1 (Jan. 1968), 159--163. https://doi.org/10.1145/321439.321449Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Stefan Wüller, Ulrike Meyer, and Susanne Wetzel. 2017a. Privacy-Preserving Multi-Party Bartering Secure Against Active Adversaries. In 2017 15th Annual Conference on Privacy, Security and Trust (PST). 205--20509. https://doi.org/10.1109/PST.2017.00032Google ScholarGoogle Scholar
  27. Stefan Wüller, Ulrike Meyer, and Susanne Wetzel. 2017b. Towards Privacy-Preserving Multi-party Bartering. In Financial Cryptography and Data Security (Lecture Notes in Computer Science ). 19--34. https://doi.org/10.1007/978--3--319--70278-0_2Google ScholarGoogle Scholar
  28. Stefan Wüller, Michael Vu, Ulrike Meyer, and Susanne Wetzel. 2017c. Using Secure Graph Algorithms for the Privacy-Preserving Identification of Optimal Bartering Opportunities. In Proceedings of the 2017 on Workshop on Privacy in the Electronic Society (WPES '17). 123--132. https://doi.org/10.1145/3139550.3139557Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Andrew C. Yao. 1982. Protocols for Secure Computations. In 23rd Annual Symposium on Foundations of Computer Science. 160--164. https://doi.org/10.1109/SFCS.1982.38Google ScholarGoogle Scholar
  30. Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David Evans, and Jonathan Katz. 2016. Revisiting Square-Root ORAM: Efficient Random Access in Multi-party Computation. In 2016 IEEE Symposium on Security and Privacy (S&P). 218--234. https://doi.org/10.1109/SP.2016.21 ioGoogle ScholarGoogle Scholar

Index Terms

  1. Secure Maximum Weight Matching Approximation on General Graphs

        Recommendations

        Comments

        Login options

        Check if you have access through your login credentials or your institution to get full access on this article.

        Sign in
        • Published in

          cover image ACM Conferences
          WPES'22: Proceedings of the 21st Workshop on Privacy in the Electronic Society
          November 2022
          227 pages
          ISBN:9781450398732
          DOI:10.1145/3559613

          Copyright © 2022 ACM

          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          • Published: 7 November 2022

          Permissions

          Request permissions about this article.

          Request Permissions

          Check for updates

          Qualifiers

          • short-paper

          Acceptance Rates

          Overall Acceptance Rate106of355submissions,30%

          Upcoming Conference

          CCS '24
          ACM SIGSAC Conference on Computer and Communications Security
          October 14 - 18, 2024
          Salt Lake City , UT , USA
        • Article Metrics

          • Downloads (Last 12 months)55
          • Downloads (Last 6 weeks)6

          Other Metrics

        PDF Format

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader