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The most well-known and widely used algorithm for computing the Singular Value Decomposition 
(SVD) A --- U ~ V  T of an m x n rectangular matrix A is the Golub-Reinsch algorithm (GR-SVD). In 
this paper, an improved version of the original GR-SVD algorithm is presented. The new algorithm 
works best for matrices with m >> n, but  is more efficient even when m is only slightly greater than 
n (usually when m ~ 2n) and in some cases can achieve as much as 50 percent savings. If the matrix 
U ~s exphcltly desired, then n 2 extra storage locations are required, but  otherwise no extra storage is 
needed. The two main modifications are: (1) first triangularizing A by Householder transformations 
before bldmgonahzing it (thin idea seems to be widely known among some researchers in the field, but  
as far as can be determined, neither a detailed analysis nor an lmplementatmn has been published 
before), and (2) accumulating the left Givens transformations in GR-SVD on an n x n array instead 
of on an m x n array. A PFORT-verified FORTRAN Implementation m included. Comparisons with 
the EISPACK SVD routine are given. 

Categories and Subject Descriptors" G.1.3 [Numer ica l  Analys is] :  Numerical Linear Algebra--  
e~genvalues 

General Terms: Algorithms, Performance 
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1. INTRODUCTION 

Let A be a real m x n matrix, with m _> n. I t  is well known [5, 6] that the following 
d e c o m p o s i t i o n  o f  A a l w a y s  ex i s t s :  

A = U X V  T, (1.1) 

w h e r e  U is  a n  m × n m a t r i x  a n d  c o n s i s t s  o f  n o r t h o n o r m a l i z e d  e i g e n v e c t o r s  

a s s o c i a t e d  w i t h  t h e  n l a r g e s t  e i g e n v a l u e  o f  A A  T, V is  a n  n × n m a t r i x  a n d  c o n s i s t s  

o f  t h e  o r t h o n o r m a l i z e d  e i g e n v e c t o r s  o f  A T A ,  a n d  5] i s  a d i a g o n a l  m a t r i x  c o n s i s t i n g  

This work was supported by NSF Grant  DCR 75-13497 and NASA Ames Contract NCA 2-OR745- 
520. The computing time was provided by the Stanford Linear Accelerator Center (SLAC). 
Author 's address: Department  of Computer Scmnce, Yale University, 10 Hfllhouse Avenue, P.O. Box 
2158 Yale Station, New Haven, CT 06520. 
Permission to copy without fee all or part  of thin matetaal is granted provided that  the copies are not 
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that  copying is by permission of the Association 
for Computing Machinery To copy otherwme, or to republish, requires a fee and/or  specific 
permission. 
© 1982 ACM 0098-3500/82/0300-0072 $00.75 

ACM Transactions on Mathematmal Software, Vol. 8, No. 1, March 1982, Pages 72-83 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F355984.355990&domain=pdf&date_stamp=1982-03-01


Improved Algorithm for Computing the Singular Value Decomposition . 73 

of the "singular values" of A, which are the nonnegative square roots of the 
eigenvalues of ATA. 

Thus, 
u T u - ~ -  v T v  = V V  T = In 

and 

Z = diag(o~ . . . . .  On). (1.2) 

It is usually assumed for convenience that 

O] > - - ~  O2 > = . . .  > - ~  O n >  ~ 0 .  

The decomposition (1.1) is called the Singular Value Decomposition (SVD) of 
A. 

Remarks 

(1) If rank(A) = r, then or+l = or+2 . . . . .  On - ~ "  O. 
(2) There is no loss of generality in assuming that m _ n, for if m < n, then we 

can instead compute the SVD of A T. If the SVD of A T is equal to UZV T, 
then the SVD of A is equal to V~U T. 

The SVD plays a very important role in linear algebra. It has applications in 
such areas as least squares problems [5, 6, 11], in computing the pseudoinverse 
[6], in computing the Jordan canonical form [7], in solving integral equations [9], 
in digital image processing [1], and in optimization [2]. Many of the applications 
often involve large matrices. It is therefore important that  the computational 
procedures for obtaining the SVD be as efficient as possible. 

2. THE GOLUB-REINSCH ALGORITHM (GR-SVD) 

We use the same notations as in [5] and [3]. 
This algorithm consists of two phases. In the first phase one constructs two 

finite sequences of Householder transformations 

p(k), k -- 1, 2 . . . . .  n 

and 

such that 
Q(k), k = l ,  2 , . . . , n - 2 ,  

p(n) . . .  p(1)AQ(l).." Q ( n - 2 )  ____ 

n 

x x 
0 

0 
x x 

0 

n 

= j ( 0 )  , ( 2 . 1 )  

(m - n) 

an upper bidiagonal matrix. Specifically, P(') zeros out the subdiagonal elements 
in column i and Q(J) zeros out the appropriate elements in row j. 
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74 Tony F. Chan 

Because all the  t ransformations introduced are orthogonal,  the singular values 
of j(o) are the same as those of A. Thus,  if 

is the SVD of j(o~, then  

so tha t  

with 

j(o) = G]EH T 

A = P G ~ . H T Q  T 

U = P G ,  V ffi Q H  (2.2) 

p = p(1) . . .  p(n), Q = Q(1) . . .  Q(n-2). 

T h e  second phase is to i teratively diagonalize j(0) by the QR me thod  so tha t  

j(o) __. j ( i )  _ _ . . . .  __) ~, (2.3) 

where 

j ( ,+l) = (S(,))Tj.~T(,). 

where S (') and T (') are products  of Givens t ransformations and are therefore  
orthogonal.  

T h e  matr ices T (') are chosen so tha t  the sequence M (') = (j(,))Tj(O converges 
to a diagonal matrix,  while the  matr ices S (') are chosen so tha t  all J(') are of 
bidiagonal form. T h e  products  of  the T (') and the S (° are exactly the matr ices  H T 
and G T, respectively, in eq. (2.2). For  more details, see [5]. 

I t  has been repor ted  in [5] tha t  the average number  of i terations on J(') in (2.3) 
is usually less than  2n. In o ther  words, j(2,) in eq. (2.3) is usually a good 
approximation to a diagonal matrix. 

We briefly describe how the computa t ion  is usually implemented.  Assume for 
simplicity tha t  we can destroy A and re turn  U in the storage for A. In the first 
phase the p(0 are stored in the lower par t  of A, and the Q(') are s tored in the 
upper  tr iangular par t  of A. After the bidiagonalization the Q (') are accumulated 
in the  storage provided for V, the  two diagonals of j(o) are copied to two other  
l inear arrays, and the P(') are accumulated in A. 

In the second phase, for each i, 

S (') is applied to P from the right, and 

(T(°)  w is applied to Q T  from the left 

in order  to accumulate  the transformations.  

3. THE MODIFIED ALGORITHM (MOD-SVD) 

Our original mot ivat ion for th is algori thm is to f ind an improvement of GR-SVD 
when rn >> n. In tha t  case two improvements  are possible: 

(1) In eq. (2.1), each of the t ransformations P(') and Q") has to be applied to a 
submatr ix  of  size (m - ~ + 1) × (n - i + 1) (see Figure 1). Now, since most  entries 
of this submatrix are ul t imately going to be zeros, it is intuitive tha t  i f  it  can 
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m 

n 

A 

n - ~ + l  
A 

- m - i + l  

Fig. 1. P(') and Q(') affect the shaded portion of the matrix. 

somehow be arranged that the Q(') does not have to be applied to the subdiagonal 
part of this submatrix, then we will be saving a great amount of work when 
m>>n. 

This can indeed be done by first transforming A into upper triangular form by 
Householder transformations on the left: 

where R is n x n upper triangular and L is orthogonal, and then proceed to 
bidiagonalize R. The important difference is that  this time we will be working 
with a much smaller matrix, R, than A (if n 2 << ran), and so it is conceivable that 
the work required to bidiagonalize R is much less than that  originally done by 
the right transformations when m >> n. 

The question still remains as to how to bidiagonalize R. An obvious way is to 
treat R as an input matrix to GR-SVD, using alternating left and right House- 
holder transformations. In fact, it can be easily verified that  if the SVD of R is 
equal to X~ yT, then the SVD of A is given by 

We can identify U with L[X/O] and V with Y. Notice that  in order to obtain U, 
we have to form the extra product L[X/O]. If U is not needed explicitly (e.g., in 
least squares), then we do not have to accumulate any left transformations, and 
in that case, for m _ n, it seems likely that we will make a substantial saving. 

ACM Transactlons on Mathematwal Software, Vol. 8, No. I, March 1982. 
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It is also possible to take advantage of the structure of R to bidiagonalize it. 
This is discussed in Section 4. 

(2) The second improvement of GR-SVD that can be made is the following: In 
GR-SVD, if U is wanted explicitly, each of the S (') is applied to the m × n matrix 
P from the right to accumulate U. If m >> n, then this accumulation may involve 
a large amount of work, because a single Givens transformation affects two 
columns of P (of length m) and each S (') is the product of on the average n / 2  

Givens transformations. Therefore, in such cases it would seem more efficient to 
first accumulate all S (') on an n × n array, say Z, and later form the matrix 
product P Z  after J('~ has converged to ~. 

In essence, improvement (1) works best when U is not needed, improvement 
(2) works best when U is needed, and both work best when m >> n. These 
improvements are both incorporated in the following modified GR-SVD algo- 
rithm: 

M O D - S V D  

(1) LT[A] --,, [R/0] where R is n × n upper triangular. 
(2) Find the SVD of R by GR-SVD, R = X ~ Y  w. 
(3) Form A -- L [ X / O ] Z Y  T, the SVD of A. 

The idea of transforming A to upper triangular form when m >> n and then 
calculating the SVD of R is mentioned in Lawson and Hanson [11, pp. 119 and 
122] in the context of least squares problems where U is not explicitly required. 

4. SOME COMPUTATIONAL DETAILS 

(1) As in most GR-SVD implementations, the input matrix A is first copied 
into the array U. Thereafter, the array A is never referenced and all operations 
are performed on the array U. It should be obvious that  when U is not needed, 
MOD-SVD does not require any extra storage. When U is needed, we can store 
L w in the lower part of array U, copy R into another n x n array Z, and ask GR- 
SVD to return X in Z. Therefore we need at most n 2 extra storage locations (array 
Z), which is relatively small (when rn >> n) compared to m n  locations already 
needed for array U. 

(2) The next question is how to form L [ X / O ]  without using extra storage. This 
can be done by noting that  

so we can first accumulate L[/ /0]  in the space provided for U in place, and then 
do a matrix multiplication by X. 

Another possibility is to actually accumulate the Householder transformations 
L on [X/0]. With the usual implementation, this requires m n  instead of n 2 extra 
storage locations, but slightly less work (2ran 2 - n 3 versus 2ran 2 - n 3 / 3  multipli- 
cations). Our current implementation uses the first method. A potential improve- 
ment has been suggested by Kauffman [10]. 

(3) The question arises whether it is possible to bidiagonalize R in a way that  
takes advantage of the zeros that  are already in R. The usual Householder 
transformations cannot take advantage of this structure. One way is to use Givens 
ACM Transactions on Mathematmal Software, Vol 8, No. 1, March 1982 
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First  rotat ion in t roduces  
nonzero e lement  here  "~ ~ ~ • • M 

--," ,~ ~ . . . .  

_ , ;  

_ 

First  rotat ion to  zero 
)~ ou t  t he  (1, 5) e l ement  

Second rotat ion to zero out  the  (2, 1) 
e l ement  in t roduced by the  first ro ta t ion 

Figure 2 

transformations to zero out the elements at the upper right-hand corner of R, one 
column or one row at a time. Pictorially (for n ffi 5), to zero out the {1, 5) element, 
we do two Givens transformations, as shown in Figure 2. 

It turns out, however, by simple counting and verification by experiments, that  
this method takes about the same operations (4n3/3 multiplications) as the 
previous method to bidiagonalize R, provided that  we do not have to accumulate 
transformations. If we do need to accumulate either the left or right transforma- 
tions, then this method will require more work (4n 3 versus 4n~/3 multiplications), 
mainly because it requires two rotations to zero out each element and these 
rotations have to be accumulated. 

So it seems that taking advantage of the zero structure of R in this fashion 
actually makes the method less efficient. We have to note, however, that  Givens 
transformations involve fewer additions and array accesses than Householder 
transformations per multiplication (see Section 5). Therefore this method may 
turn out to be more competitive on modern computers where the time taken for 
floating-point additions and multidimensional array indexings are not negligible 
compared to that for multiplications. Also, the use of fast Givens [4] may result 
in substantial improvement in efficiency. 

5. OPERATION COUNTS 

In Section 3 we indicated that  MOD-SVD should be more efficient than GR- 
SVD when m >> n. In this section we study the relative efficiency between GR- 
SVD and MOD-SVD as a function of m and n. We do this by computing the 
asymptotic operation counts for each algorithm. 

In the following operation counts, we only keep the highest order terms in m 
and n, and so the results are correct for relatively large m and n. 

GR-SVD 

(1) Bidiagonalization {using Householder transformations) 
j = p(,) . . .  p(1)AQ(~) . . .  Q(,-2) 2(ran 2 -  n3/3) mult. 
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accumulate P ffi p t l }  . . .  p t , }  m n  2 _ n 3 / 3  

accumulate Q ffi Qtl} . . .  Qt,-2} 2n3/3 
(2) D i a g o n a l i z a t i o n  (using Givens transformations) 

accumulate S ~'} on P C m n  2 (C -- 4) mult. 
accumulate T t'} on Q C n  3 (C ffi 4) mult. 

M O D - S V D  

(1) T r i a n g u l a r i z a t i o n  (using Householder transformations) 
LT[A] --* [ R / O ]  

(2) GR-SVD of R ,  R ~- X ~ , Y  w 

(3) Form L [ U O ] X  (using Householder 
transformations) 

Some comments are in order: 

mult. 
mult. 

(1) The entries C m n  2 and C n  a in the diagonalization phase of GR-SVD are 
obtained by assuming that the iterative phase of the SVD takes on the average 
two complete QR iterations per singular value [5], [11, p. 122]. We have checked 
this experimentally and found it to be quite accurate. It is assumed that slow 
Givens is used throughout the calculation. If fast Givens [4] had been used, then 
the entries would become approximately 2 m n  2 and 2n 3, instead. 

(2) As with most operation counts, we have used the number of multiplications 
as a measure of work. For the Householder transformations, each multiplication 
also invokes one addition and approximately two array addressings. For the 
Givens transformations, each multiplication invokes one-half an addition and one 
array addressing. On many large computers today, a floating-point multiplication 
is not much slower than a floating-point addition. Also, array indexing (involving 
integer arithmetic) is usually quite expensive. In such cases, a Householder 
multiplication actually involves more work than a Givens multiplication because 
of the extra additions and array indexings. Therefore, the operation counts given 
for the diagonalization phase of GR-SVD may be misleading because it may 
actually involve relatively less work. The total effect, however, can be accounted 
for by using a smaller value for C. For example, if one Givens "multiplication" 
takes half the work needed by a Householder "multiplication," then the effect on 
the r e l a t i v e  efficiency can be accounted for by setting C ffi 2 instead of C -- 4. On 
older or nonscientific machines where multiplications take much more time than 
additions and array addressings, the operation count based on multiplications 
alone is usually a good measure of relative efficiency. 

(3) The application of S (')w and T (') on J(') is actually of order O(n 2) and is 
therefore not included in the previous counts. 

(4) We have to distinguish between four cases in the comparison: 

Case a: Both U and V are required explicitly. 
Case b: Only U is required explicitly. 
Case c: Only V is required explicitly. 
Case d: Only ~ is required explicitly. 

ACM Transactions on Mathematical  Software, Vol 8, No l, March 1982 
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Table I. Total Operation Counts of GR-SVD and MON-SVD for 
Each of the Cases a, b, c, and d 

Case GR-S VD M O D - S V D  

a (3 + C ) m n  2 + (C - 1/3)n '~ 3 m n  2 + (2C + 2)n ~ 
b (3 + C ) m n  2 - n 'j 3ran e + (C + 4 /3 )n  3 
c 2 m n  2 + Cn  ~ m n  2 + (C + 5/3)n  3 
d 2 m n  2 - 2n'~/3 m n  2 + n 3 

Table  II. Rat io  of  Operat ion C oun t  of  M O D - S V D  to t ha t  of  GR-SVD,  r = m / n  

Crossover  point  h m i t  as 
Case Rat io  ~* r --) o0 

a [3r + (2C + 2)]/[(3 + C)r  + (C - 1/3)] (C + 7 / 3 ) / C  3/(3  + C) 
b [3r  + (C + 4/3)] / [ (3  + C ) r  - 1 ]  (C + 7 / 3 ) / C  3/(3  + C) 
c [r  + (C + 5 / 3 ) ] / [ 2 r  + CI  5/3  1/2  
d [r + 1]/[2r - 2/3] 5/3  1/2 

• 7 9  

These  four cases do arise in applications. We will ment ion a few here: 

Case a arises in the computat ion of pseudoinverse [5]. 
Case b is Case c for A w. 
Case c arises in least squares applications [5, 11] and in the solution of  homoge- 

neous linear equations [5]. 
Case d arises in the est imation of the condition number  of a matr ix  and in the 

determinat ion of the rank of a matr ix [13]. 

The  total  operat ion count  for each case is given in Table  I. 
Using Table  I, we can compute  the ratio of the operat ion counts of MOD-SVD 

to tha t  of GR-SVD for each of  the four cases. The  results are given in Table  II, 
where the ratio is expressed as a function of r = m / n .  These  ratios are plot ted in 
Figure 3a-d for C = 2, 3, 4. The  crossover point  r* is the value of r t ha t  makes  the 
ratio equal to 1. If  r > r*, then  MOD-SVD is more efficient t han  GR-SVD. We 
see that ,  in all four cases, MOD-SVD becomes more efficient than  GR-SVD when 
r starts  to get bigger than  2, approximately,  and the savings can be as much  as 50 
percent  when r is about  10. On the other  hand, when r is about  1, GR-SVD is 
more efficient. This  agrees with our  earlier conjectures.  However,  the impor tan t  
thing is tha t  all the  ratios decrease quite fast as r becomes large. I f  we assume 
tha t  it is equally likely to encounter  matrices with any value of r > - -  1 (this is not  
an unreasonable assumption for designers of general mathemat ica l  software, for 
example), then  MOD-SVD is obviously preferable. In any case, these ratios give 
indications as to when one of the methods  is more  efficient, at  least when m and 
n are large enough so that  o u r  operat ion counts apply. 

In the context  of least squares applications, we can also compare  the  operat ion 
counts of GR-SVD and MOD-SVD to those of the orthogonal  triangularization 
methods  (OTLS) [8], which are often used for such problems. Analogous to Table  
I, the ratios of operat ion counts are now 

OTLS: GR-SVD = [ r -  1 / 3 ] / [ 2 r  + C]  

OTLS: MOD-SVD = [r - 1 / 3 ] / [ r  + C + 5/3]. 

ACM TransacUons on Mathematical Software, VoL 8, No. 1, March 1982 
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One sees from these ratios that for m nearly equal to n(r ~ 1), the two SVD 
algorithms require much more work than OTLS. However, when r is bigger than 
about 3, MOD-SVD requires only about 3 times more work than OTLS. It may 
therefore become economically feasible to solve the least squares problems at 
hand by MOD-SVD instead of OTLS. The reward is that the SVD returns much 
more useful information about the problem than OTLS [11]. 

It is easy to see that  as r becomes arbitrarily large, MOD-SVD is as efficient as 
OTLS, since the bulk of the work is in the triangularization of the data matrix A. 
However, GR-SVD can be at most half as efficient as OTLS. 

6. A HYBRID ALGORITHM 

On the basis of the results of earlier sections, we can implement a hybrid method 
for computing the SVD of a rectangular matrix A, which automatically chooses 
to use the more efficient algorithm between GR-SVD and MOD-SVD. For each 
of the four Cases a, b, c, and d, if the input matrix A has a value of r(ffi m/n) ,  
which is less than the crossover point r* for that case, we use GR-SVD; otherwise 
we use MOD-SVD. The crossover points depend on the value of C used. As noted 
before, the value of C to be used depends on the relative efficiencies of floating- 
point multiplications, floating-point additions, and array indexings on the partic- 
ular machine concerned. However, C can be determined once for any particular 
machine and compiler combination. For example, if floating-point multiplications 
take much more time than floating-point additions and array indexings on the 
machine in question, then we should use C approximately equal to 4. In most 
situations, one can probably do just as well by setting the crossover point equal 
to a fixed value .~2, since this point is not sensitive to C at all. 

In the algorithm (see p. 84) we give the codes of a PFORT [3a] verified 
FORTRAN subroutine called HYBSVD which implements the previously men- 
tioned hybrid algorithm. HYBSVD will need to call a standard Golub-Reinsch 
SVD subroutine during part of its computation, and so we have included such a 
routine, called GRSVD, in the package to be used with HYBSVD. The routine 
GRSVD is actually a slightly modified version of the subroutine SVD in the 
EISPACK [12] package. The main modification that we have made is to eliminate 
the requirement in subroutine SVD that the row dimension of V declared in the 
calling program be equal to that of A. This minimized the storage requirements 
of GRSVD at the cost of one more argument in the argument list. 

There is one additional feature implemented in HYBSVD (and also in 
GRSVD). In least squares applications, where we have overdetermined linear 
system Ax  = b, the left transformations U w have to be accumulated on the right- 
hand-side vectors b (there may be more than one b). This can be done by putting 
the vectors b in the matrix argument B when calling HYBSVD and setting IRHS 
to the number of b's. This is analogous to routine MINFIT in EISPACK. 

The calling sequences and usages of HYBSVD are explained in the comments 
in the beginning of the subroutine. 

7. COMPUTATIONAL RESULTS 

The conclusions in Section 5 hold only if m and n are both large. In this section 
some computational experiments are carried out to see if the conclusions are still 
valid for matrices with realistic sizes. 

ACM Transactions on Mathematical Software, Vol. 8, No. 1, March 1982. 
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We computed the SVD of some randomly generated matrices using both 
HYBSVD and the SVD routine in EISPACK [12]. 

All tests were run on the IBM 370/168's at the Stanford Linear Accelerator 
Center (SLAC). Long precision was used throughout the calculation. The man- 
tissa of a floating-point number is represented by 56 bits (approximately 16 
decimal digits}. The FORTRAN H optimizing compiler (OPT = 2) was used 
throughout. 

For each of the four cases, we fixed some values for n and computed the SVD 
of a sequence of randomly generated matrices with different values of r. The 
execution times taken by HYBSVD and EISPACK SVD were then compared, 
together with the accuracies of the computed answers. Since we are working in 
a multiprogramming environment, the execution times we measured cannot be 
taken as the actual computing time taken, although the timing was done with a 
lot of care; for example, by averaging over large samples. Thus, keeping these 
points in mind, we can still expect a qualitative agreement with the analysis based 
on operation counts. 

On the IBM 370/168's at SLAC, a floating-point multiplication takes only 
about 1.5 times the work taken for a floating-point addition. Also, the cost of 
array indexing is not negligible. Therefore, as noted in Section 5, we should use 
a value for C that  is considerably less than 4 for the purpose of comparing the 
relative efficiency of the two algorithms on the basis of computational results. 

The results of the computations are plotted in Figure 3a-d. In general, they 
agree very well qualitatively with the asymptotic results we obtained by operation 
counts, the best fit being with c - 3. We observe that  the larger n is, the better 
the agreement, as it should be. However, even when n is small, the theoretical 
results based on asymptotic operation counts still describe very well the qualita- 
tive behavior of the computational results in many cases. The computational 
results also show that large savings in work are indeed realizable for reasonably 
sized matrices, and that indeed HYBSVD becomes more efficient than GRSVD 
when r ~ 2. 

We also checked the accuracies of some of the computed results. The singular 
values returned by both procedures HYBSVD and EISPACK SVD agree to 
within a few units of the machine precision in almost all the cases that we have 
tested. The matrices U and V also agree to the same precision, but the signs of 
the corresponding columns may be reversed. However, the SVD is only unique to 
within such a sign change, so this is acceptable [13]. 

Note Added in Proof." Subsequent comparison tests were performed with 
routine SSVDC of LINPACK [3a]. The results were similar. 

8. CONCLUSIONS 

We have presented an improved algorithm and its FORTRAN implementation 
HYBSVD, for computing the SVD. We have demonstrated that  the HYBSVD 
routine works substantially better than the EISPACK SVD routine for matrices 
that  have many more rows than columns (m ~ 2n), and since it uses the 
EISPACK SVD routine when m ~ 2n, it is as efficient as the EISPACK SVD 
routine in those cases. It is also as accurate as the EISPACK SVD routine. We 
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have also seen that the cost of solving a least squares problem by HYBSVD can 
often be less than twice that of the usual orthogonal triangularization algorithms. 
It may therefore become economically feasible to solve many least squares 
problems by SVD. 

The author hopes that the improved algorithm can be included in future 
versions of mathematical software packages, such as EISPACK. 
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