ALGORITHM 592

A FORTRAN Subroutine for Computing the Optimal Estimate of $f(x)$

P. W. GAFFNEY
Oak Ridge National Laboratory

Abstract

Categories and Subject Descriptors: G. 1 1. [Numerical Analysis]: Interpolation-interpolation formulas; spline and pıecewıse polynomial interpolation, G.1.2. [Numerical Analysis]: Approxi-mation-nonlinear approximatıon; G.m. [Mathematics of Computing]: Miscellaneous-FORTRAN General Terms. Algorithms Additional Key Words and Phrases: Optimal estimation, optimal interpolation, perfect splines

1. INTRODUCTION

In this paper we present a FORTRAN subroutine to compute the solution of the following problem.

Given values of an unknown function f at n distinct points, $x_{1}<x_{2}<\cdots<x_{n-1}$ $<x_{n}$, and given an integer $k, 1 \leq k \leq n$, and a finite bound on the k th derivative of f,

$$
\left\|f^{(k)}\right\|_{\infty} \equiv \max \left|f^{(k)}(x)\right| \leq L<\infty, \quad x_{1} \leq x \leq x_{n}
$$

determine the range of possible values of $f(\alpha)$ (and hence the optimal estimate of $f(\alpha)$), where α is any point in the interval $x_{1} \leq x \leq x_{n}$.

Gaffney [5] and Gaffney and Powell [6] have solved this problem. They proved that the closest possible bounds on $f(\alpha)$ are given by the interval

$$
\begin{equation*}
\min [u(\alpha), l(\alpha)] \leq f(\alpha) \leq \max [u(\alpha), l(\alpha)], \tag{1.1}
\end{equation*}
$$

where the quantities $u(\alpha)$ and $l(\alpha)$ are the values at $x=\alpha$ of two perfect splines of degree k which pass through the given function values. A method for computing the range (1.1) is described in a companion paper by Gaffney [7]. Therefore, the purpose of this paper is to present a FORTRAN subroutine for computing the values $u(\alpha), l(\alpha)$, and the estimate of $f(\alpha)$ whose error has the smallest possible bound, that is, the quantity

$$
\begin{equation*}
\Omega(\alpha, L)=\frac{(u(\alpha)+l(\alpha))}{2} \tag{1.2}
\end{equation*}
$$

[^0]The name of this subroutine is RANGE.
It is important that prospective users of RANGE are aware of the amount of computation involved in computing the numbers $u(\alpha)$ and $l(\alpha)$. Therefore, in Section 2 we give a brief description of the method used by RANGE. In Section 3 we present a sample program for a situation where RANGE may be used. In Section 4 we discuss some aspects of practical approximation that we believe may be useful to prospective users of RANGE. We recommend that these users should read this section, in particular the conclusions at the end of the section, before incorporating subroutine RANGE in a FORTRAN program. In Section 5 we describe the standards that subroutine RANGE adheres to, and in Section 6 we present a flowchart that describes the way in which RANGE should be called. At the end of the paper we present the FORTRAN listing of subroutine RANGE.

In addition to the work cited in this paper, a number of other authors have also considered optimal approximation schemes. Some of this work is described in the book by Micchelli and Rivlin [9]. For further discussion on optimal interpolation, with particular reference to the role played by natural spline interpolation, we refer the interested reader to the thorough exposition given by Powell [11].

2. METHOD OF COMPUTATION

In this section we give a brief description of the algorithm used by RANGE. To do this we first recall, from [7], the solution of the optimal estimation problem and we review the properties of the functions u and l that provide the bounds (1.1).

Given values f_{1}, \ldots, f_{n} of a function f at the points

$$
x_{1}<x_{2}<\cdots<x_{n-1}<x_{n}
$$

and given that the inequality

$$
\max \left|f^{(k)}(x)\right| \leq L<\infty, \quad 1 \leq k \leq n, \quad x_{1} \leq x \leq x_{n},
$$

is satisfied, where the value of L is greater than the least value of

$$
\max \left|f^{(k)}(x)\right|, \quad x_{1} \leq x \leq x_{n}
$$

that is consistent with the function values f_{1}, \ldots, f_{n}, then the closest possible bounds on $f(x)$, for any x in the range $x_{1} \leq x \leq x_{n}$, are given by the inequalities

$$
\begin{equation*}
\min [u(x), l(x)] \leq f(x) \leq \max [u(x), l(x)] \tag{2.1}
\end{equation*}
$$

The functions u and l in expression (2.1) are perfect splines of degree k; they each have $n-k$ knots, and they each satisfy the interpolation conditions

$$
\begin{equation*}
u\left(x_{i}\right)=l\left(x_{i}\right)=f\left(x_{i}\right), \quad i=1, \ldots, n . \tag{2.2}
\end{equation*}
$$

Furthermore, the k th derivative of u satisfies the equation

$$
u^{(k)}(x)=\left\{\begin{array}{lr}
L & x_{1} \leq x<\eta_{1} \tag{2.3}\\
(-1)^{l} L & \eta_{t} \leq x<\eta_{l+1}, \quad i=1, \ldots, n-k-1 \\
(-1)^{n-k} L & \eta_{n-k} \leq x \leq x_{n}
\end{array}\right.
$$

and the k th derivative of l satisfies the equation

$$
l^{(k)}(x)=\left\{\begin{array}{lc}
-L & x_{1} \leq x<\xi_{1} \tag{2.4}\\
(-1)^{2+1} L & \xi_{l} \leq x<\xi_{l+1}, \quad i=1, \ldots, n-k-1 \\
(-1)^{n-k+1} L & \xi_{n-k} \leq x \leq x_{n} .
\end{array}\right.
$$

We calculate the knots $\left\{\eta_{2}\right\}$ and $\left\{\xi_{l}\right\}$ by solving the systems of equations

$$
\begin{array}{r}
\sum_{j=0}^{n-k}(-1)^{\prime} \int_{\eta_{J}}^{\eta_{j+1}} M_{k, 2}(x) d x-L^{-1}(k-1)!f\left(x_{i}, \ldots, x_{t+k}\right)=0, \\
i=1, \ldots, n-k \tag{2.5}
\end{array}
$$

and

$$
\begin{array}{r}
\sum_{j=0}^{n-k}(-1)^{j+1} \int_{\xi_{j}}^{\xi_{j+1}} M_{k, i}(x) d x-L^{-1}(k-1)!f\left(x_{i}, \ldots, x_{i+k}\right)=0 \\
i=1, \ldots, n-k \tag{2.6}
\end{array}
$$

where $\eta_{0}=\xi_{0}=x_{1}, \eta_{n-k+1}=\xi_{n-k+1}=x_{n}, M_{k, 2}(x)$ is a B-spline of degree $k-1$ with knots x_{i}, \ldots, x_{i+k}, and $f\left(x_{i}, \ldots, x_{i+k}\right)$ is the k th divided difference of f based on the points x_{i}, \ldots, x_{i+k}.

When $k=1$, eqs. (2.5) and (2.6) are linear. In this case it is straightforward to show that the knots $\left\{\eta_{2}\right\}$ and $\left\{\xi_{l}\right\}$ have the values

$$
\begin{equation*}
\eta_{t}=\frac{(-1)^{2+1}}{2 L}\left(f\left(x_{\imath+1}\right)-f\left(x_{t}\right)\right)+\frac{\left(x_{i}+x_{i+1}\right)}{2}, \quad i=1, \ldots, n-1 \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\xi_{t}=\frac{(-1)^{t}}{2 L}\left(f\left(x_{i+1}\right)-f\left(x_{i}\right)\right)+\frac{\left(x_{i}+x_{i+1}\right)}{2}, \quad i=1, \ldots, n-1 . \tag{2.8}
\end{equation*}
$$

When the value of k is greater than 1 , eqs. (2.5) and (2.6) are nonlinear. Therefore, we solve them using a continuation method together with Newton iteration. A description of this technique is given by Gaffney [7].

In order to compute the bounds (2.1), at a given value of x, say $x=\alpha$, we use the formulas (see Gaffney [7])
$\mathrm{UP} \equiv \max [u(\alpha), l(\alpha)]= \begin{cases}P_{k-1}(\alpha)+\frac{\pi(\alpha)}{(k-1)!} \text { CUP, } & \text { when } \pi(\alpha) \geq 0 \\ P_{k-1}(\alpha)+\frac{\pi(\alpha)}{(k-1)!} \text { CLOW, } & \text { otherwise }\end{cases}$
and
LOW $\equiv \min [u(\alpha), l(\alpha)]= \begin{cases}P_{k-1}(\alpha)+\frac{\pi(\alpha)}{(k-1)!} \text { CLOW, } & \text { when } \pi(\alpha) \geq 0 \\ \mathrm{P}_{k-1}(\alpha)+\frac{\pi(\alpha)}{(\mathrm{k}-1)!} \text { CUP, } & \text { otherwise }\end{cases}$
where

$$
\begin{align*}
P_{k-1}(\alpha) & =\sum_{i=1}^{k} f\left(\bar{x}_{i}\right) \prod_{\substack{j=1 \\
j \neq i}}^{k}\left(\frac{\alpha-\bar{x}_{j}}{\bar{x}_{i}-\bar{x}_{j}}\right), \tag{2.11}\\
\pi(\alpha) & =\left(\alpha-\bar{x}_{1}\right)\left(\alpha-\bar{x}_{2}\right) \cdots\left(\alpha-\bar{x}_{k-1}\right)\left(\alpha-\bar{x}_{k}\right), \tag{2.12}
\end{align*}
$$

ACM Transactions on Mathematical Software, Vol 9, No 1, March 1983

$$
\begin{align*}
\mathrm{CLOW} & =\min \left[\int_{x_{1}}^{x_{n}} M_{\alpha}(x) u^{(k)}(x) d x, \int_{x_{1}}^{x_{n}} M_{\alpha}(x) l^{(k)}(x) d x\right], \tag{2.13}\\
\mathrm{CUP} & =\max \left[\int_{x_{1}}^{x_{n}} M_{\alpha}(x) u^{(k)}(x) d x, \int_{x_{1}}^{x_{n}} M_{\alpha}(x) l^{(k)}(x) d x\right] . \tag{2.14}
\end{align*}
$$

The quantities $\bar{x}_{1}, \ldots, \bar{x}_{k}$ are k of the data points that are closest to α, and $M_{\alpha}(x)$ is a B-spline of degree $k-1$ with the $k+1 \operatorname{knots}\left\{\bar{x}_{1}, \ldots, \bar{x}_{k}, \alpha\right\}$ arranged in ascending order.

Finally, the optimal estimate of $f(\alpha)$ is computed from the expression

$$
\begin{equation*}
\Omega(\alpha, L)=\frac{(\mathrm{UP}+\mathrm{LOW})}{2} \tag{2.15}
\end{equation*}
$$

Note that the smallest value of the error

$$
|f(\alpha)-\Omega(\alpha, L)|
$$

is zero, and that the maximum value that it can attain is the quantity

$$
\begin{equation*}
\frac{|\mathrm{UP}-\mathrm{LOW}|}{2} \tag{2.16}
\end{equation*}
$$

The main calculation involved in computing the bounds (2.1) is the solution, when $k \geq 2$, of the nonlinear equations (2.5) and (2.6) for the knots of u and l. Once this has been accomplished, the remaining calculations, namely, (2.9)-(2.15), proceed rapidly. Moreover, since the knots of u and l do not depend on the point of interpolation α, the computation of $u(\alpha)$ and $l(\alpha)$ for a sequence of values of α is fast.

In Section 6 we present a flowchart that describes the calculation outlined above and also provides a recommended sequence of computation.

3. SAMPLE PROGRAM AND OUTPUT

In this section we give an example of a situation where subroutine RANGE may be used.

We suppose that we are given the data of Table I, and the bound

$$
\begin{equation*}
\max \left|f^{(3)}(x)\right| \leq 8000.0, \quad-5.0 \leq x \leq 5.0 \tag{3.1}
\end{equation*}
$$

and that we wish to approximate the unknown function f by a function that passes through all of the values $f\left(x_{i}\right)$. In order to obtain an approximation, it is sensible to use a formula that takes account of all of the given information, namely, the data of Table I and the bound (3.1). Therefore, it is appropriate to use subroutine RANGE to compute the optimal estimate $\Omega(x, 8000)$ of $f(x)$.

The FORTRAN code for computing the optimal estimate $\Omega(x, 8000)$ for a sequence of values of x might be as shown in Fig. 1. The results of passing a smooth curve through the values, $\Omega\left(x t_{i}, 8000\right), l\left(x t_{i}, 8000\right)$, and $u\left(x t_{i}, 8000\right)$, computed by this code, are shown in Fig. 2. Specifically, Fig. 2b shows the range of possible values of $f(x)$. That is, every function that passes through the function values given in Table I and that also satisfies the inequality (3.1), lies between

Table I. Sample Data

i	x_{i}	$f\left(x_{i}\right)$
1	-5.0	0.301599
2	-3.0	0.304435
3	-1.2	0.327397
4	-10	0.339216
5	-0.6	0.405263
6	-0.4	0.522222
7	-0.2	0.966667
8	0.0	2.300000
9	0.2	0.966667
10	0.4	0.522222
11	0.8	0.360606
12	1.0	0.339216
13	1.4	0.320202
14	3.2	0.303899
15	4.4	0.302064
16	5.0	0.301599

the two curves shown in Fig. 2b. Thus, the optimal estimate of $f(x)$ is simply the average of these two curves. It is shown in Fig. 2a.
An estimate of the performance of subroutine RANGE, on a typical problem, may be obtained by examining the CPU time taken for the above example. To obtain an unbiased estimate of this time, the statements labeled MAN 470-MAN 550 in Fig. 1 were executed 1000 times and the average CPU time taken by RANGE was calculated. This experiment, which was performed on both a DEC10 computer and a CRAY- 1 computer, was repeated on a number of different occasions. The resulting average CPU time is shown in Table II.
For the purposes of comparison, the table also shows the average CPU time taken by the codes TB07A/TG03A [8] which implement the optimal interpolation method described in [4]. The reason why Range is approximately three times slower than this method is because RANGE computes the values of three functions, namely, l, u, and Ω. This is in contrast to the optimal interpolation method which computes only one function.

4. DISCUSSION

In this section we wish to show the types of approximation that may be obtained by different choices of the parameters L and k. The reason for doing this is that it is unusual for users to know, in advance, a bound on one of the derivatives of the function being approximated. Thus, it is important that users are aware of the effect on the approximation of an incorrect choice of L and/or k. In order to show these effects, we consider the example used in the sample program of Section 3. That is, we are given the data of Table I and we wish to obtain the optimal estimate of f. However, we now assume that a bound on one of the derivatives of f is not readily available and proceed to show how to obtain a lower bound on the k th derivative of f, for k in the range $1 \leq k \leq n$. To do this,

REAL $X(16), \mathrm{F}(16), \mathrm{WK}(200), \operatorname{ETA}(13), \operatorname{PSI}(13)$	MAN	10
REAL XT(101), L(101), U(101), OMEGA(101)	MAN	20
INTEGER IL (16)	MAN	30
C	MAN	40
C ASSEmble the data from table 1.	MAN	50
C	MAN	60
DATA X /-5., -3.,-1.2,-1.,-.6,-.4,-.2,0...2,.4,.8,1.,1.4.	MAN	70
* 3.2,4.4,5.0/	MAN	80
DATA F/.301599,.304435,.327397..339216,.405263,.522222,	MAN	90
\# .966667,2.3,.966667,.522222,.360606,.339216,.320202,	MAN	100
. .303899..302064..301599/	MAN	110
C	MAN	120
C SET THE NUMBER OF DATA POINTS	MAN	130
C	MAN	140
$N=16$	MAN	150
C	MAN	160
C SET THE Value of K	MAN	170
C	MAN	180
$K=3$	MAN	190
C	MAN	200
C SET THE LENGTH OF THE WORKSPACE ARRAY WK.	MAN	210
C NOTE THAT LWK MUST be at least the value	MAN	220
C ${ }^{*} \mathrm{~N}-2{ }^{*} \mathrm{~K}+1+(\mathrm{N}-\mathrm{K}) * \mathrm{MIN}(\mathrm{K}, \mathrm{N}-\mathrm{K})$	MAN	230
C	MAN	240
LWK $=200$	MAN	250
C	MAN	260
C SET THE Value of the bound on the kTh. derivative	MAN	270
C OFF $\mathrm{F}(\mathrm{X})$.	MAN	280
C	MAN	290
$A L=8000.0$	MAN	300
C	MAN	310
C SET THE LENGTH OF THE ARRAYS ETA AND PSI.	MAN	320
C NOTE THAT LEP MUST BE AT LEAST $\mathrm{N}-\mathrm{K}$.	MAN	330
C	MAN	340
LEP $=13$	MAN	350
C	MAN	360
C COMPUTE THE OPTIMAL ESTIMATE OF F AT 101	MAN	370
C EQUALLY SPACED VALUES OF X IN THE INTERVAL	MAN	380
C -5.0 .LE. X .LE. 5.0.	MAN	390
C	MAN	400
C note that in the call to range the value of	MAN	410
C the variable iag is set to the value of the	MAN	420
C DO LOOP VARIABLE I. IN THIS WAY THE SUBSEQUENT	MAN	430
C COMPUTATION OF THE OPTIMAL ESTIMATE FOR I.gE. 2	MAN	440
C IS MUCH FASTER.	MAN	450
C	MAN	460
DO $10 \mathrm{I}=1,101$	MAN	470
$\mathrm{XT}(\mathrm{I})=\mathrm{X}(1)+0.1$ FFLOAT $(\mathrm{I}-1)$	MAN	480
IAG $=1$	MAN	490
Call range (IAG, $\mathrm{N}, \mathrm{X}, \mathrm{F}, \mathrm{K}, \mathrm{WK}, \mathrm{LWK}, \mathrm{AL}, \mathrm{XT}(\mathrm{I}), \mathrm{IL}$,	MAN	500
* LEP, ETA, PSI, L(I), U(I), OMEGA(I), IFAIL)	MAN	510
IF (IFAIL.EQ.0) GO TO 10	MAN	520
WRITE (6.99999) IFAIL	MAN	530
GO TO 20	MAN	540
10 CONTINUE	MAN	550
20 STOP	MAN	560
99999 FORMAT (3 X, 8HIFAIL $=$, I4)	MAN	570
END	MAN	580

Fig. 1. Sample program.

Fig. 2 (a) The optimal estimate $\Omega(x, 8000)$ of f. (b) The range of possible values for the data of Table I.

Table II. Average CPU Time in Seconds for Sample Program

CODE	DEC-10	CRAY-1
RANGE	0.34	0.038
TB07A/TG03A	0.11	0.012

we require the following important result which was first given by Curry and Schoenberg in 1947 [1].

The k th divided difference, $k \geq 1$, of any function $f(x)$, whose ($k-1$) st derivative is continuous and whose k th derivative may be piecewise continuous, can be written as

$$
\begin{equation*}
f\left(x_{i}, \ldots, x_{t+k}\right)=\frac{1}{(k-1)!} \int_{x_{i}}^{x_{i+k}} M_{k, z}(x) f^{(k)}(x) d x \tag{4.1}
\end{equation*}
$$

where $M_{k, i}(x)$ is a B-spline of degree $k-1$ with knots at the points

$$
x_{i}<x_{i+1}<\cdots<x_{i+k-1}<x_{i+k} .
$$

We note that if $f(x)=x^{k}$, then (4.1) gives the value

$$
\begin{equation*}
\int_{x_{l}}^{x_{k+k}} M_{k, l}(x) d x=\frac{1}{k} \tag{4.2}
\end{equation*}
$$

Therefore, it follows from (4.1), (4.2), and the fact that $M_{k, 2}(x) \geq 0$, that the bound

$$
\begin{equation*}
k!\left|f\left(x_{\imath}, \ldots, x_{\imath+k}\right)\right| \leq \max \left|f^{(k)}(x)\right| \quad x_{\imath} \leq x \leq x_{i+k} \tag{4.3}
\end{equation*}
$$

holds throughout the range of values of i. Consequently, the value of the bound L must satisfy the inequality

$$
\begin{equation*}
k!\max _{i}\left|f\left(x_{i}, \ldots, x_{i+k}\right)\right| \leq\left\|f^{(k)}\right\|_{\infty} \leq L \tag{4.4}
\end{equation*}
$$

In practice, if the user chooses a value of L that does not satisfy (4.4), then subroutine RANGE prints a message to this effect and gives the value of the left inequality of (4.4). In this way, the user can choose a more sensible value of L. As an alternative to this procedure, an estimate for L may be obtained by first computing the divided differences $f\left(x_{i}, \ldots, x_{i+k}\right), i=1, \ldots, n-k$, and then setting L to a value greater than the quantity $k!\max _{t}\left|f\left(x_{t} \ldots, x_{i+k}\right)\right|$. Since the left side of inequality (4.4) is not a sharp lower bound on the value of $\left\|f^{(k)}\right\|_{\infty}$, it is often difficult to obtain a suitable value for L using this technique. For example, from the data of Table I we obtain the values, given in the second column of Table III, for the lower bound when $k=1, \ldots, 5$. The third column of this table gives an approximate bound on the least value of L that is consistent with the function values of Table I. This approximate bound is obtained, in an iterative way, by computing the smallest value of L for which eqs. (2.5) and (2.6) have a numerical solution.

Table III. The Lower Bound on L for Some Values of k

	$k!\max \left\|f\left(x_{i}, x_{i+k}\right)\right\|$ $1 \leq i \leq 16-k$	L must be greater than
1	6.666667	6.666667
2	66.666668	70.0
3	444.444456	714.0
4	4444444560	7600.0
5	35087.720400	79000.0

The last column of Table III shows that the bound obtained from inequality (4.4) is, in this case, a gross underestimate for the least value of L. We have found that the value obtained from the left inequality of (4.4) is generally a poor estimate of the value of L that should be used to obtain a good approximation to f. Instead, it only provides a first approximation from which a more sensible value of L can be determined. The question now arises of how to obtain a more sensible value of L in the absence of any further information about f. Unfortunately, there is no pleasing answer to this question, as the value of L has to be obtained by trial and error. However, we show, by an example, that it is far preferable to choose a large value of L than to choose too small a value.

To show the effect of choosing too small or too large a value for L, we consider the cases when L is allowed to take values at the extreme ends of the range

$$
\begin{equation*}
\text { least value consistent with the data, }<L<\infty \text {, } \tag{4.5}
\end{equation*}
$$

and k has the value 3 .

4.1 The Effect of Choosing Too Small a Value for L

Figure 3 shows the optimal estimate of the data of Table I when $L=714.8739$, which is a value very close to the least value of L when $k=3$. In this case the resulting approximation is sometimes called the BEST interpolant (see [2]). Figure 3 shows that this interpolant is a very poor approximation to the data of Table I. For example, compare it with the good approximation shown in Fig. 2a.

The reason for this poor approximation can be seen in Fig. 4, where we have shown the range of possible values of f when $L=714.8739$. Thus, for instance, the figure shows that the oscillations in $\Omega(x, 714.8739)$, between the first three and the last four data points, are due to the large differences in the magnitudes of the functions l and u in these regions. For example, compare Fig. 4 with Fig. $2 b$. These large differences are the result of imposing the unrealistic constraint that the third derivative of f be uniformly "small" throughout the interval $x_{1} \leq$ $x \leq x_{16}$, or equivalently that the unknown function f is a quadratic polynomial!

Now, since all functions that interpolate f at the values in Table I and that satisfy the bound

$$
\begin{equation*}
\max \left|f^{(3)}(x)\right| \leq 714.8739, \quad x_{1} \leq x \leq x_{16} \tag{4.6}
\end{equation*}
$$

ACM Transactions on Mathematical Software, Vol 9, No 1, March 1983

Fig. 3. The optimal estimate $\Omega(x, 714.8739)$ for the data of Table I when $k=3$.
lie between the two curves shown in Fig. 4a, it follows that the so-called BEST interpolant also lies between these two curves. Therefore, in this case, the BEST interpolant is in fact a very poor interpolant.

In general, we do not recommend using a value of L close to the least value of $\left\|f^{(k)}\right\|_{\infty}$ that is consistent with the given function values. Rather, we recommend choosing a large value of L.

4.2 The Effect of Choosing a Large Value of L

When the value of L is large, compared to the value at the left end of the interval (4.5), the optimal estimate usually provides a good piecewise polynomial approximation to the data. In fact, as L tends to infinity, Gaffney and Powell [6] proved that the optimal estimate converges to the unique spline function $\bar{\Omega}$ of degree $k-1$ which passes through the given function values and which has the $n-k$ knots that are the solution of the equations

$$
\begin{equation*}
\sum_{j=0}^{n-k}(-1)^{j} \int_{\eta_{j}^{*}}^{\eta_{j+1}^{*}} M_{k, i}(x) d x=0, \quad i=1, \ldots, n-k \tag{4.7}
\end{equation*}
$$

(Compare with eqs. (2.5)-(2.6).)
We note that this spline function, which does not depend on the value L, is called the optimal interpolation formula by Gaffney and Powell [6]. We recommend the method described by Gaffney [4] for computing $\bar{\Omega}$. For the data of Table I, the optimal interpolant when $k=3$ is shown in Fig. 5.

The figure shows that $\bar{\Omega}$ is not too different from the approximation shown in Fig. 2. However, in the limited number of test examples that we have run, we have found that the optimal estimate $\Omega(x, L)$, for a sensible value of L, usually

Fig. 4. (a) The range of possible values for the data of Table I when $L=714.8739$. (b) The irregular behavior in the region indicated in (a).

Fig. 5. The optimal interpolant Ω for the data of Table I when $k=3$.

Fig. 6. The maximum error in $\Omega(x, L)$
ACM Transactions on Mathematical Software, Vol 9, No 1, March 1983.

(a)
(b)

Fig. 7. (a) and (b) are classic examples of choosing too large a value for the degree of the interpolation formula.
provides a more accurate approximate than the optimal interpolation formula $\bar{\Omega}(x)$. To see that this is true in the present example, we first note that the data of Table I are obtained from the function

$$
\begin{equation*}
f(x)=0.3+\left(0.5+25 x^{2}\right)^{-1} \tag{4.8}
\end{equation*}
$$

Thus, we can compute the error functions

$$
\begin{equation*}
E_{1}(x)=|f(x)-\bar{\Omega}(x)| \tag{4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{2}(x, L)=|f(x)-\Omega(x, L)|, \tag{4.10}
\end{equation*}
$$

at any value of x. We computed these functions at 501 equally spaced values of x in the range $[-5,5]$. The maximum value attained by $E_{1}(x)$ is 0.17192172 . Furthermore, the maximum value attained by $E_{2}(x, L)$, for a sequence of values of L, is shown in Fig. 6.

The figure shows that the error $E_{2}(x, L)$ increases when the value of L approaches its lower limit. Moreover, although it is not apparent from Fig. 6, the inequality

$$
\begin{equation*}
\max E_{2}(x, L)<0.17192172 \tag{4.11}
\end{equation*}
$$

is valid when L is greater than or equal to 8000 , and the minimum value of the maximum of E_{2} occurs when L is equal to 11000 .

4.3 The Value of k

We now consider the problem of choosing a sensible value for \boldsymbol{k}. In general, the value of k should be very much smaller than the number of data points n. This ensures that the resulting approximation $\Omega(x, L)$ is composed of a large number of polynomial pieces. Thus, in this case, we would expect to achieve all the benefits of piecewise polynomial approximation. A value of k less than 8 should usually be sufficient. In fact, $k=2,3$, or 4 will suffice for most practical problems. Whatever value is chosen for k, it is important that the user examine the approximation $\Omega(x, L)$, preferably in graphical form. In this way, any unexpected behavior will be discovered immediately.

The effect of choosing too large a value of k can be seen in Fig. 7a and b. This figure shows the functions $\Omega(x, L)$ for the data of Table I when $k=4$ and 5 . The large oscillations are due entirely to the fact that these values of k are too large for the data of Table I. The corresponding function when $k=3$ is almost identical to the one shown in Fig. 5.

4.4 Conclusion

In this section we have shown the types of approximation that may be obtained by different choices of the parameters L and k. In general, it is sensible to use RANGE when function values and a bound L on the k th derivative of f are given.

If only function values are provided, then it is possible to obtain, by trial and error, a bound on one of the derivatives of f. However, in this case, extreme care should be exercised in the choice of this bound and in the choice of k. In practice we have found that a large value of L and a small value of k are usually sufficient to provide an acceptable approximation to f. In this context, "large" is measured

Figure 7
relative to the least value of $\max _{x_{1} \leq x \leq x_{n}}\left|f^{(k)}(x)\right|$ that is consistent with the given function values. Since this quantity is, in general, unknown, a number of iterations may be required to obtain a sensible value for L. Therefore, when a bound on one of the derivatives of f is not readily available, we do not recommend using RANGE. Instead we recommend using the optimal interpolation formula $\bar{\Omega}$ [4]. In this case, the only parameter that has to be chosen is k, and it is sensible to choose a value of k that is much smaller than the number n of function values.

5. SOFTWARE STANDARDS

Subroutine RANGE was written to conform to 1966 American National Standard FORTRAN IV, and it has been verified using the Bell Telephone Laboratories FORTRAN verifier, PFORT [12].

The subroutine has been extensively tested on a wide variety of test problems, and it has been analyzed for errors using DAVE [10].

To make the subroutine easier to read, it has been reformatted using POLISH [3].

6. LOGICAL FLOWCHART

In this section we present a flowchart (Figure 7) that describes the way in which subroutine RANGE should be called. Prospective users are advised to consult the flowchart before incorporating subroutine RANGE into a FORTRAN program. In particular, we note that if the subroutine is to be called repeatedly for a sequence of values of α, then the variable IAG should be reset to a value greater than one after the first call to RANGE. In this way, the knots $\left\{\eta_{l}\right\}$ and $\left\{\xi_{r}\right\}$ are computed only once and the remaining calculation is fast.

ACKNOWLEDGMENTS

I wish to thank Dr. J. K. Reid for diligently testing the FORTRAN subroutines in this package, using the WATFIV compiler on the IBM computer at Harwell. His results and comments have led to improvements in the code. I am also indebted to Dr. R. C. Ward and Dr. I. S. Duff for making suggestions that have improved the presentation of the paper. Finally, I wish to thank Teresa Craig for her excellent typing of the manuscript.

REFERENCES

1. Curry, H.B., and Schoenberg, I.J. On Pólya frequency functions, IV. J. Anal. Math. 17, pp. 71-107; also, Bull. Am Math Soc 53, Abstr. 380t (1947), 1114.
2. de Boor, C. A Practical Guide to Splines. Applied Mathematical Sciences, Sentes 27, SpringerVerlag, New York, 1978, pp. 222-227.
3. Dorrenbacher, J , Paddock, D., Wisneski, D., and Fosdick, L.D. POLISH, A FORTRAN program to edit FORTRAN programs. Univ. Colorado, Dep. Computer Science Tech. Rep. CU-CS-050-76 (Rev), Aug. 1979.
4. Gaffney, P.W To compute the optımal interpolation formula Math Comput. 32, 143 (July 1978).
5. Gaffney, P.W. Optimal interpolation. D. Phil. Thesis, Oxford Univ., Oxford, England, 1977.
6. Gaffney, P.W., and Powell, M.J.D. Optimal interpolation. In Proc. Conference on Numerical Analysis (Univ. Dundee, Dundee, Scotland), G.A. Watson (Ed.), Springer-Verlag, New York, Number 506 in Lecture Notes in Mathematics Series, 1975.
7. Gaffney, P.W. The range of possible values of $f(x)$. J. Inst. Math. Its Appl. 21 (1978), 211-226.
8. GAFFNEY, P.W. FORTRAN subroutines for computing the optimal interpolation formula. AERE Rep. R8781, 1977.
9. Micchelli, G.A., and Rivlin, T.J. Optımal Estımatıon in Approximatıon Theory. Plenum, New York, 1977.
10. Osterweil, L.J., and Fosdick, L.D. DAVE-A validation error detection and documentation system for FORTRAN programs. Softw.-Pract. Exper 6 (1976), 473-486
11. Powell, M.J.D. Approximation Theory and Methods. Cambridge University Press, Cambridge, England, 1981.
12. Ryder, B.G. The PFORT Verifier. Softw.-Pract. Exper. 4 (1974), 359-377.

ALGORITHM

[A part of the listing is printed here. The complete listing is available from the ACM Algorithms Distribution Service (see page 141 for order form).]

ACM Transactions on Mathematical Software, Vol 9, No. 1, March 1983.

WK	IS A REAL ARRAY OF LENGTH AT LEAST:	RAN	510 520
		RAN	530
	$5 * N-2 * \mathrm{~K}+1+(\mathrm{N}-\mathrm{K}) * \mathrm{MIN}(\mathrm{K}, \mathrm{N}-\mathrm{K})$	RAN	540
		RAN	550
	WHICH IS USED AS WORKSPACE.	RAN	560
LWK		RAN	570
	IS AN INTEGER VARIABLE WHICH MUST BE SET TO THE	RAN	580
	LENGTH OF WK.	RAN	590
	RESTRICTION: LWK.GE. 5 *N-2*K+1+(N-K) *MIN ($\mathrm{K}, \mathrm{N}-\mathrm{K}$) .	RAN	600
	THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE.	RAN	610
		RAN	620
AL	IS A REAL VARIABLE WHICH MUST BE SET TO THE VALUE	RAN	630
	L, OF THE FINITE BOUND ON THE KTH. DERIVATIVE OF	RAN	640
	$F(X)$	RAN	650
	RESTRICTION: L MUST BE GREATER THAN THE LEAST VALUE	RAN	660
	OF THE MAXIMUM ABSOLUTE VALUE OF THE KTH. DERIVATIVE	RAN	670
	OF $\mathrm{F}(\mathrm{X})$ THAT IS CONSISTENT WITH THE GIVEN FUNCTION	RAN	680
	VALUES $F(X(1)) \ldots . . . \mathrm{F}(\mathrm{X}(\mathrm{N})$). IN PARTICULAR L MUST	RAN	690
	SATISFY THE INEQUALITIES	RAN	700
		RAN	710
	I. .GT. 0	RAN	720
	AND	RAN	730
	L. GE. FACTORIAL (R)*ABS (F (X (I) , . . , X (I+K))	RAN	740
	$\mathrm{I}=1, \ldots, \mathrm{~N}-\mathrm{K},$	RAN	750
		RAN	760
	WHERE $F(X(I), \ldots, X(I+K))$ DENOTES THE KTH. DIVIDED	RAN	770
	DIFFERENCE OF $F(X)$ BASED ON THE POINTS $X(I), \ldots, X(I+K)$	RAN	780
	THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE.	RAN	790
		RAN	800
ALPHA	IS A REAL VARIABLE WHICH MUST BE SET TO THE VALUE	RAN	810
	OF THE ARGUMENT X AT WHICH THE RANGE OF POSSIBLE	RAN	820
	VALUES OF F(X) IS COMPUTED.	RAN	830
	RESTRICTION: X (I).LE.ALPHA	RAN	840
	THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE.	RAN	85b
		RAN	860
IL	IS AN INTEGER ARRAY OF LENGTH AT LEAST N. IT IS USED	RAN	870
	AS WORKSPACE.	RAN	880
		RAN	890
LEP	IS AN INTEGER VARIABLE WHICH MUST BE SET TO THE LESSER	RAN	900
	LENGTH OF ARRAYS ETA AND PSI. RESTRICTION: LEP.GE.N-K.	RAN	910
	THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE.	RAN	920
		RAN	930
		RAN	940
*** O U T	P U T ****	RAN	956
		RAN	960
ETA	IS A REAL ARRAY OF LENGTH AT LEAST N-K. ON EXIT	RAN	970
	FROM THE SUBROUTINE ETA CONTAINS THE KNOTS	RAN	980
	OF THE PERFECT SPLINE $\mathrm{U}(\mathrm{X})$.	RAN	990
		RAN	1000
PSI	IS A REAL ARRAY OF LENGTH AT LEAST N-K. ON EXIT	RAN	1010
	FROM THE SUBROUTINE PSI CONTAINS THE KNOTS OF THE	RAN	1020
	PERFECT SPLINE L(X).	RAN	1030
		RAN	1040
LOW	IS A REAL VARIABLE. ON EXIT FROM THE SUBROUTINE	RAN	1050
	LOW IS SET TO THE GREATEST LOWER BOUND OF F (ALPHA).	RAN	1060
		RAN	1070
UP	IS A REAL VARIABLE. ON EXIT FROM THE SUBROUTINE	RAN	1080
	UP IS SET TO THE LEAST UPPER BOUND OF F (ALPHA).	RAN	1090
		RAN	1100
OMEGA	IS A REAL VARIABLE. ON EXIT FROM THE SUBROUTINE	RAN	1110
	OMEGA IS SET TO THE OPTIMAL ESTIMATE OF F (ALPHA).	RAN	1120
	THE SMALLEST VALUE OF THE ERROR OF THIS ESTIMATE	RAN	1130
	OF F (ALPHA) IS ZERO, AND THE MAXIMUM VALUE WHICH	RAN	1140
	IT CAN ATTAIN IS THE QUANTITY: 0.5*ABS (UP-LOW).	RAN	1150
		RAN	1160
IFAIL	IS AN ERROR RETURN FLAG. ON EXIT FROM THE SUBROUTINE	RAN	1170
	IT HAS ONE OF THE FOLLOWING VALUES:	RAN	1180
		RAN	1190
	0 SUCCESSFUL ENTRY	RAN	1200
	$1 \mathrm{~N} . L T .2$	RAN	1210

[^0]: Received 20 January 1982; revised 8 July 1982; accepted 3 September 1982
 Oak Ridge National Laboratory is operated by Union Carbide Corporation under Contract W-7405-eng-26 with the U.S. Department of Energy.
 Author's address: Computer Sciences, Oak Ridge National Laboratory, Bulding 9104-2, P.O. Box Y, Oak Ridge, TN 37830.
 1983 ACM 0098-3500/83/0300-0098 \$00.00
 ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 98-116.

