

ALGORITHM 581 An Improved Algorithm for Computing the Singular Value Decomposition [F1]

TONY F. CHAN

Department of Computer Science, Yale University

Categories and Subject Descriptors D.3.2 [Programming Languages] Language Classifications— FORTRAN, G 1.3 [Numerical Analysis] Numerical Linear Algebra—pseudoinverses, G 1 6 [Numerical Analysis]. Optimizations—least squares methods

General Terms' Algorithms

Additional Key Words and Phrases singular value decomposition

DESCRIPTION

The set of FORTRAN subroutines given here is an implementation of the algorithm [1] for computing the Singular Value Decomposition (SVD) of a general m by n rectangular matrix A defined as

$$A = UWV^{\mathrm{T}}$$

where U is an $m \times \min(m,n)$ matrix containing the left singular vectors, W is a diagonal matrix of size $\min(m, n)$ containing the singular values, and V is an $n \times \min(m, n)$ matrix containing the right singular vectors. Note that m is allowed to be greater than or less than n. For ease of presentation, we assume m to be greater than or equal to n in the following discussion.

The algorithm is an improvement of the Golub-Reinsch algorithm [4], which is implemented in subroutines SVD and MINFIT in EISPACK [3] and in subroutine SSVDC in LINPACK [2]. It should be more efficient than the Golub-Reinsch algorithm when m is approximately larger than 2n, as is the case in many least squares applications.

The algorithm has a hybrid nature. When m is about equal to n, the Golub-Reinsch algorithm is employed. When the ratio m/n is larger than a threshold value, which is determined by detailed operation counts [1], the improved algorithm is used.

The improved algorithm first computes the QR factorization of A using Householder transformations, and then uses the Golub-Reinsch algorithm on R. A further improvement over the Golub-Reinsch algorithm is when the left singular

Author's address: Department of Computer Science, Yale University, 10 Hillhouse Avenue, P O. Box 2158 Yale Station, New Haven CT 06520.

© 1982 ACM 0098-3500/82/0300-0084 \$00.75

ACM Transactions on Mathimatical Software, Vol. 8, No. 1, March 1982, Pages 84-88

Received 7 October 1976; revised 25 January 1982, accepted 29 January 1982

This work was supported by NSF Grant DCR 75-13497 and NASA Ames Contract NCA 2-OR745-520. The computing time was provided by the Stanford Linear Accelerator Center (SLAC)

vectors are to be accumulated and saved. Here, instead of accumulating the Givens transformations (in the second phase of the algorithm where the singular values of the bidiagonal matrix are computed) on the $m \times n$ matrix containing the left singular vectors, we accumulate them on a temporary $n \times n$ matrix. This requires a small overhead in storage of an $n \times n$ matrix (small compared with $m \times n$) but offers big savings in time.

An additional feature of the new algorithm is that it can accumulate all the left orthogonal transformations on a number of given vectors, which can then be used in computing least squares solutions. In this fashion, it is similar to the EISPACK routine MINFIT.

There are three main routines in the package:

- HYBSVD: This is the main routine which implements the hybrid algorithm.
- MGNSVD: This performs the same thing as HYBSVD, except that it assumes m.ge. n.
- GRSVD: This is a slightly modified version of routine SVD in EISPACK which implements the Golub-Reinsch algorithm.

Besides, there are two utility routines:

- SSWAP: BLAS routine for swapping two vectors.
- SRELPR: Routine for computing the machine relative precision.

These five routines must be used together. They have been tested extensively on the IBM 370/168, 360/91 at the Stanford Linear Accelerator Center, and on the DEC 2060 in the Computer Science Department at Yale. They produce results that agree (up to machine precision) with those produced by SVD, MINFIT, and SSVDC. They have been verified by PFORT verifier [5] for portability.

REFERENCES

- 1. CHAN, T.F. An improved algorithm for computing the Singular Value Decomposition ACM Trans, Math. Softw. 8, 1 (Mar. 1982), 72-83.
- 2. DONGARRA, J J., BUNCH, J.R., MOLER, C.B., AND STEWART, G.W. LINPACK User's Guide. SIAM, Philadelphia, 1979.
- 3. GARBOW, B.S., ET AL. Matrix Eigensystem Routines-EISPACK Guide Extension, Lecture Notes in Computer Science Series, No. 51. Springer-Verlag, New York, 1977.
- 4. GOLUB, G.H., AND REINSCH, C Singular Value Decomposition and least squares solutions. In *Handbook for Automatic Computation*, II, *Linear Algebra*, J.H. Wilkinson and C. Reinsch (Eds.), Springer-Verlag, New York, 1971.
- 5. RYDER, B.G. The PFORT venifier In Softw. Pract. Exper. 4 (1974) 359-377.

ALGORITHM

[A part of the listing is printed here. The complete listing is available from the ACM Algorithms Distribution Service (see page 91 for order form).]

SUBROUTINE HYBSVD (NA, NU, NV, NZ, NB, M, N, A, W, MATU, U, MATV, нув 1Ø * V, Z, B, IRHS, IERR, RV1) HYB 2Ø INTEGER NA, NU, NV, NZ, M, N, IRHS, IERR, MINØ HYB 3Ø REAL A(NA,1), W(1), U(NU,1), V(NV,1), Z(NZ,1), B(NB,IRHS), RV1(1) HYB 4Ø LOGICAL MATU, MATV HYB 5Ø С HYB 6Ø С THIS ROUTINE IS A MODIFICATION OF THE GOLUB-REINSCH PROCEDURE (1) HYB 7Ø С т HYR 8Ø С FOR COMPUTING THE SINGULAR VALUE DECOMPOSITION A = UWV OF A HYB 9Ø С REAL M BY N RECTANGULAR MATRIX. U IS M BY MIN(M,N) CONTAINING HYB 100 С THE LEFT SINGULAR VECTORS, W IS A MIN(M,N) BY MIN(M,N) DIAGONAL HYB 11ø С MATRIX CONTAINING THE SINGULAR VALUES, AND V IS N BY MIN(M,N) HYB 120 С CONTAINING THE RIGHT SINGULAR VECTORS. HYB 13Ø С HYB 140 С THE ALGORITHM IMPLEMENTED IN THIS HYB 15Ø С ROUTINE HAS A HYBRID NATURE. WHEN M IS APPROXIMATELY EQUAL TO N, HYB 16Ø THE GOLUB-REINSCH ALGORITHM IS USED, BUT WHEN EITHER OF THE RATIOSHYB С 17Ø С M/N OR N/M IS GREATER THAN ABOUT 2, HYB 18Ø С A MODIFIED VERSION OF THE GOLUB-REINSCH HYB 19Ø С ALGORITHM IS USED. THIS MODIFIED ALGORITHM FIRST TRANSFORMS A 2ØØ HYB С т HYB 21Ø С INTO UPPER TRIANGULAR FORM BY HOUSEHOLDER TRANSFORMATIONS L HYB 22Ø С AND THEN USES THE GOLUB-REINSCH ALGORITHM TO FIND THE SINGULAR HYB 230 С VALUE DECOMPOSITION OF THE RESULTING UPPER TRIANGULAR MATRIX R. HYB 24Ø С WHEN U IS NEEDED EXPLICITLY IN THE CASE M.GE.N (OR V IN THE CASE HYB 25Ø С M.LT.N), AN EXTRA ARRAY Z (OF SIZE AT LEAST HYB 26Ø С MIN(M,N)**2) IS NEEDED, BUT OTHERWISE Z IS NOT REFERENCED HYB 27Ø С AND NO EXTRA STORAGE IS REQUIRED. THIS HYBRID METHOD HYB 28Ø С SHOULD BE MORE EFFICIENT THAN THE GOLUB-REINSCH ALGORITHM WHEN HYB 29Ø С M/N OR N/M IS LARGE. FOR DETAILS, SEE (2). HYB 3ØØ С HYB 31Ø С WHEN M .GE. N, HYB 320 С HYBSVD CAN ALSO BE USED TO COMPUTE THE MINIMAL LENGTH LEAST НУВ 330 SOUARES SOLUTION TO THE OVERDETERMINED LINEAR SYSTEM A*X=B. С HYB 34Ø С IF M .LT. N (I.E. FOR UNDERDETERMINED SYSTEMS), THE RHS B HYB 35Ø С HYB 36Ø IS NOT PROCESSED. С HYB 370 С NOTICE THAT THE SINGULAR VALUE DECOMPOSITION OF A MATRIX HYB 38Ø С IS UNIQUE ONLY UP TO THE SIGN OF THE CORRESPONDING COLUMNS HYB 39Ø HYB С OF U AND V. 4ØØ С HYB 41Ø С HYB THIS ROUTINE HAS BEEN CHECKED BY THE PFORT VERIFIER (3) FOR 420 С ADHERENCE TO A LARGE, CAREFULLY DEFINED, PORTABLE SUBSET OF HYB 43Ø AMERICAN NATIONAL STANDARD FORTRAN CALLED PFORT. HYB 440 ¢ 45Ø С HYB С **REFERENCES:** HYB 46Ø С HYB 47Ø С (1) GOLUB,G.H. AND REINSCH,C. (1970) 'SINGULAR VALUE HYB 48Ø С DECOMPOSITION AND LEAST SQUARES SOLUTIONS,' HYB 49Ø С NUMER. MATH. 14,403-420, 1970. HYB 500 С HYB 510 С (2) CHAN, T.F. (1982) 'AN IMPROVED ALGORITHM FOR COMPUTING HYB 52Ø С THE SINGULAR VALUE DECOMPOSITION,' ACM TOMS, VOL.8, HYB 53Ø С NO. 1, MARCH, 1982. HYB 54Ø С HYB 55Ø (3) RYDER, B.G. (1974) 'THE PFORT VERIFIER,' SOFTWARE -HYB 56Ø С PRACTICE AND EXPERIENCE, VOL.4, 359-377, 1974. HYB 57Ø С HYB 58Ø С С ON INPUT: HYB 59Ø С HYB 600

Algorithms • 87

		х х		
С		NA MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL	HYB	61Ø
č		ARRAY PARAMETER A AS DECLARED IN THE CALLING PROGRAM	HYB	
С		DIMENSION STATEMENT. NOTE THAT NA MUST BE AT LEAST	HYB	63Ø
С		AS LARGE AS M.	HYB	64Ø
С			HYB	65Ø
С		NU MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL	HYB	66Ø
С		ARRAY U AS DECLARED IN THE CALLING PROGRAM DIMENSION	HYB	
С		STATEMENT. NU MUST BE AT LEAST AS LARGE AS M.	HYB	
С			HYB	
C		NV MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL	HYB	
C C		ARRAY PARAMETER V AS DECLARED IN THE CALLING PROGRAM DIMENSION STATEMENT. NV MUST BE AT LEAST AS LARGE AS N.	HYB HYB	
c		DIMENSION STATEMENT. WY MUST BE AT LEAST AS LARGE AS N.	HYB	· · ·
č		NZ MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL	HYB	
č		ARRAY PARAMETER Z AS DECLARED IN THE CALLING PROGRAM	HYB	
č		DIMENSION STATEMENT. NOTE THAT NZ MUST BE AT LEAST	HYB	
Ċ		AS LARGE AS MIN(M,N).	HYB	
С			нув	78Ø
С		NB MUST BE SET TO THE ROW DIMENSION OF THE TWO-DIMENSIONAL	HYB	79Ø
С		ARRAY PARAMETER B AS DECLARED IN THE CALLING PROGRAM	HYB	8ØØ
С		DIMENSION STATEMENT. NB MUST BE AT LEAST AS LARGE AS M.	HYB	81Ø
С			HYB	
С		M IS THE NUMBER OF ROWS OF A (AND U).	HYB	
C			HYB	
С		N IS THE NUMBER OF COLUMNS OF A (AND NUMBER OF ROWS OF V).	HYB	/
C C		A CONTAINS THE DESTANCION OF INDUR MARDIN TO DE DESCHARGEED	HYB	-
C		A CONTAINS THE RECTANGULAR INPUT MATRIX TO BE DECOMPOSED.	HYB HYB	
c		B CONTAINS THE IRHS RIGHT-HAND-SIDES OF THE OVERDETERMINED	HYB	
č		LINEAR SYSTEM A*X=B. IF IRHS .GT. Ø AND M .GE. N.	HYB	
č			HYB	
С		T	HYB	
С		WILL CONTAIN U B. THUS, TO COMPUTE THE MINIMAL LENGTH LEAST	HYB	93ø
С		+	HYB	94Ø
С		SQUARES SOLUTION, ONE MUST COMPUTE V*W TIMES THE COLUMNS OF		
c			HYB	
C		B, WHERE W IS A DIAGONAL MATRIX, W (I)= \emptyset IF W(I) IS	HYB	
с с		NEGLIGIBLE, OTHERWISE IS 1/W(I). IF IRHS=Ø OR M.LT.N, B IS NOT REFERENCED.	HYB	
c		b 15 NOI REFERENCED.	HYB UVD	99Ø 1ØØØ
č		IRHS IS THE NUMBER OF RIGHT-HAND-SIDES OF THE OVERDETERMINED		1010
c		SYSTEM A*X=B. IRHS SHOULD BE SET TO ZERO IF ONLY THE SINGULAR		•
С		VALUE DECOMPOSITION OF A IS DESIRED.		1Ø3Ø
С			HYB	1Ø4Ø
С		MATU SHOULD BE SET TO .TRUE. IF THE U MATRIX IN THE	HYB	1ø5ø
C		DECOMPOSITION IS DESIRED, AND TO .FALSE. OTHERWISE.	HYB	1ø6ø
C				1070
c		MATV SHOULD BE SET TO .TRUE. IF THE V MATRIX IN THE		1080
C		DECOMPOSITION IS DESIRED, AND TO .FALSE. OTHERWISE.		1090
C C		WHEN HYBSVD IS USED TO COMPUTE THE MINIMAL LENGTH LEAST		1100
č		SQUARES SOLUTION TO AN OVERDETERMINED SYSTEM, MATU SHOULD		$\frac{111\emptyset}{112\emptyset}$
c		BE SET TO .FALSE. , AND MATV SHOULD BE SET TO .TRUE.		1120 1130
č		, the fact through the tart through		1140
č	ON	OUTPUT:		115ø
С				116ø
С		A IS UNALTERED (UNLESS OVERWRITTEN BY U OR V).		117ø
С				118ø
C		W CONTAINS THE (NON-NEGATIVE) SINGULAR VALUES OF A (THE		119ø
С		DIAGONAL ELEMENTS OF W). THEY ARE SORTED IN DESCENDING	HYB	12ØØ

88 • Algorithms

		TO AN EDDAD DUTE TO MADE THE OTHER IN MALINC	11120	1014
	ORDER.	IF AN ERROR EXIT IS MADE, THE SINGULAR VALUES BE CORRECT AND SORTED FOR INDICES IERR+1,,MIN(M,N)		1210
	SHOULD			122¢
,				1230 1240
, i				
				1250
		•		1260
		N) OR NOT REFERENCED (IF M .LT. N).		1270
				1280
		ERROR EXIT IS MADE, THE COLUMNS OF U CORRESPONDING		1290
	TO IND	ICES OF CORRECT SINGULAR VALUES SHOULD BE CORRECT.		1300
τ		IC THE MATRIX & (ADDIACONAL) AT THE DECOMPACITATION TO		1310
```	MATU U			1320
				1330
				1340
		N) OR NOT REFERENCED (IF M.GE. N).		1350
				1360
				1370
	CORRECT	F SINGULAR VALUES SHOULD BE CORRECT.		1380
				1390
2	CONTAIN	NS THE MATRIX X IN THE SINGULAR VALUE DECOMPOSITION		1400
	07 h m			1410
		SY, IF THE MODIFIED ALGORITHM IS USED. IF THE		142Ø
		REINSCH PROCEDURE IS USED, THEN IT IS NOT REFERENCED.		
				1440
				145Ø
	REFEREN			146Ø
_				147Ø
1	ERR IS S			148Ø
	ZERO	FOR NORMAL RETURN, IF THE K-TH SINGULAR VALUE HAS NOT BEEN		149Ø
	К	IF THE K-TH SINGULAR VALUE HAS NOT BEEN		15ØØ
	_	DETERMINED AFTER 30 ITERATIONS.		151ø
	-1			152Ø
	-2	IF M .LT. 1 .OR. N .LT. 1	_	153Ø
	-3	IF NA .LT. M .OR. NU .LT. M .OR. NB .LT. M.		154Ø
	-4	IF NV .LT. N .		155Ø
	-5	IF NZ .LT. MIN(M,N).		156Ø
-				157Ø
F	VI IS A	TEMPORARY STORAGE ARRAY OF LENGTH AT LEAST MIN(M,N).		158Ø
				159Ø
PROG	RAMMED I	BY : TONY CHAN		1600
		BOX 2158, YALE STATION, COMPUTER SCIENCE DEPT, YALE UNIV.,		161ø
		COMPUTER SCIENCE DEPT, YALE UNIV.,		162Ø
		NEW HAVEN, CT Ø652Ø.		163Ø
LAST	MODIFIE			164Ø
				165Ø
HYBS	VD USES			166Ø
IN	TERNAL	GRSVD, MGNSVD, SRELPR		167Ø
				168Ø
BL	AS	SSWAP		169Ø
				17ØØ
			HYB	171Ø