
ALGORITHM 587
Two Algorithms for the Linearly Constrained
Least Squares Problem

RICHARD J. HANSON and KAREN H. HASKELL

Sandla National Laboratories

Categories and Subject Descriptors. G.1.2. [Numerical Analysis]: Approximation--least squares
approxtmatton; G.1.6. [Numerical Analysis]: Optlmization--constramed optimization; least
squares methods, G.m [Mathematics of Computing]. Miscellaneous--FORTRAN

General Terms. Algorithms

Additional Key Words and Phrases: linear least squares solution, equality constraints, inequality
constraints, nonnegativity constraints, inconsistent constraints, covarmnce matrix

1. INTRODUCTION

T h i s p a p e r d i s cus ses s u b r o u t i n e s for c o m p u t i n g n u m e r i c a l s o l u t i o n s of t h e fol low-
ing two l i n e a r l y c o n s t r a i n e d l i nea r l e a s t s q u a r e s p r o b l e m s .

P r o b l e m N N L S E E x = f (e q u a t i o n s to be e x a c t l y sa t i s f ied)
A x ~ b (e q u a t i o n s to be a p p r o x i m a t e l y (1)

sa t i s f ied , l e a s t s q u a r e s sense)
x,_>0, i f f i l + l n, O < _ l < _ n

P r o b l e m L S E I E x = f (e q u a t i o n s to be e x a c t l y sa t i s f ied)
A x ~ b (e q u a t i o n s to be a p p r o x i m a t e l y

sa t i s f ied , l e a s t s q u a r e s sense) (2)
G x _ h (i n e q u a l i t y c o n s t r a i n t s t h a t t h e

s o l u t i o n m u s t sa t i s fy)

I n b o t h p r o b l e m s t h e m a t r i c e s E a n d A a re r ea l a n d o f r e s p e c t i v e d i m e n s i o n s
mE b y n a n d mA b y n. F o r P r o b l e m N N L S E , t h e v a r i a b l e s xl xl a r e f ree to
h a v e e i t h e r sign. F o r P r o b l e m L S E I , t h e (real) i n e q u a l i t y c o n s t r a i n t m a t r i x G is
mG b y n. T h e r i g h t - s i d e v e c t o r s f, b , a n d h t h a t a p p e a r in t h e two p r o b l e m
s t a t e m e n t s have , r e spec t i ve ly , mE, mA, a n d mG c o m p o n e n t s . T h e (unknown)
s o l u t i o n v e c t o r x h a s n c o m p o n e n t s .

W h i l e P r o b l e m L S E I of eq. (2) a p p e a r s to be a m o r e g e n e r a l p r o b l e m t h a n
P r o b l e m N N L S E of eq. (1), i t r e a l l y is not . I n fact , t h e r e a r e a n u m b e r of w a y s to

Editing for this algorithm was supervised by Associate Editor W.J Cody, Jr
Received 9 February 1981, revised [9 March 1982, accepted 1 April 1982
Authors' addresses' R.J. Hanson, Numerical Mathematics Division 5642, Sandla National Laborato-
rms, Albuquerque, NM 87185, K H. HaskeU, Applied Mathematics Division 2646, Sandia National
Laboratories, Albuquerque, NM 87185.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
pubhcatlon and its date appear, and notice Is gwen that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to repubhsh, requires a fee and/or specific
permission.
© 1982 ACM 0098-3500/82/0900-0323 $00 75

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982, Pages 323-333.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356004.356010&domain=pdf&date_stamp=1982-09-01

324 Algorithms

transform Problem LSEI into one of the forms of Problem NNLSE. Three ways
of doing this are discussed in [3]. The method we have implemented is described
on pages 101-102. The successful implementation of an algorithm for solving
Problem NNLSE is the key computational process. Nevertheless, it is important
for applications such as constrained curve fitting [2] to have a subprogram that
solves Problem LSEI of eq. (2) directly. We provide FORTRAN subprograms
WNNLS() and LSEI() that solve the respective problems in eqs. (1) and (2).

In Section 2 we review mathematical and numerical analysis details pertinent
to solving Problem LSEI. In Section 3 we review some necessary details for
understanding our methods for solving Problem NNLSE. In Section 4 we sum-
marize some features and advantages of the codes. These features include
changing tolerances, scaling of data matrices, and optional computation of the
covariance matrix. Section 5 presents a test subprogram C L S T P () , which is
included with the package. It solves the test problem with both subprograms.
Section 6 contains installation guidelines and remarks.

2. SOLVING PROBLEM LSEI

In this section, we briefly review mathematical and algorithmic details needed to
solve Problem LSEI of eq. (2) [3, pp. 101-102]. The overall process consists of
four main parts.

Step 1 Problem LSEI is reduced to a subproblem with possibly fewer unknown
variables and with all explicitly stated equality constraints removed.

Step 2 The problem resulting from step 1 is reduced to a new problem where
the least squares matrix is a simple projection matrix and the right-side
vector is zero.

Step 3 The problem resulting from step 2 is solved by reposing it as a dual
problem. This dual problem consists of two special cases of Problem
NNLSE, eq. (1).

Step 4 The solution obtained in step 3 is transformed to the solution of the
original problem using translations, matrix multiplications, and the
solution of triangular linear algebraic systems.

3. SOLVING PROBLEM NNLSE

The theoretical development for solving problem NNLSE of eq. (1) is presented
in [3]. The fundamental point of this method involves a numerically stable
implementation of a penalty function approach. The least squares equations are
each weighted by a small parameter e, chosen in the subprogram W N N L S () .
The augmented and weighted least squares system of eq. (3) is then solved.

m E m A

D =diag ('1 , . . . , i, E , . . . , ~i (3)

[Y 1 }l y unconstrained
x = Lwj} n _ 1 w _> 0.

ACM Transactions on Mathematical Software, Vol 8, No. 3, September 1982

Algorithms 325

Part of the theoretical development in [3] shows that solutions of the weighted
problem of eq. (3) converge to solutions of Problem NNLSE (if it is consistent)
as E --* 0. Within the subprogram WNNLS() eq. (3) is solved only once with a
value of e that is chosen to achieve full working accuracy in the solution. The
value used in WNNLS() is defined by

e 2= 10-4~ (4)

Y

where y = II E II, (ll " II = subordinate matrix norm of/= vector norm), and y --
machine relative arithmetic precision.

The algorithm for solving eq. (3) with e as defined in eq. (4) proceeds in two
main steps. First we compute a (minimum-length) solution for the unconstrained
variables in terms of the constrained variables. Solving for the unconstrained
variables is primarily a triangularization operation. In the second main step of
the process we solve for the constrained variables. This is an iterative process,
that is, it is Algorithm NNLS of [7, Chap. 23]. Certain crucial differences in
numerical tests are needed because of the penalty parameter E that multiplies the
least squares equations. These tests are discussed in [3].

4. USAGE SUGGESTIONS AND SUBPROGRAM OPTIONS

In Sections 2 and 3 we have outlined solution methods for solving Problem LSEI
of eq. (2) and Problem NNLSE of eq. (1). As shown in [3], computing the solution
of Problem NNLSE can be regarded as the core computation in solving con-
strained linear least squares problems.

The most satisfactory method from the standpoint of accuracy and stability is
to introduce slack variables into the inequality constraints of Problem LSEI [3].
This problem is then solved using subprogram W N N L S () . The results of solving
a bounded variable Hilbert matrix problem summarized in [3] suggest that
subprogram WNNLS() continues to compute acceptable solutions even as the
problems become increasingly ill-conditioned.

The use of subprogram WNNLS() with the slack variable formulation does
have a disadvantage compared to subprogram L S E I () . For most problems,
WNNLS() will require more computing time and storage than L S E I () . This is
due to the larger number of problem variables in the slack variable formulation.
The advantage of efficiency with LSEI() may be countered by the simultaneous
occurrence of poor conditioning and rounding errors. {This can occur with a
poorly conditioned least squares problem.) Owing to the poor conditioning and
rounding error, the feasible constraint region can be mapped to one that is
infeasible. Instances of this are shown in the results of solving the bounded
variable Hilbert matrix problem summarized in [3].

The choice between the two subprograms is a time and storage versus stability
trade-off. Specifically, in the case of a poorly conditioned least squares problem,
WNNLS() might obtain a solution when LSEI() cannot. As illustrated in [3],
subprogram WNNLS() can also be used to extend the notion of solution for
problems with infeasible constraints.

Occasionally, a user of subprogram LSEI() will need the covariance matrix of
the least squares solution variables of minimum length. This is returned as an

ACM Transactmns on Mathematical Software, Vol. 8, No 3, September 1982

326 • Algorflhms

output matrix if the user wants it. It is an unbiased estimate of the covariance
matrix for the minimum-length solution of an equality constrained least squares
problem with no inequalities. This is developed in [4] and [6].

When inequalities are included, certain additional mathematical problems must
be considered. These have to do with the behavior of the set of inequalities
chosen by the algorithm to be equalities. The question is as follows: What is the
sensitivity of these equalities as the data are allowed to vary within its uncer-
tainty? Inequalities may move from being satisfied as equalities to strict inequal-
ities as the data are perturbed. The covariance matrix computed by LSEI() is
based on the assumption that the set of equalities does not change when the
solution is perturbed. No comprehensive theory is known to the authors for
determining the matrix when the set of equalities does change. The user must
keep these facts in mind when interpreting the covariance matrix for Problem
LSEI with inequalities.

The remainder of this section describes parameters within LSEI() and
WNNLS() which can optionally be changed by the user. These options fall into
the three following groups.

(A) Computation of the covariance matrix.
(B) Column scaling of the data matrix.
(C) Redefinition of tolerances used for determining ranks of problem matrices.

Changes to any number of these parameters can be specified as the linked-list
input in the array PRGOPT(*) . Precise instructions for defining PRGOPT(*)
are found in the usage prologues for LSEI() and W N N L S () . If the user is
satisfied with the nominal subprogram features, it is only necessary to set
PRGOPT(1) ffi 1.

Remarks about A: Nominally the covariance matrix is not computed by
L S E I () .

Remarks about B: Column scaling of the form x = D y is always performed by
LSEI() and W N N L S () . Nominally D is the identity matrix. Another option
here is a choice for D such that each nonzero column of the entire scaled data
matrix has length one. The user can also specify an arbitrary D.

Remarks about C: The user can change tolerances tE and tA in LSEI() and
tolerance tw in W N N L S () . The nominal values of rE, tA, and tw are ~1/2, where

is the relative arithmetic precision of the machine. The parameter tE is used in
approximating the rank of the equality constraint matrix E of eq. (2). Its role is
discussed near the end of [3, Sec. 1].

The parameter tA is used in approximating the rank of the least squares matrix
that results from eliminating the equality constraints from eq. (2). It is used to
compute the factor ,, which is tA times the norm of this reduced least squares
matrix. Then T is used in Algorithm HFTI [7, Chap. 14].

The parameter tw is used by WNNLS() to compute the rank of the row-scaled
least squares matrix as discussed in [3, Sec. 3.1].

5 REMARKS ON THE TESTING SUBPROGRAM CLSTP()

The subprogram CLSTP (KLOG, COND, ISTAT) constructs and solves a
constrained least squares problem that has a known solution and known condition

ACM Transactions on Mathematmal Software, Vol 8, No 3, September 1982

Algor i thms • 327

numbers [7, Chap. 9]. The problem generated is s tated in eq. (2). The mat r icesA,
E, and G are computed using formulas

A = UIS1V w

and

E = U2S2V w

G = U3S3V[.

The problem dimensions are specified by using five integer parameters kA: kE,
k v , k l , and k, to compute ma =- 24A, me = 2 k~, m v = 2 kv, and n = 24". The integer
mz = 24' denotes the number of inequali ty constraints tha t are to be satisfied as
strict inequalities. These five integers are passed to C L S T P () in the array
K L O G (*) in the order indicated. If any of the values kA, kE, kG, ki, or kn are less
than zero, the respective values mA, mE, raG, mi, or mn are set to zero. No
computa t ion is performed if n ffi 0.

Arrays within C L S T P () current ly have fixed dimensions tha t require kA, kE,
kv, kl, and kn to all be less than or equal to 5. Instruct ions for increasing the
array dimensions are given as comments within C L S T P () .

The matr ices Uj and Vj are symmetr ic orthogonal Hadamard matr ices of
dimension n = 24 generated by the recursion

n :ffil

U : = I

For 1 = 1 k

n : = n + n

End For

V :-- n - l / 2 V

The matr ices Sj , J = 1, 2, 3, are rectangular diagonal matrices. T h e extreme
diagonal terms are ~, and 1, where ~j --- COND(J) . The intermediate diagonal
terms are generated in the open interval (1, ~j) using the r andom number
generator R A N () . The output value of t = R A N (I S E E D) satisfies 0 < t < 1.
The intermediate diagonal terms are successively computed as 1 + t(~z - 1).
Initially, I S E E D is set to 100001 in C L S T P () .

The n-vector ~ = (1 1) w is used to generate the vectors

f = E i

1~ = A ~

and

l~ = G:~.

We add a vector !~ to l~ tha t is orthogonal to the column space of A. This is

ACM Transactions on Mathematical Software, Vol 8, No. 3, September 1982

328 • Algorithms

given by

where

ffi U1 (0 O, g~+l, . . . , gm~),

g , ffi R A N (I S E E D) . II f i I1" o, i ffi n + 1 m A .

T h e value of o is specified by the variable A N S R in C L S T P () . I t is current ly set
to 0.01. T h e right-side vector for the least squares equat ions in eq. (2) is b - 1)
+ f t .

T h e right-side vector for the inequali ty constraints is constructed by making
the first ml constraints strict inequalities. This is done by defining the right-side
vector as h = l~ - l~, where

fi = (h , hm,, 0 oT) ,

h, = R A N (I S E E D) . [[1~ [[, i ffi 1 , mz.

These techniques for generating problems with known solutions are similar to
those discussed in [9, pp. 6-9]. One might obtain different sets of test problems
on machines with differing ar i thmetic characteristics. Par t of this is due to a
different sequence of numbers generated by R A N () .

We have found tha t column scaling is sometimes required for solving eqs. (1)
and (2). In particular, when using 32-bit floating-point ari thmetic, problems
generated by C L S T P () using the published test da ta occasionally failed to pass
the tests when no column scaling was done. Thus the option array input for calls
to bo th L S E I () and W N N L S () are set so tha t unit length column scaling is
per formed on all the tests.

After subprogram L S E I () has computed an approximate solution x ' for this
par t icular form of eq. (2), and subprogram W N N L S () has solved for an approx-
imate solution x" of the system

E x - f

A x ~ b

G x - h f f i w

for the unknown (x T, w T) T, w e compute the differences d x -- x ' - ~ and d x 2 ffi
x " - ~. A test is made on the value of]] dx,]] to ensure tha t x ' or x " is as accurate
as it deserves to be. T h e test of the subprogram has failed if the corresponding
II dx,]1 is too large. Otherwise the test has passed and x ' or x" is an acceptable
approximat ion of x. With

p = Ii f i II/11 f i II
K = ~1 = condition number of A

~/ffi relative ar i thmetic precision

-- max(mA, n)

r ffi min(mA, n)

q~= 100

ACM Transactmns on Mathematical Software, Vol 8, No 3, September 1982

Algorithms • 329

each test has passed if and only if

[[dx, I[< K(1 + Kp)~/[(6~ - 3r)r]¢.
II i]1 -

The output value of ISTAT is set as follows:

ISTAT = 1 means both LSEI() and WNNLS() failed.
= 2 means WNNLS() passed but LSEI() failed.
= 3 means LSEI() passed but WNNLS() failed.
= 4 means both LSEI() and WNNLS() passed.

This measure for [] dx, [[is based on combining the estimate for the norm of the
matrix H of the nearby problem that x' solves (without constraints), (A + H)x'

b, [7, Chap. 13], together with the perturbation bounds of [7, Chap. 9].
It may be necessary to increase the value of ~ slightly on some machines.
A short main program, CLSTST, is provided with the algorithm. Also provided

are 11 data cards that are read by CLSTST from FORTRAN unit = 5. Each pair
of the first 10 cards specifies a distinct test case. The last (eleventh) card
terminates the program execution.

The subprogram CLSTP() prints the computed values of the least squares
residual vector length and the vectors dx, for both WNNLS() and L S E I () .
Also printed in CLSTP() are the computed ranks of the equality constraint and
reduced least squares matrices returned by L S E I () . The arrays KLOG(I), I =
1 to 5, and COND(I), J = 1 to 3, and the value of ISTAT returned from
CLSTP() are printed by CLSTST. Printing is done on FORTRAN unit = 6.

6. INSTALLATION GUIDELINES AND REMARKS

This section contains information for installing subprograms LSEI() and
W N N L S () .

Included in the package are seven groups of subprograms.

(1) LSEI, LSI, L P D P
(2) WNNLS, WNLSM, WNLIT
(3) HFTI, H12, DIFF from [7]
(4) SDOT, SSCAL, SASUM, SAXPY, SNRM2, SCOPY, SSWAP, ISAMAX,

SROTM, SROTMG from [8]. (For double-precision usage DDOT, DSCAL,
DASUM, DAXPY, DNRM2, DCOPY, DSWAP, IDAMAX, DROTM,
DROTMG.)

(5) XERROR, XERRWV, XERABT, XERCLR, XERCTL, XERDMP, XER-
MAX, XERPRT, XERSAV, XGETF, XGETUA, XGETUN, XSETF, XSE-
TUA, XSETUN, FDUMP, J4SAVE, S88FMT, NUMXER from [5]. (The
subprogram N U M X E R is included for completeness but is not used in this
package.)

(6) I I M A C H based on [1]
(7) CLSTST, CLSTP, RAN (test package)

All of the subprograms are written in 1966 American National Standard
portable FORTRAN. The only machine-sensitive subprogram is I 1 M A C H () . It
provides two environmental parameters required by the error-handling subpro-
grams X E R R O R () and X E R R W V () . This will require modification of
I1MACH() at each host site. FORTRAN DATA statements def'ming the values

ACM Transactions on Mathematical Software, Vol 8, No. 3, September 1982.

330 Algorithms

of all the required constants are available for many machines in comments within
the subprogram. The appropriate set of commented statements must be activated.
If the values for your machine are not there, they should be provided in the order
corresponding to the description near the beginning of I 1 M A C H () . Machines
for which these constants are provided are Honeywell 600/6000, IBM 360/370,
Xerox Sigma, CDC 6000/7000, PDP-10 (KA and KI processors), PDP-11 (16- and
32-bit arithmetic), Burroughs 5700/6700/7700, UNIVAC 1100, Data General
Eclipse, Harris, VAX, and CRAY. In addition, the user must open or declare the
FORTRAN unit, designated in I1MACH(4), where any error messages will be
written.

We strongly recommend that calls to the error-handling subprograms XER-
ROR() and X E R R W V () be left intact. If the size or complexity of the error-
handling package presents a problem on a particular machine, we suggest that
the subprograms XERROR() and X E R R W V () be replaced by shorter, ma-
chine-sensitive versions. These replacements should, minimally, print the char-
acter string comprising the error message and the specified data values. Usage of
the full error-handling package is discussed in [5].

To convert the package for double-precision usage, follow the editing instruc-
tions at the beginning of each subprogram in groups 1, 2, 3, and 7 above. Use the
double-precision version of the BLAS in group 4. No conversion is required for
subprograms in groups 5 and 6.

ACKNOWLEDGMENTS

We thank two anonymous referees for providing suggestions that clarified the
presentation of this algorithm.

REFERENCES
1. Fox, P.A, HULL, A.D, AND SCHRYER, N.D. The PORT mathematmal subroutine hbrary. ACM

Trans. Math. Softw. 4, 2 (June 1978), 104-126.
2. HANSON, R J Constrained Least Squares Curve Ftttmg to Dtscrete Data Using B-sphnes--A

User's Guide Available as Sandia National Laboratorms Tech Rep. SAND78-1291, Sandla
National Laboratomes, Albuquerque, N Mex, Feb. 1979.

3. HASKELL, K.H., AND HANSON, R J. An algorithm for linear least squares problems with equahty
and nonnegativlty constraints Math Program. 21 (1981), 98-118.

4 HASKELL, K.H., AND HANSON, R.J Selected algorithms for the linearly constrained least squares
problem--A user's guide Tech Rep. SAND78-1290, Sandia National Laboratories, Albuquerque,
N.Mex., 1979.

5. JONES, R.E. SLATEC common mathematmal hbrary error handhng package. Tech. Rep.
SAND78-1189, Sandia National Laboratories, Albuquerque, N Mex., 1978.

6. LAWSON, C L. The Covarmnce Matrtx for the Solution Vector of an Equahty.Constratned
Least-Squares Problem. Available as Jet Propulsion Laboratories Tech Memo 33-807, Jet
Propulsion Laboratomes, Pasadena, Calif., Dec. 1976.

7. LAWSON, C L., AND HANSON, R.J. Solving Least Squares Problems Prentice-Hall, Englewood
Cliffs, N J , 1974.

8 LAWSON, C L., HANSON, R.J., KINCAID, D.R., AND KROGH, F.T Basic hnear algebra subprograms
for Fortran usage ACM Trans. Math. Softw. 5, 3 (Sept. 1979), 308-323.

9. WAMPLER, R.H Problems used m testing the efficiency and accuracy of the modified Gram-
Schmidt least squares algorithm. NBS Tech. Note 1126, Aug. 1980.

ACM Transactions on Mathematical Software, Vol 8, No 3, September 1982

Algorithms • 331

ALGORITHM

[A part of the listing is printed here. The complete listing is available from the
ACM Algorithms Distribution Service (see page 335 for order form).]

SUBROUTINE LSEI(W, MDW, ME, MA, MG, N, PRGOPT, X, RNORME, RNORML, LSEI i0
* MODE, WS, IP) LSEI 20

LSEI 30
DIMENSION W(MDW,N+I),PRGOPT(*),X(N), LSEI 40
WS(2*(ME+N)+K+(MG+2)*(N+7)),IP(MG+2*N+2) LSEI 50
ABOVE, K-MAX(MA+MG,N). LSEI 60

LSEI 70
ABSTRACT LSEI 80

LSEI 90
THIS SUBPROGRAM SOLVES A LINEARLY CONSTRAINED LEAST SQUARES LSEI 100
PROBLEM WITH BOTH EQUALITY AND INEQUALITY CONSTRAINTS, AND, IF THELSEI i10
USER REQUESTS, OBTAINS A COVARIANCE MATRIX OF THE SOLUTION LSEI 120
PARAMETERS. LSEI 130

LSEI 140
SUPPOSE THERE ARE GIVEN MATRICES E, A AND G OF RESPECTIVE LSEI 150
DIMENSIONS ME BY N, MA BY N AND MG BY N, AND VECTORS F, B AND H OFLSEI 160
RESPECTIVE LENGTHS ME, MA AND MG. THIS SUBROUTINE SOLVES THE
LINEARLY CONSTRAINED LEAST SQUARES PROBLEM

EX - F, (E ME BY N) (EQUATIONS TO BE EXACTLY
SATISFIED)

AX - B, (A MA BY N) (EQUATIONS TO BE
APPROXIMATELY SATISFIED,
LEAST SQUARES SENSE)

GX.GE.H,(G MG BY N) (INEQUALITY CONSTRAINTS)

THE INEQUALITIES GX.GE.H MEAN THAT EVERY COMPONENT OF THE PRODUCT
GX MUST BE .GE. THE CORRESPONDING COMPONENT OF H.

IN CASE THE EQUALITY CONSTRAINTS CANNOT BE SATISFIED, A
GENERALIZED INVERSE SOLUTION RESIDUAL VECTOR LENGTH IS OBTAINED
FOR F-EX. THIS IS THE MINIMAL LENGTH POSSIBLE FOR F-EX.

ANY VALUES ME.GE.0, MA.GE.0, OR MG.GE.@ ARE PERMITTED. THE
RANK OF THE MATRIX E IS ESTIMATED DURING THE COMPUTATION. WE CALL
THIS VALUE KRANKE. IT IS AN OUTPUT PARAMETER IN IP(1) DEFINED
BELOW. USING A GENERALIZED INVERSE SOLUTION OF EX-F, A REDUCED
LEAST SQUARES PROBLEM WITH INEQUALITY CONSTRAINTS IS OBTAINED.
THE TOLERANCES USED IN THESE TESTS FOR DETERMINING THE RANK
OF E AND THE RANK OF THE REDUCED LEAST SQUARES PROBLEM ARE
GIVEN IN SANDIA TECH. REPT. SAND 78-1290. THEY CAN BE
MODIFIED BY THE USER IF NEW VALUES ARE PROVIDED IN
THE OPTION LIST OF THE ARRAY PRGOPT(*).

THE EDITING REQUIRED TO CONVERT THIS SUBROUTINE FROM SINGLE TO
DOUBLE PRECISION INVOLVES THE FOLLOWING CHARACTER STRING CHANGES.
USE AN EDITING COMMAND (CHANGE) /STRING-I/(TO)STRING-2/.
(START EDITING AT LINE WITH C++ IN COLS. 1-3.)
/REAL (12 BLANKS)/DOUBLE PRECISION/,/SASUM/DASUM/,/SDOT/DDOT/,
/SNRM2/DNRM2/,/ SQRT/ DSQRT/,/ ABS/ DABS/,/AMAXI/DMAXI/,
/SCOPY/DCOPY/,/SSCAL/DSCAL/,/SAXPY/DAXPY/,/SSWAP/DSWAP/,/EO/D@/,
/, DUMMY/,SNGL(DUMMY)/,/SRELPR/DRELPR/

LSEI 170
LSEI 180
LSEI 190
LSEI 200
LSEI 210
LSEI 220
LSEI 230
LSEI 240
LSEI 250
LSEI 260
LSEI 270
LSEI 280
LSEI 290
LSEI 300
LSEI 310
LSEI 320
LSEI 330
LSEI 340
LSEI 350
LSEI 360
LSEI 370
LSEI 380
LSEI 390
LSEI 400
LSEI 410
LSEI 420
LSEI 430
LSEI 440
LSEI 450
LSEI 460
LSEI 470
LSEI 480
LSEI 490
LSEI 500
LSEI 510
LSEI 520
LSEI 530
LSEI 540

ACM TransacUons on Mathematmal Software, Vol 8, No. 3, September 1982

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

332 • Algorithms

WRITTEN BY R. J. HANSON AND K. H. HASKELL. FOR FURTHER MATH.
AND ALGORITHMIC DETAILS SEE SANDIA LABORATORIES TECH. REPTS.
SAND 77-0552, (1978), SAND 78-1290, (1979), AND
MATH. PROGRA~ING, VOL. 21, (1981), P.98-I18.

SUBROUTINE WNNLS(W, MDW, ME, MA, N, L, PRGOPT, X, RNORM, MODE,
* IWORK, WORK)

DIMENSION W(MDW,N+I),PRGOPT(*),X(N),IWORK(M+N),WORK(M+5*N)

ABSTRACT

THIS SUBPROGRAM SOLVES A LINEARLY CONSTRAINED LEAST SQUARES
PROBLEM. SUPPOSE THERE ARE GIVEN MATRICES E AND A OF
RESPECTIVE DIMENSIONS ME BY N AND MA BY N, AND VECTORS F
AND B OF RESPECTIVE LENGTHS ME AND MA. THIS SUBROUTINE
SOLVES THE PROBLEM

EX = F, (EQUATIONS TO BE EXACTLY SATISFIED)

AX = B, (EQUATIONS TO BE APPROXIMATELY SATISFIED,
IN THE LEAST SQUARES SENSE)

SUBJECT TO COMPONENTS L+I,...,N NONNEGATIVE

ANY VALUES ME.GE.0, MA.GE.0 AND 0. LE. L .LE.N ARE PERMITTED.

THE PROBLEM IS REPOSED AS PROBLEM WNNLS

(WT*E)X = (WT*F)
(A) (B), (LEAST SQUARES)
SUBJECT TO COMPONENTS L+I,...,N NONNEGATIVE.

THE SUBPROGRAM CHOOSES THE HEAVY WEIGHT (OR PENALTY PARAMETER) WT

THE PARAMETERS FOR WNNLS ARE

INPUT..

w(*, *) ,MDW,
ME,MA,N,L

THE ARRAY W(*,*) IS DOUBLE SUBSCRIPTED WITH FIRST
DIMENSIONING PARAMETER EQUAL TO MDW. FOR THIS
DISCUSSION LET US CALL M = ME + MA. THEN MDW
MUST SATISFY MDW.GE.M. THE CONDITION MDW.LT.M
IS AN ERROR.

THE ARRAY W(*,*) CONTAINS THE MATRICES AND VECTORS

(E F)
(A B)

IN ROWS AND COLUMNS I,...,M AND I,...,N+I
RESPECTIVELY. COLUMNS I,...,L CORRESPOND TO
UNCONSTRAINED VARIABLES X(1),...,X(L). THE
REMAINING VARIABLES ARE CONSTRAINED TO BE
NONNEGATIVE. THE CONDITION L.LT.0 .OR. L.GT.N IS
AN ERROR.

ACM Transactions on Mathematical Software, Vol 8, No. 3, September 1982

LSEI 550
LSEI 560
LSEI 570
LSEI 580

WNN 10
WNN 2¢
WNN 30
WNN 4¢
WNN 50
WNN 60
WNN 7¢
WNN 8¢
WNN 9¢
Wl~ l¢0
WNN 110
WNN 120
w ~ 130
WNN 140
WNN 150
WNN 160
WNN 170
WNN 180
WNN 190
WNN 200
WNN 210

220
230

WNN 240
WNN 250
WNN 260
~ N 270
~ q 280

.k~'N 290
WlqN 300
WNN 310
WNN 320
WNN 330
WNN 340
WNN 350
WNN 360
WNN 370
WNN 380
WNN 390
WNN 400
WNN 410
WNN 420
WNN 430
WNN 440
WNN 450
WNN 460
WNN 470
WNN 480
WNN 490
WNN 500
WNN 510
WNN 520

Algori thms • 3 3 3

PRGOPT(*) THIS ARRAY IS THE OPTION VECTOR.
IF THE USER IS SATISFIED WITH THE NOMINAL
SUBPROGRAM FEATURES SET

PRGOPT(1)=I (OR PRGOPT(1)=I.0)

WNN 53¢
WNN 54¢
WNN 550
WNN 56~
WNN ST#

ACM Transact ions on Mathemat ica l Software, Vol. 8, No. 3, September 1982

