
ar
X

iv
:2

20
8.

13
53

8v
1 

 [
cs

.C
C

] 
 2

9 
A

ug
 2

02
2

An Invitation to the Promise Constraint Satisfaction Problem

ANDREI KROKHIN, Durham University, UK

JAKUB OPRŠAL, Institute of Science and Technology Austria, Austria

The study of the complexity of the constraint satisfaction problem (CSP), centred around the Feder-Vardi
Dichotomy Conjecture, has been very prominent in the last two decades. After a long concerted effort and
many partial results, the Dichotomy Conjecture has been proved in 2017 independently by Bulatov and Zhuk.
At about the same time, a vast generalisation of CSP, called promise CSP, has started to gain prominence. In
this survey, we explain the importance of promise CSP and highlight many new very interesting features that
the study of promise CSP has brought to light. The complexity classification quest for the promise CSP is wide
open, and we argue that, despite the promise CSP being more general, this quest is rather more accessible to
a wide range of researchers than the dichotomy-led study of the CSP has been.

1 INTRODUCTION

What kind of inherentmathematical structuremakes a computational problem tractable, i.e., polynomial-
time solvable (assuming P ≠ NP)? Finding a general answer to this question is one of the fundamen-
tal goals of theoretical computer science. The constraint satisfaction problem (CSP) and its variants
are extensively used towards this ambitious goal for two reasons: on the one hand, the CSP frame-
work is very general and includes a wide variety of computational problems, and on the other
hand, this framework has very rich mathematical structure providing an excellent laboratory both
for complexity classification methods and for algorithmic techniques.
In this section we informally discuss the CSP and the promise CSP (PCSP), which is the main

subject of this survey. Formal definitions and more technical aspects can be found in subsequent
sections.
The (decision version of the) CSP can be defined in several equivalent ways. One way is to define

it as the problem of deciding the existence of a homomorphism from one finite relational structure
(for example, a digraph) to another. We focus on the so-called non-uniform CSP — when the target
structure A is fixed (and is often called a template or a constraint language). The problem, denoted
CSP(A), becomes the problem of deciding whether an input structure I homomorphically maps to
A (we write I → A). Problems of this form include :-Sat, graph :-colouring, and solving systems
of linear equations over a fixed finite field.
A major line of research in CSP focuses on identifying tractable cases and understanding the

mathematical structure enabling tractability [see Krokhin and Živný 2017]. Feder and Vardi [1998]
conjectured that for each relational structure A, the problem CSP(A) is either tractable (i.e., in P),
or NP-complete, i.e., it cannot be NP-intermediate. Due to its very impressive scope, this CSP
Dichotomy Conjecture has been widely considered one of the most important open problems in
theoretical computer science. It inspired a very active research programme in the last 25 years,
which culminated in two independent proofs of the conjecture in 2017, one by Bulatov [2017] and
the other by Zhuk [2017, 2020]. The key part of both proofs are polynomial-time algorithms for the
tractable cases, which heavily exploit structural properties of finite universal algebras associated
with instances of the problem.

Approximation provides a natural way of coping with NP-hardness. One natural approximation
version of the graph :-colouring problem is the approximate graph colouring problem, where one
needs to find a 2-colouring for a given :-colourable graph, for 2 ≥ : . This problem is very stub-
born — it is believed to be NP-hard for all constants 3 ≤ : ≤ 2 , but, despite being studied for more
than 45 years [Garey and Johnson 1976], the progress towards proving this has been very limited.
Even for : = 3, the best NP-hardness result (without making additional assumptions) has recently
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been improved from 2 = 4 [Khanna et al. 2000; Guruswami and Khanna 2004] to 2 = 5 [Bulín et al.
2019; Barto et al. 2021b], while the best (in terms of 2) polynomial-time algorithm for colouring
a 3-colourable graph with = vertices uses about =0.199 colours [Kawarabayashi and Thorup 2017].
The huge gap between best known negative and positive results shows that we are far from under-
standing the mathematical nature of this problem.We note that, by additionally assuming different
(perfect-completeness) variants of the Unique Games Conjecture, NP-hardness of all approximate
graph colouring problems (with : ≥ 3) was proved in [Braverman et al. 2022; Dinur et al. 2009;
Guruswami and Sandeep 2020a], but further in this survey we focus on results that do not make
any complexity assumptions other than P ≠ NP.
Given the success of the research programme aimed at the CSP Dichotomy Conjecture, it was

suggested in [Austrin et al. 2017; Brakensiek and Guruswami 2016, 2021] that perhaps progress
on approximate graph colouring and similar problems can be made by looking at a more general
picture, using the CSP paradigm. This naturally led to the following formulation: fix not just one
relational structureA, but also another structureB such thatA → B. Then, given an input structure
I with a promise that I → A, the goal is to find a homomorphism from I to B (which must exist
because I → A → B). Note that a homomorphism to A is promised to exist, but is not given as
a part of input. This promise problem is denoted PCSP(A,B) and is called a promise CSP. When
A = K: and B = K2 are the complete graphs on : and 2 (resp.) vertices, PCSP(A,B) is precisely
the approximate graph colouring problem. The assumption A → B is necessary for the problem
to make sense. The problem defined above is a search problem. The standard decision problem
associated with it is to distinguish input structures I such that I → A from those satisfying I9 B.
Let us make a few easy, but important, observations:

• When A = B, the decision version of the problem PCSP(A,A) is precisely CSP(A). Thus the
PCSP framework generalises the CSP framework.

• The decision version is always reducible to the search version (simply run the search algo-
rithm and then verify its output — if the algorithm crashes or the output is wrong, then we
cannot have I → A), but it is open whether the two versions are always equivalent.

• Both decision and search PCSP(A,B) are in P if at least one of CSP(A) and CSP(B) is in P.
This is because tractable decision CSPs have a tractable search problem, as can be shown by
a simple self-reduction trick [see, e.g., Bulatov et al. 2005].

Problems PCSP(A,B) can be viewed as approximation versions of CSP(A) on satisfiable in-
stances, where approximation is understood in a qualitative way (i.e., relaxing constraints, as op-
posed to allowing to violate some of the constraints). The quest to classify the complexity of prob-
lems of the form PCSP(A,B) can also be seen the following way. Fix a structureA such that CSP(A)
is NP-complete. What are the structures B such that PCSP(A,B) is in P? What are the structures
B such that PCSP(A,B) is in NP-hard? What mathematical properties of the structures determine
the complexity?
A different way to view PCSP(A,B) is as CSP(B) with restricted inputs (for decision problems,

we can view it as either CSP(A) or CSP(B) restricted to inputs where the two answers agree). This
means that not only the classification problem with respect to P or NP-hardness, but many other
questions that have been studied for CSPs (e.g., classification with respect to other complexity
classes or with respect to definability in various logics) make perfect sense for PCSPs, possibly
with a minor adjustment.

The so-called algebraic approach was the key tool in attacking the CSP Dichotomy Conjecture
and related problems. This approach has two layers. The first layer is the framework of polymor-
phisms. They are simple combinatorial objects — for example, a polymorphism of a graph G is
simply a homomorphism from a direct power of G to G. Polymorphisms are known to control
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gadget reductions between CSPs (as we discuss in detail later). The second, much more advanced,
layer is the structural theory of universal algebra. A complete translation of the CSP Dichotomy
Conjecture into universal algebra allowed the whole universal algebraic community to contribute
to the progress on the conjecture, which eventually lead to enormous progress both in CSP and in
universal algebra itself. This theory suited the dichotomy problem so well that it enabled fantas-
tic progress, but, on the other hand, it became so dominant in the theory of CSP that it possibly
prevented some mathematical ideas from being developed and some researchers from trying to
work in this direction. We will try to argue that the study of PCSP can facilitate new ideas and
connections that have been overlooked so far.
The structural theory of universal algebras does not seem to be applicable for PCSPs, but poly-

morphisms still are. Say, for graphs, they can now be thought of as homomorphisms from a direct
power of one graph G to another graph H. So, one needs to get more creative in using polymor-
phisms. Roughly, there are three general ways to use polymorphisms for PCSPs (which we discuss
in detail in Sections 3–5, respectively):

• When polymorphisms of a PCSP are rich enough, they can be used as rounding procedures
in polynomial-time algorithms. One relaxes a given PCSP instance in some way, solves the
relaxation, and then rounds the relaxed solution by applying appropriate (for the relaxation)
polymorphisms.

• Polymorphisms provide a convenient tool for characterising the existence of specific types
of reductions between PCSPs. That is, one PCSP reduces to another PCSP by a specific type
of reduction (say, a gadget reduction) if and only if the polymorphisms of the involved PCSPs
are related in a certain way.

• If polymorphisms of a PCSP are limited enough, this can be used directly to construct NP-
hardness proofs for the PCSP.

The three general guidelines described above are far from being fully formed. There is much to
be developed here: what exactly “rich enough” and “limited enough” should mean (and whether
there is a gap between them), what useful types of reductions can characterised in this way, and
so on.
The study of PCSPs brought to light many new aspects that were not present in the study of

CSPs. Here we give a (non-exhaustive) list of such aspects.

• The dichotomy-led study of CSPs sometimes received criticism for not including specific
problems of wide interest whose complexity was open. The extension to PCSP includes such
problems, the most prominent one being approximate graph colouring.

• When the dichotomy-led study of CSPs started in the 1990s, the Feder-Vardi conjecture was
supported by two important special cases that were fully classified by then: the Boolean case
[Schaefer 1978] and the graph homomorphism case (also known as� -colouring) [Hell and Nešetřil
1990]. For PCSPs, even these two cases (i.e., when both A and B are two-element structures
and when both A and B are undirected graphs, respectively) are currently wide open. In
particular, as tempting as it might be, we cannot now conjecture a dichotomy for PCSPs
because we simply do not have enough evidence.

• Already after a few years of research, unexpected connectionswith new areas appeared, such
as the connection with algebraic topology [Krokhin et al. 2020], which appears to play a sig-
nificant role in approximate graph colouring and probably beyond. Other examples include
matrix analysis [Ciardo and Živný 2022a] and Boolean function analysis [Brakensiek et al.
2021]. There is a clear feeling that more new connections will show up because the study of
PCSPs seems to be open to contributions from many different communities.
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• Already on the existing evidence, new reductions and new algorithms that were overlooked
in the study of CSPs can become quite important. This can possibly lead to a new simpler
proof of the Feder-Vardi conjecture.

• For each CSP, the decision and the search problems are always equivalent [Bulatov et al.
2005]. For PCSPs, there is always a reduction from decision to search, but the other direction
is open. In fact, the design of efficient search algorithms for PCSPs appears to bring brand
new challenges [see, e.g., Brakensiek et al. 2020].

• The study of infinite-domain CSP (i.e., CSP(A) when the template A is infinite) has been de-
veloping over the last 20 years [Bodirsky 2021], using the algebraic approach aswell asmodel
theory and Ramsey theory. The transfer of methods and results between the infinite-domain
and finite-domain cases has so far been mainly from latter to the former. The framework of
(finite-domain) PCSPs appears to require transfer in the other direction too.

2 BASIC NOTIONS AND EXAMPLES

In this section, we explain the basics of the theory of promise CSPs and show a few key examples.
Throughout the paper, we write [=] for the set {1, 2, . . . , =}.

2.1 CSPs and PCSPs

We define CSP as a homomorphism problem for finite relational structures.

Definition 2.1. A (relational) structure is a tuple A = (�;'A1 , . . . , '
A

;
) where each 'A8 ⊆ �ar('8 ) is

a relation on � of arity ar('8 ) ≥ 1. We say that A is finite if its domain � is finite. We assume that
structures are finite, unless specified otherwise. Two structures A and B are called similar if they
have the same number of relations and the arities of corresponding relations coincide.

For example, a (directed) graph is relational structure with one binary relation. Any two graphs
are similar structures.
We often use a single letter instead of '8 to denote a relation of a structure, e.g., (A would

denote a relation of A, the corresponding relation in a similar structure B, would be denoted by
(B. Throughout the paper we denote the domains of structures A, B, K= and so on by�, �, = , etc.,
respectively.

Definition 2.2. For two similar relational structures A and B, a homomorphism from A to B is
a map ℎ : � → � such that, for each 8 , if (01, . . . , 0ar('8 ) ) ∈ 'A8 , then (ℎ(01), . . . , ℎ(0ar('8 ) )) ∈ 'B8 .
We write ℎ : A → B to denote this, and simply A → B to denote that a homomorphism from A to
B exists. In the latter case, we also say that A maps homomorphically to B.

We defined CSP(B) in the introduction as a homomorphism problem, i.e., given a structure
I similar to B, decide if I → B. There are two other standard ways to define CSP(B), all are
equivalent. One of them views the domain of I as a set of variables, the domain of B as possible
values for these variables, and every tuple v in a relation 'I in I gives rise to a constraint (v, 'B),
postulating that the tuple of values for vmust be in the relation 'B. The question is then whether
there is an assignment of values to the variables that satisfies all constraints. We will often use this
variables-constraints view alongside the homomorphism view. The other way formalises CSP as
the problem of satisfiability of primitive-positive (or pp-, for short) formulas in B [for more details,
see Barto et al. 2017].
It is well-known and easy to see that if a CSP(B) is NP-complete for some B (say, graph 3-

colouring), there is no polynomial time algorithm that would find a homomorphism I → B given
the promise that such a homomorphism exists (e.g., it is NP-hard to find a 3-colouring of a graph
even when you know that it exists). The promise CSP asks whether finding a homomorphism
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becomes easier if we relax our goal (e.g., we ask to colour a 3-colourable graph with 6 colours).
Formally, promise CSP is defined as follows.

Definition 2.3. Given two relational structures A, B such that A → B, the search version of
promise CSP with template (A,B) is, given an input structure I that is promised to map homomor-
phically to A, find a homomorphism ℎ : I → B.
The decision promise CSP with template (A,B) as above is, given an input structure I similar to

A and B, output yes if I → A, and no if I9 B. The promise here is that the input falls into one of
the two categories.

Both of the search and the decision versions are often denoted by the same symbol PCSP(A,B),
and sometimes not so much attention is given to the distinction between them. Throughout the
survey, we do not specify which version (decision or search) is being discussed whenever the
results apply to both versions. When the distinction between search and decision is significant,
we comment on it.

Let us give some examples of the problems of the form PCSP(A,B) which are proper promise
problems, i.e., not of the form CSP(A). Note that the interesting ones consists of templates (A,B)
where both CSP(A) and CSP(B) are NP-complete.

Example 2.4 ((2 + Y)-Sat). (2 + Y)-Sat is a collective name for a family of promise versions of
(2: +1)-Sat problems, where : ≥ 1. Loosely speaking the goal is to find a satisfying assignment to
a (2: + 1)-Sat instance being promised that there is an assignment that satisfies at least : literals
in each clause. Formally, the template is the following pair of relational structures:

A: = ({0, 1}; {C ∈ {0, 1}2:+1 | Ham(C) ≥ :},≠2),

B: = ({0, 1}; {C ∈ {0, 1}2:+1 | Ham(C) ≥ 1},≠2).

Here, Ham denotes the Hamming weight of the tuple, and ≠2 the binary inequality relation on
{0, 1} (which is there to capture negative literals in clauses). The problems PCSP(A: ,B: ) were
proved to be NP-hard in [Austrin et al. 2017], where also the general framework of PCSPs and the
name promise constraint satisfaction problem were introduced.

Example 2.5 (Promise 1-in-3-Sat). One notable example of a promise CSP is the promise version
of monotone 1-in-3-Sat. Generally, the problem is given a satisfiable instance of monotone 1-in-3-
Sat, find a solution in some other structure B with a ternary (symmetric) relation 'B. This is the
problem PCSP(T,B) where

T = ({0, 1}; {(1, 0, 0), (0, 1, 0), (0, 0, 1)}).

What are the structures B for which PCSP(T,B) is tractable (respectively, NP-hard)? This question
in this generality was posed in [Barto et al. 2021b], and partially answered in [Barto et al. 2021a].
Consider the case when B = H2 is the Boolean ternary not-all-equal structure, i.e., H2 =

({0, 1}; {(G,~, I) | not (G = ~ = I)}). ThenCSP(H2) is theNot-All-Equal-Sat problem. PCSP(T,H2)

provides a range of interesting new features not found in CSPs: for example, even though CSP(T)
and CSP(H2) are (well-known) NP-hard problems, the problem PCSP(T,H2) was shown to be in
P in [Brakensiek and Guruswami 2021], along with a range of similar problems. We will discuss
several other interesting properties of PCSP(T,H2) later in this survey.

Example 2.6 (Approximate graph colouring). Probably the most famous example of promise con-
straint satisfaction problem is the approximate graph colouring that we already mentioned in the
introduction. The problem is to find, for fixed 2 ≥ : , a 2-colouring of a given :-colourable graph.
The template of this PCSP is a pair of cliques, (K: ,K2 ), where K= = ({0, . . . , = − 1};≠=). The prob-
lem has been conjectured to be NP-hard for any fixed 3 ≤ : ≤ 2 , but this is still open in many cases.
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The current state-of-the-art for NP-hardness is 2 = 2: − 1 for : = 3, 4, 5 [Barto et al. 2021b] and
2 =

( :
⌊:/2⌋

)

−1 for : ≥ 5 [Krokhin et al. 2020]. Some unconditional results about the applicability of
specific algorithms for approximate graph colouring can be found in [Atserias and Dalmau 2022;
Ciardo and Živný 2022b].

Example 2.7 (Approximate graph homomorphism). Approximate graph homomorphism is a nat-
ural generalisation of approximate graph colouring, it is the PCSP where the template consists
of two (undirected) graphs. We note that CSP(H) for a fixed (undirected) graph H is often called
H-colouring. A well-known result by Hell and Nešetřil [1990] states thatH-colouring is solvable in
polynomial time ifH is bipartite or has a loop, and it is NP-complete otherwise. Brakensiek and Guruswami
[2021] conjectured that the Hell-Nešetřil dichotomy extends to the promise problem, i.e., that
PCSP(G,H) is NP-hard for any non-bipartite loopless undirected G,H with G → H. It is not
hard to see that it is sufficient to prove this conjecture for all cases where G is an odd cycle and
H is a 2-clique with 2 ≥ 3. The case G = C2:+1 (odd cycle), H = K3 has been shown to be NP-hard
in [Krokhin et al. 2020]. If we consider directed graphs as well, then, extending a similar result
for CSPs [Feder and Vardi 1998], it was shown in [Brakensiek and Guruswami 2021] that every
problem PCSP(A,B) is polynomial-time equivalent to PCSP(G,H) for suitable digraphs G,H.

Example 2.8 (Approximate hypergraph colouring). This problem is similar to Example 2.6, but
uses the “not-all-equal” relation

NAE: = {0, . . . , : − 1}3 \ {(0, 0, 0) | 0 ∈ {0, . . . , : − 1}}

instead of ≠: , and similarly for 2 , i.e., we are talking about PCSP(H: ,H2 ) where H= = ({0, . . . , = −
1}; NAE=). Note thatH2 is the template of NAE-Sat as in Example 2.5. A colouring of a hypergraph
is an assignment of colours to its vertices that leaves no hyperedge monochromatic. Thus, in (the
search variant of) this problem one needs to find a 2-colouring for a given :-colourable 3-uniform
hypergraph. This problem has been proved to be NP-hard for any fixed 2 ≤ : ≤ 2 [Dinur et al.
2005]. Some variants of this problem that involve rainbow or strong versions of hypergraph colour-
ing, have been studied [Austrin et al. 2020; Brakensiek and Guruswami 2016; Guruswami and Lee
2017; Guruswami and Sandeep 2020b], but full classifications are still open there.

2.2 A theory of gadget reductions

We will briefly outline a general theory of promise CSPs, that is based on the influential ‘alge-
braic approach to CSP’ pioneered by Jeavons et al. [1997] and Bulatov et al. [2005] (see [Barto et al.
2017] for a gentle introduction). The core story of the algebraic approach to CSP is an abstraction
from the concrete CSP template A to an algebraic structure, denoted by Pol(A) and called poly-

morphisms of A, assigned to it. The main theorem then asserts that the complexity of CSP(A)
(up to log-space reductions) only depends on the algebraic properties of Pol(A). The situation for
promise CSP is similar: there is a natural generalisation of polymorphisms to the promise setting,
but the polymorphisms do not form an algebra or a clone, but a weaker structure that is called a
minion. The core thesis is still valid — the complexity of PCSP(A,B) only depends on the prop-
erties of polymorphisms from A to B, up to log-space reductions. We will define the notion of
polymorphism and minion below together with a precise statement from which the above thesis
immediately follows.

2.2.1 Gadgets and the scope of the theory. Often the algebraic theory investigates certain construc-
tions W (so-called pp-interpretations, pp-constructions, or pp-powers, we refer to [Barto et al. 2017,
Section 3] for definitions of these notions) of the template B that allow for efficient complexity
reduction from CSP(W (B)) to CSP(B). Here, we would like to focus more on the transformation
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(of instances) used in the reduction, as opposed to transformation of the template. We discuss the
connection with pp-powers near the end of this subsection.
Formally, by a reduction from problem � to problem � we mean an efficiently computable func-

tion q from instances of problem � to instances of problem � such that a solution to an instance �
can be reconstructed from a solution to the instance q (� ), e.g., if both� and � are promise decision
problems, we require that q maps yes instances of� to yes instances of � and no instances of� to
no instances of �. For search problems, we moreover require an efficiently computable function
from solutions of q (� ) to solutions of � .
A gadget replacement (or local replacement) is a much used technique for constructing reduc-

tions in complexity theory, where each basic unit of an instance is replaced by a different structure
in a uniform way. Gadget reductions used in (promise) CSP are precisely this type of reductions,
but with a more formal notion of a gadget.
We now give formal definitions of gadgets and gadget reductions that we will use. Let us remark

that these definitions can be equally well expressed using pp-formulas.
For a gadget reduction from CSP(A) to CSP(B), we need the following data:

• a structure G similar to B, to be used as a gadget for variables, and
• a structureG' for each (:-ary) relational symbol' ofA, with fixed homomorphisms4',8 : G →

G' (1 ≤ 8 ≤ :), to be used as a gadget for constraints involving '.

Definition 2.9 (Gadget replacement). Assuming the data as above, let I be an instance of CSP(A),
i.e., a structure similar to A. We define a gadget replacement as the following construction applied
to I, resulting in a structure q (I) similar to B.

• For each element E ∈ � , introduce into q (I) a copy of G denoted by G
E . We denote the

elements of GE by 6E where 6 ∈ � .
• For each constraint of I, i.e., each relational symbol ' say of arity : and all (E1, . . . , E: ) ∈ 'I,
we introduce into q (I) a copy of G' denoted by G

E1,...,E:
'

and its elements by 6';E1,...,E: . And
for each 8 ∈ [:], we identify the image of GE8 under 4',8 with its image in G

E1,...,E:
'

, i.e., the
elements 6E8 with 4',8 (6)';E1,...,E: for each 6 ∈ G.

It is well-known that such a gadget replacement can be computed in log-space.

Example 2.10. Let us show a simple gadget replacement from digraphs to digraphs. We use the
following gadgets where we use the notation P= = ({0, . . . , =}; {(8, 8 + 1) | 8 < =) for a path of
length =: G = P1, and G� = P2 with the homomorphisms 4�,8 that map P1 to the first and second
edge of P2 for 8 = 1, 2 respectively. Graphically, they are represented as

G

G�

4�,1 4�,2

The gadget replacement defined by this gadget then replaces each vertex of the input graph with
an edge, and if D is connected to E by an edge, the endpoint of the new edgeD is identified with the
starting point of E . For example, we get that q (P1) = P2, i.e., the path with two vertices becomes a
path with two edges as we would expect, but also, more generally, q (P=) = P=+1 for all = ≥ 1. See
Fig. 1 for more examples of applying this gadget replacement.

In many previous papers, e.g., [Barto et al. 2021b, 2017], pp-powers as constructions on the tem-
plates have much more prominence than gadget replacements. We include them in this survey to
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I :
0 1 0 1

0 1

2

0

1

2

3

4

q (I) : 0 1 0

1

10

2
2

3

1

4

0

Fig. 1. An example of gadget replacement (Example 2.10)

show the connection between the two, and that they are in fact two different points of view on
the same concept.
We define a pp-power using the same data as a gadget reduction, i.e., structures G, G'’s, and

homomorphisms 4',8 ’s. The corresponding pp-power d of a structure B′ similar to B (and hence to
G, and G'’s) is then defined as follows:

• the domain of d (B′) is the set hom(G,B′) of all homomorphisms ? : G → B
′, and

• a relation 'd (B
′) of arity : is the set

{(5 ◦ 4',1, . . . , 5 ◦ 4',: ) | 5 : G� → B
′}.

It is not hard to see that this definition gives (up to homomorphic equivalence1) the same structures
as the pp-powers defined in [Barto et al. 2018, 2017] using the language of logic.
The key relation between these two constructions is that for each I and B

′, we have that I →
d (B′) if and only if q (I) → B

′. This relation is called adjunction, and it is enough to prove that q
is a reduction from CSP(d (B)) to CSP(B), and also from PCSP(A, d (B)) to PCSP(q (A),B)) — the
proof is straightforward and can be found in [Krokhin et al. 2020, Section 4.2].

2.2.2 Polymorphisms. In this subsection, we define and explain some intuition about one of the
key notions of the characterisation of gadget reductions: polymorphisms of the template. Loosely
speaking, a polymorphism is homomorphism from a power (which we define below) of one struc-
ture to another (from one part of the template to the other). An intuition why polymorphismsmat-
ter comes from the observation that whenever there is a valid gadget reduction from PCSP(A,A′)

to PCSP(B,B′) then a specific gadget reduction that uses powers of B (which powers are used and
how they interact depends on the structure A) will give a reduction as well.

Definition 2.11. The =-th power of B, denoted by B= , is a structure similar to Bwith the universe
is �= , the set of all =-ary tuples of elements of B, and relations defined as follows. For each :-ary
relation 'B, the relation 'B

=

is the set of all tuples of the form (r1, . . . , r: ) where (r1(8), . . . , r: (8)) ∈
'B for each 8 ∈ [=] (here, r(8) denotes the 8-th entry of r).

Another way to describe the relations of the =-th power of B is: Consider all : × =-matrices
whose columns are tuples in 'B. The relation 'B

=

consists of all :-tuples of rows of such matrices
(keeping the order, so each matrix corresponds to one tuple in 'B

=

), where each row is interpreted
as an =-tuple of elements of �.
Polymorphisms are then simply functions that satisfy these power gadgets in the following

sense.

1Two structures are homomorphically equivalent if they are homomorphic to each other.
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Definition 2.12. Let (B,B′) be a PCSP template.2 A polymorphism from B to B
′ of arity = is

a homomorphism 5 : B= → B
′. We also simply say that any such 5 is a polymorphism of the

template (B,B′).
We denote the set of all such =-ary polymorphisms by Pol(=) (B,B′), and the set of all polymor-

phisms of arity = ≥ 1 by Pol(B,B′). Also, we write Pol(B) for Pol(B,B).

In other words, a function 5 : �= → �′ is an =-ary polymorphism from B to B′ if, for every (say,
:-ary) relation symbol ' the following holds: For every : × = matrix " with entries from � such
that each column of" is a tuple in 'B, if we apply 5 to each row of" (treated as a tuple) then we
obtain a column representing a tuple from 'B

′
.

These polymorphisms naturally generalise polymorphisms of a single structure that were used
in the algebraic approach to CSP [see, e.g., Barto et al. 2017, Section 4].

Example 2.13. Recall Example 2.6. For any= ≥ 1, the=-ary functions from Pol(K: ,K2 ) are simply
the 2-colourings of K=

:
, the =-th direct (or tensor) power of K: .

2.2.3 Minors, minions, and minion homomorphisms. We would like to highlight the absence of
algebras from this ‘algebraic approach to promise CSP’, whichmakes this name a bit of a misnomer.
The key property of algebras, or clones, that is missing in polymorphisms of PCSP templates is that
the set Pol(A,B) is not closed under composition— for example, if 5 and6 are polymorphisms from
A to B of arities 3 and 2 respectively, then the function ℎ defined by ℎ(G,~,F, I) = 5 (6(G,F), ~, I)
is not necessarily a polymorphism (as it would be if A = B). In general, the composition is not
even well-defined! This means that, as far as we can see now, most of fundamental results from
universal algebra do not apply in PCSP, and often there is no possibility of adapting such methods
from the classical CSP. In PCSP, we have to work with much weaker structure on polymorphisms.
This weaker structure is called a minion and it is obtained from the fact that polymorphisms are
always closed under taking minors.

Definition 2.14. An =-ary function 5 : �= → � is called aminor of an<-ary function6 : �< → �

given by a map c : [<] → [=] if

5 (G1, . . . , G=) = 6(Gc (1) , . . . , Gc (<) )

for all G1, . . . , G= ∈ �. We will use notation 6c for 6(Gc (1) , . . . , Gc (<) ) and write 5 = 6c .

Alternatively, one can say that 5 is a minor of 6 if it is obtained from 6 by identifying variables,
permuting variables, and introducing dummy variables. The classes of functions that are closed
under this operations are called (function) minions.

Definition 2.15. A function minionM on a pair of sets (�, �) is a non-empty subset of {5 : �= →

� | = ≥ 1} that is closed under taking minors. For fixed = ≥ 1, let M (=) denote the set of =-ary
functions from M .3 Unless stated otherwise, we assume that all minions are defined on finite sets.

It is very easy to check that Pol(A,B) is a minion for any PCSP template (A,B). One specific
minion that is used much, especially in hardness proofs, is the minion P� of all projections on a
set �, where an =-ary 8-th projection (a.k.a. dictator) on � is the operation ?8= (G1, . . . , G=) = G8 . Let
us denote the minion P{0,1} simply by P , it is easy to see that P is isomorphic to any minion
P� with |�| ≥ 2. It is also well-known [see, e.g., Barto et al. 2017] and easy to check directly that

2We could also define polymorphisms between any pair of similar structures, but it is not hard to observe that there are
none, unless there is a homomorphism between the two structures.
3If � = ∅, we still require that functions in M have a well-defined arity, i.e., in this case M is an infinite set that contains
one function of each arity.
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P = Pol(A) where A is the structure such that CSP(A) is 3-Sat (i.e., � = {0, 1} and the relations
'A8 , 0 ≤ 8 ≤ 3, are defined by 3-clauses with 8 negated variables, respectively).

We remark that each polymorphism minion Pol(A,B) naturally carries a topological structure
(see [Krokhin et al. 2020] for details). This is a potentially powerful tool for investigating the com-
plexity of PCSPs, but the study of this direction is still at its infancy.
The existence of gadget reductions can be characterised in terms of minion homomorphisms

between the polymorphism minions of the involved templates, we present this characterisation in
the next subsection. A minion homomorphism is the natural notion of a structure preserving map
between minions: the structure of a minion is given by the minor taking operations.

Definition 2.16. LetM andN be twominions (not necessarily on the same pairs of sets). Amap-
ping b : M → N is called a minion homomorphism if

(1) it preserves arities, i.e., ar(6) = ar(b (6)) for all 6 ∈ M , and
(2) it preserves taking minors, i.e., for each c : [<] → [=] and each 6 ∈ M (<) we have

b (6)c = b (6c ).

Wenote that item (1) is required in order for (2) to make sense, otherwise b (6c ) and b (6) couldn’t
form a minor using c .

Example 2.17. Let us start with a trivial example. For each minion M , there is a minion homo-
morphisms b : P → M defined as follows. Fix ℎ ∈ M (1) which exists sinceM is non-empty. And
define b (?8=) : G1, . . . , G= ↦→ ℎ(G8 ). Clearly, b (?8=) ∈ M (=) since M is closed under taking minors.
It is not hard to check that b also preserves minor relations.

Example 2.18. There is a minion homomorphism from Pol(K3,K4) to theminionP . This minion
homomorphism is built on the following combinatorial statement proved in [Brakensiek and Guruswami
2016, Lemma 3.4]: for each (say, =-ary) 5 ∈ Pol(K3,K4), there exist C ∈  4 (we will call any such C
a trash colour), a coordinate 8 ∈ [=], and a map U :  3 →  4 such that

5 (01, . . . , 0=) ∈ {C, U (08 )}

for all 01, . . . , 0= ∈  3. In other words, if we erase the value C from the table of 5 then the remaining
partial function depends only on G8 . Moreover, it is shown in [Brakensiek and Guruswami 2016,
Lemma 3.9], that while the trash colour C is not necessarily unique, the coordinate 8 is. We define
b : Pol(K3,K4) → P by mapping each =-ary 5 to ?8= for the 8 that satisfies the above. One can
check that this is indeed a minion homomorphism (see [Barto et al. 2021b, Example 2.22] for more
details).

Minor conditions are systems of special functional equations (height-1 identities, in the language
of universal algebra) that can be satisfied in a minion, and they are useful to show that there is no
minion homomorphism from one minion to another. A minor condition is a collection of finitely
many minor identities which are formal expressions of the form:

5 (G1, . . . , G=) ≈ 6(Gc (1) , . . . , Gc (<) ) (1)

or 5 ≈ 6c for short. We use the symbol ≈ to emphasize that this is an equation rather than an
equality of two functions. In particular, the variables in this equation are the function symbols (and
the G8 ’s are implicitly assumed to be universally quantified). We say that identity (1) is satisfied in
a set of functions from� to � if this set has two specific functions 5 and 6 that make this equation
an equality of functions, i.e., 5 (G1, . . . , G=) = 6(Gc (1) , . . . , Gc (<) ) for all G1, . . . , G= ∈ �.
A minor condition is then said to be satisfied in a minion M if for each function symbol appear-

ing in it, there is a function in M of the corresponding arity, such that this collection of functions
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satisfy all the identities in the condition. It is easy to see that a minion homomorphism preserves
satisfaction of minor conditions in the sense that if b : M → N is a minion homomorphism, then
all minor conditions satisfied in M are also satisfied in N . The converse is also true for poly-
morphism minions of finite PCSP templates, i.e., if every minor condition satisfied in M is also
satisfied in N then there is a minion homomorphism from M to N [Barto et al. 2021b, Theorem
4.12(1)–(3)].

Example 2.19. A commonly appearingminor condition is the following collection of threeminor
identities which is called (ternary) weak near unanimity:

B (G,~) ≈ =(G, G,~)

B (G,~) ≈ =(G,~, G)

B (G,~) ≈ =(~, G, G)

This minor condition is then satisfied in Pol(K3,K6). In order to show that we present B ∈

Pol(2) (K3,K6) and = ∈ Pol(3) (K3,K6): B (G,~) = G for G ∈ {0, 1, 2}.

=(G,~, I) =

{

0 if 0 appears at least twice among G,~, I, and

G + 3 otherwise.

It is not hard to check that both B and = are polymorphisms of the given template, and that they
indeed satisfy all the identities above.
We can also show that this minor condition is not satisfied in Pol(H2,H: ) for any : ≥ 2, where

the structuresH: are from Example 2.8. Indeed, if B, = ∈ Pol(H2,H: ) would satisfy such a condition,
we would get that

=(0, 0, 1) = =(0, 1, 0) = =(1, 0, 0) = B (0, 1).

which contradicts that = is a polymorphism. To see this, consider the 3 × 3 matrix whose columns
(0, 0, 1), (0, 1, 0), (1, 0, 0) are in the relation of H2 . Applying = to the three rows of this matrix,
which are also (0, 0, 1), (0, 1, 0), (1, 0, 0) results in the constant tuple (B (0, 1), B (0, 1), B (0, 1)) which
is not in the relation of H: for any : .
Consequently, this shows that there is nominion homomorphism fromPol(K3,K6) to Pol(H2,H: )

for any : ≥ 2.

Some minor conditions are useless for the above purpose since they are satisfies in all minions
(or, equivalently, in the minion P of projections), we call such conditions trivial. An example of
such condition would be a condition obtained from the ternary weak near unanimity by omitting
any of the three identities. We remark that the problem of deciding triviality of minor condition is
a different formulation of the Label Cover problem. Moreover, every problem PCSP(A,B) is equiv-
alent to the problem of distinguishing minor conditions that are trivial from those not satisfied
in Pol(A,B). We refer to [Barto et al. 2021b, Section 3] for a detailed exposition of the connection
between PCSPs, minor conditions, and Label Cover.
Finally, let us briefly mention abstract minions which are getting more and more popular in

the literature [e.g., Brakensiek et al. 2020; Ciardo and Živný 2022a,b]. In short, an abstract minion
is to a function minion what a group is to a permutation group. In long, abstract minion M is a
collection of arbitrary non-empty sets {M (=) | = ≥ 1}with a well-definedminor-taking operations,
i.e., maps (·)c : M (=) → M (<) for each c : [=] → [<] that satisfy the (obvious) relations: (6c )f =

6f◦c and 6id = 6 if id is the identity. A minion homomorphism between such minions is defined
in the same way as in Definition 2.16 with the difference that the symbols 6c are interpreted as
the minor taking operation of the corresponding minion applied to the corresponding element 6.
In the language of category theory, an abstract minion is the same as a functor from the category
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of non-empty finite sets to the category of non-empty sets, and a minion homomorphism is the
same as a natural transformation between two functors. We note that every abstract minion can
be represented as a function minion on sets (�, �) where � is countable (and � is also countable
if M (=) is countable for all =).

2.2.4 Characterisation of gadget reductions. The following theorem is the result of a long line of
gradual improvements and generalisations. Starting with [Jeavons et al. 1997] which introduced
the notion of polymorphisms for CSPs, followed by [Bulatov et al. 2005; Barto et al. 2018] which
further refined the statement for CSPs, [Barto et al. 2021b] which generalised the scope to PCSPs,
and [Krokhin et al. 2020] which mentioned the converse implication (1)→(2) that has received
very little attention before.

Theorem 2.20. Let (A,A′) and (B,B′) be two PCSP templates. Then the following two statements

are equivalent:

(1) PCSP(A,A′) is reducible to PCSP(B,B′) by a gadget reduction (and hence in log-space),

(2) there is a minion homomorphism Pol(B,B′) → Pol(A,A′).

Since polymorphisms of PCSP templates are not closed under composition, unlike polymor-
phisms of CSP templates, much of the structural theory of universal algebra is not applicable in
the promise setting. On the other hand, since the above theorem is a direct generalisation of the
corresponding result for CSPs [Barto et al. 2018], every statement about PCSPs applies to CSPs as
well, and therefore the study of PCSPs brings new insights into understanding CSPs as well.

One key concept that is useful for proving Theorem 2.20, but also in different settings, is a notion
of the free structure. It stems from the observation that if we fix A, B, and B

′, there is always a
structure A′ such that PCSP(A,A′) reduces to PCSP(B,B′) by a gadget reduction. Moreover, there
is a universal such structure (i.e., it maps homomorphically to any suitable A′), and this universal
structure depends only on A and the polymorphisms from B to B

′. It is called the free structure of
Pol(B,B′) generated by A and denoted by FPol(B,B′) (A) in [Barto et al. 2021b, Section 4.1] to which
we refer to for an explicit construction, formal definitions, and other useful properties [see, in
particular, Barto et al. 2021b, Theorem 4.12].

Example 2.21 (3- vs 5-colouring). Recall the approximate (hyper)graph colouring problems from
Examples 2.6 and 2.8. There is a gadget reduction from hypergraph colouring PCSP(H2,H27,480) to
graph colouring PCSP(K3,K5).4 This can be shown by arguing that every minor condition satisfied
in Pol(K3,K5) is also satisfied in Pol(H2,H27,480), and hence there is a minion homomorphism from
Pol(K3,K5) to Pol(H2,H27,480).
Alternatively, using the claim in the previous paragraph, we could argue that PCSP(H2, F) re-

duces to PCSP(K3,K5), where F is the free structure of Pol(K3,K5) generated by H2, and that
F → H27,480 — this is the essence of the proof presented in [Barto et al. 2021b, Section 6].
One can also directly prove that the “universal gadgets” give a desired reduction fromPCSP(H2,H27,480)

to graph colouring PCSP(K3,K5), see [Bulín et al. 2019, Section 4] that contains a self-contained
(one-page) proof of this.

3 “RICH ENOUGH” POLYMORPHISMS, ROUNDING, AND TRACTABILITY

Currently, there is essentially one way to prove tractability of a problem PCSP(A,B), which goes
as follows. Assume that we have a structure S (for sandwich) such that A → S → B. It is easy to
see that any algorithm solving CSP(S) also solves the decision version of PCSP(A,B) — indeed,
for any input I, if I 9 S then I 9 A and if I → S then I → B. We can even allow S to be an

4The number 27, 480 is the number of binary polymorphisms from K3 to K5 which was given by a computer calculation.
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infinite structure (i.e., have an infinite domain) — but the instances of S are still finite — in fact,
every instance of PCSP(A,B) is also an instance of CSP(S). So, if this CSP(S) is tractable, then so is
PCSP(A,B). We remark, though, that many existing tractability proofs for PCSPs do not construct
S explicitly. We will initially focus on decision PCSPs in this section, and briefly discuss search
PCSPs at the end of the section.

Example 3.1. Consider PCSP(T,H2) from Example 2.5. Let S be the structure whose domain is
Z and whose only relation is {(G,~, I) ∈ Z3 | G + ~ + I = 1}. It is easy to see that T → S → H2.
Indeed the first homomorphism is simply a (set-theoretic) inclusion, while the second one maps
all negative integers to 0 and the rest to 1. The problem CSP(S) amounts to solving linear systems
over integers and thus belongs to P [Kannan and Bachem 1979]. It follows that PCSP(T,H2) is in
P. There are other choices for S that work for this particular PCSP.

Some tractable problems PCSP(A,B) can be explained by the existence of a tractable sandwich
CSP with a finite template S, but the size of the smallest possible sandwich structure S can be
arbitrarily large [Kazda et al. 2022] even when the sizes of domains of A and B are fixed. However,
there exist tractable PCSPs where tractable sandwich structures S exist, but are all necessarily
infinite. One specific example is PCSP(T,H2) from the example above — it is shown in [Barto et al.
2021b, Section 8] that CSP(C) is NP-complete for every finite structure C with T → C → H2.
It is an open question whether every tractable problem PCSP(A,B) sandwiches a tractable

CSP(S), possibly with infinite S, and whether, for every PCSP(A,B) with this property, such a
structure S can always be chosen to satisfy special nice properties. It is not even clear what such
nice properties should be.
In all known cases, such an infinite sandwich structure S captures the possible outputs of solv-

ing a (polynomial-time solvable) relaxation of instances of CSP(A), and then appropriate polymor-
phisms in Pol(A,B) provide a rounding procedure for this relaxation. The prime examples of this
pattern are the basic linear programming (BLP) relaxation and the affine integer programming
(AIP) relaxation, which we now introduce.

Let I be an instance of CSP(A) and consider the following (standard) 0-1 integer linear program
equivalent to this instance. The variables in the program are `E (0) for every E ∈ � and 0 ∈ �, and
`v,' (a) for every relational symbol ', every v ∈ 'I and a ∈ 'A. The intended meaning is that
`E (0) = 1 if and only if E is assigned 0 and that `v,' (a) = 1 if and only if v is assigned a. We will
write v(8) or a(8) for the 8-th coordinate of the corresponding tuple. The equations in the program
are

∑

0∈�

`E (0) = 1 E ∈ � , (2)

∑

a∈'A

`v,' (a) = 1 v ∈ 'I, (3)

∑

a∈'A,a(8)=0

`v,' (a) = `v(8) (0) 0 ∈ �, v ∈ 'I, 8 ∈ [ar(')] . (4)

If we relax the above program and allow all variables to take values in the interval [0, 1], we
obtain an instance of the linear programming feasibility problem that we denote by BLPA(I). If we
instead allow all variables to take arbitrary integer values, we obtain a system of linear equations
over integers that we denote by AIPA (I). It is known that both linear programming feasibility and
systems of linear equations over integers can be solved in polynomial time.
It is obvious that if I → A then both BLPA (I) and AIPA(I) have solutions. We say that BLP

(respectively, AIP) solves PCSP(A,B) if we have I → B whenever BLPA (I) (respectively, AIPA (I))
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has a solution. What are the PCSPs solvable by BLP or by AIP? We explain this in some detail for
BLP, the case of AIP is similar.
Given a solution to BLPA(I), how can we round it to a homomorphism from I to B? It is not hard

to see that rational-valued solutions to BLPA (I) precisely correspond to homomorphisms from I

to an (infinite) structure S, which depends on A, constructed as follows. The domain of S is the
set of all rational probability distributions over �, i.e., all solutions to the equation

∑

0∈� G0 = 1
(cf. equation (2)) in non-negative rational numbers. A tuple t of such probability distributions is
in a relation 'S if there is a rational probability distribution W over 'A such that, for all 8 , the
8-th marginal of W is the 8-th component in t (cf. equations (3) and (4)). The problem CSP(S) is
a subproblem of the LP feasibility problem and so is tractable. To use this structure S to prove
tractability of PCSP(A,B) for some B, we need to have A → S → B. It is easy to see that we have
A → S, by mapping each element in � to the distribution assigning probability 1 to that element.
For = ≥ 1, let S= be the (finite) substructure of S whose domain consists of all probability distri-
butions where the probability of each element is ℓ/= for some ℓ ∈ {0, 1, . . . , =}. By compactness,
we have that S → B if and only if S= → B for all =. It is not hard to see that homomorphisms
from S= to B are in 1-to-1 correspondence with =-ary polymorphisms 5 ∈ Pol(A,B) such that
5 (G1, . . . , G=) = 5 (Gc (1) , . . . , Gc (=) ) for all permutations c of [=] (and all values of the variables).
Such functions are called symmetric. To summarise this discussion, we have the following result
(where we add condition (3) for completeness).

Theorem 3.2 ([Barto et al. 2021b]). For any PCSP template (A,B), the following are equivalent:

(1) BLP solves PCSP(A,B),
(2) Pol(A,B) contains symmetric functions of all arities, and

(3) there is aminion homomorphism fromQconv to Pol(A,B), whereQconv is theminion {
∑=
8=1 U8G8 |

= ≥ 1,
∑=
8=1 U8 = 1, U8 ∈ [0, 1] for all 8} of functions on Q.

So, if BLPA (I) has a solution thenwe have I → S, and then, since I is finite, I → S= for some= that
is polynomially bounded in the size of I. Then one can say that an =-ary symmetric polymorphism
fromA to B provides a rounding I → S= → B. Thus, if Pol(A,B) is “rich enough”, here in the sense
that it contains symmetric functions of all arities, then the decision version of PCSP(A,B) is in P.
A similar reasoning works for AIP in place of BLP (in fact, Example 3.1 can be seen as an applica-

tion of AIP). The "rounding" polymorphisms that naturally appear in this case have the following
properties (think G1 − G2 + G3 − . . . − G2= + G2=+1). Say that a function 5 : �2=+1 → � is alternating
if it is parity-symmetric, that is,

5 (G1, . . . , G2=+1) = 5 (Gc (1) , . . . , Gc (2=+1) ) (5)

for all permutations c of [2= + 1] that preserve parity (i.e., map odd numbers to odd and even to
even), and additionally, 5 satisfies the following cancellation law:

5 (G1, . . . , G2=−1, ~,~) = 5 (G1, . . . , G2=−1, I, I). (6)

Theorem 3.3 ([Barto et al. 2021b]). For any PCSP template (A,B), the following are equivalent:

(1) AIP solves PCSP(A,B),
(2) Pol(A,B) contains alternating functions of all odd arities, and
(3) there is a minion homomorphism from Zaff to Pol(A,B), where Zaff is the minion {

∑=
8=1 U8G8 |

= ≥ 1,
∑=
8=1 U8 = 1, U8 ∈ Z for all 8} of functions on Z.

We remark that AIP was not studied in the dichotomy-led research on CSPs, so the potential of
this algorithm as a subroutine in efficient algorithms for (P)CSPs and its relationship to other al-
gorithms for CSPs [e.g., Bulatov and Dalmau 2006; Idziak et al. 2010] are currently not understood
well.
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One particular way to combine BLP andAIPwas considered in [Brakensiek et al. 2020]. Roughly,
this combined algorithm first solves BLPA(I) and, if solvable, it finds a special solution B for it (a
relative interior point in the rational polytope of solutions). Then it strengthens AIPA (I) by adding
equations G = 0, where G is any variable that is equal to 0 in B . Finally, it solves this modified
AIPA (I). The algorithm rejects if either of BLPA(I) and the modified AIPA (I) has no solution and
accepts otherwise. This algorithm, called BLP+AIP, can also be seen as going via an appropriate
sandwich structure S, and the power of BLP+AIP can also be characterised via polymorphisms.
Several closely related characterisations were given in [Brakensiek et al. 2020], one of them is as
follows.

Theorem 3.4 ([Brakensiek et al. 2020]). BLP+AIP solves PCSP(A,B) if and only if Pol(A,B)
contains parity-symmetric functions of all odd arities.

Theorem 3.4 also has an equivalent third condition similar to Theorems 3.2 and 3.3. It involves
an abstract minion Mconv+aff whose definition, though quite simple, is a bit too lengthy for this
survey. See [Brakensiek et al. 2020] for details.
Using Theorem 3.4 and the description of tractable cases of Boolean CSPs [see, e.g., Barto et al.

2017], it is easy to see that BLP+AIP solves all these tractable cases. However, there are simple
examples of non-Boolean CSPs that are not solvable by this algorithm [see Brakensiek et al. 2020].
One can generalise BLP, AIP, and BLP+AIP to hierarchies such as the Sherali-Adams hierarchy for
linear programming (see, e.g., [Ciardo and Živný 2022a,b] for some initial studies of applying such
hierarchies for PCSPs). It is open whether using (some finite level of) such hierarchies gives an
algorithm that can solve all tractable decision PCSPs (or even all tractable CSPs).
Another interesting new aspect of PCSPs concerns the number of polymorphisms that are suf-

ficient to guarantee tractability. It is known that the tractable CSPs can be characterised by the
presence of a single polymorphism of arity 4 [see, e.g., Barto et al. 2017], but all theorems in this
section use infinite sequences of polymorphisms. This is not a coincidence, since in PCSP one
cannot compose polymorphisms, and, in particular, one cannot produce useful polymorphisms of
large arities from those of smaller arities. Moreover, it follows from [Barto and Kozik 2022] that,
for any finite family � of (multi-variable) functions from � to �, there is an NP-hard problem
PCSP(A,B) with � ⊆ Pol(A,B) (see also Corollary 4.4 and the discussion below it). This appears
to suggest that tractable PCSPs require infinite CSP algorithms, such as BLP or AIP. The nature of
polynomial-time algorithms that solve all tractable CSPs [Bulatov 2017; Zhuk 2017, 2020] is very fi-
nite. Does all this suggest that there are (potentially simpler) infinite-flavoured efficient algorithms
for PCSPs, which, in particular, can solve all tractable CSPs?

3.1 Tractability of search PCSPs

Let us now discuss tractability for search PCSPs. When search is concerned, there is a difference
between CSP and PCSP. As mentioned before, the search version of any tractable decision CSP is
tractable, but this reduction from search to decisionworks only for PCSPs that sandwich a tractable
CSP(S) with finite S. Indeed, if A → S → B then, for any instance I of PCSP(A,B), we can solve I
as an instance of the search problem for CSP(S) and use a pre-computed homomorphism S → B.
However, when infinite sandwich structures Smust be used, then we need to be able to efficiently
compute both a homomorphism ℎ from an input structure I to S and a homomorphism from the
substructure ℎ(I) of S to B (i.e., both solve the relaxation and round the obtained solution). In
this case, efficient search algorithms are currently known only for very few PCSPs, where the
underlying (specific) polymorphisms can be easily evaluated to provide efficient rounding [see,
e.g., Brakensiek and Guruswami 2021].
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If wewant to use (say, symmetric) polymorphisms as rounding for the search version of PCSP(A,B),
we need to be able to evaluate them efficiently. More specifically, we need a sequence of polymor-
phisms 5= ∈ Pol(A,B) such that each 5= is =-ary, and one can compute the value of 5= on a given
tuple in time polynomial in =. One possible obstacle for this, though, is that the application of poly-
morphisms as rounding procedures for BLP+AIP in [Brakensiek et al. 2020] uses polymorphisms
whose arity can be exponential in the size of the instance. It is currently not clear whether this
obstacle is inherent (at least, for some cases) or can always be avoided by using polymorphisms
in a suitable way. In general, however, the study of efficient polymorphisms, i.e., those that can be
efficiently evaluated, is a new, wide open, and interesting direction.

3.2 Some open questions and directions

To finish this section, let us mention several open questions and directions. While many of the
questions and directions below are general, partial answers and new examples would be of con-
siderable interest because we currently see only a small part of the complexity landscape in PCSP.
This comment applies also to the lists of questions and directions in Sections 4.3 and 5.3.

• The tractable problem PCSP(T,H2) from Examples 2.5 and 3.1 has the properties that both
structures are Boolean (i.e., have domain {0, 1}) and all their relations are symmetric (i.e.,
invariant under all permutations of coordinates). All tractable PCSPs with these properties
have been described in [Brakensiek and Guruswami 2021; Ficak et al. 2019], they all either
admit a tractable finite sandwich or can be solved by BLP or AIP. Find other interesting
examples of tractable Boolean (or indeed non-Boolean) PCSPs.

• Fix your favourite NP-hard problem of the form CSP(A) and describe all tractable problems
PCSP(A,B). (One can loosely call this describing tractable qualitative approximations to
CSP(A)).

• Find new interesting polynomial-time algorithms that can solve (some new) PCSPs.
• Is it true that every tractable problem PCSP(A,B) sandwiches a (possibly infinite) tractable
CSP(S)?

• Whenever PCSP(A,B) sandwiches a tractable CSP(S), where S is infinite, can S always be
chosen to satisfy special nice properties?

• What are the PCSPs that admit a finite sandwich structure with tractable CSP? (Such PCSPs
are called finitely tractable by Asimi and Barto [2021]).

• Are there other natural relaxations (and the corresponding structures and families of poly-
morphisms) that can be used to provide efficient algorithms for PCSPs? Can families of poly-
morphisms that play an important role in CSP (such as cyclic polymorphisms, [see Barto et al.
2017]) suggest new relaxations (for which they can provide rounding)?

• Can every tractable CSP (or even PCSP) be solved by combining BLP and AIP (possibly using
some appropriate finite level of Sherali-Adams-like hierarchies)?

• Is it true that the search version of PCSP(A,B) is tractable whenever the decision version
is?

• Is the search problem tractable for the PCSPs satisfying the conditions from Theorems 3.2–
3.4?

• Can a problem PCSP(A,B) have an efficient search algorithm, even in the presence of sym-
metric polymorphisms of all arities, that is “oblivious” to the underlying polymorphisms?
[Brakensiek et al. 2020]

• Is it true that when a search PCSP is tractable, this can always be explained by families of
polymorphisms that can be evaluated in polynomial time?
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• While we focus here mostly on the computational complexity of PCSPs, there was much re-
search into descriptive complexity of CSPs, i.e., expressibility of problems CSP(A) in various
logics [see, e.g., Bulatov et al. 2008; Atserias et al. 2009]. Many questions in this direction are
wide open for PCSPs.

• The two basic polynomial-time algorithms used to solve CSPs are the bounded-width algo-
rithm [Barto and Kozik 2014] and the few subpowers algorithm [Bulatov and Dalmau 2006;
Idziak et al. 2010]. Both use composition of polymorphisms — the former in its correctness
proof and the latter in the actual algorithm. Are there “composition-free” algorithms that
can replace them (i.e., solve the same CSPs)?

4 REDUCTIONS THAT GO BEYOND GADGET REPLACEMENTS

In the general algebraic theory of CSP, it was sufficient to group and compare CSPs by the gadget
reductions (described in Section 2.2), so that two CSPs that are reducible to each other by gadget
reductions are considered essentially the same. Moreover, it follows from the CSP Dichotomy The-
orem [Bulatov 2017; Zhuk 2020] that (unless P = NP) a CSP is NP-hard if and only if 3-Sat reduces
to it via a gadget reduction. Of course, one can still use gadget reductions to reduce from 3-Sat
(or any other NP-hard CSP) to PCSPs — however, there are NP-hard PCSPs whose NP-hardness
provably cannot be shown by a gadget reduction from an NP-hard CSP. Examples of this include
the (2+Y)-Sat problem from Example 2.4, and all the state of the art results on approximate graph
colouring from Example 2.6. Hardness arguments for these examples rely on ad hoc reductions
from problems that are proven NP-hard by different methods, typically by reducing from the Gap
Label Cover problem, which is NP-hard by the PCP theorem and the Parallel Repetition Theorem
[Arora et al. 1998; Arora and Safra 1998; Raz 1998]. This frequent use of ad hoc reductions was
one reason why [Barto et al. 2021b] called for an extension of the algebraic approach with more
reductions. Such reductions would provide a coarser grouping of PCSPs than the one provided
by gadget replacement, where more PCSPs are considered essentially the same (than what is pro-
vided by Theorem 2.20). Obviously, this could expand the scope of tractability results. Moreover,
we would like to have a general theory for PCSPs, where (as many as possible) hardness results are
explained in a uniform way, ideally via reductions of some regular type (which ideally would be
characterised in a similar way gadget reductions are characterised by polymorphisms) and from
as few problems as possible (ideally just from 3-Sat). This section outlines a few of the recent
advances in that direction.
A common feature of the new reductions described in this subsection is that they are, surpris-

ingly, pp-powers (recall Section 2.2.1) — which is a construction that is efficiently computable but,
when studying gadget reductions, is applied to the template rather than to an instance.

4.1 The arc-graph reduction and adjunctions

A reduction between PCSPs that provably goes beyond gadget replacements has been used in
[Krokhin et al. 2020] to improve hardness results for approximate graph colouring. This reduction
transforms a digraph into its arc-graph, which is defined as follows. For a digraph G, its arc-graph
X (G) is the digraph whose vertices are the edges of G, and whose edges are pairs of edges of G
forming a 2-path:

X (G) = (�G; {((G,~), (I,F)) | (G,~), (I,F) ∈ �G,~ = I}).

It is known that, for any digraphs G,H, we have X (G) → H if and only if G → X' (H), where
the transformation X' can be described in a few ways. For example, we can set X' (H) to be the
digraph whose vertices are all subsets of � , and there is an edge from a subset * to a subset +
if there is D ∈ * such that (D, E) ∈ �H for all E ∈ + . It is not hard to check that X is a reduction
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from PCSP(G, X' (H) to PCSP(X (G),H) whenever both PCSPs are defined, i.e., when X (G) → H

and G → X' (H).
This reduction can be used to reduce from PCSP(K1 (:) ,K1 (2) ) to PCSP(K: ,K2 ) for any :, 2 ≥ 4

where 1 (:) =
( :
⌊:/2⌋

)

. Starting with a result of Huang [2013], a repeated application of this reduc-
tion has led to a considerable improvement in state-of-the-art NP-hardness results for approximate
graph colouring [Krokhin et al. 2020]. We will discuss this in more detail in Section 5.2.
The arc-graph reduction falls into awider schemeof reductions that are described by adjunctions,

which is a notion from category theory. Two transformations W and l are said to be adjoint if, for
all structures A and B,

W (A) → B if and only if A → l (B), (7)

assuming that W transforms A to a structure similar to B and l transforms B to a structure similar
to A. In this case W is called a left adjoint to l , and l a right adjoint to W . Another example of
adjunction is when W is a gadget replacement, and l the corresponding pp-power, as we described
in Section 2.2.1. As it is known from the algebraic approach, in this case W gives an efficiently com-
putable reduction from CSP(l (A)) to CSP(A) for each relational structure A (to which l can be
applied). This in fact generalises to arbitrary adjunctions (naturally, from the computational com-
plexity perspective, we are only interested in cases whereW is efficiently computable), and to PCSPs:
any efficiently computable left adjoint W to l can be used as a reduction from PCSP(B, l (A′)) to
PCSP(W (B),A′) [Krokhin et al. 2020]. More information on the use of adjunctions in PCSP (and
more examples) can be found in [Krokhin et al. 2020].
We remark that it is currently not known how (or whether) reductions given by adjunctions,

even in the special case of the arc-graph reduction, can be characterised in terms of polymorphisms
of the involved templates.

4.2 Generalising minion homomorphisms

We briefly outline the core results of a recent paper by Barto and Kozik [2022] that describes a
reduction between PCSPs that is more general than gadget reductions and gives a sufficient con-
dition for the existence of this reduction from PCSP(A,A′) to PCSP(B,B′) that is weaker than
the existence of minion homomorphism from Pol(B,B′) to Pol(A,A′). Moreover, this sufficient
condition is still expressed in terms of the two polymorphism minions. This result goes towards
the general goal described in the beginning of this section. In particular, it allows one to to show
NP-hardness of some PCSPs by a regular type of reduction from 3-Sat through the use of poly-
morphisms. This covers several NP-hardness results, e.g., those from Examples 2.4, 2.7, and 2.8,
where original proofs relied on Gap Label Cover and the PCP theorem.

We formulate a simplified version of the reduction used in [Barto and Kozik 2022] — while
formally, this formulation is different, it can be shown that if there is a reduction according to
[Barto and Kozik 2022] between two PCSPs, then the reduction described here also works. We use
the notation

( -
≤:

)

for the set of all at most :-element non-empty subsets of - . And we refine a

definition of a power of a structure to allow sets for exponents; the structure B- is isomorphic to
B
|- | .

Definition 4.1. Let - be a set and B a relational structure, we define the - -th power of B denoted

by B
- as the structure (�- ;'B

-

, . . . ) where �- is the set of all functions from - to �, and

'B
-

= {(11, . . . , 1:) | (11(G), . . . , 1: (G)) ∈ '
B for all G ∈ - }

for each :-ary relational symbol ' of B.
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We now give a concise description of the reduction which we will call here, for the lack of better
name, :-reduction. Assume that we are reducing from PCSP(A,A′) to PCSP(B,B′), and fix a (large
enough) positive integer : . Intuitively, the reduction is very similar to a gadget replacement with
the key difference that we consider each set of at most : variables at a time as one unit replaced
by one gadget — each of these gadgets is a power of B as defined above.
Let I be an instance of PCSP(A,A′), we construct an instance q (I) as follows. For a subset

 ⊆ � , let I[ ] denote the (induced) substructure of I with domain  obtained by removing all
tuples containing elements not from  from all relations in I.

• For each  ∈
( �
≤:

)

, let F be the set of all homomorphisms from I[ ] to A. For each such  ,

introduce into q (I) a copy of BF .
• For each ! ⊂  ∈

( �
≤:

)

, there is a natural map from F to F! that mapsℎ to its restriction ℎ |! .

We identify each element 1 of BF! with the element 1 of BF defined as 1 (ℎ) = 1 (ℎ |!).

It is not hard to see that this transformation q can be computed in log-space. When is this trans-
formation a reduction from PCSP(A,A′) to PCSP(B,B′)? Barto and Kozik [2022] provide a partial
answer to this question. We also note that they only claim that their reduction is polynomial time
since in order to provide a log-space reduction between search problems, we need to provide an
efficient way to reconstruct a solution for I from a solution q (I). Theorem 4.3 below only asserts
that if there is a solution to q (I) then there is also a solution to I, but it is not obvious whether it
can be computed in log-space.
We remark that :-reduction is also closely connected with Sherali-Adams (SA) hierarchy [see

Sherali and Adams 1990; Ciardo and Živný 2022b] in the following sense. First, SA can be essen-
tially viewed as a reduction from a CSP to linear programming. Naturally, this reduction is different
from the basic linear programming relaxation. Namely, the difference lies in the fact that the :-th
level of SA considers : variables at the same time in very much the same way as in the definition
above. A difference from the above construction is in the step where the sets F are converted into
a gadget (BF above): SA uses a more efficient gadget consisting of all probability distributions on
F . This consequently also alters the identification step (second item above).
Barto and Kozik [2022] introduce a generalisation of minion homomorphisms that is a sufficient

condition for the existence of a :-reduction for some : . The simpler version of the new homomor-
phism is the so-called 3-homomorphism which is a mapping that assigns to each function from
Pol(B,B′) a list of at most 3 candidates from Pol(A,A′) of the same arity, such that, for each mi-
nor relation 5 = 6c , there is a choice of candidates, 5 ′ from image of 5 and 6′ from the image of
6, that satisfy the same minor relation 5 ′ = (6′)c . (The standard minion homomorphism is thus
a 1-homomorphism.) This notion further generalises to (3, A )-homomorphisms defined below; a
3-homomorphism is a (3, 1)-homomorphism. Loosely speaking, a 3-homomorphism forces us to
weakly satisfy each minor relation, while a (1, A )-homomorphismdoes not require that each minor
relation is satisfied, but at least one that from each chain of A minor relations. A precise definition
that combines both these behaviours is given below.

Definition 4.2. Fix a minion M , a chain of minors in M of length A is a sequence C0, . . . , CA ∈ M

together with functions c8, 9 for 0 ≤ 8 < 9 ≤ A , such that C 9 = C
c8,9
8 for all 8 < 9 and c8,: = c8, 9 ◦ c 9,: ,

for all 8 < 9 < : .
Let M and N be two minions. A (3, A )-homomorphism from M to N is a mapping b that

assigns to each element of M a non-empty subset of N of size at most 3 such that

(1) for all 5 ∈ M , every 6 ∈ b (5 ) has the same arity as 5 .
(2) for each chain of minors in M as above, there exist 8 < 9 and 68 ∈ b (C8 ), 6 9 ∈ b (C 9 ) such that

6 9 = 6
c8,9
8 .
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Note that, in a chain of minors, themapsc8, 9 are determined by c8,8+1 since all others are obtained
by composition. So, one way to create such a chain is to start with C0 and to iteratively take a minor
C8+1 = C

c8,8+1
8 .

Often a (3, A )-homomorphism can be given by providing A partial 3-homomorphisms that cover
the whole minion M . More precisely, assume that M = M1 ∪ · · · ∪ MA where each M8 is not
necessarily a minion, and that we have maps b8 : M8 → N that are partial 3-homomorphisms, i.e.,
they satisfy the conditions (1) and (2) in Definition 4.2 for every chain of minors of length 1 that
is contained in the same M8 . Then there is a (3, A )-homomorphism b : M → N which is defined
by taking the union of b8 ’s and breaking ties arbitrarily whenever some of b8 ’s disagree. This is
a (3, A )-homomorphism, since, for every chain of minors C0, . . . , CA , there will be some B such that
some C8 and C 9 belong to the same MB and b (C8 ) = bB (C8 ) and b (C 9 ) = bB (C 9 ).

Theorem 4.3 ([Barto and Kozik 2022, Theorem 5.1]). Let (A,A′) and (B,B′) be two PCSP tem-

plates. If there is a (3, A )-homomorphism from Pol(B,B′) to Pol(A,A′), then there exists : such that

PCSP(A,A′) reduces to PCSP(B,B′) by the :-reduction.

One important consequence of the above theorem (Corollary 4.4 below) is that polymorphisms
of a bounded arity (or,more generally, of bounded essential arity) have no influence on the complex-
ity of a PCSP. In particular, one cannot make any conclusions about the complexity of PCSP(A,A′)

solely on the basis of the presence of any single finite set of functions in the polymorphism min-
ion Pol(A,A′). A coordinate 8 of a function 5 : �= → �′ is called inessential if, for all 8 ∈ [=] and
01, . . . , 0=, 0

′
8 ∈ �, we have 5 (01, . . . , 08 , . . . , 0=) = 5 (01, . . . , 0

′
8 , . . . , 0=). Otherwise, the coordinate 8

is called essential. The number of essential coordinates of a function is called its essential arity.

Corollary 4.4. Fix any number< ≥ 1. If there is a partial minion homomorphism

b : B → Pol(A,A′)

where B ⊆ Pol(B,B′) is the set of all polymorphisms of essential arity at least< then PCSP(A,A′)

is reducible to PCSP(B,B′) by :-reduction for some : .

By partial minion homomorphism in the above theorem, we mean that minors 5 = 6c are
preserved for all functions 5 , 6 ∈ B.
As a special case of Corollary 4.4, consider the situation when � = �, �′

= �′ and Pol(A,A′)

and Pol(B,B′) have the same functions of essential arity at least <, for some <, (but there is
assumption on functions of essential arity less than < in the two minions). Then Corollary 4.4
implies that PCSP(A,A′) and PCSP(B,B′) are reducible to each other.
The proof of Corollary 4.4 is straightforward, we can extend the partial homomorphism b to

a full 3-homomorphism, where 3 is the number of <-ary functions in Pol(A,A′). To define the
extension, map any =-ary function 5 ∈ Pol(B,B′) of essential arity less then < to the set of all
=-ary functions in Pol(A,A′) whose set of essential coordinates is contained in the set of essential
coordinates of 5 . It is not hard to check that this indeed gives a 3-homomorphism from Pol(B,B′)

to Pol(A,A′), and one can apply Theorem 4.3.
An argument similar to the one before Theorem 4.3 gives the following.

Corollary 4.5. Let A = Pol(A,A′) and B = Pol(B,B′) If there is A and a collection of A partial

minion 3-homomorphism b8 : B8 → A where B8 ⊆ B for each 8 = 0, . . . , A − 1, and B =
⋃A−1
8=0 B8

then PCSP(A,A′) is reducible to PCSP(B,B′) by :-reduction for some : .

One open question relating (3, A )-homomorphisms with the arc-graph reduction is whether
there is a (3, A )-homomorphism for some 3 and A from Pol(XG,H) to Pol(G, X'H) for any digraphs
G and H. We know that the arc-graph reduction is a reduction between the corresponding PCSPs.
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In fact, it is possible to show using the construction X' that 3-reduction also provides such a re-
duction in this case. Nevertheless, it is not clear that the sufficient condition from Theorem 4.3 is
satisfied in this case. If it is not, this would mean that (3, A )-homomorphisms are not necessary for
:-reduction to work.

We are far from understanding reductions (beyond gadget reductions) in many ways: Is :-
reduction sufficient to build a strong enough general theory for PCSPs? Is there a characterisation
when a :-reduction is an actual reduction from one PCSP to another in terms of the polymor-
phism minions of the two templates? Would a more general reduction be more open to such a
characterisation?

4.3 Some open questions and directions

• Find a class of reductions between PCSPs that is strong enough (say, to cover more than
gadget reductions) together with a characterisation when such a reduction is applicable.

• Can reductions given by adjunctions be described in terms of polymorphisms? The special
case of the arc-graph construction is a good place to start.

• Is (3, A )-homomorphism also a necessary condition for the existence of a :-reduction? If
not, find a more general (polymorphism-based) condition that would be both sufficient and
necessary for such reductions.

• Is there a (3, A )-homomorphism for some 3 and A from Pol(XG,H) to Pol(G, X'H) for all (or
some interesting) digraphs G and H?

• It is known [Krokhin et al. 2020] that each minion of polymorphisms carries a topological
structure. Investigate how this topological structure can be used to provide more reductions
between PCSPs.

5 “LIMITED ENOUGH” POLYMORPHISMS AND NP-HARDNESS

For CSPs, we know exactly which problems CSP(B) are NP-hard (assuming P ≠ NP), by [Bulatov
2017; Zhuk 2017, 2020]. In fact, the hardness part of the CSP Dichotomy Theorem is easy and has
long been known [Bulatov et al. 2005]. One way to characterise the NP-hard CSPs is as follows
[Barto et al. 2018]. Recall the minion P of all projections on {0, 1} from Section 2.2.3. Then the
NP-complete CSPs are the problems CSP(B) such that there exists a minion homomorphism from
Pol(B) to P . Since, as we mentioned in Section 2.2.3, P is the polymorphism minion of the
structure corresponding to 3-Sat, this means that every NP-hard CSP(B) admits a gadget reduction
from 3-Sat (unless P = NP). Since every projection of a given arity = is uniquely determined by
one of its coordinates, the existence of such a minion homomorphism means exactly that, for each
function 5 in Pol(B), one can select one “important” coordinate 8 5 in such a way that if 5 = 6c

then 8 5 = c (86).
For PCSPs, the situation is more complicated, since, as mentioned before, there are many NP-

hard PCSPs whose polymorphism minion does not admits a minion homomorphism to P (and
hence there is no gadget reduction from3-Sat). In fact, there is some belief [Brakensiek and Guruswami
2021] that, unlike for CSPs, understanding hardness in PCSPs will be at least as difficult as under-
standing tractability (regardless of the question about the existence of dichotomy for PCSPs).

5.1 Proving NP-hardness results via polymorphisms

A prevalent (so far) use of Theorem 4.3 to prove NP-hardness of PCSPs is to show a reduction from
3-Sat, i.e., with A = A

′ being the template of 3-Sat, and hence Pol(A,A′) = P .

Corollary 5.1. Let (B,B′) be a PCSP template. If, for some fixed 3, A ≥ 1, there is a (3, A )-

homomorphism from Pol(B,B′) to P then PCSP(B,B′) is NP-hard.
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Corollary 5.1 for the case A = 1 was proved in [Barto et al. 2021b] (the core of the argument
appeared in [Austrin et al. 2017]) and for the case 3 = 1 and arbitrary A in [Brandts et al. 2021], but
both of these results predate [Barto and Kozik 2022] and their original proofs relied on the PCP
theorem.
Let us spell out what the condition in the above corollary says. Fix a (3, A )-homomorphism

b : Pol(B,B′) → P . If 5 is an =-ary function in Pol(B,B′) then b (5 ) is a non-empty collection
of (at most) 3 projections ?B1= , . . . , ?

B3
= of arity =, where 1 ≤ B 9 ≤ = for each 9 . In other words, b

can be viewed as selecting a set sel(5 ) = {B1, . . . , B3 } ⊆ [=] of (at most) 3 “special” coordinates
in 5 . Now assume that we have a chain of minors C0, . . . , CA ∈ Pol(B,B′) such that C 9 = C

c8,9
8 , for

each 8 < 9 , where c8,: = c8, 9 ◦ c 9,: , for all 8 < 9 < : . Then there must exist 8 < 9 such that
sel(C 9 ) ∩ c8, 9 (sel(C8 )) ≠ ∅. In other words, it cannot be that, for all 8, 9 , the image under c8, 9 of the
“special” coordinates in C8 does not contain any “special” coordinates of C 9 .

Informally, the fact that one can identify a bounded number of special coordinates in every
polymorphism (in a coordinatedway) shows that these polymorphisms are in someway “lopsided”,
and so Pol(B,B′) is “limited enough”. To contrast this intuition with “rich enough” polymorphisms
from Section 3, let us explain why there cannot be a (3, A )-homomorphism from Pol(B,B′) to P if
Pol(B,B′) contains symmetric functions of all arities. Indeed, assume such a (3, A )-homomorphism
b exists for some 3, A . Choose any symmetric function C0 of arity 3 · (A + 1) in Pol(B,B′) and let
( = B4; (C0) be the set of (at most) 3 special coordinates of C0 selected by b . Choose a permutation
c on [3 · (A + 1)] so that ( intersects none of the sets c ((), c2 ((), . . . , c3 (A+1)−1((), clearly this
can be done. Consider the chain of minors C0, . . . , CA where C8 = Cc

8

0 (and so c8, 9 = c 9−8 for all
8 < 9 ). Note that we have C0 = C1 = . . . = CA , since C0 is symmetric, but ( = sel(C 9 ) is disjoint from
c8, 9 (sel(C8 )) = c 9−8 (() for all 8 < 9 , by the choice of c .

Let us now discuss how Corollary 5.1 is applied. Naturally, it is all about selecting special sets of
coordinates in polymorphisms. How exactly to select the special variables for a given application
is the creative part.
Let’s start with the case A = 1. In this case we want to select, for each polymorphism 5 , a set

sel(5 ) of (at most) 3 “special” coordinates in such a way that, for every minor relation C1 = Cc0 in
Pol(B,B′), the set of special coordinates in C0, after applying c , i.e., c (sel(C0)), shares at least one
element with the set sel(C1).

Example 5.2. Assume that we can prove that each 5 ∈ Pol(B,B′) has at least one and at most
3 essential variables (which means that the values of the remaining, non-essential, variables have
no effect on the output of 5 ). We can set sel(5 ) to be the set of essential variables of 5 . In this case
it is easy to check that if C1 = Cc0 then sel(C1) and c (sel(C0)) can never be disjoint. This reasoning
was used, for example, in [Austrin et al. 2017] to prove NP-hardness of (2 + Y)-Sat problems (see
Example 2.4) — though via the PCP theorem.

The case A = 1 can be applicable even when polymorphisms have an unbounded number of
essential variables — the special variables can be selected on the basis of some other property, as
in Example 2.18 or in the following example.

Example 5.3. Let C2:+1 be an undirected cycle with 2: + 1 nodes, : ≥ 1, and let K3 be a 3-clique.
The approximate graph homomorphism problem PCSP(C2:+1,K3) (recall Example 2.7) has been
proved NP-hard in [Krokhin et al. 2020] by applying Corollary 5.1 as follows. One can associate a
topological space to every graph. The space associated with an odd cycle is a circle, and the space
associated with the =-th power of an odd cycle is an =-torus. Furthermore, any graph homomor-
phism 5 , and hence also a polymorphism, induces a continuous map 5̂ between the corresponding
spaces, hence we assign to a polymorphism 5 : C=

2:+1
→ K3 a continuous map 5̂ from =-torus to
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the circle. Observing that the main topological invariant of a continuous map from a circle to itself
is its degree (or winding number), one can then prove, roughly, that 5̂ will have a bounded number
of coordinates with non-zero degree. These coordinates are then chosen to form the set sel(5 ), and
one can prove that sel(C1) ∩ c (sel(C0)) ≠ ∅ holds whenever C1 = Cc0 .

The previous example is a rare (so far) case when the analysis of polymorphisms in a hardness
proof for PCSP is performed not by direct combinatorics, but instead by first mapping them by
a minion homomorphism to a different abstract minion, where the behaviour of their images is
easier to understand. It would be of significant interest to findmore examples of hardness of proofs
of this sort, where the target abstract minion can be of topological or of some other nature.
Now let us discuss applications of Corollary 5.1 with A > 1. One useful pattern is provided in

the following example, taken from [Brandts et al. 2021], where it is applied to prove NP-hardness
of certain generalisations of (2 + Y)-Sat to non-Boolean domains.

Example 5.4. Assume that we can define the notion of a set of coordinates, called smug sets in
[Brandts et al. 2021], for functions in Pol(B,B′) so that the following conditions are satisfied:

• every 5 ∈ Pol(B,B′) has a smug set consisting of at most 3 coordinates;
• no function in Pol(B,B′) can have more than A pairwise disjoint smug sets;
• if 5 = 6c for some 6, 5 ∈ Pol(B,B′) then the c-preimage of any smug set in 5 is a smug set
in 6.

Then, for any 5 ∈ Pol(B,B′), we can set sel(5 ) to be an arbitrary smug set of variables of size at
most 3 in it. This does not in general guarantee that sel(C1) ∩ c (sel(C0)) ≠ ∅ whenever C1 = Cc0 .
However, the last two conditions in the definition of a smug set imply that, for any chain of minors
C0, . . . , CA ∈ Pol(B, B′), it is impossible that sel(C 9 ) ∩ c8, 9 (sel(C8 )) = ∅ for all 8 < 9 .

Another useful pattern of applying Corollary 5.1 with A > 1 is when functions in Pol(B,B′) can
be shown to exhibit A different types of behaviour, so that Pol(B,B′) can be divided into A (not
necessarily disjoint) types, where the definition of sel(5 ) depends on the type of a polymorphism,
and one can show that sel(6) ∩ c (sel(5 )) ≠ ∅ holds whenever 6 = 5 c and 6 and 5 are of the same
type. This can also be described as representing Pol(B,B′) as Pol(B, B′) = M1 ∪ · · · ∪ MA , and
providing partial 3-homomorphisms b8 : M8 → P (see Definition 4.2 and the discussion after it).

Example 5.5. A few simple applications of the above pattern can be found in [Barto et al. 2021a],
where it is applied to problems PCSP(T,B) (as in Example 2.5) withB being a structure with domain
{0, 1, 2}. For example, consider the casewhen the relation ofB consists of triples (0, 0, 1), (0, 0, 2), (1, 1, 2)
and all triples obtained from them by permuting coordinates. For a function 5 : {0, 1}= → {0, 1, 2},
call a set - of coordinates of 5 a 2-set if 5 evaluates to 2 whenever all variables in - are equal to 1.
Also, define � (5 ) to be the set of all coordinates 8 such that 5 (x8 ) ≠ 0, where x8 is the tuple where
1 appears only in position 8 . It is shown in [Barto et al. 2021a] that each 5 ∈ Pol(T,B) has at least
one of the following properties: 5 has a 2-set - of size at most 2 or the set � (5 ) has size at most 5.
Whichever case applies for each 5 , select the corresponding set, - or � (5 ), to be sel(5 ), breaking
ties arbitrarily when there is any choice. Thus, we have Pol(T,B) = M1 ∪M2, where M8 consists
all functions 5 ∈ Pol(T,B) such that sel(5 ) is defined by the first or by the second property above.
It is then shown that this provides partial 5-homomorphisms from each M8 to P , and hence a
(5, 2)-homomorphism from Pol(T,B) to P .

NP-hardness results for various Boolean PCSPs that can be obtained by using Corollary 5.1 (even
though the original proofs are not always presented thatway) can be found in [Brakensiek and Guruswami
2021; Brakensiek et al. 2021; Brandts and Živný 2021; Ficak et al. 2019].
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5.2 Hardness of PCSPs from Gap Label Cover

NP-hardness of the Gap Label Cover problem is the starting point of many hardness proofs in
inapproximability. Many hardness results for graph and hypergraph colouring were obtained via
ad hoc reductions fromGap Label Cover, andwill discuss some of themhere (see [Barto et al. 2021b,
Section 5] for more details). We remark that one advantage of hardness proofs via Corollary 5.1
(or similar), as compared with reductions from Gap Label Cover is that the reduction itself is not
ad hoc, and thus is more suitable for building a general theory.
We start with two examples where the original hardness proofs used Gap Label Cover, but

subsequently new proofs via Corollary 5.1 were found.

Example 5.6. Recall the hypergraph colouring problem PCSP(H: ,H2 ) from Example 2.8. It was
proved in [Dinur et al. 2005] that PCSP(H: ,H2 ) is NP-hard for all 2 ≤ : ≤ 2 , by using a reduc-
tion from a multi-layered version of Gap Label Cover. It was then shown in [Barto et al. 2021b,
Section 5.3] how the proof from [Dinur et al. 2005] can be directly translated into the language of
polymorphisms. Wrochna [2022] refined this to provide a short combinatorial proof that there is a
way to select special coordinates in functions from Pol(H2,H2 ) that gives a (3, A )-homomorphism
from Pol(H2,H2 ) to P for appropriately chosen 3 and A , so this hardness result can now also be
explained by using Corollary 5.1.

Example 5.7. Recall Example 2.21. For any : ≥ 3, the problem PCSP(K: ,K2:−1) has been proved
NP-hard in [Barto et al. 2021b] by providing a minion homomorphism from Pol(K: ,K2:−1) to
Pol(H2,H2 ), where 2 is the number of binary functions in Pol(K: ,K2:−1). From the previous ex-
ample, there is a (3, A )-homomorphism from Pol(H2,H2 ) to P , for some 3, A . It is easy to check
that a composition of a minion homomorphism with a (3, A )-homomorphism is again a (3, A )-
homomorphism, so we conclude that there is a (3, A )-homomorphism from Pol(K: ,K2:−1) to P .

Let us now discuss hardness results for approximate graph colouring that have not been ex-
plained via polymorphisms so far. Notably, all state-of-the-art NP-hardness results for Pol(K: ,K2)
with 6 ≤ : ≤ 2 are in this category.

Example 5.8. The strongest known NP-hardness results for PCSP(K: ,K2 ) with : = 3, 4, 5 are
those from the previous example, with 2 = 2: − 1. In [Huang 2013], it was proved, by a reduction

from Gap Label Cover, that PCSP(K: ,K2 ) is NP-hard for 2 = 2Ω (:1/3) and : large enough. By
starting from Huang’s result and repeatedly applying the arc-graph reduction (see Section 4.1), it
was shown in [Krokhin et al. 2020] that PCSP(K: ,K2 ) is NP-hard for all : ≥ 4 and 2 =

( :
⌊:/2⌋

)

− 1
(which coincides with 2: − 1 for : = 5 and is the strongest known result for : ≥ 6). We note
that neither Huang’s result nor the arc-graph reduction currently have an explanation in terms of
polymorphisms.
Another result from [Krokhin et al. 2020] obtained by using the arc-digraph construction is that

it is enough to prove NP-hardness of PCSP(K: ,K2 ) for some fixed : ≥ 3 and all 2 ≥ : , the same
will then follow for all 3 ≤ : ≤ 2 .

Other examples of NP-hardness results that were obtained by ad hoc reductions from Gap Label
Cover (and cannot currently be explained in terms of polymorphisms) include results on rainbow
vs. normal and strong vs. normal hypergraph colouring, see references in Example 2.8.

5.3 Some open questions and directions

• At the moment, Corollary 5.1 is the most general known formalisation of what it means for
a PCSP to have “limited enough” polymorphisms (to guarantee NP-hardness). Find other
(incomparable or more general) formalisations.
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• Wementioned symmetric Boolean PCSPs in Section 3.2. All such PCSPs that are not tractable
are NP-hard [Brakensiek and Guruswami 2021; Ficak et al. 2019]. Find other interesting ex-
amples of NP-hard Boolean (or non-Boolean) PCSPs.

• Which of the problems PCSP(T,B) from Example 2.5 are NP-hard? Specifically, solve this
for the case B = LO: whose domain is {0, 1, . . . , : − 1}, : ≥ 3, and the relation consists of
all tuples (G,~, I) that have a unique maximal element (or, in other words, if two of G,~, I
are equal then the third element is larger than the two equal ones). See [Barto et al. 2021a;
Nakajima and Živný 2022] for related results.

• Pick your favourite structure A with NP-hard CSP(A) and describe all NP-hard problems
PCSP(A,B). More generally, classify the complexity of PCSP(A,B) depending on B.

• Recall that a smooth digraph is one that has neither sources nor sinks (in other words,
each vertex has positive in- and out-degrees). See [Barto et al. 2017, 2009] for an explicit
description of smooth digraphs G with tractable (NP-hard, resp.) CSP(G). Generalising the
Brakensiek-Guruswami conjecture from Example 2.7, are all problems PCSP(G,H) NP-hard
when G and H are smooth digraphs with NP-hard CSPs?

• Further develop the topology-based approachmentioned in Example 5.3 to attack the approx-
imate graph colouring problem (and possibly other PCSPs such as variants of hypergraph
colouring mentioned in Example 2.8).

• Topology has been applied in hardness proofs for PCSPs in different ways: combinatorial
analysis via Borsuk-Ulam-style theorems [Austrin et al. 2020; Dinur et al. 2005] and topolog-
ical analysis of polymorphisms [Krokhin et al. 2020]. Investigate whether there is a common
pattern behind these applications.

• In the introduction, wementioned that the truth of someNP-hardness conjectures (related to
variants of unique games) is known to implyNP-hardness of all approximate graph colouring
problems. Are the reverse implications true for approximate graph colouring (or some other
PCSPs)?

• Investigate logical inexpressibility for PCSPs (see [Atserias and Dalmau 2022] for the first
example of work in this direction).

REFERENCES

Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, andMario Szegedy. 1998. Proof verification and the hardness
of approximation problems. J. ACM 45, 3 (1998), 501–555.

Sanjeev Arora and Shmuel Safra. 1998. Probabilistic Checking of Proofs: A New Characterization of NP. J. ACM 45, 1 (Jan.
1998), 70–122. https://doi.org/10.1145/273865.273901

Kristina Asimi and Libor Barto. 2021. Finitely Tractable Promise Constraint Satisfaction Problems. In 46th International

Symposium on Mathematical Foundations of Computer Science, MFCS 2021 (LIPIcs). Dagstuhl, Germany, 11:1–11:16.
https://doi.org/10.4230/LIPIcs.MFCS.2021.11

Albert Atserias, Andrei A. Bulatov, and Anuj Dawar. 2009. Affine systems of equations and counting infinitary logic. Theor.
Comput. Sci. 410, 18 (2009), 1666–1683. https://doi.org/10.1016/j.tcs.2008.12.049

Albert Atserias and Víctor Dalmau. 2022. Promise Constraint Satisfaction and Width. In Proc. ACM-SIAM Symposium on

Discrete Algorithms, SODA 2022. 1129–1153. https://doi.org/10.1137/1.9781611977073.48
Per Austrin, Amey Bhangale, and Aditya Potukuchi. 2020. Improved Inapproximability of Rainbow Coloring. In Proc.

ACM-SIAM Symposium on Discrete Algorithms, SODA 2020. 1479–1495. https://doi.org/10.1137/1.9781611975994.90
arXiv:1810.02784

Per Austrin, Venkatesan Guruswami, and Johan Håstad. 2017. (2 + Y)-Sat Is NP-hard. SIAM J. Comput. 46, 5 (2017), 1554–
1573. https://doi.org/10.1137/15M1006507

Libor Barto, Diego Battistelli, and Kevin M. Berg. 2021a. Symmetric Promise Constraint Satisfaction Problems: Beyond the
Boolean Case. In Symp. on Theoretical Aspects of Computer Science, STACS 2021 (LIPIcs). Schloss Dagstuhl–LZI, Dagstuhl,
Germany, 10:1–10:16. https://doi.org/10.4230/LIPIcs.STACS.2021.10

Libor Barto, Jakub Bulín, Andrei Krokhin, and Jakub Opršal. 2021b. Algebraic Approach to Promise Constraint Satisfaction.
J. ACM 68, 4, Article 28 (Aug. 2021), 66 pages. https://doi.org/10.1145/3457606

https://doi.org/10.1145/273865.273901
https://doi.org/10.4230/LIPIcs.MFCS.2021.11
https://doi.org/10.1016/j.tcs.2008.12.049
https://doi.org/10.1137/1.9781611977073.48
https://doi.org/10.1137/1.9781611975994.90
https://arxiv.org/abs/1810.02784
https://doi.org/10.1137/15M1006507
https://doi.org/10.4230/LIPIcs.STACS.2021.10
https://doi.org/10.1145/3457606


26 Andrei Krokhin and Jakub Opršal

Libor Barto and Marcin Kozik. 2014. Constraint Satisfaction Problems Solvable by Local Consistency Methods. J. ACM 61,
1 (Jan. 2014), 3:1–3:19. https://doi.org/10.1145/2556646

Libor Barto and Marcin Kozik. 2022. Combinatorial Gap Theorem and Reductions between Promise CSPs.
In Proc. ACM-SIAM Symposium on Discrete Algorithms, SODA 2022. SIAM, Virtual Conference, 1204–1220.
https://doi.org/10.1137/1.9781611977073.50

Libor Barto, Marcin Kozik, and Todd Niven. 2009. The CSP Dichotomy Holds for Digraphs with No Sources and
No Sinks (A Positive Answer to a Conjecture of Bang-Jensen and Hell). SIAM J. Comput. 38, 5 (2009), 1782–1802.
https://doi.org/10.1137/070708093

Libor Barto, Andrei Krokhin, and Ross Willard. 2017. Polymorphisms, and How to Use Them, 1–44. In Krokhin and Živný
[Krokhin and Živný 2017]. https://doi.org/10.4230/DFU.Vol7.15301.1

Libor Barto, Jakub Opršal, and Michael Pinsker. 2018. The wonderland of reflections. Israel Journal of Mathematics 223, 1
(Feb 2018), 363–398. https://doi.org/10.1007/s11856-017-1621-9

Manuel Bodirsky. 2021. Complexity of Infinite-Domain Constraint Satisfaction. Cambridge University Press.
https://doi.org/10.1017/9781107337534

Joshua Brakensiek and Venkatesan Guruswami. 2016. New Hardness Results for Graph and Hypergraph Colorings. In
Conference on Computational Complexity (CCC 2016) (LIPIcs, Vol. 50), Ran Raz (Ed.). Schloss Dagstuhl–LZI, Dagstuhl,
Germany, 14:1–14:27. https://doi.org/10.4230/LIPIcs.CCC.2016.14

Joshua Brakensiek and Venkatesan Guruswami. 2021. Promise Constraint Satisfaction: Algebraic Structure and a Symmet-
ric Boolean Dichotomy. SIAM J. Comput. 50, 6 (2021), 1663–1700. https://doi.org/10.1137/19M128212X

Joshua Brakensiek, Venkatesan Guruswami, and Sai Sandeep. 2021. Conditional Dichotomy of Boolean Ordered
Promise CSPs. In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021. 37:1–37:15.
https://doi.org/10.4230/LIPIcs.ICALP.2021.37

Joshua Brakensiek, Venkatesan Guruswami, Marcin Wrochna, and Stanislav Živný. 2020. The Power of the
Combined Basic LP and Affine Relaxation for Promise CSPs. SIAM J. Comput. 49, 6 (2020), 1232–1248.
https://doi.org/10.1137/20M1312745 arXiv:1907.04383v3

Alex Brandts, Marcin Wrochna, and Stanislav Živný. 2021. The Complexity of Promise SAT on Non-Boolean Domains.
ACM Trans. Comput. Theory 13, 4 (2021), 26:1–26:20. https://doi.org/10.1145/3470867

Alex Brandts and Stanislav Živný. 2021. Beyond PCSP(1-in-3, NAE). In 48th International Colloquium on Automata, Lan-

guages, and Programming, ICALP 2021. 121:1–121:14. https://doi.org/10.4230/LIPIcs.ICALP.2021.121
Mark Braverman, Subhash Khot, Noam Lifshitz, and Dor Minzer. 2022. An Invariance Principle for the Multi-

slice, with Applications. In IEEE 62nd Annual Symposium on Foundations of Computer Science, FOCS 2021. 228–236.
https://doi.org/10.1109/FOCS52979.2021.00030

Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. 2005. Classifying the Complexity of Constraints Using Finite Algebras.
SIAM J. Comput. 34, 3 (March 2005), 720–742. https://doi.org/10.1137/S0097539700376676

Andrei A. Bulatov. 2017. A Dichotomy Theorem for Nonuniform CSPs. In IEEE 58th Annual Symposium on Foundations of

Computer Science, FOCS 2017. 319–330. https://doi.org/10.1109/FOCS.2017.37
Andrei A. Bulatov and Víctor Dalmau. 2006. A Simple Algorithm for Mal’tsev Constraints. SIAM J. Comput. 36, 1 (2006),

16–27. https://doi.org/10.1137/050628957
Andrei A. Bulatov, Andrei Krokhin, and Benoit Larose. 2008. Dualities for Constraint Satisfaction Problems.

In Complexity of Constraints: An Overview of Current Research Themes. Springer, Berlin, Heidelberg, 93–124.
https://doi.org/10.1007/978-3-540-92800-3_5

Jakub Bulín, Andrei Krokhin, and Jakub Opršal. 2019. Algebraic Approach to Promise Constraint Satisfaction. In Proc.

of the 51st Annual ACM-SIGACT Symposium on the Theory of Computing, STOC 2019. ACM, New York, USA, 602–613.
https://doi.org/10.1145/3313276.3316300

Lorenzo Ciardo and Stanislav Živný. 2022a. CLAP: A New Algorithm for Promise CSPs. In Proc. ACM-SIAM Symposium on

Discrete Algorithms, SODA 2022. 1057–1068. https://doi.org/10.1137/1.9781611977073.46
Lorenzo Ciardo and Stanislav Živný. 2022b. The Sherali-Adams Hierarchy for Promise CSPs through Tensors. (2022).

https://doi.org/10.48550/arXiv.2203.02478 arXiv:2203.02478
Irit Dinur, Elchanan Mossel, and Oded Regev. 2009. Conditional Hardness for Approximate Coloring. SIAM J. Comput. 39,

3 (2009), 843–873. https://doi.org/10.1137/07068062X
Irit Dinur, Oded Regev, and Clifford Smyth. 2005. The Hardness of 3-Uniform Hypergraph Coloring. Combinatorica 25, 5

(Sept. 2005), 519–535. https://doi.org/10.1007/s00493-005-0032-4
Tomás Feder and Moshe Y. Vardi. 1998. The Computational Structure of Monotone Monadic SNP and Con-

straint Satisfaction: A Study Through Datalog and Group Theory. SIAM J. Comput. 28, 1 (Feb. 1998), 57–104.
https://doi.org/10.1137/S0097539794266766

Miron Ficak, Marcin Kozik, Miroslav Olšák, and Szymon Stankiewicz. 2019. Dichotomy for Symmetric Boolean PCSPs.
In 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019 (LIPIcs, Vol. 132). Schloss

https://doi.org/10.1145/2556646
https://doi.org/10.1137/1.9781611977073.50
https://doi.org/10.1137/070708093
https://doi.org/10.4230/DFU.Vol7.15301.1
https://doi.org/10.1007/s11856-017-1621-9
https://doi.org/10.1017/9781107337534
https://doi.org/10.4230/LIPIcs.CCC.2016.14
https://doi.org/10.1137/19M128212X
https://doi.org/10.4230/LIPIcs.ICALP.2021.37
https://doi.org/10.1137/20M1312745
https://arxiv.org/abs/1907.04383v3
https://doi.org/10.1145/3470867
https://doi.org/10.4230/LIPIcs.ICALP.2021.121
https://doi.org/10.1109/FOCS52979.2021.00030
https://doi.org/10.1137/S0097539700376676
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.1137/050628957
https://doi.org/10.1007/978-3-540-92800-3_5
https://doi.org/10.1145/3313276.3316300
https://doi.org/10.1137/1.9781611977073.46
https://doi.org/10.48550/arXiv.2203.02478
https://arxiv.org/abs/2203.02478
https://doi.org/10.1137/07068062X
https://doi.org/10.1007/s00493-005-0032-4
https://doi.org/10.1137/S0097539794266766


An Invitation to the Promise Constraint Satisfaction Problem 27

Dagstuhl–LZI, Dagstuhl, Germany, 57:1–57:12. https://doi.org/10.4230/LIPIcs.ICALP.2019.57 arXiv:1904.12424
M. R. Garey and David S. Johnson. 1976. The Complexity of Near-Optimal Graph Coloring. J. ACM 23, 1 (1976), 43–49.

https://doi.org/10.1145/321921.321926
Venkatesan Guruswami and Sanjeev Khanna. 2004. On the Hardness of 4-Coloring a 3-Colorable Graph. SIAM Journal on

Discrete Mathematics 18, 1 (2004), 30–40. https://doi.org/10.1137/S0895480100376794
Venkatesan Guruswami and Euiwoong Lee. 2017. Strong inapproximability results on balanced rainbow-colorable hyper-

graphs. Combinatorica (14 Dec. 2017). https://doi.org/10.1007/s00493-016-3383-0
Venkatesan Guruswami and Sai Sandeep. 2020a. 3-To-1 Hardness of Coloring 3-Colorable Graphs with $ (1) Colors. In

47th International Colloquium on Automata, Languages, and Programming, ICALP 2020 (LIPIcs). Schloss Dagstuhl–LZI,
Dagstuhl, Germany, 62:1–62:12. https://doi.org/10.4230/LIPIcs.ICALP.2020.62

Venkatesan Guruswami and Sai Sandeep. 2020b. Rainbow Coloring Hardness via Low Sensitivity Polymorphisms. SIAM J.

Discrete Math. 34, 1 (2020), 520–537. https://doi.org/10.1137/19M127731X
Pavol Hell and Jaroslav Nešetřil. 1990. On the complexity of � -coloring. J. Combin. Theory Ser. B 48, 1 (1990), 92–110.
Sangxia Huang. 2013. Improved Hardness of Approximating Chromatic Number. In APPROX 2013 & RANDOM 2013.

Springer, Berlin, Heidelberg, 233–243. https://doi.org/10.1007/978-3-642-40328-_17
Paweł M. Idziak, Petar Marković, Ralph McKenzie, MatthewValeriote, and Ross Willard. 2010. Tractability and Learnability

Arising fromAlgebras with Few Subpowers. SIAM J. Comput. 39, 7 (2010), 3023–3037. https://doi.org/10.1137/090775646
Peter Jeavons, David Cohen, and Marc Gyssens. 1997. Closure Properties of Constraints. J. ACM 44, 4 (July 1997), 527–548.

https://doi.org/10.1145/263867.263489
Ravindran Kannan and Achim Bachem. 1979. Polynomial Algorithms for Computing the Smith and Hermite Normal Forms

of an Integer Matrix. SIAM J. Comput. 8, 4 (1979), 499–507. https://doi.org/10.1137/0208040
Ken-ichi Kawarabayashi and Mikkel Thorup. 2017. Coloring 3-Colorable Graphs with Less than =1/5 Colors. J. ACM 64, 1

(2017), 4:1–4:23. https://doi.org/10.1145/3001582
Alexandr Kazda, Peter Mayr, and Dmitriy Zhuk. 2022. Small Promise CSPs that reduce to large CSPs. Logical Methods in

Computer Science 18 (Aug. 2022). Issue 3. https://doi.org/10.46298/lmcs-18(3:25)2022 arXiv:2109.07924
Sanjeev Khanna, Nathan Linial, and Shmuel Safra. 2000. On the Hardness of Approximating the Chromatic Number.

Combinatorica 20, 3 (01 Mar 2000), 393–415. https://doi.org/10.1007/s004930070013
Andrei Krokhin, Jakub Opršal, Marcin Wrochna, and Stanislav Živný. 2020. Topology and adjunction in promise constraint

satisfaction. (2020). https://doi.org/10.48550/arXiv.2003.11351 arXiv:2003.11351
Andrei Krokhin and Stanislav Živný (Eds.). 2017. The Constraint Satisfaction Problem: Complexity and Approximability.

Schloss Dagstuhl – LZI.
Tamio-Vesa Nakajima and Stanislav Živný. 2022. Linearly ordered colourings of hypergraphs. (2022).

https://doi.org/10.48550/arXiv.2204.05628 arXiv:2204.05628
Ran Raz. 1998. A Parallel Repetition Theorem. SIAM J. Comput. 27, 3 (1998), 763–803.

https://doi.org/10.1137/S0097539795280895
Thomas J. Schaefer. 1978. The Complexity of Satisfiability Problems. In Proceedings of the Tenth Annual ACM Symposium

on Theory of Computing (STOC ’78). ACM, New York, USA, 216–226. https://doi.org/10.1145/800133.804350
Hanif D. Sherali and Warren P. Adams. 1990. A Hierarchy of Relaxations Between the Continuous and Con-

vex Hull Representations for Zero-One Programming Problems. SIAM J. Discret. Math. 3, 3 (1990), 411–430.
https://doi.org/10.1137/0403036

Marcin Wrochna. 2022. A note on hardness of promise hypergraph colouring. (2022).
https://doi.org/10.48550/arXiv.2205.14719 arXiv:2205.14719

Dmitriy Zhuk. 2017. A Proof of CSP Dichotomy Conjecture. In 2017 IEEE 58th Annual Symposium on Foundations of

Computer Science (FOCS). 331–342. https://doi.org/10.1109/FOCS.2017.38
Dmitriy Zhuk. 2020. A Proof of the CSP Dichotomy Conjecture. J. ACM 67, 5 (Aug. 2020), 30:1–30:78.

https://doi.org/10.1145/3402029

https://doi.org/10.4230/LIPIcs.ICALP.2019.57
https://arxiv.org/abs/1904.12424
https://doi.org/10.1145/321921.321926
https://doi.org/10.1137/S0895480100376794
https://doi.org/10.1007/s00493-016-3383-0
https://doi.org/10.4230/LIPIcs.ICALP.2020.62
https://doi.org/10.1137/19M127731X
https://doi.org/10.1007/978-3-642-40328-_17
https://doi.org/10.1137/090775646
https://doi.org/10.1145/263867.263489
https://doi.org/10.1137/0208040
https://doi.org/10.1145/3001582
https://doi.org/10.46298/lmcs-18(3:25)2022
https://arxiv.org/abs/2109.07924
https://doi.org/10.1007/s004930070013
https://doi.org/10.48550/arXiv.2003.11351
https://arxiv.org/abs/2003.11351
https://doi.org/10.48550/arXiv.2204.05628
https://arxiv.org/abs/2204.05628
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1145/800133.804350
https://doi.org/10.1137/0403036
https://doi.org/10.48550/arXiv.2205.14719
https://arxiv.org/abs/2205.14719
https://doi.org/10.1109/FOCS.2017.38
https://doi.org/10.1145/3402029

	Abstract
	1 Introduction
	2 Basic notions and examples
	2.1 CSPs and PCSPs
	2.2 A theory of gadget reductions

	3 ``Rich enough'' polymorphisms, rounding, and tractability
	3.1 Tractability of search PCSPs
	3.2 Some open questions and directions

	4 Reductions that go beyond gadget replacements
	4.1 The arc-graph reduction and adjunctions
	4.2 Generalising minion homomorphisms
	4.3 Some open questions and directions

	5 ``Limited enough'' polymorphisms and NP-hardness
	5.1 Proving NP-hardness results via polymorphisms
	5.2 Hardness of PCSPs from Gap Label Cover
	5.3 Some open questions and directions

	References

