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1. INTRODUCTION 

T h i s  p a p e r  d i s cus ses  s u b r o u t i n e s  for  c o m p u t i n g  n u m e r i c a l  s o l u t i o n s  of  t h e  fol low- 
ing two  l i n e a r l y  c o n s t r a i n e d  l i nea r  l e a s t  s q u a r e s  p r o b l e m s .  

P r o b l e m  N N L S E  E x  = f ( e q u a t i o n s  to  be  e x a c t l y  sa t i s f ied)  
A x  ~ b ( e q u a t i o n s  to  be  a p p r o x i m a t e l y  (1) 

sa t i s f ied ,  l e a s t  s q u a r e s  sense)  
x,_>0, i f f i l + l  . . . . .  n, O < _ l < _ n  

P r o b l e m  L S E I  E x  = f ( e q u a t i o n s  to  be  e x a c t l y  sa t i s f ied)  
A x  ~ b ( e q u a t i o n s  to  be  a p p r o x i m a t e l y  

sa t i s f ied ,  l e a s t  s q u a r e s  sense)  (2) 
G x _ h  ( i n e q u a l i t y  c o n s t r a i n t s  t h a t  t h e  

s o l u t i o n  m u s t  sa t i s fy)  

I n  b o t h  p r o b l e m s  t h e  m a t r i c e s  E a n d  A a re  r ea l  a n d  o f  r e s p e c t i v e  d i m e n s i o n s  
mE b y  n a n d  mA b y  n. F o r  P r o b l e m  N N L S E ,  t h e  v a r i a b l e s  xl  . . . . .  xl a r e  f ree  to  
h a v e  e i t h e r  sign. F o r  P r o b l e m  L S E I ,  t h e  (real)  i n e q u a l i t y  c o n s t r a i n t  m a t r i x  G is 
mG b y  n. T h e  r i g h t - s i d e  v e c t o r s  f, b ,  a n d  h t h a t  a p p e a r  in  t h e  two  p r o b l e m  
s t a t e m e n t s  have ,  r e spec t i ve ly ,  mE, mA,  a n d  mG c o m p o n e n t s .  T h e  (unknown)  
s o l u t i o n  v e c t o r  x h a s  n c o m p o n e n t s .  

W h i l e  P r o b l e m  L S E I  of  eq. (2) a p p e a r s  to  be  a m o r e  g e n e r a l  p r o b l e m  t h a n  
P r o b l e m  N N L S E  of  eq. (1), i t  r e a l l y  is not .  I n  fact ,  t h e r e  a r e  a n u m b e r  of  w a y s  to  
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324 Algorithms 

transform Problem LSEI into one of the forms of Problem NNLSE. Three ways 
of doing this are discussed in [3]. The method we have implemented is described 
on pages 101-102. The successful implementation of an algorithm for solving 
Problem NNLSE is the key computational process. Nevertheless, it is important 
for applications such as constrained curve fitting [2] to have a subprogram that 
solves Problem LSEI of eq. (2) directly. We provide FORTRAN subprograms 
WNNLS(  ) and LSEI(  ) that solve the respective problems in eqs. (1) and (2). 

In Section 2 we review mathematical and numerical analysis details pertinent 
to solving Problem LSEI. In Section 3 we review some necessary details for 
understanding our methods for solving Problem NNLSE. In Section 4 we sum- 
marize some features and advantages of the codes. These features include 
changing tolerances, scaling of data matrices, and optional computation of the 
covariance matrix. Section 5 presents a test subprogram C L S T P ( ) ,  which is 
included with the package. It solves the test problem with both subprograms. 
Section 6 contains installation guidelines and remarks. 

2. SOLVING PROBLEM LSEI 

In this section, we briefly review mathematical and algorithmic details needed to 
solve Problem LSEI of eq. (2) [3, pp. 101-102]. The overall process consists of 
four main parts. 

Step 1 Problem LSEI is reduced to a subproblem with possibly fewer unknown 
variables and with all explicitly stated equality constraints removed. 

Step 2 The problem resulting from step 1 is reduced to a new problem where 
the least squares matrix is a simple projection matrix and the right-side 
vector is zero. 

Step 3 The problem resulting from step 2 is solved by reposing it as a dual 
problem. This dual problem consists of two special cases of Problem 
NNLSE, eq. (1). 

Step 4 The solution obtained in step 3 is transformed to the solution of the 
original problem using translations, matrix multiplications, and the 
solution of triangular linear algebraic systems. 

3. SOLVING PROBLEM NNLSE 

The theoretical development for solving problem NNLSE of eq. (1) is presented 
in [3]. The fundamental point of this method involves a numerically stable 
implementation of a penalty function approach. The least squares equations are 
each weighted by a small parameter e, chosen in the subprogram W N N L S ( ) .  
The augmented and weighted least squares system of eq. (3) is then solved. 

m E  m A  

D =diag ( '1 , . . . ,  i, E , . . . ,  ~i (3) 

[ Y 1 }l y unconstrained 
x = Lwj}  n _ 1 w _> 0. 
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Part of the theoretical development in [3] shows that  solutions of the weighted 
problem of eq. (3) converge to solutions of Problem NNLSE (if it is consistent) 
as E --* 0. Within the subprogram WNNLS( ) eq. (3) is solved only once with a 
value of e that  is chosen to achieve full working accuracy in the solution. The 
value used in WNNLS( ) is defined by 

e 2= 10-4~ (4) 

Y 

where y = II E II, (ll " II = subordinate matrix norm of/= vector norm), and y -- 
machine relative arithmetic precision. 

The algorithm for solving eq. (3) with e as defined in eq. (4) proceeds in two 
main steps. First we compute a (minimum-length) solution for the unconstrained 
variables in terms of the constrained variables. Solving for the unconstrained 
variables is primarily a triangularization operation. In the second main step of 
the process we solve for the constrained variables. This is an iterative process, 
that is, it is Algorithm NNLS of [7, Chap. 23]. Certain crucial differences in 
numerical tests are needed because of the penalty parameter E that  multiplies the 
least squares equations. These tests are discussed in [3]. 

4. USAGE SUGGESTIONS AND SUBPROGRAM OPTIONS 

In Sections 2 and 3 we have outlined solution methods for solving Problem LSEI 
of eq. (2) and Problem NNLSE of eq. (1). As shown in [3], computing the solution 
of Problem NNLSE can be regarded as the core computation in solving con- 
strained linear least squares problems. 

The most satisfactory method from the standpoint of accuracy and stability is 
to introduce slack variables into the inequality constraints of Problem LSEI [3]. 
This problem is then solved using subprogram W N N L S ( ) .  The results of solving 
a bounded variable Hilbert matrix problem summarized in [3] suggest that  
subprogram WNNLS( ) continues to compute acceptable solutions even as the 
problems become increasingly ill-conditioned. 

The use of subprogram WNNLS( ) with the slack variable formulation does 
have a disadvantage compared to subprogram L S E I ( ) .  For most problems, 
WNNLS( ) will require more computing time and storage than L S E I ( ) .  This is 
due to the larger number of problem variables in the slack variable formulation. 
The advantage of efficiency with LSEI( ) may be countered by the simultaneous 
occurrence of poor conditioning and rounding errors. {This can occur with a 
poorly conditioned least squares problem.) Owing to the poor conditioning and 
rounding error, the feasible constraint region can be mapped to one that  is 
infeasible. Instances of this are shown in the results of solving the bounded 
variable Hilbert matrix problem summarized in [3]. 

The choice between the two subprograms is a time and storage versus stability 
trade-off. Specifically, in the case of a poorly conditioned least squares problem, 
WNNLS( ) might obtain a solution when LSEI( ) cannot. As illustrated in [3], 
subprogram WNNLS( ) can also be used to extend the notion of solution for 
problems with infeasible constraints. 

Occasionally, a user of subprogram LSEI( ) will need the covariance matrix of 
the least squares solution variables of minimum length. This is returned as an 
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output matrix if the user wants it. It is an unbiased estimate of the covariance 
matrix for the minimum-length solution of an equality constrained least squares 
problem with no inequalities. This is developed in [4] and [6]. 

When inequalities are included, certain additional mathematical problems must 
be considered. These have to do with the behavior of the set of inequalities 
chosen by the algorithm to be equalities. The question is as follows: What is the 
sensitivity of these equalities as the data are allowed to vary within its uncer- 
tainty? Inequalities may move from being satisfied as equalities to strict inequal- 
ities as the data are perturbed. The covariance matrix computed by LSEI(  ) is 
based on the assumption that the set of equalities does not change when the 
solution is perturbed. No comprehensive theory is known to the authors for 
determining the matrix when the set of equalities does change. The user must 
keep these facts in mind when interpreting the covariance matrix for Problem 
LSEI with inequalities. 

The remainder of this section describes parameters within LSEI(  ) and 
WNNLS(  ) which can optionally be changed by the user. These options fall into 
the three following groups. 

(A) Computation of the covariance matrix. 
(B) Column scaling of the data matrix. 
(C) Redefinition of tolerances used for determining ranks of problem matrices. 

Changes to any number of these parameters can be specified as the linked-list 
input in the array PRGOPT(*) .  Precise instructions for defining PRGOPT(*)  
are found in the usage prologues for LSEI(  ) and W N N L S ( ) .  If the user is 
satisfied with the nominal subprogram features, it is only necessary to set 
PRGOPT(1)  ffi 1. 

Remarks  about A: Nominally the covariance matrix is not computed by 
L S E I ( ) .  

Remarks  about B: Column scaling of the form x = D y  is always performed by 
LSEI(  ) and W N N L S ( ) .  Nominally D is the identity matrix. Another option 
here is a choice for D such that each nonzero column of the entire scaled data 
matrix has length one. The user can also specify an arbitrary D. 

Remarks  about C: The user can change tolerances tE and tA in LSEI(  ) and 
tolerance tw in W N N L S ( ) .  The nominal values of rE, tA, and tw are ~1/2, where 

is the relative arithmetic precision of the machine. The parameter tE is used in 
approximating the rank of the equality constraint matrix E of eq. (2). Its role is 
discussed near the end of [3, Sec. 1]. 

The parameter tA is used in approximating the rank of the least squares matrix 
that results from eliminating the equality constraints from eq. (2). It is used to 
compute the factor ,, which is tA times the norm of this reduced least squares 
matrix. Then T is used in Algorithm HFTI  [7, Chap. 14]. 

The parameter tw is used by WNNLS(  ) to compute the rank of the row-scaled 
least squares matrix as discussed in [3, Sec. 3.1]. 

5 REMARKS ON THE TESTING SUBPROGRAM CLSTP( ) 

The subprogram CLSTP (KLOG, COND, ISTAT)  constructs and solves a 
constrained least squares problem that has a known solution and known condition 
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numbers  [7, Chap. 9]. The  problem generated is s tated in eq. (2). The  mat r icesA,  
E,  and G are computed  using formulas 

A = UIS1V w 

and 

E = U2S2V w 

G = U3S3V[. 

The  problem dimensions are specified by using five integer parameters  kA: kE, 
k v ,  k l ,  and k,  to compute  ma =- 24A, me = 2 k~, m v  = 2 kv, and n = 24". The  integer 
mz = 24' denotes  the number  of inequali ty constraints tha t  are to be satisfied as 
strict inequalities. These  five integers are passed to C L S T P (  ) in the  array 
K L O G ( * )  in the order  indicated. If  any of the values kA, kE, kG, ki, or kn are less 
than  zero, the respective values mA, mE, raG, mi, or mn are set to zero. No 
computa t ion  is performed if n ffi 0. 

Arrays within C L S T P (  ) current ly  have fixed dimensions tha t  require kA, kE, 
kv,  kl, and kn to all be less than  or equal to 5. Instruct ions for increasing the 
array dimensions are given as comments  within C L S T P ( ) .  

The  matr ices Uj  and Vj  are symmetr ic  orthogonal  Hadamard  matr ices of 
dimension n = 24 generated by the recursion 

n :ffil 

U : = I  

For  1 = 1 . . . . .  k 

n : = n + n  

End  For  

V :-- n - l / 2 V  

The  matr ices Sj ,  J = 1, 2, 3, are rectangular  diagonal matrices. T h e  extreme 
diagonal terms are ~, and 1, where ~j --- COND(J) .  The  intermediate  diagonal 
terms are generated in the open interval (1, ~j) using the r andom number  
generator  R A N ( ) .  The  output  value of t = R A N ( I S E E D )  satisfies 0 < t < 1. 
The  intermediate  diagonal terms are successively computed  as 1 + t(~z - 1). 
Initially, I S E E D  is set to 100001 in C L S T P ( ) .  

The  n-vector  ~ = (1 . . . . .  1) w is used to generate the vectors 

f =  E i  

1~ = A ~  

and 

l~ = G:~. 

We add a vector  !~ to l~ tha t  is orthogonal  to the column space of A. This  is 
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given by 

where 

ffi U1 (0 . . . . .  O, g~+l, . . . ,  gm~), 

g ,  ffi R A N ( I S E E D ) .  II f i  I1" o,  i ffi n + 1 . . . . .  m A .  

T h e  value of o is specified by the variable A N S R  in C L S T P ( ) .  I t  is current ly  set 
to 0.01. T h e  right-side vector  for the least squares equat ions in eq. (2) is b - 1) 
+ f t .  

T h e  right-side vector  for the inequali ty constraints  is constructed by making 
the first ml constraints  strict  inequalities. This  is done by defining the right-side 
vector  as h = l~ - l~, where 

fi  = (h ,  . . . . .  hm,,  0 . . . . .  oT) ,  

h, = R A N ( I S E E D ) .  [[ 1~ [[, i ffi 1 . . . .  , mz. 

These  techniques  for generating problems with known solutions are similar to 
those discussed in [9, pp. 6-9]. One might  obtain different sets of test  problems 
on machines  with differing ar i thmetic  characteristics.  Par t  of this is due to a 
different  sequence of numbers  generated by  R A N ( ) .  

We have found tha t  column scaling is sometimes required for solving eqs. (1) 
and (2). In particular,  when  using 32-bit floating-point ari thmetic,  problems 
generated by C L S T P (  ) using the published test  da ta  occasionally failed to pass 
the tests  when no column scaling was done. Thus  the option array input  for calls 
to bo th  L S E I (  ) and W N N L S (  ) are set so tha t  unit  length column scaling is 
per formed on all the tests. 

After  subprogram L S E I (  ) has computed  an approximate  solution x '  for this 
par t icular  form of eq. (2), and subprogram W N N L S (  ) has solved for an approx- 
imate  solution x"  of the system 

E x  - f 

A x ~ b  

G x - h f f i w  

for the unknown (x T, w T )  T, w e  compute  the  differences d x  -- x '  - ~ and d x  2 ffi 
x "  - ~. A test  is made  on the value of ]] dx, ]] to ensure tha t  x '  or x "  is as accurate 
as it deserves to be. T h e  test  of the subprogram has failed if the corresponding 
II dx,  ]1 is too large. Otherwise the test  has passed and x '  or x"  is an acceptable 
approximat ion of x. With  

p = Ii f i  II/11 f i  II 
K = ~1 = condition number  of A 

~/ffi relative ar i thmetic  precision 

# -- max(mA, n) 

r ffi min(mA, n) 

q~= 100 
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each test has passed if and only if 

[[ dx, I[ < K(1 + Kp)~/[(6~ - 3r)r]¢. 
II i ]1 - 

The output value of ISTAT is set as follows: 

ISTAT = 1 means both LSEI( ) and WNNLS( ) failed. 
= 2 means WNNLS( ) passed but LSEI( ) failed. 
= 3 means LSEI( ) passed but WNNLS( ) failed. 
= 4 means both LSEI( ) and WNNLS( ) passed. 

This measure for [] dx, [[ is based on combining the estimate for the norm of the 
matrix H of the nearby problem that x' solves (without constraints), (A + H)x' 

b, [7, Chap. 13], together with the perturbation bounds of [7, Chap. 9]. 
It may be necessary to increase the value of ~ slightly on some machines. 
A short main program, CLSTST, is provided with the algorithm. Also provided 

are 11 data cards that are read by CLSTST from FORTRAN unit = 5. Each pair 
of the first 10 cards specifies a distinct test case. The last (eleventh) card 
terminates the program execution. 

The subprogram CLSTP( ) prints the computed values of the least squares 
residual vector length and the vectors dx, for both WNNLS(  ) and L S E I ( ) .  
Also printed in CLSTP(  ) are the computed ranks of the equality constraint and 
reduced least squares matrices returned by L S E I ( ) .  The arrays KLOG(I), I = 
1 to  5, and COND(I), J = 1 to 3, and the value of ISTAT returned from 
CLSTP(  ) are printed by CLSTST. Printing is done on FORTRAN unit = 6. 

6. INSTALLATION GUIDELINES AND REMARKS 

This section contains information for installing subprograms LSEI( ) and 
W N N L S ( ) .  

Included in the package are seven groups of subprograms. 

(1) LSEI, LSI, L P D P  
(2) WNNLS,  WNLSM, WNLIT 
(3) HFTI,  H12, DIFF  from [7] 
(4) SDOT, SSCAL, SASUM, SAXPY, SNRM2, SCOPY, SSWAP,  ISAMAX, 

SROTM, SROTMG from [8]. (For double-precision usage DDOT, DSCAL, 
DASUM, DAXPY, DNRM2, DCOPY, DSWAP,  IDAMAX, DROTM, 
DROTMG.) 

(5) XERROR,  XERRWV,  XERABT,  XERCLR, XERCTL, XERDMP,  XER- 
MAX, XERPRT,  XERSAV, XGETF, XGETUA, XGETUN, XSETF, XSE- 
TUA, XSETUN, FDUMP,  J4SAVE,  S88FMT, NUMXER from [5]. (The 
subprogram N U M X E R  is included for completeness but  is not used in this 
package.) 

(6) I I M A C H  based on [1] 
(7) CLSTST, CLSTP,  RAN (test package) 

All of the subprograms are written in 1966 American National Standard 
portable FORTRAN. The only machine-sensitive subprogram is I 1 M A C H ( ) .  It 
provides two environmental parameters required by the error-handling subpro- 
grams X E R R O R ( )  and X E R R W V ( ) .  This will require modification of 
I1MACH( ) at each host site. FORTRAN DATA statements def'ming the values 
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of all the required constants are available for many machines in comments within 
the subprogram. The appropriate set of commented statements must be activated. 
If the values for your machine are not there, they should be provided in the order 
corresponding to the description near the beginning of I 1 M A C H ( ) .  Machines 
for which these constants are provided are Honeywell 600/6000, IBM 360/370, 
Xerox Sigma, CDC 6000/7000, PDP-10 (KA and KI processors), PDP-11 (16- and 
32-bit arithmetic), Burroughs 5700/6700/7700, UNIVAC 1100, Data General 
Eclipse, Harris, VAX, and CRAY. In addition, the user must open or declare the 
FORTRAN unit, designated in I1MACH(4), where any error messages will be 
written. 

We strongly recommend that calls to the error-handling subprograms XER- 
ROR( ) and X E R R W V (  ) be left intact. If the size or complexity of the error- 
handling package presents a problem on a particular machine, we suggest that 
the subprograms XERROR( ) and X E R R W V (  ) be replaced by shorter, ma- 
chine-sensitive versions. These replacements should, minimally, print the char- 
acter string comprising the error message and the specified data values. Usage of 
the full error-handling package is discussed in [5]. 

To convert the package for double-precision usage, follow the editing instruc- 
tions at the beginning of each subprogram in groups 1, 2, 3, and 7 above. Use the 
double-precision version of the BLAS in group 4. No conversion is required for 
subprograms in groups 5 and 6. 
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ALGORITHM 

[A part of the listing is printed here. The complete listing is available from the 
ACM Algorithms Distribution Service (see page 335 for order form).] 

SUBROUTINE LSEI(W, MDW, ME, MA, MG, N, PRGOPT, X, RNORME, RNORML, LSEI i0 
* MODE, WS, IP) LSEI 20 

LSEI 30 
DIMENSION W(MDW,N+I),PRGOPT(*),X(N), LSEI 40 
WS(2*(ME+N)+K+(MG+2)*(N+7)),IP(MG+2*N+2) LSEI 50 
ABOVE, K-MAX(MA+MG,N). LSEI 60 

LSEI 70 
ABSTRACT LSEI 80 

LSEI 90 
THIS SUBPROGRAM SOLVES A LINEARLY CONSTRAINED LEAST SQUARES LSEI 100 
PROBLEM WITH BOTH EQUALITY AND INEQUALITY CONSTRAINTS, AND, IF THELSEI i10 
USER REQUESTS, OBTAINS A COVARIANCE MATRIX OF THE SOLUTION LSEI 120 
PARAMETERS. LSEI 130 

LSEI 140 
SUPPOSE THERE ARE GIVEN MATRICES E, A AND G OF RESPECTIVE LSEI 150 
DIMENSIONS ME BY N, MA BY N AND MG BY N, AND VECTORS F, B AND H OFLSEI 160 
RESPECTIVE LENGTHS ME, MA AND MG. THIS SUBROUTINE SOLVES THE 
LINEARLY CONSTRAINED LEAST SQUARES PROBLEM 

EX - F, (E ME BY N) (EQUATIONS TO BE EXACTLY 
SATISFIED) 

AX - B, (A MA BY N) (EQUATIONS TO BE 
APPROXIMATELY SATISFIED, 
LEAST SQUARES SENSE) 

GX.GE.H,(G MG BY N) (INEQUALITY CONSTRAINTS) 

THE INEQUALITIES GX.GE.H MEAN THAT EVERY COMPONENT OF THE PRODUCT 
GX MUST BE .GE. THE CORRESPONDING COMPONENT OF H. 

IN CASE THE EQUALITY CONSTRAINTS CANNOT BE SATISFIED, A 
GENERALIZED INVERSE SOLUTION RESIDUAL VECTOR LENGTH IS OBTAINED 
FOR F-EX. THIS IS THE MINIMAL LENGTH POSSIBLE FOR F-EX. 

ANY VALUES ME.GE.0, MA.GE.0, OR MG.GE.@ ARE PERMITTED. THE 
RANK OF THE MATRIX E IS ESTIMATED DURING THE COMPUTATION. WE CALL 
THIS VALUE KRANKE. IT IS AN OUTPUT PARAMETER IN IP(1) DEFINED 
BELOW. USING A GENERALIZED INVERSE SOLUTION OF EX-F, A REDUCED 
LEAST SQUARES PROBLEM WITH INEQUALITY CONSTRAINTS IS OBTAINED. 
THE TOLERANCES USED IN THESE TESTS FOR DETERMINING THE RANK 
OF E AND THE RANK OF THE REDUCED LEAST SQUARES PROBLEM ARE 
GIVEN IN SANDIA TECH. REPT. SAND 78-1290. THEY CAN BE 
MODIFIED BY THE USER IF NEW VALUES ARE PROVIDED IN 
THE OPTION LIST OF THE ARRAY PRGOPT(*). 

THE EDITING REQUIRED TO CONVERT THIS SUBROUTINE FROM SINGLE TO 
DOUBLE PRECISION INVOLVES THE FOLLOWING CHARACTER STRING CHANGES. 
USE AN EDITING COMMAND (CHANGE) /STRING-I/(TO)STRING-2/. 
(START EDITING AT LINE WITH C++ IN COLS. 1-3.) 
/REAL (12 BLANKS)/DOUBLE PRECISION/,/SASUM/DASUM/,/SDOT/DDOT/, 
/SNRM2/DNRM2/,/ SQRT/ DSQRT/,/ ABS/ DABS/,/AMAXI/DMAXI/, 
/SCOPY/DCOPY/,/SSCAL/DSCAL/,/SAXPY/DAXPY/,/SSWAP/DSWAP/,/EO/D@/, 
/, DUMMY/,SNGL(DUMMY)/,/SRELPR/DRELPR/ 

LSEI 170 
LSEI 180 
LSEI 190 
LSEI 200 
LSEI 210 
LSEI 220 
LSEI 230 
LSEI 240 
LSEI 250 
LSEI 260 
LSEI 270 
LSEI 280 
LSEI 290 
LSEI 300 
LSEI 310 
LSEI 320 
LSEI 330 
LSEI 340 
LSEI 350 
LSEI 360 
LSEI 370 
LSEI 380 
LSEI 390 
LSEI 400 
LSEI 410 
LSEI 420 
LSEI 430 
LSEI 440 
LSEI 450 
LSEI 460 
LSEI 470 
LSEI 480 
LSEI 490 
LSEI 500 
LSEI 510 
LSEI 520 
LSEI 530 
LSEI 540 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

332 • Algorithms 

WRITTEN BY R. J. HANSON AND K. H. HASKELL. FOR FURTHER MATH. 
AND ALGORITHMIC DETAILS SEE SANDIA LABORATORIES TECH. REPTS. 
SAND 77-0552, (1978), SAND 78-1290, (1979), AND 
MATH. PROGRA~ING, VOL. 21, (1981), P.98-I18. 

SUBROUTINE WNNLS(W, MDW, ME, MA, N, L, PRGOPT, X, RNORM, MODE, 
* IWORK, WORK) 

DIMENSION W(MDW,N+I),PRGOPT(*),X(N),IWORK(M+N),WORK(M+5*N) 

ABSTRACT 

THIS SUBPROGRAM SOLVES A LINEARLY CONSTRAINED LEAST SQUARES 
PROBLEM. SUPPOSE THERE ARE GIVEN MATRICES E AND A OF 
RESPECTIVE DIMENSIONS ME BY N AND MA BY N, AND VECTORS F 
AND B OF RESPECTIVE LENGTHS ME AND MA. THIS SUBROUTINE 
SOLVES THE PROBLEM 

EX = F, (EQUATIONS TO BE EXACTLY SATISFIED) 

AX = B, (EQUATIONS TO BE APPROXIMATELY SATISFIED, 
IN THE LEAST SQUARES SENSE) 

SUBJECT TO COMPONENTS L+I,...,N NONNEGATIVE 

ANY VALUES ME.GE.0, MA.GE.0 AND 0. LE. L .LE.N ARE PERMITTED. 

THE PROBLEM IS REPOSED AS PROBLEM WNNLS 

(WT*E)X = (WT*F) 
( A) ( B), (LEAST SQUARES) 
SUBJECT TO COMPONENTS L+I,...,N NONNEGATIVE. 

THE SUBPROGRAM CHOOSES THE HEAVY WEIGHT (OR PENALTY PARAMETER) WT 

THE PARAMETERS FOR WNNLS ARE 

INPUT.. 

w(*, *) ,MDW, 
ME,MA,N,L 

THE ARRAY W(*,*) IS DOUBLE SUBSCRIPTED WITH FIRST 
DIMENSIONING PARAMETER EQUAL TO MDW. FOR THIS 
DISCUSSION LET US CALL M = ME + MA. THEN MDW 
MUST SATISFY MDW.GE.M. THE CONDITION MDW.LT.M 
IS AN ERROR. 

THE ARRAY W(*,*) CONTAINS THE MATRICES AND VECTORS 

(E F) 
(A B) 

IN ROWS AND COLUMNS I,...,M AND I,...,N+I 
RESPECTIVELY. COLUMNS I,...,L CORRESPOND TO 
UNCONSTRAINED VARIABLES X(1),...,X(L). THE 
REMAINING VARIABLES ARE CONSTRAINED TO BE 
NONNEGATIVE. THE CONDITION L.LT.0 .OR. L.GT.N IS 
AN ERROR. 
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LSEI 550 
LSEI 560 
LSEI 570 
LSEI 580 

WNN 10 
WNN 2¢ 
WNN 30 
WNN 4¢ 
WNN 50 
WNN 60 
WNN 7¢ 
WNN 8¢ 
WNN 9¢ 
Wl~ l¢0  
WNN 110 
WNN 120 
w ~  130 
WNN 140 
WNN 150 
WNN 160 
WNN 170 
WNN 180 
WNN 190 
WNN 200 
WNN 210 

220 
230 

WNN 240 
WNN 250 
WNN 260 
~ N  270 
~ q  280 

.k~'N 290 
WlqN 300 
WNN 310 
WNN 320 
WNN 330 
WNN 340 
WNN 350 
WNN 360 
WNN 370 
WNN 380 
WNN 390 
WNN 400 
WNN 410 
WNN 420 
WNN 430 
WNN 440 
WNN 450 
WNN 460 
WNN 470 
WNN 480 
WNN 490 
WNN 500 
WNN 510 
WNN 520 



Algori thms • 3 3 3  

PRGOPT(*) THIS ARRAY IS THE OPTION VECTOR. 
IF THE USER IS SATISFIED WITH THE NOMINAL 
SUBPROGRAM FEATURES SET 

PRGOPT(1)=I (OR PRGOPT(1)=I.0) 

WNN 53¢ 
WNN 54¢ 
WNN 550 
WNN 56~ 
WNN ST# 
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