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In recommender system, some feature directly affects whether an interaction would happen, making the
happened interactions not necessarily indicate user preference. For instance, short videos are objectively
easier to be finished even though the user does not like the video. We term such feature as confounding feature,
and video length is a confounding feature in video recommendation. If we fit a model on such interaction
data, just as done by most data-driven recommender systems, the model will be biased to recommend short
videos more, and deviate from user actual requirement.

This work formulates and addresses the problem from the causal perspective. Assuming there are some
factors affecting both the confounding feature and other item features, e.g., the video creator, we find the
confounding feature opens a backdoor path behind user-item matching and introduces spurious correlation.
To remove the effect of backdoor path, we propose a framework named Deconfounding Causal Recommendation
(DCR), which performs intervened inference with do-calculus. Nevertheless, evaluating do-calculus requires
to sum over the prediction on all possible values of confounding feature, significantly increasing the time
cost. To address the efficiency challenge, we further propose a mixture-of-experts (MoE) model architecture,
modeling each value of confounding feature with a separate expert module. Through this way, we retain
the model expressiveness with few additional costs. We demonstrate DCR on the backbone model of neural
factorization machine (NFM), showing that DCR leads to more accurate prediction of user preference with
small inference time cost. We release our code at: https://github.com/zyang1580/DCR.
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𝑌: interaction
𝑀: user-item matching

  both A and X, e.g., the video creator 
𝑍: the (hidden) factor affecting
𝑈: user
𝑋: item other features
𝐴: item confounding feature

Fig. 1. Causal graph to describe the generation process of interactions. 𝑋 ←− 𝑍 −→ 𝐴 −→ 𝑌 is the backdoor
path that brings spurious correlations between 𝑋 and 𝑌 .

ACM Reference Format:
Xiangnan He, Yang Zhang, Fuli Feng, Chonggang Song, Lingling Yi, Guohui Ling, and Yongdong Zhang.
2022. Addressing Confounding Feature Issue for Causal Recommendation. ACM Trans. Inf. Syst. x, x, Article 1
(January 2022), 24 pages. https://doi.org/10.xxx

1 INTRODUCTION
Most recommendation methods assume that the interactions are caused (or captured) by the
matching between user reference and item features [9, 34, 49]. However, some item feature could
directly affect the happening of an interaction in practice. For instance, videos with short length are
easier to be finished, and news articles with attractive title or cover image are easier to be clicked,
even though the user does not like the content actually. We name such feature as confounding
feature, which results in the happened interactions not faithfully reflect user preference. If fitting
recommender model on such interaction data, the model will learn the shortcut of the confounding
feature, e.g., assigning higher scores for short videos. The biased recommendation is undesired,
and even worse, makes the recommender system vulnerable to attack — e.g., the video creator may
purposefully upload short videos to make them easier to be recommended.

How to avoid the influence of the confounding feature? An intuitive solution is removing it from
the input features, e.g., fitting CTR model on other item features. However, since the interaction
data is generated partially due to the confounding feature, the matching model is very likely to
learn the effect implicitly (e.g., the item embeddings may encode the semantics of confounding
feature). Another solution is training the model with the confounding feature, while removing it
during inference to eliminate its effect in the ranking function1. The effectiveness of this solution
depends on the quality of disentanglement — how well we can separate the effect of confounding
feature and other features [45]. Nevertheless, disentangled learning remains to be an open problem
which limits the efficacy of this solution.

To explore the root reason of how confounding feature affects, we abstract the interaction
generation process as a casual graph, in Figure 1. Let 𝐴 and 𝑋 denote the confounding feature
and other item features, which affect the interaction (node 𝑌 ) directly (𝐴 −→ 𝑌 ) and through
matching with user preference ({𝑈 ,𝑋 } −→ 𝑀 −→ 𝑌 ), respectively. Since 𝐴 and 𝑋 describe the
same item, they are inevitably affected by some (hidden) factor 𝑍 , e.g., the intention of the video
creator. When learning recommender models on the interaction data, clearly, the effect of 𝐴 will be
counted in the model prediction. More profoundly, the confounding feature 𝐴 opens the backdoor
path 𝑋 ←− 𝑍 −→ 𝐴 −→ 𝑌 , bringing some spurious correlations between 𝑋 and 𝑌 .

1This solution is originally designed for addressing some existing fairness or biases issues in recommendation [36, 45]
instead of the proposed confounding feature issue, but it can be utilized to deal with the proposed issue, intuitively.
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To make the recommendation free from the impact of A, we need to estimate the causal effect of X
(or equivalently, M) on Y. To this end, we need to cut off the backdoor path through intervention [25].
However, it is hard to conduct interventional experiments on X since item features are usually static
and unchangeable. An alternative way is do-calculus [25], which can achieve the same effect of
intervention on observed data. Particularly, we propose a Deconfounding Causal Recommendation
(DCR) framework that approaches user-item matching as 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )). During training, we
estimate the correlation 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) to fit the historical interaction data, since it caters to the
generation of interactions. Whereas during inference, we use the intervened 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) as the
ranking function.

Taking one step further, according to the causal graph in Figure 1 and the backdoor adjustment [25],
𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) is equal to∑

𝑎∈A 𝑃 (𝑌 |𝑈 ,𝑋, 𝑎)𝑃 (𝑎).Whichmeans, we need to iterate over all values of
the confounding feature, then conduct a weighted sum on 𝑃 (𝑌 |𝑈 ,𝑋, 𝑎). This significantly increases
the time cost in the inference stage — by |A| times2 — making the solution prohibitive for practical
use. To address this challenge, we propose a mixture-of-experts (MoE) model architecture for our
DCR framework. Specifically, we use a shared backbone model to capture the matching between
𝑈 and 𝑋 , the output of which is fed into a separated expert module designed for each value of
the confounding feature. Since the 𝑈 -𝑋 matching part is shared for all experts, the time cost of
evaluating 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) can be reduced largely. Meanwhile, modeling each confounding feature
value with a separated expert ensures the modeling fidelity, compared with the approximation
method used by [35, 56]3.

The main contributions of our work are summarized as follows:
• We study a new problem of confounding feature in recommender system, analyzing its damage
effect from the causal perspective.
• We propose a new solution framework DCR to address the problem with intervened inference,
which is supplemented with a MoE module to address the efficiency challenge.
• We implement our solution on awell-known feature-based recommender Neural Factorization
Machine (NFM) [11] and conduct extensive experiments on two real-world datasets, verifying
the effectiveness of our proposal.

2 PROBLEM DEFINITION
We use an uppercase character (e.g., 𝑋 ), calligraphic font (e.g., X) and lowercase character (e.g., 𝑥 )
to denote a random variable, the sample space of the variable, and a specific value of the variable,
respectively. Let D denote historical interactions (e.g., finished playing or click) where the user-
item pairs are given binary labels. The target of recommendation is learning a model from D for
predicting to what extent an item will match the user preference. Both user and item could be
described by rich side information, e.g., user demographics and item attributes (category, tags, etc.).
Different from conventional settings [11], we discriminate the confounding feature (𝐴) of item from
the remaining content feature (𝑋 ).
Conceptually, confounding feature is an item feature that has direct effect on the interaction

𝑌 , regardless of user preference. We assume that the confounding feature is a discrete variable
of 𝐾 (= |A|) values. Because most item features are discrete in recommender system, and it is
common to discretize continuous features for better modeling and interpretability. Remarkably,
there exist techniques [53, 59] for identifying such confounding feature. Thus, this work focuses
on the problem that with confounding feature as known (i.e., assuming the confounding feature

2A denotes all possible values of the confounding feature, i.e., the sample space of 𝐴. |A | denotes the size of A.
3The widely used approximation method is: 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) ≈ 𝑃 (𝑌 |𝑈 ,𝑋,∑𝑎∈A 𝑎𝑃 (𝑎)) , which however uses the same
parameterization for all confounding feature values.
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has been identified), how to eliminate its impact in recommendation. As the first step, this work
considers single confounding feature, and leaves the extension to multiple confounding features
for future work.

3 METHOD
We first present the causal view for analyzing the impact of the confounding feature on the recom-
mendation process (Section 3.1). Then we introduce our Deconfounding Causal Recommendation
(DCR) framework to approach the user-item matching through backdoor adjustment (Section 3.2).
Thirdly, we present a MoE model architecture to achieve efficient backdoor adjustment (Section 3.3).
Lastly, we discuss the generality of DCR and show it retains the ability of addressing the confounding
feature issue when causal relationship changes (Section 3.4).

3.1 Causal View of Confounding Feature
Conceptually, causal graph [25] is a directed acyclic graph, in which a node represents a variable and
a directed edge denotes the causal relation between two connected nodes. Functionally speaking,
causal graph is an abstract of the data generation process, and widely used to guide the model
design [36, 56]. Figure 1 shows the causal graph for interaction generation when the confounding
feature exists. Next, we explain the semantics of the causal graph.

• Node𝑈 denotes the user, specifically, user features, including ID.
• Node 𝐴 denotes the given confounding feature.
• Node 𝑋 denotes other content features of item, including ID, that are associated with user
preference.
• Node 𝑍 represents some hidden factors affecting both confounding feature 𝐴 and content
feature 𝑋 . Such factors are caused by the production of items, which might be unobservable,
e.g., the intention of the video creator.
• Node𝑀 represents the user-item matching, reflecting to what extent the content features
match user preference.
• Node 𝑌 denotes the interaction label, indicating whether the interaction behavior (e.g.,
finished playing and click) is happened.
• Edges {𝑋,𝑈 } −→ 𝑀 denote that the user-item matching is determined by the user features
𝑈 and item content features 𝑋 .
• Edges {𝐴,𝑀} −→ 𝑌 represent that the interaction is determined both by the level of user-
item matching 𝑀 and the confounding feature 𝐴. The edge 𝐴 −→ 𝑌 corresponds to the
phenomenon that the confounding feature affects the probability of an interaction, but not
reflects true user preference.
• The edges 𝐴←− 𝑍 −→ 𝑋 denote that hidden factor 𝑍 affects both confounding feature 𝐴
and content features 𝑋 . For instance, to create a wedding video, the creator (𝑍 ) will make
relatively longer video (𝐴) and choose touching background musics (𝑋 ). As such, 𝐴 and 𝑋
will exhibit correlation in the observed data due to the hidden common cause 𝑍 .

Given the target of learning a ranking function from historical interactions D, existing methods
usually estimate the correlation 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) or 𝑃 (𝑌 |𝑈 ,𝑋 ). However, both choices are problematic:

• Modeling 𝑃 (𝑌 |𝑈 ,𝑋,𝐴). The models based on 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) will account for the direct effect
of 𝐴 −→ 𝑌 . Consequently, the predictions are biased towards some special 𝐴, e.g., assigning
higher scores for short videos.
• Modeling 𝑃 (𝑌 |𝑈 ,𝑋 ). From the causal graph, we recognize a backdoor path between𝑋 and𝑌 ,
i.e., 𝑋 ←− 𝑍 −→ 𝐴 −→ 𝑌 , wherein 𝐴 is a confounder between 𝑋 and 𝑌 . Therefore, ignoring
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𝐴 in the input will make the model learn the spurious correlation between 𝑋 and 𝑌 , which
also leads to biased recommendation.

In this light, the key to eliminate the impact of𝐴 lies in cutting off both the direct path𝐴 −→ 𝑌 and
backdoor path𝑋 ←− 𝑍 −→ 𝐴 −→ 𝑌 in the model prediction. Accordingly,making recommendation
with the causal effect of 𝑋 on 𝑌 can achieve the target.

3.2 Deconfounding Causal Recommendation
We now consider how to obtain a recommender model based on the causal effect of 𝑋 on 𝑌 .

3.2.1 Causal Intervention. By definition, the causal effect of 𝑋 on 𝑌 is the changes of 𝑌 when
forcibly changing the value of 𝑋 from a reference value to a target value. Therefore, the key to
estimate causal effect lies in obtaining the outcome 𝑌 after the intervention on 𝑋 . In practice, a de
facto standard to obtain the outcome of causal intervention is conducting randomized controlled
trial [23]. However, such experiments are very expensive in recommendation and not practical for
the confounding feature issue, since the items are typically created by a third party. Therefore, we
have to estimate the intervention outcome from the observational data.

Intervention with do-calculus. Fortunately, the do-calculus in causal science [25] provides an
alternative solution to estimate 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )). Considering that there is a backdoor path between
𝑋 and 𝑌 , we take the backdoor adjustment [25] to identify the target causal effect. Formally, we
have,

𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) =
∑︁
𝑎∈A

𝑃 (𝑌 |𝑈 ,𝑋,𝐴 = 𝑎)𝑃 (𝐴 = 𝑎), (1)

where 𝑃 (𝑌 |𝑈 ,𝑋,𝐴 = 𝑎) and 𝑃 (𝐴 = 𝑎) are both identifiable conditional probability distributions.
Conceptually, 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) blocks the backdoor path by conditioning on the confounder 𝐴. From
the view of controlled experiment, it means that we select a group of candidate user-item pairs
such that 𝐴 has the fixed distribution 𝑃 (𝐴) across different groups, and set their 𝑋 as the target
value; and then observe the outcome distribution 𝑃 (𝑌 |𝑈 ,𝑋,𝐴 = 𝑎) over the candidates.

Given the target value 𝑥 and reference value 𝑥∗, the difference between 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 = 𝑥))
and 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 = 𝑥∗)) is equal to the difference between the controlled experiments over two
randomized groups since the marginal distribution 𝑃 (𝐴) is invariant. In this way, the obtained causal
effect on𝑌 of changing the value of𝑋 from the reference value 𝑥∗ to the target value 𝑥 , is freed from
the influence of the confounding feature 𝐴. Remarkably, we can directly regard 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 = 𝑥))
as the causal effect of 𝑋 on 𝑌 , i.e., discarding the reference status, since the reference status is the
same for all items and thus has no influence on item ranking. Theoretically, we can also conduct the
backdoor adjustment over 𝑍 as 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) = ∑

𝑧∈Z 𝑃 (𝑌 |𝑈 ,𝑋, 𝑍 = 𝑧)𝑃 (𝑍 = 𝑧). Nevertheless,
this is impractical since 𝑍 is a hidden confounder that cannot be observed.

3.2.2 Estimating 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )). To estimate 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )), as the procedure in PD [56], we need
to: 1) model the two probability distributions in Equation (1), i.e., 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) and 𝑃 (𝐴), through
historical interaction data D; and 2) infer the expectation of 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) over 𝑃 (𝐴).
Estimating 𝑃 (𝐴). Recall that the confounding feature𝐴 is discrete with𝐾 possible values. We have
𝐾 ≪ |D|, where |D| is the size of dataset D. Therefore, we can directly approximate 𝑃 (𝐴 = 𝑎)
with the ratio of samples with 𝐴 = 𝑎, i.e.,

𝑃 (𝐴 = 𝑎) = |{(𝑈 ,𝑋,𝐴,𝑌 ) |𝐴 = 𝑎}|
|D| . (2)

Estimating 𝑃 (𝑌 |𝑈 ,𝑋,𝐴). Apparently, it is infeasible to directly observe all probabilities from D
due to the data sparsity in recommendation. To resolve this issue, we resort to a machine learning
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Backbone Model

+

GateExpert1 Expert2 ExpertK

u x a

Mixture-of-Experts

P(A)

Fig. 2. Illustration of the MoE model architecture for Deconfounding Causal Recommendation. In the
gate module, the inputs with black arrow and red arrow are used for model training and model inference,
respectively.

model to learn the distribution. In line with existing recommendation work [5, 29], we assume
that 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) follows a Bernoulli distribution. Given a specific condition 𝑈 = 𝑢, 𝑋 = 𝑥 , and
𝐴 = 𝑎, we learn a mapping function 𝑓 (𝑢, 𝑥, 𝑎) to calculate the interaction probability4 (i.e., 𝑌 = 1)
by minimizing its negative log-likelihood over D. Formally,

min
∑︁

(𝑢,𝑥,𝑎,𝑦) ∈D
− 𝑦 log (𝑓 (𝑢, 𝑥, 𝑎)) (3)

− (1 − 𝑦) log (1 − 𝑓 (𝑢, 𝑥, 𝑎)) .

The 𝐿2 regularization is used over the parameters of the mapping function to control overfitting but
is not shown for briefness. We can implement the mapping function 𝑓 (𝑢, 𝑥, 𝑎) by any feature-aware
recommender model, like FM [27] and NFM [11].

Inference. Once the model is trained, we can evaluate 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) according to Equation (1)
for recommendation scoring. Given a user-item pair, the recommendation score is calculated as:

𝑃 (𝑦 = 1|𝑢,𝑑𝑜 (𝑥)) =
∑︁
𝑎∈A

𝑃 (𝑎) · 𝑓 (𝑢, 𝑥, 𝑎). (4)

To summarize, we first train a model according to Equation (3) to learn 𝑃 (𝑌 |𝑈 ,𝑋,𝐴). In the inference
stage, we calculate 𝑃 (𝑦 = 1|𝑢,𝑑𝑜 (𝑥)) according to Equation (4) to free the recommendation from
the impact of the confounding feature 𝐴. We term this general framework as Deconfounding Causal
Recommendation (DCR).

3.3 Mixture-of-Experts Model Architecture
As above, a direct way to evaluate 𝑃 (𝑦 = 1|𝑢,𝑑𝑜 (𝑥)) is enumerating each value of𝐴, conducting the
model inference 𝑓 (𝑢, 𝑥, 𝑎) for 𝐾 times (note that 𝐾 = |A|). Apparently, it will significantly increase
the time cost in recommendation inference. As such, we need to consider how to accelerate the
inference.
4Note that the output can be seen as the parameter of the Bernoulli distribution.
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NWGM approximation. Note that 𝑃 (𝑦 = 1|𝑢,𝑑𝑜 (𝑥)) is indeed the expectation of 𝑓 (𝑢, 𝑥, 𝑎) over
the distribution 𝑃 (𝐴). We can thus achieve the target with the NWGM approximation [50], which
has been widely used to approximate the expectation of functions [26, 35, 56]. Formally,

𝑃 (𝑦 = 1|𝑢,𝑑𝑜 (𝑥)) ≈ 𝑓
(
𝑢, 𝑥,

∑︁
𝑎∈A

𝑎 ∗ 𝑃 (𝑎)
)
. (5)

Nevertheless, this approximation will sacrifice the estimation precision especially when the function
𝑓 (·) is nonlinear.
Noticing that directly adjusting the inference strategy results in the dilemma between efficiency

and accuracy, we now consider to address the issue by adjusting the model architecture. We propose
a MoE model framework with two considerations: 1) calculating the causal effect with one time
of model inference; and 2) preserving sufficient modeling fidelity. The key lies in simultaneously
calculating 𝑓 (𝑢, 𝑥, 𝑎) for all values of 𝐴 in one model inference. In this light, the MoE framework
handles each value of 𝐴 with a specific expert5. We then let the experts share the same backbone
for handling the matching between 𝑈 and 𝑋 . This can largely save the computation cost since
the𝑈 -𝑋 matching, especially when considering high-order feature interactions [18], is the most
computation-intensive part of 𝑓 (𝑢, 𝑥, 𝑎).
Concretely, the MoE framework (cf. Figure 2) includes:
• A Backbone Recommender Model, which aims to learn a representation for the matching
between item features 𝑥 and 𝑢:

𝒎 = 𝑓Θ (𝑢, 𝑥), (6)
where𝒎 is a latent representation that denotes the matching signal, and Θ denotes the model
parameters.
• 𝐾 Experts, where each expert corresponds to a confounding feature value 𝑎, mapping the
matching representation 𝒎 and 𝑎 to the interaction probability. We implement each expert
as a multi-layer perceptron with two hidden layers. Formally,

𝑓 (𝑢, 𝑥, 𝑎) = 𝑓𝜙𝑎 (𝒎 |𝑎), (7)

where 𝜙𝑎 denotes the parameters of the expert for 𝑎. Across the experts, we use a gate with a
one-hot input to select the expert for each training sample. In the inference stage, we feed
𝑃 (𝐴) into the gate to calculate the weighted sum over the experts, which evaluates the causal
effect 𝑃 (𝑦 = 1|𝑢,𝑑𝑜 (𝑥)).

We term the DCR implemented with the MoE model architecture as DCR-MoE. Algorithm 1
shows the procedure of training (line 2-8) and inference (line 10-14) of DCR-MoE. In training, after
the MoE has been initialized (line 2), we will iteratively update the MoE model in a mini-batch
manner. Each iteration has three key steps: compute the matching 𝒎 between item feature 𝑥 and 𝑢
with the same backbone recommender 𝑓Θ for all samples (line 5); then compute the output of the
expert corresponded to confounding value 𝑎, i.e., 𝑓𝜙𝑎 (𝒎 |𝑎), for each sample sample (𝑢, 𝑥, 𝑎) (line
6); next update all model parameters by minimizing the loss in equation (3) with 𝑓𝜙𝑎 (𝒎 |𝑎) as the
prediction for each sample (line 7). Note that although all experts are expected to be updated in each
iteration, each training sample will only be fed into and used to update an expert that corresponds
to the value of its confounding feature. During inference, we will first compute the matching 𝒎 for
each candidate user-item pair (𝑢, 𝑥) (line 11), then compute the outputs of all experts based on the
𝒎 (line 12). Last, the prediction is generated by summing over all experts’ outputs with 𝑃 (𝐴) as
weights (line 13). Different from the training, all experts will be utilized to generate the prediction
for each candidate.
5Each expert models a stratification [8] 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) w.r.t. the value of 𝐴.

ACM Trans. Inf. Syst., Vol. x, No. x, Article 1. Publication date: January 2022.



1:8 Xiangnan He, et al.

Algorithm 1: DCR-MoE
Input: Estimated 𝑃 (𝐴) with equation (2), training dataset D, testing dataset D𝑡𝑒𝑠𝑡𝑖𝑛𝑔, and

the number of experts 𝐾
Output: Predictions to user-item candidates in the testing dataset

1 // start training;
2 Initialize the the backbone recommender model 𝑓Θ and the 𝐾 experts {𝑓𝜙𝑎 }𝑎∈A of the MoE;
3 for stop condition is not reached do
4 Randomly sample a batch of data from D ;
5 Compute 𝒎 = 𝑓Θ (𝑢, 𝑥) for each training sample (𝑢, 𝑥, 𝑎) according to equation (6);
6 For each sample (𝑢, 𝑥, 𝑎), compute the output of the expert for 𝑎, i.e., 𝑓𝜙𝑎 (𝒎 |𝑎) in

equation (7);
7 Update the backbone recommender 𝑓Θ and experts {𝑓𝜙𝑎 }𝑎∈A by minimizing the loss in

equation (3) with 𝑓 (𝑢, 𝑥, 𝑎) = 𝑓𝜙𝑎 (𝒎 |𝑎);
8 end
9 //start inference;

10 for each candidate user-item pair (𝑢, 𝑥) in D𝑡𝑒𝑠𝑡𝑖𝑛𝑔 do
11 Compute 𝒎 = 𝑓Θ (𝑢, 𝑥);
12 Compute the outputs of all experts, getting {𝑓𝜙𝑎 (𝒎 |𝑎)}𝑎∈A ;
13 Compute

∑
𝑎∈A 𝑓𝜙𝑎 (𝒎 |𝑎)𝑃 (𝑎) as the prediction;

14 end
15 return all predictions for testing dataset;

3.4 Generality of DCR
It is worth mentioning that DCR presents a general solution for addressing the confounding feature
issue. It works not only for the case that a confounder exists between𝐴 and𝑋 (as shown in Figure 1),
but also for other cases that the causal relation between 𝐴 and 𝑋 is different. Considering the direct
causal relation (i.e., no other variable like mediator or confounder) between 𝐴 and 𝑋 , there are
three possible cases:
• 𝐴 −→ 𝑋 . As shown in Figure 3(a), 𝐴 has direct causal effect on 𝑋 . In this case, 𝐴 is still a con-
founder between 𝑋 and 𝑌 . Our intervention with do-calculus (abbreviated as do-intervention)
in Equation (1) still gives the causal effect of 𝑋 on 𝑌 .
• 𝑋 −→ 𝐴. As shown in Figure 3(b), there is a directed edge from 𝑋 to 𝐴. In this case, 𝑋 −→
𝐴 −→ 𝑌 is also a causal path, i.e.,𝐴 becomes one of the mediators for the causal effect of𝑋 on
𝑌 . It is thus harder to block the undesired direct effect of 𝐴 on 𝑌 , which cannot be achieved
by estimating the total causal effect of 𝑋 on 𝑌 . This is because 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) contains the
effect of 𝐴 on 𝑌 . To achieve the goal, we should dive into the path-specific causal effect of 𝑋
on 𝑌 through the path 𝑋 −→ 𝑀 −→ 𝑌 . According to [25], we define such causal effect as:

𝑃 (𝑌 |𝑈 ,𝑋 = 𝑥,𝐴𝑥∗ ) − 𝑃 (𝑌 |𝑈 ,𝑋 = 𝑥∗, 𝐴𝑥∗ )

=
∑︁
𝑎∈A
(𝑃 (𝑌 |𝑈 , 𝑥, 𝑎) − 𝑃 (𝑌 |𝑈 , 𝑥∗, 𝑎)) 𝑃 (𝑎 |𝑥∗), (8)

where 𝑥 and 𝑥∗ represent the target and reference values of 𝑋 respectively, and 𝐴𝑥∗ denotes
whatever possible values of𝐴 if let𝑋 = 𝑥∗. All possible values of 𝑥 can take the same reference
value 𝑥∗ to estimate their causal effects. The second term in Equation (8) will thus not affect
the ranking of items when using this path-specific causal effect as a recommendation policy.
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(c) No relation

Fig. 3. Three possibilities of direct causal relations between 𝐴 and 𝑋 . Our DCR solution can also handle the
three cases.

Therefore, our target is to estimate:∑︁
𝑎∈A

𝑃 (𝑌 |𝑈 , 𝑥, 𝑎)𝑃 (𝑎 |𝑥∗) . (9)

Remarkably, we can take any value of 𝑋 as the reference status. As long as there exists a 𝑥∗
satisfying 𝑃 (𝑎 |𝑥∗) = 𝑃 (𝑎), we have,∑︁

𝑎∈A
𝑃 (𝑌 |𝑈 , 𝑥, 𝑎)𝑃 (𝑎 |𝑥∗) ∝

∑︁
𝑎∈A

𝑃 (𝑌 |𝑈 , 𝑥, 𝑎)𝑃 (𝑎). (10)

It means our do-intervention can to some extent approximate the path-specific causal effect
under this case.
• No relation. As shown in Figure 3(c), 𝐴 and 𝑋 are independent item features. In this case,
performing intervention equals directly inferring the plain correlation. Formally,

𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) =
∑︁
𝑎∈A

𝑃 (𝑌 |𝑈 ,𝑋, 𝑎)𝑃 (𝑎) = 𝑃 (𝑌 |𝑈 ,𝑋 ) . (11)

As we consider the average causal effect instead of the individual causal effect, our do-
intervention still captures the causal effect of𝑋 on 𝑌 . That is, the do-intervention still focuses
on the user-item matching, eliminating the direct effect of 𝐴 on 𝑌 .

To summarize, the proposed do-intervention can eliminate the direct (and confounding) effects
of the identified item feature 𝐴 and recognize the true user-item matching whatever the (direct)
causal relations between 𝐴 and 𝑋 6. It means that DCR (including MoE) is a general framework for
tackling the confounding feature issue not restricted to the causal graph in Figure 1. Moreover,
these analyses indicate the potential of taking DCR as a uniform framework to deal with other
issues in recommendation that can be abstracted as the causal graphs in Figure 1 and 3. For example,
the popularity bias issue [56] and position bias issue [10] can be described by Figure 3(a) and
Figure 3(b), respectively.

6Note that although we only discuss the cases regarding the direct causal relations between 𝐴 and 𝑋 . Indeed, the discussed
three cases can represent many other complicated cases: 1) 𝐴 −→ 𝑋 can represent the case that there are paths from 𝐴 to
𝑋 ; 2) 𝑋 −→ 𝐴 can represent the case that there are paths from 𝑋 to 𝐴; 3) no relation can also represent the case that the
path between 𝐴 and 𝑋 contains colliders, since the colliders indeed block this path, making 𝐴 and 𝑋 independent. And the
corresponding discussions can be directly applied to these complicated cases.
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4 RELATEDWORK
In this section, we discuss the work on recommendation fairness and bias, which are both relevant
with our work in terms of eliminating the impact of some predefined factors. We also review causal
recommendation methods from the technical perspective.

4.1 Fairness in Recommendation
In recommendation, fairness [42] is usually defined on some sensitive features such as user gen-
der [13] and user race [61]. Towards the fairness goal, most efforts [2, 13, 16, 17, 47] try to remove
the information of sensitive features from making recommendations. A line of research achieves
this target through post-processing [14, 16], which forcibly re-ranks the items with heuristically
defined fairness policies. [17, 46, 47, 52, 61] try to remove the sensitive information by adding
the fairness-aware loss into the training objectives, e.g., [61] constraints the representations of
sensitive and nonsensitive features to be orthogonal; [52] adds the loss defined based on fairness
metrics such as the non-parity. Among them, [15, 17, 46, 47] adopt adversarial training to optimize
the recommendation loss and fairness loss.

In summary, these fairness-oriented methods try to remove all information related to the sensitive
feature regardless its usefulness for estimating user preference, which may reduce the modeling
fidelity. In contrast, we aim to make the recommendation free from the impact of the confounding
feature, including its direct and confounding effects, without sacrifice of the information of other
item features (𝑋 in Figure 1). What’s more, the above methods are at the level of correlation instead
of causality.

4.2 Bias in Recommendation
Recommender systems also face various bias issues generated by different reasons [4]. The position
bias [10] and clickbait [36] issues are most related to the confounding feature issue. Position bias
happens as users tend to click items in the front positions of recommendation lists. Differently, the
considered confounding feature is one type of item features instead of context features, and the
underlying causalmechanisms are also different. The clickbait issue [36] considers the bias generated
by the effect of the item’s cover or title on click. Differently, we do not restrict the type of interaction.
Moreover, its causal mechanism is different from us, e.g., it does not consider confounders. To
handle bias issues, the most widely considered method is IPW-based methods7 [10, 12, 28, 30, 48],
which adjust the training distribution by reweighting training samples with propensity scores.
However, the propensities are difficult to set properly, e.g., causing the high variance issues etc
[4, 56]. [33, 58] respectively take a cross-pairwise loss and a constructive loss to achieve unbiased
recommendation. They indeed implicitly reweight training samples by controlling the sampling of
negative samples in the loss. Utilizing unbiased data (collected from random exposure) [3, 19, 39] to
guide the model learning is another type of methods, however such unbiased data is at the expense
of user experience and risky to collect. Post-hoc re-ranking or model regularization methods
are also designed [1, 60], but they are heuristically designed and lack theoretical foundations
for effectiveness [56]. Different from these methods, we take causal adjustment — the backdoor
adjustment — to remove the undesired effects of the confounding features.

4.3 Causal Methods for Recommendation
Recently, some efforts try to introduce causal inference to recommendation. One line of research
considers the confounding issue in recommendation [6, 29, 31, 35, 41, 56]. Among them, [35, 38, 56]

7Please note that IPW is also one type of causal methods. The doubly robust (DR) based method [48] is also based on IPW
but adds an imputation model to improve model robustness.
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also adopt causal intervention, where PD [56] aims at solving the popularity bias problem, and
DecRS [35] considers the bias amplification problem. Technically, PD takes a similar two-step
procedure to us for causal effect estimation, but assumes the form of the effect of confounders and
designs a partially linear model to accelerate the inference. Differently, the proposed DCR does not
need this assumption and takes MoE to accelerate the inference, keeping the model’s expressiveness.
DecRS takes a different procedure for causal effect estimationwith theNWGMapproximation, which
may sacrifice the estimation precision. DCR directly estimates causal effects withMoE, ensuring both
model fidelity and efficiency. [38] adopts the backdoor adjustment to eliminate the bias introduced
by heterogeneous information. But their method is specially designed based on heterogeneous
information networks and the backdoor adjustment is used for useful information selection instead
of directly generating recommendations. Besides, [41] learns substitutes for unobserved confounders
by fitting exposure data, to solve the unobserved confounder problem. [43] learns substitutes for
unobserved confounders based on user historical interactions in sequential recommendation, and
achieves deconfounding via IPW. [6, 29] adjust data distribution to estimate causal effect with IPW
methods. [20] solves the confounding problem with information bottleneck [20]. These methods
do not perform intervention with do-calculus.
Another type is the counterfactual-based method. Work [36, 45] tries to utilize the counter-

factual inference to estimate their target causal effects. [36] is to solve the clickbait issue, and
[45] is to eliminate the popularity bias. Both of them need to estimate the total effect and then
remove the undesired effect by comparing the factual and counterfactual worlds. [37] focuses on
out-of-distribution recommendation. It first learns the interaction generation process and uses
counterfactual inference to mitigate the effect of out-of-date interactions. Different from these
methods, we take causal intervention instead of counterfactual inference to estimate the target
causal effect. Other work [22, 32, 44, 54, 55] is less related to us. [22, 44, 51, 54] try to generate some
counterfactual data and take these data to improve the model performance, e.g., [51] generates
counterfactual data by simulating the recommendation process and takes the generated data to
train a ranking model. [55] proposes a counterfactual importance sampling for recommendation
based on the bandit. [32] proposes a framework for finding counterfactual explanations for neural
recommenders. Though these works consider the recommendation from the causal perspective,
they make use the counterfactual inference to generate explanations or interaction data. We take
intervention with do-calculus to estimate causal effects and generate recommendations based on
the estimated results.

5 EXPERIMENTS
In this section, we conduct experiments to answer the following three questions:
RQ1: How is the performance of the proposed framework DCR implemented with MoE (denoted
as DCR-MoE) compared with existing methods?
RQ2: How do the design choices affect the effectiveness and efficiency of DCR-MoE?
RQ3: Has the proposed method effectively eliminated the impact of the confounding feature?

5.1 Experimental Setting
5.1.1 Datasets. To evaluate the effectiveness of addressing the confounding feature issue, we
require datasets with: 1) biased training data affected directly by the confounding feature; and
2) unbiased testing data w.r.t. the confounding feature, which can reflect true user interests. In
this light, we select two video recommendation datasets, treating the finished playing and a post-
playing feedback as the training label and testing label of each sample (user-item pair), respectively.
Remarkably, taking a label that is different from the training label as the testing label is a reasonable
setting to evaluate debiasing results [36]. As aforementioned, video length is a confounding feature
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Table 1. Dataset Information. 𝐴 denotes the confounding feature. 𝜌1 (𝑜𝑟𝜌2) denotes the Pearson correlation
coefficient between the confounding feature 𝐴 and the training (or testing) label.

Dataset #users #items #samples 𝐴 𝜌1 𝜌2 |𝜌1/𝜌2 |
Kwai 18,019 422,144 19,429,358 video length -0.085 0.014 6.07

Wechat 20,000 96,539 7,195,486 video length -0.131 -0.015 8.73

in video recommendation. Note that each sample has both training and testing labels, which are
both binary. For each dataset, we split all samples into training/validation/testing sets with a ratio
of 6 : 2 : 2. To avoid data leakage, we make sure each sample regardless of label types only occurs
in either training or testing/validation sets.
1) Kwai: It is a short video recommendation dataset released in the Kuaishou User Interest

Modeling Challenge8. It is a relatively large dataset in research, having 19, 429, 358 interacted
samples between 18, 019 users and 422, 144 videos. It has two types of interaction labels: finished
playing and liking. The finished playing is taken as the training label, and the other is taken as
the testing label. We discretize the confounding feature, i.e., the video length, such that it has 6
possible values. We take other items’ discrete features that can be one-hot encoded as the other
item feature 𝑋 , indeed, only id information can be utilized.
2) Wechat: The dataset is released in the WeChat Big Data Challenge9, which records user

behaviors on short videos. It has 7, 195, 486 interacted samples between 20, 000 users and 96, 539
videos. It contains many types of interaction labels, such as finished playing, liking, and read-
comment. We take the finished playing as the training label, and the read-comment as the testing
label. We also discretize the confounding feature (video length) such that it has 6 possible values.
We take some other inherent and discrete features such as bgm_song_id as the other item feature 𝑋 .

To show that the selected testing label is more free from the impact of the confounding feature
compared with the training label, we compute the Pearson correlation coefficients between the
confounding feature and the two labels, respectively. The Pearson correlation coefficient is a
measure of linear correlation between two variables10. The correlation coefficient ranges from
−1 to 1, and a higher absolute value implies a stronger linear correlation of the variables. We
denote the correlation coefficient between the confounding feature and the training label as 𝜌1,
and the correlation coefficient between the confounding feature and the testing label as 𝜌2. The
computed correlation coefficients and other statistics of datasets are summarized in Table 1. We
can find that for both the two datasets, the absolute value of 𝜌2 (i.e., |𝜌2 |) is far small than that of 𝜌1
(i.e., |𝜌1 |), and 𝜌2 is very close to zero. These results show that the testing label has weaker linear
correlations to the confounding feature, implying the testing label is more free from the impact of
the confounding feature to some degree. Therefore, we think taking the selected labels as testing
labels is appropriate.

5.1.2 Compared Methods. We implement the DCR framework based on the MoE architecture, i.e.,
DCR-MoE. Specially, we implement the backbone recommender model of MoE as the bottom layer
of Neural Factorization Machines (NFM) [11], including embedding and the bi-interaction (EB)
layers, and implement each expert of MoE as the deep part of NFM, including hidden and prediction

8https://www.kuaishou.com/activity/uimc
9https://algo.weixin.qq.com/
10The measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Anyway, it is one of the most widely used measurements.
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layers. Then, we compare it with the following correlation-based, IPW-based, fairness-oriented,
and counterfactual inference based methods:
-NFM-WA [11]. This method trains NFM with the confounding feature as the input, i.e., estimating
the correlation 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) as the user-item matching.
-NFM-WOA. This method trains NFM without the confounding feature as the input, i.e., estimating
the correlation 𝑃 (𝑌 |𝑈 ,𝑋 ) as the user-item matching.
-IPW [28], refers to the conventional inverse propensity weighting method. It tries to capture
true user preference from biased data by re-weighting training samples. Following the previous
work [28], 1) we assume the interaction probability is equal to 𝑃 (𝑌 = 1|𝐴)𝑃 (𝑅 = 1|𝑈 , 𝐼 ), where
𝑅 represents the relevance between user𝑈 and item 𝐼 ; 2) the propensity weight is defined as the
inverse of ( 𝑃 (𝑌=1 |𝐴=𝑎)

max
𝑎
′ 𝑃 (𝑌=1 |𝐴=𝑎′ ) )

0.5 for positive samples with 𝐴 = 𝑎. The weights for negative samples
are defined in a similar way. We also implement IPW with NFM.
-FairGo [47]. This method is proposed for dealing with unfairness probelm in recommendation. To
achieve fair recommendation, it attempts to remove the effects of sensitive features by adversarial
training. Here, we take it to eliminate the impact of the confounding feature, i.e., taking the
confounding feature as the sensitive feature. We implement it based on NFM for a fair comparison.
The hyper-parameter 𝜆 to control removing the effects of the sensitive feature is tuned in the range
of {1𝑒-3, 1𝑒-2, 1𝑒-2, 0.1, 0.2, 10, 50}.
-CR [36]. This is a counterfactual method for clickbait issue [36]. It trains the model with the
exposure feature but removes the undesired effect of exposure features at inference with counter-
factual reasoning. We replace the exposure feature with the confounding feature 𝐴 to eliminate the
impact of 𝐴. We implement CR based on NFM, and take the SUM-tanh strategy (showing the best
results in [36]) to fuse the effects of exposure features (𝐴) and other features (𝑋 ) on interactions.
The hyper-parameter 𝛼 to control the influences of exposure feature is searched in the range of
{0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}.

5.1.3 Hyper-parameters. For a fair comparison, all methods are optimized with the binary cross-
entropy (BCE) loss and tuned on the validation set. We optimize all models with adagrad [7]
optimizer with default mini-batch size of 1024. Following previous work [9] to set a small embedding
size for FM-based methods, we fix the embedding size to 16 for all compared methods. The deep
part of NFM (including hidden layers and a prediction layer) and the experts of our MoE are
implemented as MLPs having two hidden layers with sizes 256 and 128, respectively. We search the
learning rate in the range of {0.01, 0.001}. For all methods, we have two different 𝐿2 regularization
coefficients: one for embedding layers and the other for other model parameters, which are both
searched in the range of {1𝑒-1, 1𝑒-2, . . . , 1𝑒-6, 0}. The best hyper-parameters for reported results are
found by the grid-search with a popular hyper-parameter tuning tool – ray11 [24], and the patience
for early stopping is set as 10 epochs.

5.1.4 Metrics. To measure the recommendation performance, we adopt three widely-used evalua-
tion metrics: Recall, Mean Average Precision (MAP), which consider whether the relevant items are
retrieved within the top-𝑁 positions, and NDCG that measures the relative orders among positive
and negative items in the top-𝑁 list. We generate recommendation lists just in the observed data,
i.e., ranking all the items appearing in the validation or testing sets, similar to [3]. Since the average
number of interacted items by a user in Kwai is significantly bigger than that in Wechat, we report
the results of top-10 recommendation and top-20 recommendation for Kwai, and the results of
top-3 recommendation and top-5 recommendation for Wechat.

11The document can be found at https://docs.ray.io/en/master/tune/index.html. And we take its ASHAScheduler to perform
the grid-search process.
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Table 2. The overall top-N recommendation performance of different methods on Kwai andWechat. Metric@N
(Recall@10) denotes the corresponding top-N (top-10) recommendation performance on this metric (Recall).
For each dataset, bold scores denote the best in each column, while the underlined scores denote the best
baseline. “RI” refers to the relative improvement of DCR-MoE over the corresponding baseline, averaged on
the three metrics. For all metrics, higher results are better.

Kwai
Methods Recall@10 MAP@10 NDCG@10 RI Recall@20 MAP@20 NDCG@20 RI
NFM-WA 0.0778 0.0247 0.0458 40.4% 0.1530 0.0310 0.0694 30.7%
NFM-WOA 0.0759 0.0228 0.0439 47.6% 0.1494 0.0289 0.0672 36.4%

IPW 0.0775 0.0250 0.0464 39.5% 0.1474 0.0308 0.0684 33.2%
FairGo 0.0876 0.0269 0.0506 26.9% 0.1651 0.0332 0.0749 21.4%
CR 0.0764 0.0244 0.0458 41.8% 0.1492 0.0305 0.0687 33.0%

DCR-MoE 0.1089 0.0353 0.0634 - 0.1936 0.0423 0.0896 -

Wechat
Methods Recall@3 MAP@3 NDCG@3 RI Recall@5 MAP@5 NDCG@5 RI
NFM-WA 0.1275 0.0910 0.1198 6.5% 0.1584 0.0906 0.1341 4.2%
NFM-WOA 0.1324 0.0950 0.1243 2.4% 0.1609 0.0930 0.1370 2.0%

IPW 0.1326 0.0941 0.1240 2.8% 0.1600 0.0926 0.1366 2.5%
FairGo 0.1291 0.0924 0.1213 5.0% 0.1598 0.0813 0.1351 7.6%
CR 0.1282 0.0915 0.1205 5.9% 0.1584 0.0905 0.1345 4.1%

DCR-MoE 0.1355 0.0976 0.1271 - 0.1646 0.0947 0.1396 -

5.2 RQ1: Performance Comparison
In this subsection, we study the recommendation performance of our DCR-MoE over all users as
well as in different user subgroups.

5.2.1 Overall Performances. The overall performance comparison is summarized in Table 2 regard-
ing the top-𝑁 recommendation. From the table, we have the following observations:
• The proposed method DCR-MoE achieves the best performance on both Kwai and Wechat
datasets. This verifies the effectiveness of our deconfounding causal recommendation frame-
work. The improvements can be attributed to the intervention performed at inference, i.e.,
estimating the casual effect 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) as user-item matching, making the recommenda-
tions free from the impact of the confounding feature.
• DCR-MoE consistently outperforms NFM-WOA and NFM-WA. NFM-WA models the cor-
relation 𝑃 (𝑌 |𝑈 ,𝑋,𝐴), thus the direct effect of the confounding feature on interaction will
be captured, misleading the model towards items with dominant values of the confounding
feature (cf. Figure 7). The unsatisfactory results of NFM-WOA, which models the correlation
𝑃 (𝑌 |𝑈 ,𝑋 ) , demonstrate that simply removing the confounding feature during model training
cannot solve the confounding feature issue. This is because the spurious correlation brought
by the backdoor path will mislead the results. Summarily, when the confounding feature
appears, it is better to model the user-itemmatching from the causal effect perspective instead
of mere correlation.
• IPW and CR are both causal methods. However, neither of them demonstrates the power
to deal with the confounding feature issue due to two drawbacks. 1) IPW relies on accurate
estimation of propensities, which is non-trivial due to high variance [4, 56]. Moreover, its
way to define propensity might not be suitable for the confounding feature. 2) To remove the
undesired effect of the confounding feature, CR needs to precisely disentangle the effects of the
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Fig. 4. Relative Improvements(RI) of DCR-MoE over different baselines on the active and inactive user groups,
respectively. For Kwai, the results of Recall@10 and NFCG@10 are reported. For Wechat, the results of
Recall@3 and NDCG@3 are reported. We omit the results of other metrics which show similar phenomena.

confounding feature and other features. However, disentangling is hard without supervision
or inductive bias [21, 57]. Meanwhile, the fusion strategy of CRmay be insufficient to represent
the real fusion mechanism of the above two types of effects.
• The results of FairGo are also unsatisfactory where we postulate the reason to be information
loss. The adversarial learning in FairGo tries to remove any information related to the
confounding feature, which indeed removes partial information of 𝑋 due to the relations
𝑋 ←− 𝑍 −→ 𝐴. However, the removed information of 𝑋 may be useful for user-item
matching. In contrast, DCR-MoE keeps all information of 𝑋 and merely eliminates the impact
brought by the confounding feature.
• DCR-MoE achieves different degrees of improvements on Kwai and Wechat. We think the
difference is due to different properties of the two datasets: 1) the interactions in Wechat
are influenced by the social networks that are not given12; and 2) Wechat is more sparse
regarding users.

12The dataset Wechat is a short video recommendation dataset collected from the China popular social media WeChat.
Friends will influence each other to watch videos.
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Table 3. The performance comparison between NFM-WA, MoE, and DCR-MoE. Both NFM-WA and MoE
estimate the correlation P(Y|U,X,A), but MoE takes the proposed MoE model architecture. MoE and DCR-MoE
have the same model size.

Kwai WechatDatasets
Methods Recall@10 MAP@10 NDCG@10 Recall@3 MAP@3 NDCG@3
NFM-WA 0.0778 0.0247 0.0458 0.1275 0.0910 0.1198
MoE 0.0757 0.0240 0.0448 0.1286 0.0924 0.1215

DCR-MoE 0.1089 0.0353 0.0634 0.1355 0.0976 0.1271

5.2.2 Improvements in Active and Inactive User Groups. We have partially attributed the perfor-
mance improvement differences of DCR-MoE on Kwai and Wechat to the sparsity of the datasets on
the user side. We then investigate whether user activeness affects the performance of our DCR-MoE.
For this goal, we first split users into active and inactive groups according to the number of user’s
positive testing label (i.e., the positive post-playing feedback) and the number of user’s training
samples. The active group is the intersection of the following two user sets: 1) users with the
top-ranked number of training samples (top 40% for Kwai and top 20% Wechat) and 2) users with
the most positive testing labels (top 50% for Kwai13 and top 20% for Wechat). Finally, the 20% and 6%
of users are selected as active users in Kwai and Wechat, respectively. Users that are not categorized
as active users are all in the inactive group. Then we evaluate different methods on the two groups
respectively and compute the relative improvements (RI) of DCR-MoE over different methods. The
results on Recall@10 and NDCG@10 for Kwai, on Recall@3 and NDCG@3 for Wechat, are shown
in Figure 4. The results of other metrics are omitted since they show similar phenomena to the
reported metrics.

According to the results in Figure 4, DCR-MoE can get improvements in both active and inactive
groups. Moreover, DCR-MoE always achieves larger improvements in the active group. Particularly,
the improvements in the active group of Wechat are at least twice as large as that in the inactive
group. These results reflect the influences of data sparsity on estimating causal effect: with more
data, it is more possible that there are more diverse combinations of 𝑋 and𝐴, thus 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) can
be estimated better on different values of𝑋 and𝐴 for user𝑈 ; meanwhile, computing 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 ))
needs to enumerate all possible values of 𝐴; thus the estimation of 𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )) regarding active
users can bemore accurate14. Second, there are more inactive users than active users in both datasets,
ecpecially for Wechat. The total relative improvements are dominated by the inactive users since
the metrics are averaged over all users. This also explains why the overall performance gain on
Wechat dataset (cf. Table 2) is relatively marginal. Besides, we believe bringing more improvements
for active users is also meaningful since the consumption of items is mostly generated by active
users on real-world recommendation platforms.

5.3 RQ2: Ablation Studies
DCR-MoE has two main designs – the intervention at inference and the MoE model architecture.
In this subsection, we conduct experiments to verify the function of these designs.

5.3.1 The Effectiveness of Intervention at Inference. Recall that the most important operation in our
DCR framework is to perform intervention at the inference stage with do-calculus. We have shown
DCR-MoE can achieve better recommendation performances. We question that the improvements
of DCR-MoE may come from its more parameters instead of the intervention, because it has
13In Kwai, each user in the top 50% has great than 700 training samples.
14Indeed, data sparsity is related to the overlap assumption [40] for precise causal effect estimation.
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Table 4. Inference cost comparisons between DCR-NFM, DCR-NFM-A, and DCR-MoE (the number of experts
K=6). Results shown in EB/MLP column give the number of times that different methods need to run EB
layers/MLPs in NFM or MoE. The Time column refers to actual time cost (seconds) at inference.

Datasets
Methods

Kwai Wechat
EB MLP Time(s) EB MLP Time(s)

DCR-NFM 6 6 13.6 6 6 2.9
DCR-NFM-A 1 1 2.5 1 1 0.6
DCR-MoE 1 6 5.4 1 6 1.1
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Fig. 5. Recommendation performance comparisons between different implementations for our DCR frame-
work. Here, R, M and N denote Recall, MAP and NDCG, respectively.

multiple experts. In this light, we further evaluate a variant of DCR-MoE, named MoE, which
directly takes the expert-specific output of the MoE model, i.e., still using a one-hot vector to select
one expert at inference, as the recommendation score. Obviously, MoE models the correlation
𝑃 (𝑌 |𝑈 ,𝑋,𝐴) as the user-item matching. Then we compare MoE with DCR-MoE, and NFM-WA that
also models 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) but with fewer model parameters. The comparison is shown in Table 3.
We see the performance of MoE is not as good as that of DCR-MoE which conducts intervention at
inference. And MoE has similar performances as NFM-WA on the both Kwai and Wechat, since
they both estimate 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) as user-item matching. These results verify that our improvements
are coming from the intervention instead of the extra model parameters.

5.3.2 The Importance of the MoE Model Architecture. Recall that one motivation for designing
MoE is to speed up the inference of the DCR. We compare DCR-MoE with: 1) the DCR-NFM that
implements DCR based on NFM, i.e., implementing DCR without the MoE architecture, and 2)
the DCR-NFM-A that speeds up the inference by NWGM approximation (Equation 5), which can
be seen as applying PD [56] to handle the confounding feature. We compare both the inference
efficiency and the recommendation performance. Regarding the computation cost, we theoretically
compare the number of times to calculate the Embedding-and-Bi-interaction (EB) layers and MLPs
of NFM (or MoE) as well as report the actual running time for inference. To fairly compare the
actual running time, we run all models on the same machine with an NVIDIA RTX 3060 GPU, an
Intel i7-9700K CPU, and 16 GB of memory. Table 4 and Figure 5 show the comparisons regarding
time cost and recommendation performance, respectively. From the table and figure, we have the
following observations:

ACM Trans. Inf. Syst., Vol. x, No. x, Article 1. Publication date: January 2022.



1:18 Xiangnan He, et al.

0 1 4 50

0.5

1.0

1.5

2.0

Co
un

t

1e6

      A  
2 3  

(a) Counts of samples

0 1 4 5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

L 2
L 1

1e-3

        A
2 3      

(b) The difference of BCE loss

Fig. 6. The advantages of MoE for fitting 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) on different values of confounding feature 𝐴. (a) the
counts of samples for different values of 𝐴 (sorted according to the counts). (b) The difference (𝐿2 − 𝐿1)
between the BCE loss of MoE (𝐿2) and the BCE loss of NFM-WA (𝐿1) on different 𝐴. Please note that a higher
bar in (b) means a more negative value of 𝐿2 − 𝐿1.

• From Table 4, we find: 1) DCR-MoE is sub-optimal regarding the theoretical running cost.
While DCR-MoE only requires 1

𝐾
(K=6) of DCR-NFM’s EB layer calculations, DCR-MoE has

more cost on running the MLPs than DCR-NFM-A. 2) The actual running time exhibits similar
trend, which justifies the ability of MoE to speed up the inference of DCR. Note that MoE
can keep using simple experts when using more complex backbone recommender models
(e.g., modeling high order feature interactions). We thus believe that the accelerating of MoE
for inference will be more significant as compared to DCR-NFM when using more complex
backbone. Meanwhile, the gap to DCR-NFM-A will be reduced in such cases.
• Although DCR-NFM-A achieves the best inference efficiency, its recommendation perfor-
mance decreases on most metrics compared with DCR-NFM, as shown in Figure 5. The
result can be attributed to the fact that DCR-NFM-A achieves the inference speedup by
approximating computation, sacrificing the modeling fidelity. On the contrary, DCR-MoE
can also increase the recommendation performance compared with DCF-NFM, ensuring the
modeling fidelity.

The above two observations show that MoE can not only improve the efficiency of DCR but also
improve its effectiveness. Note that our DCR-MoE has the similar training time cost to the single
model methods, e.g.,NFM-WA and DCR-NFM, since each sample is only fed into one expert and used
to update one expert. We do not study the training time cost here. With the training and inference
efficiency and recommendation performance considerations, we believe MoE is an important design
for DCR.

5.3.3 Why Does MoE Bring Improvements? We then investigate why the MoE architecture of
DCR-MoE brings performance gains, especially on the dataset Kwai. Note that Kwai has an ex-
tremely unbalanced distribution of 𝐴, as shown in Figure 6(a). We postulate that MoE enhances
the estimation of 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) on different values of 𝐴, and further, a better estimation for the
𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 )), under an unbalanced distribution of 𝐴. In a single model (NFM-WA or DCR-NFM),
the model parameters are dominated by the samples with the head (i.e., more frequent) values of 𝐴
since the training loss is dominated by them, making samples with the tail values of 𝐴 cannot be
well expressed. That means the learning of 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) on the head values of 𝐴 will disturb the
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Table 5. The relative improvements (RI) of DCR-MoE to baselines NFM-WA and NFM-WOA in recommenda-
tion performance, when these models (including DCR-MoE and the baselines) are performed on confounding
or non-confounding features. For Kwai and Wechat, the results for the top-20 recommendation and top-5
recommendation are reported, respectively.

Datasets Kwai(top-20) Wechat(top-5)
Feature type RI to NFM-WA RI to NFM-WOA RI to NFM-WA RI to NFM-WOA

confounding feature 30.7% 36.4% 4.2% 2.0%
non-confounding feature 0.4% 3.7% 1.0% -0.5%

learning of that on the tail values. However, our MoE takes different experts to represent different
values of 𝐴, making the 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) on tail values of 𝐴 influenced by the head values less. Thus,
MoE enhances the estimation of 𝑃 (𝑌 |𝑈 ,𝑋,𝐴).

To verify the above intuition, we compare the average BCE loss of MoE (denoted as 𝐿2, MoE is the
one defined in Section 5.3.1) and the average BCE loss of NFM-WA (denoted as 𝐿1) over samples with
the same values of 𝐴. Both MoE and NFM-WA are modeling the correlation 𝑃 (𝑌 |𝑈 ,𝑋,𝐴), so the
smaller BCE loss means a better estimation for 𝑃 (𝑌 |𝑈 ,𝑋,𝐴). The results are shown in Figure 6(b).
Together with Figure 6(a), we can find that MoE and NFM-WA have larger loss differences on the
samples with more tail values of 𝐴 (𝐴 = 2, 3, 4, 5), and the loss of NFM-WA is larger than the loss of
MoE. Meanwhile, MoE has similar losses to NFM-WA on the head values (𝐴 = 0, 1). This shows the
MoE model architecture can estimate 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) on tail values of 𝐴 better and keep the accuracy
of 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) on other head values. Due to the better estimation of 𝑃 (𝑌 |𝑈 ,𝑋,𝐴) on tail values
of the confounding feature with MoE architecture, DCR-MoE can get a better estimation of the
𝑃 (𝑌 |𝑈 ,𝑑𝑜 (𝑋 ), leading to the better recommendation performance.

5.3.4 Does DCR-MoE Really Address the Confounding Feature Issue? We further verify that the
success of DCR-MoE comes from addressing the confounding feature issue, from another per-
spective. Specially, we study the improvements of DCR-MoE to basic baselines (NFM-WA and
NFM-WOA) in recommendation performance, forcibly performing DCR-MoE and the baselines on
non-confounding features15. If the improvements are still large, compared to the normal case where
all models are performed on confounding features, the DCR-MoE may not address the confounding
feature issue. Thus, we next compare the relative improvements (RI, defined in Table 2) of DCR-MoE
to the baselines in the above two cases. The results are summarized in Table 5. From the table,
we find that: DCR-MoE performed on non-confounding features shows far fewer (even negative)
relative improvements to the corresponding NFM-WA and NFM-WOA, compared to the case where
models are performed on confounding features. This verifies that the performance improvement of
DCR-MoE (in the normal case) is brought by effectively addressing the confounding feature issue.

5.4 RQ3: Prediction Analyses
The performance study has shown the superiority of DCR-MoE regarding overall recommendation
accuracy. In this subsection, we further study whether our DCR-MoE truly eliminates the impact of
the confounding feature by conducting an analysis of the model predictions. Specifically, we first
divide items into different groups according to the values of 𝐴, such that items with the same value
of the confounding feature belong to a group. Then we average the prediction scores from DCR,
NFM-WA, NFM-WOA, IPW, and CR over the samples that belong to the same group. Meanwhile,

15We manually select a feature having similar correlation coefficients to the training label and the testing label as the
non-confounding feature, i.e., |𝜌1/𝜌2 | (cf. Table 1) is near to 1. To perform models on the non-confounding feature, we
forcibly replace the confounding feature 𝐴 with the non-confounding feature.
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Fig. 7. The average prediction (Avg. pre.) scores of different methods over samples in the same group, where
the group is defined according to the value of the confounding feature, on Kwai and Wechat. "GT" is used to
represent the ground-truth interest of the population to different groups.

we average the evaluation interaction label (i.e., testing label) over the samples that belong to the
same group, which can represent the ground-truth interest of the population to different item
groups. The later result is denoted as GT. The comparison16 between different methods is shown in
Figure 7, where we have the following observations:
• The lines of GT are almost flat, which shows the true user-item matching is less related
to the confounding feature, i.e., video length. Meanwhile, the lines of DCR-MoE are most
similar to the lines of GT that are taken as the ground truth of user interests, meaning DCR-
MoE captures the true user-item matching. Indeed, for all user-item candidates, DCR-MoE
forcibly changes their confounding feature to whatever possible values according to the same
P(A) at inference, making the recommendations invariant with respect to the value of the
confounding feature 𝐴.
• NFM-WOA and NFM-WA are both highly related to the confounding feature (since their lines
are not flat). They are both biased towards some special groups, e.g., giving higher scores to
the group with the shortest video length. It is natural for NFM-WA since it captures the direct
effect of 𝐴 on 𝑌 for estimating user-item matching by modeling 𝑃 (𝑌 |𝑈 ,𝑋,𝐴). The biased
results of NFM-WOA which models 𝑃 (𝑌 |𝑈 ,𝑋 ) can be attributed to the spurious correlations
brought by the backdoor path, and show that the impact of the confounding feature 𝐴 will
still be captured even if 𝐴 is removed from the inputs.
• The lines of IPW are slightly flatter, compared with NFM-WA and NFM-WOA, but are still far
from the lines of GT. This shows IPW can only slightly mitigate the biased recommendation,
which can be attributed to the fact the propensity weights are not easy to be estimated well.
• The phenomenon of CR is rather strange. For the shortest video, CR has the lowest average
prediction on Kwai, while it has the largest average prediction on Wechat. We think this is
another evidence that CR cannot truly disentangle the effects of the confounding feature
(undesired) and other features, leading to incorrectly removing effects.

Here we do not compare FairGo since it blindly removes all information related to the confound-
ing feature and is straightforward to get flat lines by tuning hyper-parameters to remove more
information.
16Since the scales of average prediction scores are different for different methods. We adopt the softmax function to deal
with the results to better reflect the shape of distributions.
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6 CONCLUSION
This work studies a new problem for dealing with the impact of item confounding feature on
recommendation. We analyzed the problem from a causal view and recognized a backdoor path
through the confounding feature, which results in spurious correlations between the remaining
content features and the interaction behavior and biased recommendation. To remove the backdoor
path, we proposed a DCR framework to estimate the causal effect of content features on the
interaction, with a MoE architecture to speed up the inference. We prove in theory that DCR
has good generality to deal with more cases of different causal relations between confounding
feature and other features. We conduct experiments on two real-world datasets, providing insightful
analyses on the rationality and effectiveness of our proposal.
This work shows the importance of causal modeling for item features in recommendation, but

focuses on one confounding feature. In future, we will extend the proposed framework in the
following directions: 1) handling multiple confounding features; 2) diving into the detailed causal
relations among content features; and 3) incorporating the causal relations among user features.
Moreover, we would like to explore the causal discovery problem in recommendation to get rid of
the labor cost on causal graph construction.
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