
An Improved Algorithm for Computing
the Singular Value Decomposition
TONY F. CHAN

Yale University

The most well-known and widely used algorithm for computing the Singular Value Decomposition
(SVD) A --- U ~ V T of an m x n rectangular matrix A is the Golub-Reinsch algorithm (GR-SVD). In
this paper, an improved version of the original GR-SVD algorithm is presented. The new algorithm
works best for matrices with m >> n, but is more efficient even when m is only slightly greater than
n (usually when m ~ 2n) and in some cases can achieve as much as 50 percent savings. If the matrix
U ~s exphcltly desired, then n 2 extra storage locations are required, but otherwise no extra storage is
needed. The two main modifications are: (1) first triangularizing A by Householder transformations
before bldmgonahzing it (thin idea seems to be widely known among some researchers in the field, but
as far as can be determined, neither a detailed analysis nor an lmplementatmn has been published
before), and (2) accumulating the left Givens transformations in GR-SVD on an n x n array instead
of on an m x n array. A PFORT-verified FORTRAN Implementation m included. Comparisons with
the EISPACK SVD routine are given.

Categories and Subject Descriptors" G.1.3 [Numer ica l Analys is] : Numerical Linear Algebra--
e~genvalues

General Terms: Algorithms, Performance

Additional Key Words and Phrases Householder transformations, singular values

The Algorithm. An Improved Algorithm for Computing the Singular Value Decomposition. ACM
Trans. Math. Softw. 8, 1 (Mar. 1982), 84-88.

1. INTRODUCTION

Let A be a real m x n matrix, with m _> n. I t is well known [5, 6] that the following
d e c o m p o s i t i o n o f A a l w a y s ex i s t s :

A = U X V T, (1.1)

w h e r e U is a n m × n m a t r i x a n d c o n s i s t s o f n o r t h o n o r m a l i z e d e i g e n v e c t o r s

a s s o c i a t e d w i t h t h e n l a r g e s t e i g e n v a l u e o f A A T, V is a n n × n m a t r i x a n d c o n s i s t s

o f t h e o r t h o n o r m a l i z e d e i g e n v e c t o r s o f A T A , a n d 5] i s a d i a g o n a l m a t r i x c o n s i s t i n g

This work was supported by NSF Grant DCR 75-13497 and NASA Ames Contract NCA 2-OR745-
520. The computing time was provided by the Stanford Linear Accelerator Center (SLAC).
Author 's address: Department of Computer Scmnce, Yale University, 10 Hfllhouse Avenue, P.O. Box
2158 Yale Station, New Haven, CT 06520.
Permission to copy without fee all or part of thin matetaal is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery To copy otherwme, or to republish, requires a fee and/or specific
permission.
© 1982 ACM 0098-3500/82/0300-0072 $00.75

ACM Transactions on Mathematmal Software, Vol. 8, No. 1, March 1982, Pages 72-83

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355984.355990&domain=pdf&date_stamp=1982-03-01

Improved Algorithm for Computing the Singular Value Decomposition . 73

of the "singular values" of A, which are the nonnegative square roots of the
eigenvalues of ATA.

Thus,
u T u - ~ - v T v = V V T = In

and

Z = diag(o~ On). (1.2)

It is usually assumed for convenience that

O] > - - ~ O2 > = . . . > - ~ O n > ~ 0 .

The decomposition (1.1) is called the Singular Value Decomposition (SVD) of
A.

Remarks

(1) If rank(A) = r, then or+l = or+2 On - ~ " O.
(2) There is no loss of generality in assuming that m _ n, for if m < n, then we

can instead compute the SVD of A T. If the SVD of A T is equal to UZV T,
then the SVD of A is equal to V~U T.

The SVD plays a very important role in linear algebra. It has applications in
such areas as least squares problems [5, 6, 11], in computing the pseudoinverse
[6], in computing the Jordan canonical form [7], in solving integral equations [9],
in digital image processing [1], and in optimization [2]. Many of the applications
often involve large matrices. It is therefore important that the computational
procedures for obtaining the SVD be as efficient as possible.

2. THE GOLUB-REINSCH ALGORITHM (GR-SVD)

We use the same notations as in [5] and [3].
This algorithm consists of two phases. In the first phase one constructs two

finite sequences of Householder transformations

p(k), k -- 1, 2 n

and

such that
Q(k), k = l , 2 , . . . , n - 2 ,

p(n) . . . p(1)AQ(l).." Q (n - 2) ____

n

x x
0

0
x x

0

n

= j (0) , (2 . 1)

(m - n)

an upper bidiagonal matrix. Specifically, P(') zeros out the subdiagonal elements
in column i and Q(J) zeros out the appropriate elements in row j.

ACM Transact ions on Mathematmal Software, Vol. 8, No. 1, March 1982

74 Tony F. Chan

Because all the t ransformations introduced are orthogonal, the singular values
of j(o) are the same as those of A. Thus, if

is the SVD of j(o~, then

so tha t

with

j(o) = G]EH T

A = P G ~ . H T Q T

U = P G , V ffi Q H (2.2)

p = p(1) . . . p(n), Q = Q(1) . . . Q(n-2).

T h e second phase is to i teratively diagonalize j(0) by the QR me thod so tha t

j(o) __. j (i) _ _ __) ~, (2.3)

where

j (,+l) = (S(,))Tj.~T(,).

where S (') and T (') are products of Givens t ransformations and are therefore
orthogonal.

T h e matr ices T (') are chosen so tha t the sequence M (') = (j(,))Tj(O converges
to a diagonal matrix, while the matr ices S (') are chosen so tha t all J(') are of
bidiagonal form. T h e products of the T (') and the S (° are exactly the matr ices H T
and G T, respectively, in eq. (2.2). For more details, see [5].

I t has been repor ted in [5] tha t the average number of i terations on J(') in (2.3)
is usually less than 2n. In o ther words, j(2,) in eq. (2.3) is usually a good
approximation to a diagonal matrix.

We briefly describe how the computa t ion is usually implemented. Assume for
simplicity tha t we can destroy A and re turn U in the storage for A. In the first
phase the p(0 are stored in the lower par t of A, and the Q(') are s tored in the
upper tr iangular par t of A. After the bidiagonalization the Q (') are accumulated
in the storage provided for V, the two diagonals of j(o) are copied to two other
l inear arrays, and the P(') are accumulated in A.

In the second phase, for each i,

S (') is applied to P from the right, and

(T(°) w is applied to Q T from the left

in order to accumulate the transformations.

3. THE MODIFIED ALGORITHM (MOD-SVD)

Our original mot ivat ion for th is algori thm is to f ind an improvement of GR-SVD
when rn >> n. In tha t case two improvements are possible:

(1) In eq. (2.1), each of the t ransformations P(') and Q") has to be applied to a
submatr ix of size (m - ~ + 1) × (n - i + 1) (see Figure 1). Now, since most entries
of this submatrix are ul t imately going to be zeros, it is intuitive tha t i f it can

ACM Transact ions on Mathematmal Software, Vol 8, No. 1, March 1982

Improved Algorithm for Computing the Singular Value Decomposition * 75

m

n

A

n - ~ + l
A

- m - i + l

Fig. 1. P(') and Q(') affect the shaded portion of the matrix.

somehow be arranged that the Q(') does not have to be applied to the subdiagonal
part of this submatrix, then we will be saving a great amount of work when
m>>n.

This can indeed be done by first transforming A into upper triangular form by
Householder transformations on the left:

where R is n x n upper triangular and L is orthogonal, and then proceed to
bidiagonalize R. The important difference is that this time we will be working
with a much smaller matrix, R, than A (if n 2 << ran), and so it is conceivable that
the work required to bidiagonalize R is much less than that originally done by
the right transformations when m >> n.

The question still remains as to how to bidiagonalize R. An obvious way is to
treat R as an input matrix to GR-SVD, using alternating left and right House-
holder transformations. In fact, it can be easily verified that if the SVD of R is
equal to X~ yT, then the SVD of A is given by

We can identify U with L[X/O] and V with Y. Notice that in order to obtain U,
we have to form the extra product L[X/O]. If U is not needed explicitly (e.g., in
least squares), then we do not have to accumulate any left transformations, and
in that case, for m _ n, it seems likely that we will make a substantial saving.

ACM Transactlons on Mathematwal Software, Vol. 8, No. I, March 1982.

76 • Tony F. Chan

It is also possible to take advantage of the structure of R to bidiagonalize it.
This is discussed in Section 4.

(2) The second improvement of GR-SVD that can be made is the following: In
GR-SVD, if U is wanted explicitly, each of the S (') is applied to the m × n matrix
P from the right to accumulate U. If m >> n, then this accumulation may involve
a large amount of work, because a single Givens transformation affects two
columns of P (of length m) and each S (') is the product of on the average n / 2

Givens transformations. Therefore, in such cases it would seem more efficient to
first accumulate all S (') on an n × n array, say Z, and later form the matrix
product P Z after J('~ has converged to ~.

In essence, improvement (1) works best when U is not needed, improvement
(2) works best when U is needed, and both work best when m >> n. These
improvements are both incorporated in the following modified GR-SVD algo-
rithm:

M O D - S V D

(1) LT[A] --,, [R/0] where R is n × n upper triangular.
(2) Find the SVD of R by GR-SVD, R = X ~ Y w.
(3) Form A -- L [X / O] Z Y T, the SVD of A.

The idea of transforming A to upper triangular form when m >> n and then
calculating the SVD of R is mentioned in Lawson and Hanson [11, pp. 119 and
122] in the context of least squares problems where U is not explicitly required.

4. SOME COMPUTATIONAL DETAILS

(1) As in most GR-SVD implementations, the input matrix A is first copied
into the array U. Thereafter, the array A is never referenced and all operations
are performed on the array U. It should be obvious that when U is not needed,
MOD-SVD does not require any extra storage. When U is needed, we can store
L w in the lower part of array U, copy R into another n x n array Z, and ask GR-
SVD to return X in Z. Therefore we need at most n 2 extra storage locations (array
Z), which is relatively small (when rn >> n) compared to m n locations already
needed for array U.

(2) The next question is how to form L [X / O] without using extra storage. This
can be done by noting that

so we can first accumulate L[/ /0] in the space provided for U in place, and then
do a matrix multiplication by X.

Another possibility is to actually accumulate the Householder transformations
L on [X/0]. With the usual implementation, this requires m n instead of n 2 extra
storage locations, but slightly less work (2ran 2 - n 3 versus 2ran 2 - n 3 / 3 multipli-
cations). Our current implementation uses the first method. A potential improve-
ment has been suggested by Kauffman [10].

(3) The question arises whether it is possible to bidiagonalize R in a way that
takes advantage of the zeros that are already in R. The usual Householder
transformations cannot take advantage of this structure. One way is to use Givens
ACM Transactions on Mathematmal Software, Vol 8, No. 1, March 1982

Improved Algorithm for Cemputing the Singular Value Decomposition • 77

First rotat ion in t roduces
nonzero e lement here "~ ~ ~ • • M

--," ,~ ~

_ , ;

_

First rotat ion to zero
)~ ou t t he (1, 5) e l ement

Second rotat ion to zero out the (2, 1)
e l ement in t roduced by the first ro ta t ion

Figure 2

transformations to zero out the elements at the upper right-hand corner of R, one
column or one row at a time. Pictorially (for n ffi 5), to zero out the {1, 5) element,
we do two Givens transformations, as shown in Figure 2.

It turns out, however, by simple counting and verification by experiments, that
this method takes about the same operations (4n3/3 multiplications) as the
previous method to bidiagonalize R, provided that we do not have to accumulate
transformations. If we do need to accumulate either the left or right transforma-
tions, then this method will require more work (4n 3 versus 4n~/3 multiplications),
mainly because it requires two rotations to zero out each element and these
rotations have to be accumulated.

So it seems that taking advantage of the zero structure of R in this fashion
actually makes the method less efficient. We have to note, however, that Givens
transformations involve fewer additions and array accesses than Householder
transformations per multiplication (see Section 5). Therefore this method may
turn out to be more competitive on modern computers where the time taken for
floating-point additions and multidimensional array indexings are not negligible
compared to that for multiplications. Also, the use of fast Givens [4] may result
in substantial improvement in efficiency.

5. OPERATION COUNTS

In Section 3 we indicated that MOD-SVD should be more efficient than GR-
SVD when m >> n. In this section we study the relative efficiency between GR-
SVD and MOD-SVD as a function of m and n. We do this by computing the
asymptotic operation counts for each algorithm.

In the following operation counts, we only keep the highest order terms in m
and n, and so the results are correct for relatively large m and n.

GR-SVD

(1) Bidiagonalization {using Householder transformations)
j = p(,) . . . p(1)AQ(~) . . . Q(,-2) 2(ran 2 - n3/3) mult.

ACM Transactions on Mathematical Software, Vol. 8, No. 1, March 1982

78 • Tony F. Chan

accumulate P ffi p t l } . . . p t , } m n 2 _ n 3 / 3

accumulate Q ffi Qtl} . . . Qt,-2} 2n3/3
(2) D i a g o n a l i z a t i o n (using Givens transformations)

accumulate S ~'} on P C m n 2 (C -- 4) mult.
accumulate T t'} on Q C n 3 (C ffi 4) mult.

M O D - S V D

(1) T r i a n g u l a r i z a t i o n (using Householder transformations)
LT[A] --* [R / O]

(2) GR-SVD of R , R ~- X ~ , Y w

(3) Form L [U O] X (using Householder
transformations)

Some comments are in order:

mult.
mult.

(1) The entries C m n 2 and C n a in the diagonalization phase of GR-SVD are
obtained by assuming that the iterative phase of the SVD takes on the average
two complete QR iterations per singular value [5], [11, p. 122]. We have checked
this experimentally and found it to be quite accurate. It is assumed that slow
Givens is used throughout the calculation. If fast Givens [4] had been used, then
the entries would become approximately 2 m n 2 and 2n 3, instead.

(2) As with most operation counts, we have used the number of multiplications
as a measure of work. For the Householder transformations, each multiplication
also invokes one addition and approximately two array addressings. For the
Givens transformations, each multiplication invokes one-half an addition and one
array addressing. On many large computers today, a floating-point multiplication
is not much slower than a floating-point addition. Also, array indexing (involving
integer arithmetic) is usually quite expensive. In such cases, a Householder
multiplication actually involves more work than a Givens multiplication because
of the extra additions and array indexings. Therefore, the operation counts given
for the diagonalization phase of GR-SVD may be misleading because it may
actually involve relatively less work. The total effect, however, can be accounted
for by using a smaller value for C. For example, if one Givens "multiplication"
takes half the work needed by a Householder "multiplication," then the effect on
the r e l a t i v e efficiency can be accounted for by setting C ffi 2 instead of C -- 4. On
older or nonscientific machines where multiplications take much more time than
additions and array addressings, the operation count based on multiplications
alone is usually a good measure of relative efficiency.

(3) The application of S (')w and T (') on J(') is actually of order O(n 2) and is
therefore not included in the previous counts.

(4) We have to distinguish between four cases in the comparison:

Case a: Both U and V are required explicitly.
Case b: Only U is required explicitly.
Case c: Only V is required explicitly.
Case d: Only ~ is required explicitly.

ACM Transactions on Mathematical Software, Vol 8, No l, March 1982

m n 2 - n 3 / 3 mult.
depends on whether
accumulations are needed
2 m n 2 - n 3 / 3 mult.

Improved Algorithm for Computing the Singular Value Decomposition

Table I. Total Operation Counts of GR-SVD and MON-SVD for
Each of the Cases a, b, c, and d

Case GR-S VD M O D - S V D

a (3 + C) m n 2 + (C - 1/3)n '~ 3 m n 2 + (2C + 2)n ~
b (3 + C) m n 2 - n 'j 3ran e + (C + 4 /3)n 3
c 2 m n 2 + Cn ~ m n 2 + (C + 5/3)n 3
d 2 m n 2 - 2n'~/3 m n 2 + n 3

Table II. Rat io of Operat ion C oun t of M O D - S V D to t ha t of GR-SVD, r = m / n

Crossover point h m i t as
Case Rat io ~* r --) o0

a [3r + (2C + 2)]/[(3 + C)r + (C - 1/3)] (C + 7 / 3) / C 3/(3 + C)
b [3r + (C + 4/3)] / [(3 + C) r - 1] (C + 7 / 3) / C 3/(3 + C)
c [r + (C + 5 / 3)] / [2 r + CI 5/3 1/2
d [r + 1]/[2r - 2/3] 5/3 1/2

• 7 9

These four cases do arise in applications. We will ment ion a few here:

Case a arises in the computat ion of pseudoinverse [5].
Case b is Case c for A w.
Case c arises in least squares applications [5, 11] and in the solution of homoge-

neous linear equations [5].
Case d arises in the est imation of the condition number of a matr ix and in the

determinat ion of the rank of a matr ix [13].

The total operat ion count for each case is given in Table I.
Using Table I, we can compute the ratio of the operat ion counts of MOD-SVD

to tha t of GR-SVD for each of the four cases. The results are given in Table II,
where the ratio is expressed as a function of r = m / n . These ratios are plot ted in
Figure 3a-d for C = 2, 3, 4. The crossover point r* is the value of r t ha t makes the
ratio equal to 1. If r > r*, then MOD-SVD is more efficient t han GR-SVD. We
see that , in all four cases, MOD-SVD becomes more efficient than GR-SVD when
r starts to get bigger than 2, approximately, and the savings can be as much as 50
percent when r is about 10. On the other hand, when r is about 1, GR-SVD is
more efficient. This agrees with our earlier conjectures. However, the impor tan t
thing is tha t all the ratios decrease quite fast as r becomes large. I f we assume
tha t it is equally likely to encounter matrices with any value of r > - - 1 (this is not
an unreasonable assumption for designers of general mathemat ica l software, for
example), then MOD-SVD is obviously preferable. In any case, these ratios give
indications as to when one of the methods is more efficient, at least when m and
n are large enough so that o u r operat ion counts apply.

In the context of least squares applications, we can also compare the operat ion
counts of GR-SVD and MOD-SVD to those of the orthogonal triangularization
methods (OTLS) [8], which are often used for such problems. Analogous to Table
I, the ratios of operat ion counts are now

OTLS: GR-SVD = [r - 1 / 3] / [2 r + C]

OTLS: MOD-SVD = [r - 1 / 3] / [r + C + 5/3].

ACM TransacUons on Mathematical Software, VoL 8, No. 1, March 1982

C'! 0"! 9"0 9"0
OIl~

oo//

O

0 '7 8 "0 9' 0
Ollg~

o

o
"u;

v;

o

o

¢:)

o
-K

a

c~

-,d

o

~,'0 8"!

0 0~ /

_f
0-'~1 9 '0 9:0

0 I.T.Ua

O I

E]

r'
0"7! 9:0 9 "J0

0IJ.U~J

C3

o "K

¢3
"u;

-H

c)

~"0

i

¢;

c) "K

-ug

¢:)
",,i

~'0

0cg

==
¢b

fl

II

d~

II

d ;>
03

r..b

;>

o

o

Improved Algorithm for Computing the Singular Value Decomposition ° 81

One sees from these ratios that for m nearly equal to n(r ~ 1), the two SVD
algorithms require much more work than OTLS. However, when r is bigger than
about 3, MOD-SVD requires only about 3 times more work than OTLS. It may
therefore become economically feasible to solve the least squares problems at
hand by MOD-SVD instead of OTLS. The reward is that the SVD returns much
more useful information about the problem than OTLS [11].

It is easy to see that as r becomes arbitrarily large, MOD-SVD is as efficient as
OTLS, since the bulk of the work is in the triangularization of the data matrix A.
However, GR-SVD can be at most half as efficient as OTLS.

6. A HYBRID ALGORITHM

On the basis of the results of earlier sections, we can implement a hybrid method
for computing the SVD of a rectangular matrix A, which automatically chooses
to use the more efficient algorithm between GR-SVD and MOD-SVD. For each
of the four Cases a, b, c, and d, if the input matrix A has a value of r(ffi m/n) ,
which is less than the crossover point r* for that case, we use GR-SVD; otherwise
we use MOD-SVD. The crossover points depend on the value of C used. As noted
before, the value of C to be used depends on the relative efficiencies of floating-
point multiplications, floating-point additions, and array indexings on the partic-
ular machine concerned. However, C can be determined once for any particular
machine and compiler combination. For example, if floating-point multiplications
take much more time than floating-point additions and array indexings on the
machine in question, then we should use C approximately equal to 4. In most
situations, one can probably do just as well by setting the crossover point equal
to a fixed value .~2, since this point is not sensitive to C at all.

In the algorithm (see p. 84) we give the codes of a PFORT [3a] verified
FORTRAN subroutine called HYBSVD which implements the previously men-
tioned hybrid algorithm. HYBSVD will need to call a standard Golub-Reinsch
SVD subroutine during part of its computation, and so we have included such a
routine, called GRSVD, in the package to be used with HYBSVD. The routine
GRSVD is actually a slightly modified version of the subroutine SVD in the
EISPACK [12] package. The main modification that we have made is to eliminate
the requirement in subroutine SVD that the row dimension of V declared in the
calling program be equal to that of A. This minimized the storage requirements
of GRSVD at the cost of one more argument in the argument list.

There is one additional feature implemented in HYBSVD (and also in
GRSVD). In least squares applications, where we have overdetermined linear
system Ax = b, the left transformations U w have to be accumulated on the right-
hand-side vectors b (there may be more than one b). This can be done by putting
the vectors b in the matrix argument B when calling HYBSVD and setting IRHS
to the number of b's. This is analogous to routine MINFIT in EISPACK.

The calling sequences and usages of HYBSVD are explained in the comments
in the beginning of the subroutine.

7. COMPUTATIONAL RESULTS

The conclusions in Section 5 hold only if m and n are both large. In this section
some computational experiments are carried out to see if the conclusions are still
valid for matrices with realistic sizes.

ACM Transactions on Mathematical Software, Vol. 8, No. 1, March 1982.

82 Tony F. Chan

We computed the SVD of some randomly generated matrices using both
HYBSVD and the SVD routine in EISPACK [12].

All tests were run on the IBM 370/168's at the Stanford Linear Accelerator
Center (SLAC). Long precision was used throughout the calculation. The man-
tissa of a floating-point number is represented by 56 bits (approximately 16
decimal digits}. The FORTRAN H optimizing compiler (OPT = 2) was used
throughout.

For each of the four cases, we fixed some values for n and computed the SVD
of a sequence of randomly generated matrices with different values of r. The
execution times taken by HYBSVD and EISPACK SVD were then compared,
together with the accuracies of the computed answers. Since we are working in
a multiprogramming environment, the execution times we measured cannot be
taken as the actual computing time taken, although the timing was done with a
lot of care; for example, by averaging over large samples. Thus, keeping these
points in mind, we can still expect a qualitative agreement with the analysis based
on operation counts.

On the IBM 370/168's at SLAC, a floating-point multiplication takes only
about 1.5 times the work taken for a floating-point addition. Also, the cost of
array indexing is not negligible. Therefore, as noted in Section 5, we should use
a value for C that is considerably less than 4 for the purpose of comparing the
relative efficiency of the two algorithms on the basis of computational results.

The results of the computations are plotted in Figure 3a-d. In general, they
agree very well qualitatively with the asymptotic results we obtained by operation
counts, the best fit being with c - 3. We observe that the larger n is, the better
the agreement, as it should be. However, even when n is small, the theoretical
results based on asymptotic operation counts still describe very well the qualita-
tive behavior of the computational results in many cases. The computational
results also show that large savings in work are indeed realizable for reasonably
sized matrices, and that indeed HYBSVD becomes more efficient than GRSVD
when r ~ 2.

We also checked the accuracies of some of the computed results. The singular
values returned by both procedures HYBSVD and EISPACK SVD agree to
within a few units of the machine precision in almost all the cases that we have
tested. The matrices U and V also agree to the same precision, but the signs of
the corresponding columns may be reversed. However, the SVD is only unique to
within such a sign change, so this is acceptable [13].

Note Added in Proof." Subsequent comparison tests were performed with
routine SSVDC of LINPACK [3a]. The results were similar.

8. CONCLUSIONS

We have presented an improved algorithm and its FORTRAN implementation
HYBSVD, for computing the SVD. We have demonstrated that the HYBSVD
routine works substantially better than the EISPACK SVD routine for matrices
that have many more rows than columns (m ~ 2n), and since it uses the
EISPACK SVD routine when m ~ 2n, it is as efficient as the EISPACK SVD
routine in those cases. It is also as accurate as the EISPACK SVD routine. We

ACM Transact tons on Mathemat lca | Software, Vol 8, No 1, March 1982.

Improved Algorithm for Computing the Singular Value Decomposition • 8 3

have also seen that the cost of solving a least squares problem by HYBSVD can
often be less than twice that of the usual orthogonal triangularization algorithms.
It may therefore become economically feasible to solve many least squares
problems by SVD.

The author hopes that the improved algorithm can be included in future
versions of mathematical software packages, such as EISPACK.

ACKNOWLEDGMENTS

The author would like to thank John Gregg Lewis, Gene Golub, Charles Van
Loan, and Bill Coughran for their helpful discussions. The following persons also
helped at one time or another: C. Lawson, R. Hanson, M. Gentleman, J. Oliger,
P. Gill, J. Dennis, J. Bolstad, and J. S. Pang. Finally, the author thanks SLAC for
providing the computing time that was used.

REFERENCES

1. ANDREWS, H.C, AND PATTERSON, C.L. Singular value decompositions and digital image pro-
cessmg. IEEE Trans Acoust., Speech, S~gnal Processtng ASSP-24, 1 (Feb 1976).

2. BARTELS, R.H., GOLUB, G.H, AND SAUNDERS, M.A. Numermal techniques in mathematical
programming. In Nonhnear Programming, Academm Press, New York, pp. 123-176.

3. CHAN, T.F. On computing the singular value decomposition. Rep. STAN-SC-77-588, Computer
Science Dep. Stanford Umv., Stanford, Calif., 1977.

3a. DONGARRA, J. J., BUNCH, J. R., MOLER, C. B., AND STEWART, G.W. LINPACK Users's Gutde
SIAM, Philadelphia, 1979.

4. GENTLEMAN, W M Least sqaures computations by Givens transformations without square
roots. Rep. CSRR-2062, Univ. of Waterloo, Waterloo, Ont, Canada.

5. GOLUB, G.H., AND REINSCH, C Singular value decomposition and least squares solutions. In
Handbook for Automattc Computatmn, II, Ltnear Algebra J.H. Wilkinson and C. Reinsch
(Eds.), Springer-Verlag, New York, 1971

6. GOLUB, G.H., AND KAHAN, W. Calculating the singular values and pseudoinverse of a matrix
S I A M J Numer. Anal 2, 3 (1965), 205-224.

7. GOLUB, G.H, AND WILKINSON, J.H. Ill-conditioned Eigensystems and the computation of the
Jordan canonical form. SIAM Rev. 18, 4 (Oct. 1976).

8. GOLUB, G H , AND BUSINGER, P.A. Linear least squares solution by Householder transforma-
tions Numer. Math. 7 (Handbook Series Linear Algebra), 1965, pp. 269-276.

9. HANSON, R.J. A numermal method for solving Fredholm integral equations of the first kind
using singular values. SIAM J. Numer. Anal 8, 3 (1971), 616-626.

10. KAUFFMAN, L. Application of Householder transformations to a sparse matrix. Computer
Scmnce Tech. Rep. No. 63, Bell Laboratories, Murray Hill, N.J., Nov 1977.

11 LAWSON, C.L, AND HANSON, R.J Solwng Least Squares Problems. Prentice-Hall, Englewood
Cliffs, N.J., 1974.

12. SMITH, B.T., ET AL. Matrtx Etgensystem Routmes--EISPACK Guide, 2nd ed. (Lecture Notes
m Computer Sctence Sertes), Springer-Verlag, New York, 1976.

13 STEWART, G.W. Introductmn to Matrix Computations Academic Press, New York, 1973.

Received October 1976; revised July 1978; accepted December 1980

ACM Transactmns on Mathematmal Software, Vol. 8, No. 1, March 1982

