
Distributed Random Number Generation Method on Smart
Contracts

Kentaro Sako
Waseda University

Tokyo, Japan
ksbowler@nsl.cs.waseda.ac.jp

Shiníchiro Matsuo
Georgetown University

NTT Research Inc.
Washington D.C., USA

Shinichiro.Matsuo@georgetown.edu

Tatsuya Mori
Waseda University

Tokyo, Japan
mori@nsl.cs.waseda.ac.jp

ABSTRACT
We propose N-choice game (NCG), a decentralized pseudo-random
number generation method that can be executed on smart contracts.
Of the M participants, one is a dealer, and the rest are players,
each with a different role. Each participant randomly chooses one
value between 0 and N − 1 and receives a score determined by
the NCG rule. The amount of reward each participant receives is
determined by the score. The values chosen by the participants are
combined and hashed into a pseudo-random number. The NCG
framework is designed to achieve the following three goals: (1)
Incentivize participants to provide random choices, (2) Evaluate
the level of randomness in the decentralized environment, and (3)
Establish high performance. We implement the NCG framework in
Solidity and evaluate its performance. Our extensive experiments
revealed that unless more than 90% of NCG players collide, the
generated random numbers have high randomness that can pass
the NIST randomness test. The experiments also demonstrated that
the throughput of randomnumber generation in NCGwas 129 times
faster than in the existing framework, Random Bit Generator [2].

CCS CONCEPTS
• Security and privacy→ Distributed systems security.

KEYWORDS
blockchain, Smart Contracts, distributed random number genera-
tors
ACM Reference Format:
Kentaro Sako, Shiníchiro Matsuo, and Tatsuya Mori. 2022. Distributed Ran-
domNumber Generation Method on Smart Contracts. In 2022 4th Blockchain
and Internet of Things Conference (BIOTC 2022), July 8–10, 2022, Tokyo, Japan.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3559795.3559796

1 INTRODUCTION
Since the proposal of Bitcoin [11], there have been many previ-
ous works to enable autonomous economic activities without the
need for trusted parties. While Bitcoin has simple financial transac-
tions such as making payments, Ethereum aims to realize “smart
contracts”, which go beyond simple payment transactions with

This work is licensed under a Creative Commons Attribution International
4.0 License.

BIOTC 2022, July 8–10, 2022, Tokyo, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9662-2/22/07.
https://doi.org/10.1145/3559795.3559796

the dedicated programming languages for smart contracts such as
Solidity [6], recently expanding to decentralized finance.

In this work, we address the problem of implementing random
number generator (RNG) functions on smart contracts. Having
RNGs in smart contracts has the following advantages: (1) providing
fair mining opportunities based on probability rather than the Proof-
of-Work, which is determined by the number of resources held by
the miner, and (2) providing applications where probabilistically
generated variables are essential. Generating random numbers with
sufficiently high randomness in smart contracts is expected to be
useful for various applications such as securing digital signatures,
establishing unlinkability as a privacy element, and establishing
the fairness in the game, lottery, or the millionaire protocol.

To the best of our knowledge, smart contracts platforms do not
provide RNG functions. For example, Solidity, the most popular
programming language implementation for smart contracts, does
not implement any RNG functions/libraries. As smart contracts are
required to be deterministic, they must produce the same results
regardless of the environment the code runs; this principle may
explain why the implementation of RNGs has been avoided. We
note that using the output of the RNG function from another plat-
form violates the decentralization principle of blockchain because
it requires placing trust in that external platform.

Given this background, few works have aimed to provide the
smart contracts platform RNG functions. Chainlink Verifiable
Randomness Function (CVRF) [5] is a provably fair and verifiable
RNG that can be used for smart contracts. CVRF receives a random
seed from smart contracts and returns a value calculated using the
CVRF secret key as a pseudorandom number. However, we note
that CVRF is not a fully decentralized approach because it assumes
that the Chainlink oracle is trustworthy. Chatterjee et al. [2]
proposed a distributed random number generator named “Random
Bit Generator” (RBG). While RBG established RNG functionalities
for smart contracts in a fully decentralized manner, it has the
following three fundamental problems:

Problem 1: No incentive mechanism to let participants randomize
their choices.

In the RBG framework, each participant can make two choices,
and the expected reward is the same no matter which one is chosen;
i.e., even if only one of the two choices is made, the expected
reward remains the same. Therefore, it is questionable whether
users have the incentive to randomize their choices.

Problem 2: Evaluating the randomness
In the RGB paper, the authors did not evaluate the randomness

of the output. It is not certain that the generated sequence had high

1

https://doi.org/10.1145/3559795.3559796
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3559795.3559796
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3559795.3559796&domain=pdf&date_stamp=2022-10-29


BIOTC 2022, July 8–10, 2022, Tokyo, Japan Kentaro Sako, Shiníchiro Matsuo, and Tatsuya Mori

randomness even when some participants made biased choices.

Problem 3: Low performance
The RBG framework generates one bit per contract, so the

generation throughput is quite small. The authors reported that
the throughput of RBG is 176.8 [bit/s] with parallel processing.
According to their parameter settings, one contract takes ten times
longer than the block’s generation rate of 14,133 ms at the shortest,
which means it takes more than 2 minutes.

Based on the above problems, we set the following three design
goals (DGs) that need to be achieved in the fully distributed RNG
framework for smart contracts.

DG1: Incentivize participants to provide random choices.
DG2: Evaluate the level of randomness in the decentralized envi-
ronment.
DG3: Establish the high performance.

We propose a distributed random number generator, named N-
choice game (NCG), that aims to achieve the DGs shown above.
This game gathersM participants, one of whom is a dealer and the
others are players. Each participant chooses one value, a random
seed, between 0 and N − 1. A player who makes the same choice as
the dealer gives N − 1 points to the dealer, and a player who makes
a different choice than the dealer receives 1 point from the dealer.
The values chosen by each participant are concatenated, and the
cryptographic hash function is applied to obtain a 256-bit random
number.

The key idea of the NGC framework is to design the game in
such a way that it would be most reasonable for participants to
choose random values. In the NCG framework, a player cannot
manipulate the output RNG. Therefore, the motivation for players
to participate in the game is to maximize the reward they receive
for participating in the game. Since the expected reward decreases
if other participants predict the value a player will choose, it is
reasonable for them to make a random choice that is difficult to
predict.

We conducted an evaluation experiment on NCGs and revealed
the following:

• Unless more than 90% of NCG players collide, the generated
random numbers have high randomness that can pass the
NIST randomness test.

• The throughput of random number generation in NCG was
129 times faster than in RBG.

The remainder of this paper is structured as follows. We first
present the background knowledge in section 2. Then, we describe
how the NCG works in section 3. Section 4 presents the experimen-
tal results to validate that the NCG achieves its Design Goals. We
discuss limitations and future work in section 5. section 6 discusses
related works. Finally, Section 7 concludes our work.

2 BACKGROUND
In this section, we first describe the overview of the RBG frame-
work [2]. We then describe the NIST randomness test, which we
use to test the randomness of our distributed RNG outputs.

2.1 Overview of the RBG framework [2]
The RBG framework lets participants choose two options. In the
framework, it is assumed that all participants’ choices are pseu-
dorandom because the expected value of the reward is the same
regardless of which choice is made. Participants are divided into
two groups according to their IDs, even or odd. The odd group
chooses 1 or 3, and the even group chooses 0 or 2. The volume
of reward participants receive is determined by the value they
choose. The reward is increased for those who choose a value one
higher than their choice and decreased for those who choose one
lower than their choice (mod 4). For example, if a participant in
the odd-numbered group chooses 3, the reward is increased for
those who chose 0 and decreased for those who chose 2. Since
the expected value of the reward amount is the same whether n
or n + 2 (n ∈ {0, 1}) is chosen in either group, it is stated that all
participants’ choices are pseudorandom.

However, we claim it is doubtful that RBG meets the two re-
quirements of having an incentive to randomize the input and
guaranteeing randomness. Some players may make biased choices,
such as choosing one side all the time. Another example is when the
stakeholders of the random numbers generated by RBG participate.
The authors have not verified that the generated sequence is still
random under these circumstances.

2.2 NIST randomness test
The NIST randomness test is published by the National Institute
of Standards and Technology (NIST) [15]. NIST randomness test
consists of 15 different tests, and the P-value is calculated for each
test. The significance level is set at 0.01, and the pass/fail is deter-
mined by whether the P-value obtained for each test exceeds the
significance level. The Random Excursions Test and the Random
Excursions Variant Test have the largest recommended test size of
1M bits. In addition, when converting (0,1) to (-1,+1) in binary data,
the cumulative sum is calculated from the beginning to the last bit,
and the number of times it becomes 0 in the process must exceed
500.

This paper tests the sequences that satisfy these two recom-
mended rules. The definition of randomness is that an output se-
quence is computationally indistinguishable from a valid random
sequence by any polynomial-time algorithm. Although the NIST
randomness test is not completely capable of determining whether
an output sequence fits this definition, to the best of our knowledge,
the NIST randomness test is the most practical way and widely used
in the research community. Referring to [7, 8, 14] that use the NIST
random number test, we will consider the criteria for determining
that it is random. Both papers judge the sequence randomly if the
passing rate of 15 different tests is 90% or more. In this paper, 100
recommended sequences are generated, and if the p-value exceeds
0.01 at least 90 times for each test, it is determined as random.

3 N-CHOICE GAME
In this section, we describe the proposed method, NCG. We first
present an overview of the NCG framework and describe the differ-
ence between NCG and RBG. Next, we explain the requirements for

2



Distributed Random Number Generation Method on Smart Contracts BIOTC 2022, July 8–10, 2022, Tokyo, Japan

Figure 1: N-choice game’s flowchart

the parameters of the NCG. Finally, we show an example implemen-
tation of the NCG for a smart contract application, CryptoKitties [3].
An example implementation is available online at [16].

3.1 Overview of NCG
In the following, we describe the steps of the NCG framework.
Figure 1 presents the flowchart of NCG.

Step 1: Parameter check
In the NCG framework, an owner who wants to generate a

random number checks whether the parameters of the NCG meet
the requirements shown in section 3.3. If the parameters satisfy
the requirement, the owner initiates the contract process using the
parameters.

Step 2: Recruitment of participants
Next, the contract process recruits M participants. Anyone

can join NCG if they wish by paying a deposit. Participants are
given a reward score that determines the reward amount, which is
initialized at 0 points. The first node registered as a participant
becomes the dealer and all other nodes (participants) become
players.

Step 3: Start game
WhenM participants have gathered, the owner starts the game.

The timestamp of the latest block when the game is started is
stored in the valuable named TS .

Step 4: Generating a hash value
One of the parameters set in Step 1 is TV , which is the time

limit to send values to the contract. In this step, participants
generate a hash value to obtain a reward. First, a participant
selects x(x < N ). This value x affects the reward received after the
game. x determines their scoring rewards. Next, they compute
y = x + k ×N using a large positive value k . y must not exceed 256
bits. Then, they calculate the hash value of y. Finally, they execute
the generateHashValue function with y value as an argument

between TS and TS +TV .

Step 5 Transmission
Then, participants can enter the input value of the hashed

value in Step 4. The time from TS + TV to TS + TV × 2 is set
as the time for accepting value input. The participants call the
inputValue function with y an argument. If the hash value
of y does not match the value sent in Step 4, the execution
does not complete, and an error is returned. Participants who
completed without returning an error are considered honest partic-
ipants, and those who did not are considered dishonest participants.

Step 6: Assigning rewards
After inputting values, the honest participants are granted rights

to a refund of their deposit and participation and scoring rewards.
They will be rewarded for performing the finishGame function.
The reward for the score is determined by the reward score points.
In Step 4, participants selected a value, x . If everyone is an honest
participant, and the player chooses a value different from the dealer,
the player gains 1 reward score point, and the dealer loses 1 point.
Conversely, if the player chooses the same value as the dealer, the
player’s score is reduced by N − 1 points, and the dealer’s score is
increased by N − 1 points. In the presence of dishonest participants,
if the dealer is the dishonest participant, players who are honest
participants are assumed to have chosen values different from the
dealer’s. If the dealer is an honest participant, the player who is the
dishonest participant is assumed to have chosen the same value as
the dealer. The scoring reward is the variable Rд multiplied by this
score. If there are dishonest participants, the owner is compensated
for the failure to generate random numbers when the finishGame
function is executed.

Step 7: Random number generation
Finally, the owner gets a random number. This step is available

only if all participants successfully transmit the valid values. The
values chosen by the participants are collected and converted
into a binary sequence before being concatenated together. When
N = 16, the participant P1 chooses 13, and the participant P2
chooses 4, the resulting binary sequence is computed as 11010100,
where the first and second 4 bits represent the value selected
by P1 and P2, respectively. If there are more participants, the
next 4 bits are the value chosen by those additional participants.
Binary values are collected from all participants until 256 bits are
collected. If there are not enough participants to accumulate 256
bits, the process is repeated from Step 1 until 256 bits are collected.
Once 256 bits have been collected, the value is hashed using
SHA-256. This hash value is outputted as a pseudo-random number.

3.2 Incentive to choose a random value
In the following, we explain that it is reasonable for participants
to choose a random value as long as all participants are working
towards the reward.

Random choices

3



BIOTC 2022, July 8–10, 2022, Tokyo, Japan Kentaro Sako, Shiníchiro Matsuo, and Tatsuya Mori

We calculate the expected value of the reward when the dealer
and all the players randomly choose a value. The probability of a
dealer and a player selecting the same value is 1/N . If the dealer
makes the same choice with one of the players, the dealer receives
N − 1 points, and if the dealer makes a different choice with the
player, the dealer gives 1 point to the player. The expected value of
the reward the dealer receives is calculated as follows:

1
N

× (N − 1) − N − 1
N

× 1 = 0

Similarly, the expected value of the reward a player receives is
calculated as follows:

1
N

× (−(N − 1)) + N − 1
N

× 1 = 0

These observations demonstrate that the expected values of
rewards for the dealer and the players are equal if they choose the
values randomly.

Biased choices
Next, we study the expected value of reward if a participant does

not select randomly and the other participants are aware of this
tendency. The player’s reward is either −(N −1) points for choosing
the same value as the dealer or 1 points for choosing a different
value. To obtain a high reward, a player should choose a value
different from the dealer’s. If the dealer can predict the value, the
player will choose, i.e., by knowing that the player always generates
the same fixed value, the expected reward for the player is −(N − 1)
points, since the dealer gets points for entering the predicted value
and the player loses points for that. Therefore, it is reasonable for
the player to avoid being predicted by the dealer.

Next, we consider the case wherem (m ≤ M − 1) players are
aware of the tendency of the dealer’s choice. Them players can
predict the value that the dealer will choose next, so they choose
any other value and get 1 point of the reward from the dealer.
The remaining M − 1 −m players will choose the same value as
the dealer with the probability of 1/N . The expected value of the
dealer’s reward is calculated as follows:

1× (−1) ×m+
{
1
N

× (N − 1) + N − 1
N

× (−1)
}
× (M − 1−m) = −m

The expected score of the dealer is highest whenm = 0, implying
that the dealer should choose randomly.

Summary
In summary, the expected value of the reward decreases when

others predict the choice. It is reasonable for all the participants
to choose random values as long as they expect to maximize the
reward. Thus, the NGC framework establishes DG1. We note that
such an incentive mechanism was not realized in RBG. The exis-
tence of participants whose objective is not the reward is discussed
in Section 4.

3.3 Requirements for parameters
We explain the requirements for the parameters introduced in the
NGC framework.

Number of choices (N )

In Step 7, the participants’ values are concatenated together
and collected up to 256 bits. To collect exactly 256 bits, both N and
the bit length of N should be a power of 2. In addition, N should
be greater than or equal to 2 to perform multiple selections.

Number of participants (M)
Multiple participants are required to establish a game. Further-

more, the number of participants must be a power of 2 in order to
collect exactly 256 bits. Therefore, the number of participants M
should be a power of 2 greater than or equal to 2.

Voting time (TV )
In solidity, block.timestamp can be used to obtain the timestamp

of a block as an integer. The block update frequency of Ethereum is
about 15 seconds. We suppose that block.timestamp is updated from
bt0 to bt1, for example. If TV is small (e.g. 5), it could be computed
as follows: bt0 < startTime +TV and startTime + 2×TV < bt1. In
this case, Step 5 may not be executed. Therefore, the TV should be
at least as large as the Ethereum block update frequency.

Reward for participating the game (Rp )
Honest participants earn a participation reward. If all partic-

ipants are honest, the total amount of the participation fee is
Rp ×M . Since the owner bears the participation fee, the owner’s
budget should be equal to or greater than Rp ×M .

Amount of deposit (D)
If a participant fails to make an entry within the time limit,

they are considered a dishonest participant, and their deposits
will be forfeited. Honest participants should be rewarded for their
correct behavior. Additionally, owners do not want to pay for their
participation if they do not get a random number. Therefore, in
the case of a dishonest participant, the forfeited deposit is used
to reward other participants for their participation. In addition,
compensation to the owner who originally wanted a random
number will be made up from the deposit. Therefore, the amount of
the deposit must beD = Rp ×(M−1)+compensation to the owner.

Reward for the earned game score (Rд )
The reward each participant will receive as the earned game

score, Rд , should be tuned carefully, as it will affect the motivation
of participants to randomize their choices. If the Rд is too small, the
incentive to aim for higher scores will be smaller, and the choices
may not be randomized. If Rд is smaller than Rp , they will act
correctly. A player’s score will be the smallest possible value when
choosing the same value as the dealer, −(N − 1) points. A dealer’s
score is at its lowest when choosing a value different from all
players, (−1)× (M −1) points. The lower limit of the scoring reward
is Rд ×min(N − 1,M − 1) ≥ Rp . On the contrary, if Rд is too large,
the negative value in the scoring reward may exceed the deposited
deposit and the participation reward. In that case, it would be more
reasonable for participants to become dishonest participants. The
balance of a dishonest participant is −D. The maximum value an
honest participant loses isRp−Rд×max(N−1,M−1) To summarize,
we need to tune the parameters so that the following conditions

4



Distributed Random Number Generation Method on Smart Contracts BIOTC 2022, July 8–10, 2022, Tokyo, Japan

are satisfied:

D + Rp ≥ Rд ×max(N − 1,M − 1)
Rд ×min(N − 1,M − 1) ≥ Rp

3.4 Proof-of-concept Implementation
We evaluate our proposed method by applying it to a proof-of-
concept implementation on an existing application. In this paper,
we adopt CryptoKitties [3] as an example of a smart contract appli-
cation.

CryptoKitties is a blockchain-based game in which players earn
Ethereum by trading kitties. This game can be run on Smart Con-
tracts. If you own two or more kitties, a player can generate a new
kitty by performing an operation called breeding. This breeding
requires a 256-bit random number.

The proposed contract will be called whenever breeding is con-
ducted on CryptoKitties. First, the CryptoKitties administrator ex-
ecutes the preparationOwner function and sets the parameters
to fulfill the requirements. AfterM participants are gathered, the
CryptoKitties operator calls the startGame function to accept the
participant’s input. After the time limit for accepting input val-
ues, either the CryptoKitties operator or the participant calls the
finishGame function to give the participant refund, and the Cryp-
toKitties operator calls the generateRandomNumber function to
obtain a pseudo-random number. The following is an example of
how parameters may be set. Let N = 256,M = 32 so that a single
256-bit random number is generated per game. In this case, the
reward for participating will be approximately USD 10 per hour. In
the RBG experiment, the length of time for participants to publish
their hashes is 7 times the average block generation frequency of
14113 ms. The input selection time, votingTime, is set to its approx-
imate value of 100 seconds. Roughly, the time required for one
contract is about twice the votingTime, resulting in roughly 200
seconds. The participation fee is thus set to 0.0002 Eth, which is ap-
proximately USD 0.5 (1 Eth = USD 2781.33 (as of 15:16, 26/02/2022)).
The compensation amount will be set to 0.008 Eth of the breeding
fee. Calculating the scoring reward and deposit amount to meet the
requirements, we obtain 0.000007 Eth and 0.0111 Eth, respectively.
Alternatively, setting values to N = 16,M = 64 can generate a
single 256-bit random number per contract as well. If the number
of participants does not reach 64, parameters can be changed to
M = 16 and playing 4 consecutive games.

4 EVALUATION
In this section, we evaluate whether the NCG framework achieves
the three design goals, DG1, DG2, and DG3 through the experi-
ments. First, we identify the criteria to satisfy the three DGs. Next,
we experiment to see if the NCG framework achieves the criteria.
Finally, we evaluate whether the NCG satisfies all the Desing Goals
based on obtained results.

4.1 Criteria to achieve the Design Goals
In the following, we describe the evaluation criteria for achieving
the DGs.

Criteria for DG1
To satisfy this Design Goal, we must show that participants

have an incentive to select values randomly. Section 3.1 showed
that it is reasonable for participants who aim for rewards to
choose values at random. We consider the purpose of a node’s
participation in addition to the reward. Nodes will receive a reward
and output a 256-bit random number value for participating. They
will participate for either the reward or an arbitrary output value.
If they can get an arbitrary output value, they will act so that there
is no incentive to choose randomly. It is necessary to show that no
participant is interested in the output value. While obvious, it is
important to consider that, as a pseudo-random number generator,
participants must not be able to manipulate it to produce arbitrary
output values. Additionally, the generated sequence must not be
biased in any way. In other words, it is necessary to prove that it is
impossible to attack the system so that it can generate a biased
sequence.

Criteria for DG2
A random sequence should be generated regardless of the node

participating. As mentioned in the DG1 criteria, the objective
of participation in the NCG is to obtain a reward or arbitrary
output. We must consider the scenario in which the objective
of a given participant is not to obtain an arbitrary output but
instead to generate a biased sequence. We must show that a biased
sequence cannot be generated in such a case. We consider DG2 to
be satisfied if the output sequence is random, even if the objective
of all participants is to obtain an arbitrary output sequence.

Criteria for DG3
We compare the performance, specifically their throughput of

generating random numbers, of NCG and RBG.

4.2 Experiment method
We will evaluate whether the NCG satisfies the criteria mentioned
above. The following three experiments are conducted to check the
criteria mentioned in Section 4.1.

Experiment 1: Evaluating the randomness of the output se-
quence when there are attackers who intentionally want to
make the sequence non-random
Experiment 2: Evaluating the randomness of the output se-
quence when the participants are only interested in rewards
Experiment 3: Compare the throughput of random number
generation for the NCG and RBG

The methods of each experiment are described in this section.

Experiment 1
To evaluate the randomness of the output sequence when there

exist attackers who want to make the sequence non-random,
we first formulate the threat scenarios. We then present how to
generate the sequence according to the participants’ behavior in
each threat scenario.

Threat scenarios. The NCG outputs hashed 256-bit values created
by the participants. If the participants’ actions are restricted, the
values to be hashed are limited. Specifically, we consider the case

5



BIOTC 2022, July 8–10, 2022, Tokyo, Japan Kentaro Sako, Shiníchiro Matsuo, and Tatsuya Mori

where the expected value of the scoring reward varies depending
on the values chosen by the participants. We propose two scenarios:
In the first scenario, the dealer is the attacker, and in the second
scenario, several players are attackers.

Case 1. The dealer is an attacker
We consider the case in which the dealer tries to make
the output sequence non-random. When the attacker is
the dealer, they can limit the actions of other players
by choosing values that follow a pattern. Specifically, if
the dealer chooses the value x and all players know this,
they can increase their score rewards by choosing a value
other than x . This gives players the incentive to choose
values other than x , generating a non-random sequence. By
doing this, the dealer generates a non-random sequence by
influencing the players’ choices.

Case 2. Players are attackers
We consider the case in which there are colluding attackers
within the players. The colluding attackers can limit the
dealer and other players’ choices by introducing a pattern
in their choices. If the attackers all choose the value x ,
then the dealer, who predicted it, also chooses x , thereby
increasing the score reward. At the same time, other players
will choose a value other than x by predicting that the
dealer will choose x . In this way, the dealer’s actions can be
limited to one and the player’s actions to N − 1. The same
can be said in the case of collusion between some players
and the dealer.

Evaluation Method. The methods for generating the output
sequences in the two threat scenarios are described.

Case 1. The dealer is an attacker
We evaluate the scenario in which the dealer is an attacker
by assuming that the participants take the following actions.
The dealer first chooses a value x . Next, all players choose
a value other than x because they know that the dealer
chooses x . x is pre-determined and is not changed until
a generated sequence meets the test requirements. Three
combinations ofM and N are considered during evaluation,
as shown in Table 1. One hundred sequences in each pattern
are generated and tested with the NIST random number test.

Case 2. Players are attackers
We assume the participants take the following actions when
some players are colluding. We suppose thatm (2 ≤ m ≤ M)
participants choose the value x , and the other players choose
values other than x . We examine the output sequence for
varying values ofm between 2 andM . Three combinations
of M and N are considered during evaluation, as shown
in Table 1. One hundred sequences in each pattern are
generated and tested with the NIST random number test.

Experiment 2

Table 1: Patterns of parameters.

parameter M N
Standard 16 16
Many choices 16 65536
Many participants 64 16

We evaluate whether the sequence output by the NCG is
random when the objective of all participants is the reward. In
this evaluation, we set the parameters to the standard pattern,
N = 16,M = 16, as a representative pattern. We consider the
following scenario to evaluate the output sequence when there are
no attackers present. Then, we explain how to generate sequences
with those action scenarios.

Action scenarios of participants. Again, the participant whose
objective is the reward randomly chooses a value less than N .
Therefore, we need to consider several different methods to
simulate an unpredictable value chosen by the participants. We
assume that the participant will use one of the four following
methods to determine their values. A randomness value will be set
for each of these four methods according to how difficult it is to
predict their outcomes.

(1) NIST random beacon: It is a random sequence issued by
NIST [12]. Readers can examine the output at [13]. Since
there is currently no output prediction algorithm for NIST
random beacon, the randomness number is set to 3.

(2) Mersenne-Twister (MT): It is a pseudo-random number
generator with a period of 219937 − 1, proposed by Mat-
sumoto and Nishimura in 1996 [10]. We note that MT is
not a cryptographically-secure pseudo-random number
generator (CSPRNG). It is a generator that can predict what
will be output next once the output of 624 times 32-bit MT
is known, generated by a linear asymptotic formula. So, the
randomness number is set to 2.

(3) Linear congruential generators: In this method, the following
is calculated. Xn+1 = a × Xn + b mod m In this work,
m = N , and a and b are set so that the maximum period
is m. Although a, b, and m can be set as parameters, the
outcome of this generator can be predicted if approximately
ten consecutive outputs are given. The randomness number
is thus set to 1.

(4) Choosing the same value repeatedly. A single value less than
N is chosen repeatedly, under any circumstances. While it
is infeasible for participants to behave this way, we consider
this method for experimentation. The randomness number
is set to 0.

Evaluation Method. We evaluate whether the sequences gener-
ated by participants who use methods such as those introduced are
random. If more than 3 of the methods mentioned above are used

6



Distributed Random Number Generation Method on Smart Contracts BIOTC 2022, July 8–10, 2022, Tokyo, Japan

among 16 participants in a given NCG, a considerable number
of patterns will need to be considered. For simplicity’s sake, we
limit the maximum number of methods used among participants
in a given game to 2 or fewer. For example, 9 participants may be
using the NIST randomness beacon, and the rest may be using the
Mersenne Twister. In this case, the average randomness number of
the methods used by the participants is (9 × 3 + 7 × 2)/16 = 2.5625.
This method results in 94 possible patterns, which we evaluate the
output sequences. For comparison, we also validate the output
sequence generated with RBG. For simplicity, we validate the
output sequence with all participants either choosing the same
value repeatedly or choosing values according to the NIST random
beacon method.

Experiment 3
In this experiment, we compare the throughput at which the

NCG and RBG generate one bit. We evaluate and compare the time
it takes for the NCG and RBG to complete a contract.

Parameter Setting. In order to fulfill a contract, it is necessary
to set the parameters for the time-limited phases in both the NCG
and the RBG. The time-limited phases are the time to accept partic-
ipants and the time to enter values. In the work where RBG was
proposed, the average block generation frequency t is set to 14113
ms, the participant acceptance time tReд is set to 3 times t , and the
minimum time for one contract tMin is set to 10 times t . After tReд
time has elapsed since the random number request, the value can
be entered and lasts until the contract end time. Hence, the time to
enter a certain value is tMin − tReд = 7 times t . In this work, for
simplicity, t is set to 15,000 ms, the participant reception time tReд
is set to 3 times t , and the time to enter a value tVal is set to 7 times
t . Regarding the recruitment of participants, it shall take only tReд
to gatherM participants for either game. The time limit for hash
value and value input acceptance in the NCG is tVal . The tMin in
RBG is assumed to be tReд + tVal . Participants must always decide
on a value and input it during the time tVal . The value of N ,M
should be Many choices pattern.

The contract is executed ten times with the parameters set as
described above. Evaluation is conducted by setting Go Ethereum
(Geth) private net as the Solidity execution environment [9]. The
average of those ten times is the time required for one contract.

4.3 Results
We evaluate the results of Experiments 1, 2, and 3 to see whether
the NCG framework achieves the design goals.

Experiment 1
We evaluate the randomness in cases 1 and 2. Based on the

evaluation, we determine whether the NCG satisfies DG1.

Case 1. The dealer is an attacker
The results of the three patterns are shown in Table 2.
Table 2 shows the pass rate for the test with the lowest pass
rate out of the 15 tests for the NIST randomness test and the
overall average pass rate. All three patterns can be random
since the pass rate for the test with the lowest pass rate

Table 2: The result when the dealer is an attacker.

parameter Standard Many Many
choices participants

Minimum 92 92 92pass rate [%]
Average 98.467 98.400 97.933pass rate [%]

Table 3: Minimumm value resulting in non-random output.

parameter Standard Many Many
choices participants

Minimum m 15 16 61

is above 90%. Hence, it would be impossible for the dealer
alone to attempt an attack that would make the sequence
non-random.

Case 2. Players are attackers
Randomness validation results for each of the three patterns
are shown in separate figures. The results for the standard
pattern are shown in Fig 2, the results for the many choices
pattern are shown in Fig 3, and the results for the many
participants’ pattern is shown in Fig 4. The vertical axis
represents the test pass rate for all figures, and the horizontal
axis represents the number of participants colluding. The
min line represents the lowest pass rate out of the 15 tests
for the NIST randomness test. The ave line represents the
overall average pass rate for the NIST randomness test. The
least amount of colluding participants needed in all patterns
to cause a non-random output is shown in Table 3. 90%
or more of the total participants must collude in all three
patterns to make the sequence non-random. Thus, collusion
attacks can be assumed to be impossible.

From Experiment 1, we conclude that the NCG satisfies DG1. As
shown in Table 3, if one wants to create a non-random sequence
intentionally, about 90% of all participants must collude. It is thus
unlikely that an attack conducted by colluding attackers aimed to
make the sequence non-random occurs. In addition, if a participant
has a stake in the generated number, they may try to obtain an
arbitrary output. However, since the output is a hash of everyone’s
chosen values, it is impossible to obtain an arbitrary output even
if everyone colludes. Therefore, since it is impossible to obtain
arbitrary values or conduct colluding attacks, participants in the
NCG will participate for participation and scoring rewards. Since
we showed in Section 3 that it is reasonable for participants who
aim for rewards to choose values at random, the NCG satisfies
DG1.

Experiment 2
The results of the randomness validation of NCG for the output

sequence when all participants aim for score rewards are shown
in Fig 5. The results of RBG are shown in Fig 6. The vertical axis

7



BIOTC 2022, July 8–10, 2022, Tokyo, Japan Kentaro Sako, Shiníchiro Matsuo, and Tatsuya Mori

2 4 6 8 10 12 14 16
Number of colluding participants

0

20

40

60

80
90

100

te
st

 p
as

s 
ra

te
 [%

]

min
ave

Figure 2: Colluding in Standard pattern.

2 4 6 8 10 12 14 16
Number of colluding participants

0

20

40

60

80
90

100

te
st

 p
as

s 
ra

te
 [%

]

min
ave

Figure 3: Colluding in Many choices pattern.

0 10 20 30 40 50 60
Number of colluding participants

0

20

40

60

80
90

100

te
st

 p
as

s 
ra

te
 [%

]

min
ave

Figure 4: Colluding in Many participants pattern.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Average randommess number of methods

0

20

40

60

80
90

100

te
st

 p
as

s 
ra

te
 [%

]

min
ave

Figure 5: The result when all participants are honest.

is the pass rate for the NIST randomness test. The horizontal axis
is the average randomness number of the methods used by the
participants. Themin line represents the lowest pass rate out of the
15 tests for the NIST randomness test. The ave line represents the
overall average pass rate for the NIST randomness test. The pass

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Average randommess number of methods

0

20

40

60

80
90

100

te
st

 p
as

s 
ra

te
 [%

]

min
ave

Figure 6: The result of RBG.

rate for all tests exceeded 90%, except when everyone’s randomness
value is 0, i.e., everyone chooses the same value repeatedly. In
contrast, the RBG outputs sequences that are non-random, even
with participants choosing random numbers.

Results of the Experiment show that the NCG satisfies DG2. We
explain in section 3.1 that participants in the NCG participate for
rewards. Experiment 2 had shown that the sequence output in
such cases met the criteria of being random except when everyone
kept choosing the same value. This is not a rational move on the
participant’s part, as the expected reward will be lower, as it will
be easier for other participants to predict that value. Randomness
is guaranteed if there is more than one reasonable participant.

Experiment 3
NCG takes on average 348.18 [s] to complete one contract, while

RBG takes 176.09 [s].While NCG takes longer than RBG to complete
one contract, the NCG generates 256 bits per contract, while RBG
generates 1 bit per contract. Given the time it takes to complete
one contract, NCG 348.18/256 = 1.3601 [s/bit]. The throughput of
NCG is 129 times faster than RBG, which achieves DG3.

5 DISCUSSION
The throughput of random number generation for the NCG frame-
work depends on the block creation period of Ethereum. This
is because we use solidity’s block.timestamp to get the time.
block.timestamp is a variable that returns the timestamp listed in
the latest block. As of 2022, one Ethereum block is generated ap-
proximately every 15 seconds. Since the acceptance period for both
hash and inputs can be no shorter than the block creation period
of Ethereum, the fastest a random number could be generated in
30 seconds. The acceptance time could be reduced if blocks were
generated in a shorter period, but this would negatively impact
the security of the Ethereum blockchain. If a function could obtain
UNIXTIME without trusting a third party, it would be possible to
generate many random numbers.

The experiments conducted in this paper compared the genera-
tion speed of both NCG and RBG when done with a single thread.
It would be possible to generate more random numbers if multiple
NCG contract programs were deployed. Comparison with other
methods, such as RBG under the condition that a single job can be
processed in parallel, has not yet been made.

This study assumes that one person can operate only one node.
We consider the incentive for a Sybil attack in which one person

8



Distributed Random Number Generation Method on Smart Contracts BIOTC 2022, July 8–10, 2022, Tokyo, Japan

creates and manipulates multiple nodes. The purposes of participa-
tion in NCG are reward and output value. Since NCG is a zero-sum
game where money moves among participating nodes, the expected
value of the Rд remains the same no matter how many nodes are
created. First, Rp is paid to each node that participates, a participant
will receive more reward based on the number of nodes created. In
addition, when someone manipulates nearly 90% of all participat-
ing nodes, an attack will happen according to the threat scenario
in Experiment 1. Hence, creating multiple nodes is advantageous
for both reward and output values. However, the probability that
more than 90% of the total number of nodes can be manipulated by
either making the output sequence non-random is relatively low.
We consider the probability of this attack. We suppose M = 16,
and there are only two people who create a large number of nodes
and wish to participate in NCG. The probability that either one
of them can manipulate more than 15 nodes in a game is 0.052%.
The probability of a successful attack is low, but it is still a threat.
Although it conflicts with anonymity, if there is a system in which
one person can create only one node with identity verification, the
likelihood of an attack occurring can be reduced.

6 RELATEDWORK
While not on smart contracts, multiple random beacon protocols
for distributed random number generation have been proposed in
previous works. We present three representative protocols.

Hydrand
Schindler proposes a new distributed random beacon protocol

based on Publicly Verifiable Secret Sharing (PVSS) [17]. They state
that it allows for continuous output without a trusted party, even
in the presence of an adversary. Specifically, it is divided into
proposal, approval, and voting phases. There is one leader who
broadcasts their data set. A given node will receive the data set,
sign it, and broadcast its shared values. That value determines
the beacon value. While existing PVSS-based methods reduce the
amount of communication to the cube of the number of nodes,
Hydrand reduced it to the square of the number of nodes.

RandPiper
Bhat proposes RandPiper, which enables efficient genera-

tion even with node turnover in communications where the
communication volume is quadratic [1]. They list the following
requirements for a random beacon: unpredictable and unbiased
output, optimal resilience, low communication overhead, efficient
node replacement, and use of an efficient cryptographic scheme.
They point out that existing research does not meet any of the listed
requirements. Furthermore, Hydrand argues that achieving better
communication complexity with minimal assumptions sacrifices
resilience. They design a resilient Byzantine fault-tolerant (BFT)
state machine replication (SMR) protocol to reduce communication
complexity while using efficient cryptography. Two random
beacon protocols, GRandPiper and BRandPiper, are created as
components of this protocol. GRandPiper uses PVSS and enables
efficient communication. However, since the output depends on the
leader, the output is predictable when the static adversary is the
leader. Using PVSS to achieve substantial unpredictability would

complicate communication, so another method was proposed.
BRandPiper uses improved VSS and its secret sharing isomorphism
to make it considerably less advantageous and predictable for the
adversary. However, the communication complexity is proportional
to the actual number of faults. Compared to the practical beacon
protocol DRand, the beacon generation speed is comparable, and
node replacement was efficient.

SPURT
Das rejects existing studies as either having incomplete security

guarantees, being viable only within limited settings, or having high
costs. They also state that BRandPiper is proportional to the cube
of the number of nodes in the worst case [4]. They state that their
proposed method, SPURT, provides secure results even if one-third
of the nodes in the network are malicious participants. They modify
the SMR protocol so that all nodes get beacons at approximately the
same time. Using the standard Decisional Bilinear Diffie-Hellman
assumption, there is no need to trust some parties. Furthermore,
by using PVSS, each node computes its value. These modifications
allow random beacon generations at a low cost in general and
critical security settings. As a result, they state that a network of
32 nodes can generate 84 beacons per minute, which is comparable
to other studies.

7 CONCLUSION
We propose a distributed pseudo-random number generator, NCG,
which can be run on Smart Contracts. Since it is impossible to
obtain arbitrary outputs in the NCG due to the use of hash func-
tions, participants aim to receive more score rewards in the game.
The more a participant’s choice is predicted by others, the lower
the expected value of the score reward. The game can incentivize
participants to choose a value at random, which is impossible in
the RBG game in existing research. The NIST random number test
verifies the high randomness of the output sequences, and the NCG
can achieve higher throughput than the RBG. Further improvement
of NCG is left for future study.

REFERENCES
[1] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.

2021. RandPiper - Reconfiguration-Friendly Random Beacons with Quadratic
Communication. In CCS ’21: 2021 ACM SIGSAC Conference on Computer and
Communications Security, Virtual Event, Republic of Korea, November 15 - 19, 2021,
Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi (Eds.). ACM, 3502–3524.
https://doi.org/10.1145/3460120.3484574

[2] Krishnendu Chatterjee, Amir Kafshdar Goharshady, and Arash Pourdamghani.
2019. Probabilistic Smart Contracts: Secure Randomness on the Blockchain. CoRR
abs/1902.07986 (2019). arXiv:1902.07986 http://arxiv.org/abs/1902.07986

[3] CryptoKitties. 2017. CryptoKitties. Retrieved April 23, 2022 from https://www.
cryptokitties.co/

[4] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2021. SPURT:
Scalable Distributed Randomness Beacon with Transparent Setup. IACR Cryptol.
ePrint Arch. (2021), 100. https://eprint.iacr.org/2021/100

[5] Chainlink Developers. 2022. Introduction to Chainlink VRF. Retrieved April 23,
2022 from https://docs.chain.link/docs/chainlink-vrf/

[6] Solidity developers. 2016. Solidity. Retrieved April 30, 2022 from https://docs.
soliditylang.org/en/v0.8.13/

[7] Farah Ferdaus, Bashir M. Sabquat Bahar Talukder, Mehdi Sadi, and Md. Tauhidur
Rahman. 2021. True Random Number Generation using Latency Variations of
Commercial MRAM Chips. In 22nd International Symposium on Quality Electronic
Design, ISQED 2021, Santa Clara, CA, USA, April 7-9, 2021. IEEE, 510–515. https:
//doi.org/10.1109/ISQED51717.2021.9424346

9

https://doi.org/10.1145/3460120.3484574
https://arxiv.org/abs/1902.07986
http://arxiv.org/abs/1902.07986
https://www.cryptokitties.co/
https://www.cryptokitties.co/
https://eprint.iacr.org/2021/100
https://docs.chain.link/docs/chainlink-vrf/
https://docs.soliditylang.org/en/v0.8.13/
https://docs.soliditylang.org/en/v0.8.13/
https://doi.org/10.1109/ISQED51717.2021.9424346
https://doi.org/10.1109/ISQED51717.2021.9424346


BIOTC 2022, July 8–10, 2022, Tokyo, Japan Kentaro Sako, Shiníchiro Matsuo, and Tatsuya Mori

[8] Viktor Fischer and Milos Drutarovský. 2002. True Random Number Generator
Embedded in Reconfigurable Hardware. In Cryptographic Hardware and Embed-
ded Systems - CHES 2002, 4th International Workshop, Redwood Shores, CA, USA,
August 13-15, 2002, Revised Papers (Lecture Notes in Computer Science, Vol. 2523),
Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar (Eds.). Springer, 415–430.
https://doi.org/10.1007/3-540-36400-5_30

[9] The go-ethereum Authors. 2013. Go Ethereum. Retrieved April 30, 2022 from
https://geth.ethereum.org/

[10] Makoto Matsumoto and Takuji Nishimura. 1998. Mersenne Twister: A 623-
Dimensionally Equidistributed Uniform Pseudo-Random Number Generator.
ACM Trans. Model. Comput. Simul. 8, 1 (1998), 3–30. https://doi.org/10.1145/
272991.272995

[11] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved
April 23, 2022 from https://bitcoin.org/bitcoin.pdf

[12] NIST. 2019. Interoperable Randomness Beacons. Retrieved April 23, 2022 from
https://csrc.nist.gov/projects/interoperable-randomness-beacons

[13] NIST. 2019. NIST Randomness Beacon (Version 2.0 Beta). Retrieved April 23,
2022 from https://beacon.nist.gov/home

[14] Charles W. O’Donnell, G. Edward Suh, and Srinivas Devadas. 2004. PUF-Based
Random Number Generation. Retrieved April 23, 2022 from http://people.csail.
mit.edu/cwo/publications/mit-csail-csg-481.pdf

[15] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, Elaine Barker, Stefan
Leigh, Mark Levenson, Mark Vangel, David Banks, Alan Heckert, James Dray,
and San Vo. 2010. A Statistical Test Suite for Random and Pseudorandom Number
Generators for Cryptographic Applications. Retrieved April 23, 2022 from https:
//nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf

[16] Kentaro Sako. 2022. N-choice game source code. Retrieved April 26, 2022 from
https://github.com/ksbowler/N-choice_game

[17] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl. 2020.
HydRand: Efficient Continuous Distributed Randomness. In 2020 IEEE Symposium
on Security and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE,
73–89. https://doi.org/10.1109/SP40000.2020.00003

10

https://doi.org/10.1007/3-540-36400-5_30
https://geth.ethereum.org/
https://doi.org/10.1145/272991.272995
https://doi.org/10.1145/272991.272995
https://bitcoin.org/bitcoin.pdf
https://csrc.nist.gov/projects/interoperable-randomness-beacons
https://beacon.nist.gov/home
http://people.csail.mit.edu/cwo/publications/mit-csail-csg-481.pdf
http://people.csail.mit.edu/cwo/publications/mit-csail-csg-481.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-22r1a.pdf
https://github.com/ksbowler/N-choice_game
https://doi.org/10.1109/SP40000.2020.00003

	Abstract
	1 Introduction
	2 Background
	2.1 Overview of the RBG framework RBG
	2.2 NIST randomness test

	3 N-choice Game
	3.1 Overview of NCG
	3.2 Incentive to choose a random value
	3.3 Requirements for parameters
	3.4 Proof-of-concept Implementation

	4 Evaluation
	4.1 Criteria to achieve the Design Goals
	4.2 Experiment method
	4.3 Results

	5 Discussion
	6 Related Work
	7 Conclusion
	References

