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Fundamental 

The following problem is considered: Given an undirected, connected graph G, find a spanning tree 
in G such that the sum of the lengths of the fundamental cycles (with respect to this tree) is minimum. 
This problem, besides being interesting in its own right, is useful in a variety of situations It is shown 
that this problem is NP-complete. A number of polynomial-time, heuristic algorithms which yield 
"good" suboptimal solutions are presented and their performances are discussed. Finally, it is shown 
that for regular graphs of order n the expected value of the total length of a minimum fundamental- 
cycle set does not exceed O(n2). 
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1. INTRODUCTION 

I n  g r a p h  ana lys i s ,  i t  is  o f t en  d e s i r a b l e  to  e x a m i n e  t h e  cycl ic  s t r u c t u r e  of  t h e  g iven  
g raph .  T h e  m o s t  c o m m o n l y  u s e d  m e t h o d  is to  g e n e r a t e  a se t  o f  f u n d a m e n t a l  
cycles .  A f u n d a m e n t a l - c y c l e  se t  is  u s e d  b y  a n  o rgan ic  c h e m i s t  i n t e r e s t e d  in  t h e  
cod ing  of  r ing  c o m p o u n d s  [16, 20]. A f u n d a m e n t a l - c y c l e  se t  can  a lso  be  u s e d  in  
d e t e r m i n i n g  t h e  i s o m o r p h i s m  of  g r a p h s  [2] a n d  in t h e  f r e q u e n c y  a n a l y s i s  o f  
c o m p u t e r  p r o g r a m s  [14]. I n  t h e  l i t e r a t u r e ,  a n u m b e r  o f  a l g o r i t h m s  h a v e  b e e n  
p r o p o s e d  a n d  i m p l e m e n t e d  for  g e n e r a t i n g  a se t  o f  f u n d a m e n t a l  cyc les  [3, 7, 8, 11, 
13, 15, 17, 18, 21, 22, 25]. 

I f  t h e  d a t a  s t r u c t u r e  is c h o s e n  carefu l ly ,  t h e  c o m p u t a t i o n a l  t i m e  c o m p l e x i t y  o f  
t h e  b e s t  o f  t h e s e  a l g o r i t h m s  t u r n s  o u t  to  be  
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[17, 18], where l, is the length of the ith fundamental cycle (in the generated set) 
and tt is the nullity of the given graph. (The nullity of a connected graph G with 
n vertices and e edges is/t -- e - n + 1.) A set of fundamental cycles of a graph 
with respect to a spanning tree is a set of those # cycles that contain exactly one 
nontree edge each. The total length of the fundamental-cycle set with respect to 
a spanning tree T in G, denoted as 

is, in general, dependent on T. For example, in a complete graph K .  of n vertices, 
the total length of fundamental cycles with respect to a Hamiltonian tree Th is 

n-2 1 n3 L(Th) -~ • i ( n -  i + 1) = ~ + O(n2), 

because there is 1 cycle of length n, 2 cycles of length (n - 1), 3 cycles of length 
(n - 2) . . . . .  and (n - 2) cycles of length 3, in K~. On the other hand, with respect 
to a star tree T~, in the same graph K~, the total length of fundamental cycles is 

(n - 1)(n - 2) 3 
L(T~) = 3.# = 3. ~- -  .n  2, 

2 2 

because each fundamental cycle is of length 3. Since the computation time for 
generating a set of fundamental cycles is of the order of the total length L, which 
in turn is dependent on T, it is interesting and useful to explore the possibility of 
obtaining an optimal spanning tree Tm,n in a given graph G such that L(T~,i,) -< 
L(T,)  for every spanning tree T, in G. If an algorithm to obtain such an optimal 
spanning tree is fast enough, it could be utilized in generating a set of fundamental 
cycles. 

This problem was first posed by Hubicka and Syslo [10]. (A related problem of 
determining a minimum-length cycle basis of a graph was first posed by Stepanec 
[19] and discussed further by Zykov [26]. It may be noted that every basis of the 
cycle subspace need not correspond to a spanning tree. That  is, every fundamen- 
tal-cycle set forms a cycle basis, but not every cycle basis is a fundamental-cycle 
set.) 

It has been recently conjectured [5] that generating such an optimal spanning 
tree Tm,, may be NP-hard. In Section 2 we prove that generating Tram is indeed 
NP-complete. In Section 3 we describe fast heuristic algorithms that generate 
suboptimal spanning trees (i.e., spanning trees T for which L ( T )  may not be 
minimum). In Section 4 we discuss the implementation of these heuristic algori- 
thms, and in Section 5 we compare their performances. In Section 6 we derive 
upper bounds on the expected length of the minimum-length fundamental-cycle 
set L(T~,,n), for certain "bad" classes of graphs. It is shown that this expected 
length is bounded by O(n2) for regular graphs of order n. This bound is consistent 
with the empirical observations made in Section 4 on a large number of randomly 
generated graphs. Section 7 consists of the concluding discussions and mention of 
further problems. 

The graph terminology used here is fairly standard and can be found in most 
textbooks on graph theory [3, 9]. We denote an undirected graph G -- (V, E), 
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where V is the set of vertices and E, the set of edges. Th e  cardinalities of sets V 
and E are denoted by n and e, respectively. For  terminology related to NP- 
completeness we refer the reader  to [1, 6, or 18]. 

2. GENERATING Tm,n IS NP-COMPLETE 

T h e  problem of finding a fundamental-cycle set with min imum total  length may  
be formally s tated as 

Instance: Graph G = (V, E), positive integer L. 
Question: Is there  a spanning t ree  T of G such tha t  the sum over the lengths of 

all fundamental  cycles of G with respect  to T is no more  than  L?  

We t ransform in polynomial  t ime an already known NP-complete  problem, 
namely,  the shortest  total-path-length spanning tree problem (STPLS) ,  to the 
minimum-length fundamental-cycle-set  problem. Th e  S T P L S  problem may  be 
formally s ta ted following Garey  and Johnson [6] as 

Instance: Graph G = (V, E), positive integer K. 
Question: Is there  a spanning t ree  T of G such tha t  the sum, over all pairs 

of vertices u, v E V, of the pa th  length in T from u to v is no more  
than  K?  

The  S T P L S  problem has been shown to be NP-comple te  by Johnson et al. 
[12]. We use this result  in proving tha t  generating T,~n is NP-complete .  

For  this purpose, we introduce the following definitions. 

Complete Chain. A complete chain between a pair of vertices u, v such tha t  
edge (u, v) ~ E is defined as a set of vertices ((u, v, 1), (u, v, 2) . . . .  , (u, v, n 4 - 1)} 
and a set of edges {(u, (u, v, 1)), ((u, v, 1), (u, v, 2)), . . . ,  ((u, v, n 4 - 1), v)} (see 
Figure 1). 

1-off Chain. A 1-off chain is obtained by  deleting exactly one edge from a 
complete chain. 

LEMMA. The shortest total-path-length spanning tree problem is polynomially 
transformable to the minimum-length fundamental-cycle-set problem. 

PROOF. Le t  G = (V, E) be a given undirected graph for which we wish to 
find the shortest  total-path-length spanning tree. Construct  another  graph H -- 
(V1, ED as follows: 

I71-- V U  ((u, v, i) [ (u, v) ~ E, i = l ,  2 . . . . .  n 4 - 1 }  

E1 = E U ((u, (u, v, 1))} U (((u, v, i), (u, v, i + 1))l 
i = 1, 2, . . . ,  n 4 - 2} U (((u, v, n 4 - 1), v)} 

for pairs u, v, not  in E. Let  G have n vertices and e edges and let r = [n(n - 1)/ 
2] - e, denote  the number  of vertex pairs (unordered) in G tha t  are not  joined by 
an edge. I t  is easy to see tha t  the number  of vertices in H is n + r .  (n 4 - 1) and 
the number  of edges in H is e + r .  n 4, since H is constructed from G by adding a 
complete chain between every pair of vertices u, v not  joined by an edge in G. 

We will now consider two different ways of constructing a spanning tree in 
graph H:  one is to pick an arbi t rary  spanning tree T in G and add 1-off chains to 
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G 

v ~ v  

~ )(U~, V, n 4 -  1) 

(u, v, 1) 

Fig 1. Comple te  cha in  added  be- 
tween u and  v of G. 

all pairs of vertices u, v of G such that (u, v) ~ E. Denote this spanning tree of H 
by T1. The other way is to directly find a spanning tree of H, say T2. 

Consider spanning tree T1. Considering the chords (i.e., nontree edges) of G 
with respect to 7'1 and the one missing edge of each 1-off chain that  forms 
fundamental cycles with respect to 7"1 in the newly constructed graph H, the total 
length of the fundamental-cycle set in H with respect to T1 is 

L ( T I )  = ~, (d ,o  + l )  + ~ (n 4+duo), 
(u,v)~E (u,v)CiiE 
(u,v)~T 

where d,v is the distance in T between u and v. 
Since the number of chords in the original graph G is e - n + i and the number 

of 1-off chains added to it is r, the above expression can be rewritten as 

L ( T ~ )  = ~ d , v  + ( e -  n + l )  + r . n  4 +  ~ d ,~ .  (1) 
(u,v)~ E (u,v)~E 
(u,v)~T 

Now, the total path length P in T (from which T~ is derived) between all pairs 
of vertices of G is 

P [(~,v)~E (u,o)eE (u,v)eT v] = 2  Z d~o+ Z d~o+ Z d~ . (2) 

(u,v)~.T 

Noting that ~¢,,o)eT d~o -- n - 1 and substituting eq. (2) in eq. (1), we get 

P 
L ( T ~ )  = ~  + r . n  4 +  ( e -  n + l )  - ( n - 1 ) .  

Now, in graph H let Te be a spanning tree that yields a set of fundamental 
cycles with minimum total length. Let us assume that 7'2 has q complete chains. 
We will show presently that q must be equal to zero. Let S be the total path 
length in T2 between all pairs of vertices of G. Proceeding in the same manner 
that was used to compute L(T~), we obtain L(T2), the length of the fundamental- 
cycle set with respect to T2. 

S 
L(T2) -- ~ + r ' . n  4 + (e - (n  - 1 - q))  - (n  - 1 - q)  - q . n  4 
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where 

r' - n (n  - 1) 
e - q .  

2 

Since by definition L(T2) <_ L(T1), we have 

S 
- +  r ' . n  4 + ( e -  ( n -  l - q ) )  - ( n -  l - q )  - q . n  4 
2 

P 
<_--+ r . n  4 + ( e -  n + l) - ( n - 1 ) .  

2 

On simplifying we obtain 

S <_ P + 4 . q . n  4 -  4.q.  (3) 

It can be verified--by computing a lower bound for S and by observing that  P is 
O(n3)--that the inequality (3) holds only if q -- 0. (The lower bound for S is 
computed by assuming that  the spanning tree giving rise to the lower bound has 
the q complete chains connected in star fashion in H. With this assumption it 
follows that S is at least 2 .q2 .n  4. For the case where q = 1, S is in fact at least 
2 .n 4 + 2.(n - 2)(n 4 + 1), and for the case where q = 2 

S > _ 8 . n  4 + 2 . ( n -  3)(n 4 + 1). 

For q > 2, S _> 2. q2. n 4, thereby proving our contention about inequality (3).) 
Thus T2 cannot have any complete chains, that is, q = 0. Hence eq. (3) yields 

S ___ P. From the construction of H it is easily seen that  this transformation can 
be done in polynomial time. Thus the STPLS problem is polynomially transform- 
able to the minimum-length fundamental-cycle-set problem. [] 

This implies that  if we can find in polynomial time a spanning tree that yields 
a set of fundamental cycles in H with minimum total length L(T2), then we can 
find a shortest total-path-length spanning tree in G in polynomial time as well. 
Moreover, it is easy to see that  the minimum-length fundamental-cycle-set 
problem is indeed in NP. Since the STPLS problem is known to be NP-complete 
[12], we have the following result. 

THEOREM. Find ing  a spanning  tree Tin,, in a graph  G that  yields a funda- 
mental-cycle set with m i n i m u m  total length is NP-complete.  

3. ALGORITHMS FOR GENERATING A SET OF FUNDAMENTAL CYCLES 

Since the computational time complexity of the best algorithms for generating a 
set of fundamental cycles of a graph is of the order of the total length L of the 
fundamental-cycle set [17, 18], an algorithm for a spanning tree corresponding to 
a minimum value for L could be used to generate a set of fundamental cycles 
(provided, of course, the cost of generating such a spanning tree itself is not too 
high). But we have just proved that  generating Tram is an NP-complete problem. 
Therefore, we must look for fast heuristic algorithms for generating a suboptimal 
spanning tree T, for which L(T) - L(Tmm) will hopefully be small. None of the 
algorithms proposed in the literature has dealt with the problem of generating a 
spanning tree T with a reasonably small value for L ( T )  - L(Tmm). 
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As is the case with many of the polynomially bounded graph-theoretic algori- 
thms, existing procedures for generating fundamental cycles can be classified into 
three groups, those utilizing (1) depth first search (DFS), (2) breadth first search 
(BFS), or (3) mixed search (MS) [4]. Tarjan's DFS method [23] inherently 
generates very long fundamental cycles. It is easy to verify that when applied to 
complete graph K~ the total length of the fundamental-cycle set will be O(n 3) 
[18]. Paton's mixed search method [7, 17] does better than the DFS method on 
the average, but for a worst case input it would also produce total length of O(na). 
An example of such a graph is given by Paton [17]. Since, in general, a BFS 
through a graph produces spanning trees of short diameters, the BFS method on 
the average generates fundamental cycles of shorter total length than either of 
the other two methods [5, 11]. Hence, all the heuristic algorithms considered in 
this paper employ a breadth first search through the given graph. These heuristic 
algorithms deviate from general breadth first search--the deviation lies in the 
criteria used to select a new vertex to explore from. Whenever the partial tree is 
to be extended, the new vertex to be explored from is not the "oldest" unexplored 
vertex as in a straightforward BFS but is selected according to some function of 
the degrees of the vertices. To the best of our knowledge, none of the heuristic 
algorithms proposed here have been implemented or tested earlier. The central 
idea of each of our heuristic algorithms now follows. 

3.1 Static Degree Sort (SDS) 

The given graph G is represented as an adjacency matrix. First the rows and 
columns of the adjacency matrix are reordered in descending order of the degrees 
of the corresponding vertices. Then the spanning tree is generated in a straight- 
forward breadth first fashion. The first vertex explored from is vertex 1, which is 
the vertex with highest degree. Whenever a new vertex is considered, it is the one 
with the highest degree among the successors of the oldest vertex explored from 
(and not necessarily the vertex with the highest degree among those that are 
already present in the partial tree}. 

3.2 Dynamic Degree Selection (DDS) 

The difference between DDS and SDS lies in the criteria used for selecting a new 
vertex to explore from. Whenever a new vertex is considered, it is a vertex of 
highest degree among all the vertices that are already present in the partial tree. 

3.3 "Unexplored" Edges (UE) 

As vertices are explored from, their degrees are thought of as getting depleted; 
therefore every vertex in the partial tree has a degree with respect to "unexplored" 
edges that is smaller than its degree in the original graph. In this heuristic, a new 
vertex considered is a vertex of highest degree in the partial tree, the degree being 
measured with respect to "unexplored" edges. 

3.4 Multipoint Breadth First Search (MBFS) 

Unlike the preceding three heuristic algorithms, where the new vertex is selected 
from vertices already in the partial tree, here we always explore from the vertex 
of highest degree, building a forest as we go along. We maintain the vertices 
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belonging to different subtrees of the forest as sets. As in any spanning tree 
generation algorithm, if both end vertices of a new edge belong to the same set, 
we treat that edge as a chord; otherwise we treat that edge as a tree edge and 
merge two subtrees. Edges of G are chosen in descending order of degrees of their 
end vertices. 

4. IMPLEMENTATION OF THE ALGORITHMS 

The four heuristic algorithms, namely, SDS, DDS, UE, and MBFS, were imple- 
mented in PASCAL, and a performance study was conducted on a PDP-11/60. 
For comparison we also implemented an algorithm (BF) which generates a 
spanning tree by doing a straightforward breadth first search of the graph and 
uses this BFS spanning tree to generate a set of fundamental cycles. Results of 
the performance of all five of these algorithms axe summarized in Tables I-V. 
The data in these tables are also shown in graphical form in Figures 2 and 3. An 
entry in a table produced for an algorithm was generated as follows: for each 
specified n (number of vertices) and edge density p, 20 random graphs were 
generated. The values of L and t shown are the total length of the fundamental- 
cycle set, and the running time (in seconds), respectively, averaged over the 20 
graphs for each case. 

A plot of log L versus log n is shown in Figure 2. To avoid cluttering the plot, 
we have shown the plot for UE and MBFS for edge densities of 0.5 and 1.0 only. 
This plot suggests that L increases monotonically with edge density. The variation 
of log L against log n is found to be a straight line with a slope that is slightly 
larger than 2, and this leads us to suspect that L is O(n2). Since our algorithms 
are suboptimal (as discussed in Section 5), we have reason to believe that L(Tm,,) 
is no larger than O(n2). Our suspicion is strengthened by the fact that in each 
case the value of L reported for a complete graph (i.e., a graph with edge density 
= 1.0) turns out to be exactly ~(n - 1)(n - 2), which is O(n 2) and corresponds to 
a star spanning tree. The reason the slopes of the straight lines for log L against 
log n are slightly larger than 2 and not exactly 2 could be due to a multiplicative 
constant. It might turn out that L = O(k. n 2) for some k, and this factor would 
explain why the slopes are larger than 2. 

Our empirical results seem to indicate that for randomly generated graphs UE 
yields the lowest value for L and BF yields the highest value for L. Hence one 
might want to conclude that UE will always yield a lower value for L than the 
other algorithms. However, an example in Section 5 illustrates that UE cannot 
be considered "best" (for computing the lowest value for L) for all graphs. 

A plot of log t versus log n (with t expressed in milliseconds) is given in Figure 
3. Here again to avoid cluttering we only consider algorithms UE and MBFS for 
an edge density of 0.5. In this plot also the variation of log t against log n is a 
straight line with a slope slightly larger than 2 (for the same reason as given 
above) implying that the time complexity of our algorithms is O(n2). 

5. PERFORMANCE OF THE ALGORITHMS 

From the empirical results obtained in Section 4 for the mean value of the 
fundamental-cycle-set length L, one might conclude that UE always yields a 
lower value for L than the other four. This is not always the case, however. There 
ACM TransacUons on Mathemat ica l  Software, Vol 8, No. 1, March  1982 
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are classes of graphs for which MBFS yields a lower value for L than the others. 
One such graph is shown in Figure 4. 

It may also be observed from the empirical results that SDS runs faster than 
BF, and MBFS runs faster than BF for graphs with edge densities less than 0.7. 
This is partly due to the fact that the computation time in generating a set of 
fundamental cycles is dependent on L, and algorithms that achieve a lower value 
for L will also run faster than algorithms that do not. However, our empirical 
results indicate that both DDS and UE achieve lower values for L than SDS and 
MBFS, but  they spend more time in doing this {because of the overhead involved 
in more complex operations). Hence, we recommend the following: 

(a) For graphs with edge densities _<0.6, MBFS should be used, since it takes the 
least time among all the algorithms that were tried. 

(b) For the same reason, on graphs with edge densities >0.6, SDS should be used. 

We have proved in Section 2 that generating Tm,n is NP-complete. For the sake 
of completeness, we now give an example to show that none of our heuristic 
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algorithms yields an optimal solution. For the graph in Figure 5, the minimum 
value for L is 19, corresponding to the Tin,. shown in bold lines. Using UE and 
exploring from the vertices in the order a, e, b, we find L to be 20. Using DDS, 
SDS, and MBFS, and exploring from the vertices in the order a, b, d, e, we find 
L to be 21. 

Therefore, all four algorithms are only suboptimal. 
All the algorithms we have discussed use some form of breadth first search in 

which a new vertex to be explored from is selected by some criteria involving the 
degrees of the vertices and not any other property of the graph. Our empirical 
results show that for graphs with up to 50 vertices, these heuristics yield a value 
for L that is O(n2). It would be interesting to explore whether this is also the case 
for larger graphs. Such an analysis is carried out in the next section. 

6. BOUND ON THE EXPECTED VALUE OF L(Tm,.) 
Though generating an arbitrary spanning tree of a given graph takes only linear 
time in the number of vertices and edges, generating a fundamental set of cycles 
requires time proportional to the total length L of the fundamental-cycle set 
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[5]. Therefore, it is of considerable interest to establish some tight bound on the 
length L(Tm,n) of a minimal fundamental-cycle set for an arbitrary connected 
graph. 

In a graph of order n the length of a cycle is at most n. The total number of 
fundamental cycles in a connected graph (with n vertices and e edges) is its nul- 
lity # ffi e - n + 1. Therefore an obvious worst case bound on L is n(e - n + 1) 
or O(n3). What is interesting, however (as Section 5 indicates), is that  this bound 
on L(Tmm) may actually be O(n2). This is because (loosely speaking) graphs 
that  have fundamental cycles with length O(n) seem to have fewer of them 
(sparse graphs), whereas graphs in which the number of fundamental cycles is 
O(n 2) seem to have the length of these cycles bounded by a constant. Although 
we were unable to prove this bound of O(n 2) for L(Tm,n) in general, the following 
probabflistic analysis shows that  the expected bound on L generated by a BFS is 
O(n2), at least for certain "bad" classes of graphs. Since in all our heuristic 
algorithms the next vertex to explore from is selected on the basis of the degree, 
regular graphs prevent us from exploiting the degree distribution. Thus regular 
graphs are, in some sense, "bad" inputs to these algorithms. Therefore we are 
justified in considering only the class of regular graphs for analysis in this section. 

Consider a large graph G with n vertices and e edges. Let the graph be random 
in the sense that  the occurrence of an edge between any distinct vertex pair is 
equally likely. Let p be the probability of occurrence of an edge (i, j)  for all 1 _ 
i <_ n, 1 <_j <_ n and i # j .  Then q = (1 - p) is the probability that there is no edge 
ACM Transactmns on Mathematical Software, Vol 8, No I, March 1982 
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Level 1 

bl b2 b3 b d 

Figure 6. 

between vertex i and vertex j. For more detailed properties of such graphs and 
BFS on them one should refer to Tinhofer [24, chap. 1]. 

Since all vertices have identical degrees, any of n vertices in G can be chosen 
as the starting vertex, that  is, the root of the BFS tree. So there is one vertex at 
level 0 of the BFS tree. After exploring from this vertex, the expected number of 
vertices at level 1 is p ( n  - 1). The BFS tree at this stage is as shown in Figure 6. 

Since G is regular of degree d = p ( n  - 1), we can choose any vertex at level 1 
as the next vertex to explore from. Let us arbitrarily choose bl as the next vertex 
to explore from. Vertex b~ has (d - 1) vertices to choose from as adjacent ones at 
level 1, so the expected number of edges incident on b~ and at level I i sp(d  - 1). 
These edges are all chords, since they connect vertices already in the tree. The 
remaining ( 1  - p ) ( d  - 1) edges are tree edges and must lead to new vertices at 
level 2. 

We choose b2 as the next vertex to be explored from. The expected number of 
chords from b2 at level i is also 

p ( d -  1). 

The expected number of chords from b2 to the descendants of bl at level 2 is 

p(1 - p ) ( d  - 1). 

Since the degree of b2 is d, the expected number of tree edges from b2 leading 
to new vertices at level 2 is 

(1 - p ) 2 ( d  - 1). 

We choose b3 as the next vertex to be explored from. The expected number of 
chords from b3 at level i is 

p ( d -  1). 

The expected number of chords from b~ to the descendants of bl and b2 at level 
2 is 

p(1 - p ) ( d  - 1) + p(1 - p ) 2 ( d  - 1). 

Since the degree of b3 is d, the expected number of tree edges from b3 leading 
to new vertices at level 2 is 

( 1  - p ) Z ( d  - 1 ) .  

Proceeding in this fashion, the expected number of vertices at level 2, 

d ( d -  1) (1 - p )  (1 - (1 _ p ) d )  
n~ = ( d -  1) ~ (1 -p)kff i  (4) 

*-~ P 
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The chords at level 1 form fundamental cycles of length 3, and the expected 
number of such cycles is 

p . d .  ( d -  1) (5) 
2 

The chords from level 1 to level 2 form fundamental cycles of length 4, and the 
expected number of such cycles is 

d--1 

( d - k )  . p .  ( 1 - p ) k .  ( d - l ) .  (6) 
k-1  

Exploring from vertices at level 2, we find that the expected number of funda- 
mental cycles of length 3 at level 2 is 

p . n 2 .  ( n 2 - 1 )  p2 (7) 
2 

(the p2 factor arises because a fundamental cycle is of length 3 at level 2 only if 
both the end vertices of the chord at level 2 have a common parent at level 1). 

Similarly, the expected number of fundamental cycles of length 5 at level 2 is 

p . n 2 .  ( n 2 - 1 )  
• (1 _p2 ) .  (8) 

2 

We proceed in this fashion exploring from vertices level by level until there are 
no more vertices to be explored. We wish to determine the expected value of L 
generated by the heuristic algorithms described earlier. 

For graphs with p = 1 the tree generated is the star tree with all fundamental 
cycles of length 3; so 

L p - i = 3 .  ( n - l )  (n-2)____3.n2" 
2 2 

As the analysis of the expected length becomes complicated for an arbitrary value 
of p, we compute it for two more values of p: p = ½ a n d p  -- ¼. These turn out to 
be 

Lp.1/2 ~_ ~ n2 + O(n) and L,.i/4 ~ 3 n2 + O(n). 

Thus for regular random graphs of densities 1, ½, and ¼, the expected value for 
3 O u r  L(T), where T is an arbitrary BFS spanning tree, is kn 2, where 0 < k _< 7- 

empirical observation on L (Tables I-V and Figure 2) shows that the average 
value of L increases monotonically with density, for random graphs of all sizes for 
each one of our algorithms. We therefore venture the conjecture that L(Tmm) is 
bounded by O(n2). More specifically, L(T,~n) < _3. n 2. It seems that although the 2 
nullity # of an n-vertex graph can be as high as O(n2), only a fixed number of 
fundamental cycles (with respect to Tram) can have lengths that are proportional 
to n, thus making the bound for L(Tmm) O(n 2) and not O(n3). 

7. CONCLUSIONS 

The computational time complexity of the best known algorithms for generating 
a set of fundamental cycles is of the order of the total length L of the set of 
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fundamental cycles. Hence algorithms that strive to minimize this length could 
prove more efficient in generating a set of fundamental cycles, provided, of course, 
that the overhead involved in doing this is not too high. We have shown here 
that  it is not worth the effort to obtain the absolute minimum fundamental-cycle 
set, because it turns out to be an NP-complete problem. 

We have, however, proposed some fast heuristic algorithms to obtain the 
suboptimal solutions. Two of these, SDS and MBFS, are recommended in 
particular, on the basis of our empirical studies. Both of these are faster than the 
straightforward BFS generation and in general produce smaller values for L. 

All our algorithms are based on breadth first search, where a new vertex to 
explore from is selected on some criteria based on the degrees of the vertices. It 
would be useful to consider other heuristic approaches for efficiently generating 
a set of fundamental cycles based on some other property of the graph. 

An analysis to establish a tight upper bound on L(Tm,n) for a worst case input 
for our algorithms was attempted. Although we were unable to establish such a 
bound on L(Tmm), we did show the expected value ofL(T')  (T' being a suboptimal 
spanning tree) to be O(n2)--analytically for regular graphs and empirically for 
random graphs. This suggests, but in no way proves, that  O(n 2) is the lower 
bound for generating a set of fundamental cycles for a worst case graph. The 

3 n 2 is suggested for further investigation proof of our conjecture that L(Tm,,) _< ~ • 
in this area. An analytic proof of the conjecture that L(Tmi,) increases monoton- 
ically with edge density of the graph will be an even stronger result. 
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