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1. INTRODUCTION 

In  this pape r  we present  a F O R T R A N  subrout ine  to compute  the  solution of the  
following problem.  

Given values of  an unknown function f a t  n distinct points, xl < x2 < . - -  < x,-1 
< x, ,  and given an integer k, 1 ___ k ___ n, and a finite bound on the  k t h  der ivat ive 
of  f, 

II f(k)II = = max]  f (k)(x)  I <- L < oo, x l  ~- x ~_ Xn, 

determine  the range of possible values  of  f(~) (and hence the  opt imal  es t imate  of  
f(~)), where  ~ is any  point  in the interval  x] _< x _< x , .  

Gaffney [5] and Gaffney and Powell  [6] have  solved this problem.  T h e y  proved  
tha t  the closest possible bounds  on f (e)  are given by  the  interval  

min[u(~),  l(~)] _ f (e)  _ max[u(e) , / (~) ] ,  (1.1) 

where the  quant i t ies  u(e) and l(e) are the  values a t  x ffi ~ of  two perfect  splines 
of  degree k which pass th rough  the  given function values. A me thod  for comput ing  
the  range (1.1) is described in a companion  pape r  by  Gaffney [7]. Therefore ,  the  
purpose  of this pape r  is to present  a F O R T R A N  subrout ine  for comput ing  the  
values u(~), l(e), and the es t imate  of f (e )  whose error  has  the  smallest  possible 
bound, tha t  is, the  quant i ty  

(u(a) + l(a)) 
~(a,  L )  - (1.2) 

2 

Received 20 January 1982; revised 8 July 1982; accepted 3 September 1982 
Oak Ridge National Laboratory is operated by Union Carbide Corporation under Contract W-7405- 
eng-26 with the U.S. Department of Energy. 
Author's address: Computer Sciences, Oak Ridge National Laboratory, Budding 9104-2, P.O. Box Y, 
Oak Ridge, TN 37830. 
1983 ACM 0098-3500/83/0300-0098 $00.00 

ACM Transactions on Mathematical Software, Vol. 9, No. 1, March 1983, Pages 98-116. 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F356022.356027&domain=pdf&date_stamp=1983-03-01


A l g o r i t h m s  • 99 

The name of this subroutine is RANGE.  
It  is important  that  prospective users of R A N G E  are aware of the amount  of 

computation involved in computing the numbers u(a) and l(a). Therefore, in 
Section 2 we give a brief description of the method used by RANGE.  In Section 
3 we present a sample program for a situation where R A N G E  may  be used. In 
Section 4 we discuss some aspects of practical approximation tha t  we believe may  
be useful to prospective users of RANGE.  We recommend tha t  these users should 
read this section, in particular the conclusions at  the end of the section, before 
incorporating subroutine R A N G E  in a FORTRAN program. In Section 5 we 
describe the standards tha t  subroutine R A N G E  adheres to, and in Section 6 we 
present a flowchart tha t  describes the way in which R A N G E  should be called. At  
the end of the paper we present the FORTRAN listing of subroutine RANGE.  

In addition to the work cited in this paper, a number  of other authors  have also 
considered optimal approximation schemes. Some of this work is described in the 
book by Micchelli and Rivlin [9]. For further discussion on optimal interpolation, 
with particular reference to the role played by natural  spline interpolation, we 
refer the interested reader to the thorough exposition given by Powell [11]. 

2. METHOD OF COMPUTATION 

In this section we give a brief description of the algorithm used by RANGE.  To 
do this we first recall, from [7], the solution of the optimal estimation problem 
and we review the properties of the functions u and 1 tha t  provide the bounds 
(1.1). 

Given values f, . . . .  , fn of a function f at  the points 

Xl < X2 ~ " " " < Xn--1 ~ Xn, 

and given that  the inequality 

max[fCk~(x)[<_L<o% l<_k<_n,  x l<_x<_x , ,  

is satisfied, where the value of L is greater than  the least value of 

max I #'}(x) t, Xl <~ x ~ Xn 

that  is consistent with the function values fl . . . .  , f , ,  then  the closest possible 
bounds on f(x), for any x in the range Xl <- x <_ x, ,  are given by the inequalities 

min[u(x), l(x)] _ f(x) <_ max[u(x), l(x)]. (2.1) 

The functions u and l in expression (2.1) are perfect splines of degree k; they  
each have n - k knots, and they  each satisfy the interpolation conditions 

u(x,) = l(x,) = f(x,), i = 1 . . . . .  n. (2.2) 

Furthermore, the k th  derivative of u satisfies the equation 

71, _~ x < ~,÷~, i = 1, . . . ,  n - k - 1 (2.3) 
u~k~(x) = kL ~,-k <-- x <_ x ,  

and the k th  derivative of I satisfies the equation 

I-'_L1 x , < x < ~  ~ 
l~h~(x)= ( )'+lL ~,-----x<~,+~, i----1 . . . .  , n - k - 1  (2.4) 

[ (-1)n-k+lL ~,-k -- x -- x, .  
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We calculate the knots {~,} and (~,} by solving the systems of equations 

n - k  ~ + 1  
( -1 ) :  Mk,,(x)  d x - L - ' ( k -  1)!/(x . . . . . .  x,+k) = 0 ,  

J-O ~ J  

i =  l , . . . , n -  k 

and 

(2.5) 

n - k  ~}J+l 
Y~ (-1) :+1 Mk,,(x) d x  - L - ' ( k  - 1)!f(x . . . . . .  x,+k) -- O, 

:=0 ,.,~: 

i = l , . . . , n - k  (2.6) 

where ~lo = ~o = x,, y,-k+l ffi ~n-k+, ffi X, ,  Mk,,(X) is a B-spline of degree k - I with 
knots x,, . . . ,  x,+k, and f ( x , ,  . . . ,  x,+k) is the k t h  divided difference of f based on 
the points x , , . . . ,  x,+k. 

When k = 1, eqs. (2.5) and (2.6) are linear. In this case it is straightforward to 
show tha t  the knots {~,} and (~,} have the values 

(--1) '+1 (X, + X,+I) 
* 1 , -  2 L  ( f ( x , + , )  - f ( x , ) )  4 2 ' i = 1 , . . . , n -  1 (2.7)  

and 

(--1)~ ( f ( x , + , )  -- f ( x , ) )  4 }'=--YE- 
(x~ + X~+l) 

i = 1 , . . . ,  n - 1 .  (2.8) 

When the value of k is greater than  1, eqs. (2.5) and (2.6) are n o n l i n e a r .  
Therefore, we solve them using a continuation method together with Newton 
iteration. A description of this technique is given by Gaffney [7]. 

In order to compute the bounds (2.1), at  a given value of x, say x = a, we use 
the formulas (see Gaffney [7]) 

~(~) 
P k - , ( a )  + ~ CUP, when ~r(a) _ 0 

UP - max[u(a), l(a)] = (k - l)l (2.9) 

Pk-,(a) + ~ ( a )  CLOW, otherwise 
( k -  1)] 

~(a) 

a n d  

f =j Pk-l(O/) "4" (k - 1)------'~ CLOW' 
) 

~r(a______~) CUP, 
LOW - min[u(a), l(a)] [ Pk-x(a) 4 (k - 1)! 

where 

when qr(a) ___ 0 

otherwise 
(2.10) 

(2.11) 
,. ,  , - ,  \ x ,  - x j /  

~'(a) = (a  - .~,)(,~ - .Z2) . . .  (a  - . ~ , ) ( a  - £k ) ,  
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CLOW = rain M~(x)u~k~(x) dx, M~(x)l(k~(x) dx  , (2.13) 
Xl 1 

CUP = max M,(x)u~k~(x) dx, M~(x)l(k)(x) dx  . (2.14) 
X l 

The quantities 2~ . . . . .  xk are k of the data points that are closest to a, and M,~(x) 
is a B-spline of degree k - 1 with the k + 1 knots {xl . . . . .  Ek, a} arranged in 
ascending order. 

Finally, the optimal estimate of f(a) is computed from the expression 

(UP + LOW) 
~2(a, L) ffi (2.15) 

2 

Note that the smallest value of the error 

I f(~) - a(~, L) I 
is zero, and that the maximum value that it can attain is the quantity 

1UP - LOW] (2.16) 
2 

The main calculation involved in computing the bounds (2.1) is the solution, 
when k ~ 2, of the nonlinear equations (2.5) and (2.6) for the knots of u and 1. 
Once this has been accomplished, the remaining calculations, namely, (2.9)-(2.15), 
proceed rapidly. Moreover, since the knots of u and l do not depend on the point 
of interpolation a, the computation of u(a) and l(a) for a sequence of values of a 
is fast. 

In Section 6 we present a flowchart that describes the calculation outlined 
above and also provides a recommended sequence of computation. 

3. SAMPLE PROGRAM AND OUTPUT 

In this section we give an example of a situation where subroutine RANGE may 
be used. 

We suppose that we are given the data of Table I, and the bound 

max l f~3~(x) I <- 8000.0, -5.0 <_ x <__ 5.0, (3.1) 

and that we wish to approximate the unknown function f by a function that  
passes through all of the values f(x,). In order to obtain an approximation, it is 
sensible to use a formula that  takes account of all of the given information, 
namely, the data of Table I and the bound (3.1). Therefore, it is appropriate to 
use subroutine RANGE to compute the optimal estimate ~(x, 8000) of f(x). 

The FORTRAN code for computing the optimal estimate ~(x, 8000) for a 
sequence of values of x might be as shown in Fig. 1. The results of passing a 
smooth curve through the values, ~(xt,,  8000), l(xt,, 8000), and U(Xti, 8000), 
computed by this code, are shown in Fig. 2. Specifically, Fig. 2b shows the range 
of possible values of f(x). That  is, every function that  passes through the function 
values given in Table I and that  also satisfies the inequality (3.1), lies between 
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Table I. Sample Data 

i x, f(x,) 

1 - 5 . 0  0.301599 
2 - 3 . 0  0.304435 
3 -1 .2  0.327397 
4 - 1  0 0.339216 
5 - 0 . 6  0.405263 
6 -0 .4  0.522222 
7 -0 .2  0.966667 
8 0.0 2.300000 
9 0.2 0.966667 
10 0.4 0.522222 
11 0.8 0.360606 
12 1.0 0.339216 
13 1.4 0.320202 
14 3.2 0.303899 
15 4.4 0.302064 
16 5.0 0.301599 

the two curves shown in Fig. 2b. Thus, the optimal estimate of f ( x )  is simply the 
average of these two curves. It is shown in Fig. 2a. 

An estimate of the performance of subroutine RANGE, on a typical problem, 
may be obtained by examining the CPU time taken for the above example. To 
obtain an unbiased estimate of this time, the statements labeled MAN 470-MAN 
550 in Fig. 1 were executed 1000 times and the average CPU time taken by 
RANGE was calculated. This experiment, which was performed on both a DEC- 
10 computer and a CRAY-1 computer, was repeated on a number of different 
occasions. The resulting average CPU time is shown in Table II. 

For the purposes of comparison, the table also shows the average CPU time 
taken by the codes TB07A/TG03A [8] which implement the optimal interpola- 
tion method described in [4]. The reason why Range is approximately three times 
slower than this method is because RANGE computes the values of three 
functions, namely, l, u, and ~. This is in contrast to the optimal interpolation 
method which computes only one function. 

4. D ISCUSSION 

In this section we wish to show the types of approximation that  may be obtained 
by different choices of the parameters L and k. The reason for doing this is that  
it is unusual for users to know, in advance, a bound on one of the derivatives of 
the function being approximated. Thus, it is important that  users are aware of 
the effect on the approximation of an incorrect choice of L and/or k. In order to 
show these effects, we consider the example used in the sample program of 
Section 3. That  is, we are given the data of Table I and we wish to obtain the 
optimal estimate of f. However, we now assume that  a bound on one of the 
derivatives of f is not readily available and proceed to show how to obtain a 
lower bound on the k th derivative of f, for k in the range 1 _< k _< n. To do this, 
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REAL X(16), F(16), WK(200), ETA(13), PSI(13) 
REAL XT(101), L(I01), U(I01), OMEGA(IOI) 
INTEGER IL(16) 

C 
C ASSEMBLE 
C 

DATA 
i 

DATA 
U 

I 

C 
C SET THE 
C 

N : 
C 
C SET THE 
C 

K = 
C 

THE DATA FROM TABLE I. 

X / - 5 . , - 3 . , - 1 . 2 , - 1 ,  , - • 6 , - . ~ , - . 2 , 0 .  , .2 , .q ,  •8 ,1 . ,  1.4, 
3.2,4.4,5.0/ 
F /. 301599, • 304435,. 327397,. 339216,. 405263 , . 522222 , 
• 9666~7 , 2.3,. 966667,. 522222,. 360606,• 339216,. 320202 , 
• 303899, • 302064, . 301599/ 

NUMBER OF DATA POINTS 

16 

VALUE OF K 

C SET THE LENGTH OF THE WORKSPACE ARRAY WK• 
C NOTE THAT LWK MUST BE AT LEAST THE VALUE 
C 5*N-2*K+;+(N-K)mMIN(K,N-K) 
C 

LWK = 200 
C 
C SET THE VALUE OF THE BOUND ON THE KTH. DERIVATIVE 
C OF F(X). 
C 

AL : 8000.0 
C 
C SET THE LENGTH OF THE ARRAYS ETA AND PSI. 
C NOTE THAT LEP MUST BE AT LEAST N-K. 
C 

LEP : 13 
C 
C COMPUTE THE OPTIMAL ESTIMATE OF F AT 101 
C EQUALLY SPACED VALUES OF X IN THE INTERVAL 
C -5.0 .LE. X .LE. 5.0. 
C 
C NOTE THAT IN THE CALL TO RANGE THE VALUE OF 
C THE VARIABLE IAG IS SET TO THE VALUE OF THE 
C DO LOOP VARIABLE I. IN THIS WAY THE SUBSEQUENT 
C COMPUTATION OF THE OPTIMAL ESTIMATE FOR I.GE.2 
C IS MUCH FASTER. 
C 

DO 10 I:1,101 
XT(I) = X(1) + 0.1*FLOAT(I-I) 
lAG = I 
CALL RANGE(IAG, N, X, F, K, WK, LWK, AL, XT(I), IL, 

LEP, ETA, PSI, L(I), U(I), OMEGA(I), IFAIL) 
IF (IFAIL.EQ.0) GO TO 10 
WRITE (6,99999) IFAIL 
GO TO 20 

10 CONTINUE 
20 STOP 

99999 FORMAT (3X, 8HIFAIL : , I4) 
END 

MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 
MAN 

10 
20 
30 
q0 
50 
60 
70 
80 
90 

100 
110 
120 
130 
1~0 
150 
160 
170 
180 
190 
2OO 
210 
22O 
230 
240 
250 
260 
27O 
280 
290 
300 
310 
320 
330 
3~0 
350 
360 
370 
380 
39O 
qO0 
alO 
420 
43O 
440 
~50 
460 
470 
480 
~90 
500 
510 
520 
530 
5~0 
550 
560 
570 
580 

Fig. 1. Sample  program. 
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24  
I 

2 . 2  1 

2.0 - -  

t 8  - -  

t 6  - -  

O 
o t 4  -- o ~p 

LO - -  

0 . 8  - -  

0.4 - -  

0.2 - -  

o I 
3000 

2500 

2000 

500 

too0 

'¢" 500 

0 z 0 

-500  

i - I 000  
x 

-1500 

-2000 

-2500 
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-4 

o 

I 

I 

q 
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I I I 

I I I I I 
I I I I I 

I 

o - o  

i 1 I 1 I 1 I I 
-2 0 2 4 

X 

(a) 

(b) 

Fig. 2 (a) T h e  op tnna l  e s t ima te  ~(x, 8000) of  f. (b) T h e  
range of possible va lues  for t he  da ta  of  Tab le  I. 

Table  II. Average C P U  T i m e  in Seconds  for 
Sample  P rog ram 

CODE DEC-10 

R A N G E  0.34 
T B 0 7 A / T G 0 3 A  0.11 
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CRAY-1 

0.038 
0.012 



Algor i thms • 1 0 5  

we require the following important  result which was first given by Curry and 
Schoenberg in 1947 [1]. 

The k t h  divided difference, k _ 1, of any function f(x), whose 
(k - 1)st derivative is continuous and whose k t h  derivative may  be 
piecewise continuous, can be writ ten as 

1 ff'+~ ~ - ~ ' ( k )  X f ( x . . . . ,  x~+k) (k 1)! Mk, , ( xH  ( ) d x  (4.1) 
Xt 

where Mk,,(x) is a B-spline of degree k - I with knots at  the points 

X~ < X~+I < • • • < X~+k-1 < X~+h. 

We note that  if f ( x )  = x k, then (4.1) gives the value 

ff '+~ 1 (4.2) M,,,(x) d x  = -~. 

Therefore, it follows from (4.1), (4.2), and the fact tha t  Mk,,(x) >-- 0, tha t  the bound 

k ! l f ( x  . . . . .  , x,+k) I -< max] f~k)(x) ] x~ <_ x <_ x,+k (4.3) 

holds throughout the range of values of i. Consequently, the value of the bound 
L must satisfy the inequality 

I k! max I f(x . . . . .  , x,+k)l - II f~k~ II ~ - L. (4.4) ! 
$ 

In practice, if the user chooses a value of L tha t  does not  satisfy (4.4), then  
subroutine R A N G E  prints a message to this effect and gives the value of the left 
inequality of (4.4}. In this way, the user can choose a more sensible value of L. As 
an alternative to this procedure, an estimate for L may  be obtained by first 
computing the divided differences f ( x  . . . . .  , X~+k), i = 1, . . . ,  n -- k, and then  
setting L to a value greater than  the quanti ty k! max,  I f(x~ . . . ,  x~+k) I. Since the 
left side of inequality (4.4) is not  a sharp lower bound on the value of II f~k) II ~, it 
is often difficult to obtain a suitable value for L using this technique. For example, 
from the data of Table I we obtain the values, given in the second column of 
Table III, for the lower bound when k = 1 , . . . ,  5. The third column of this table 
gives an approximate bound on the least value of L tha t  is consistent with the 
function values of Table I. This approximate bound is obtained, in an iterative 
way, by computing the smallest value of L for which eqs. (2.5) and (2.6) have a 
numerical solution. 

A C M  T r a n s a c t i o n s  on M a t h e m a t i c a l  Sof tware ,  Vol. 9, No.  1, M a r c h  1983 
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Table  III. The  Lower Bound on L for Some 
Values  of k 

k! m a x  I f(x, ,  , x,+D [ L mus t  be grea te r  
k 1 _ i _ 16 - k t h a n  

1 6.666667 6.666667 

2 66.666668 70.0 
3 444.444456 714.0 
4 a Aaa 444560 7600.0 

5 35087.720400 79000.0 

The last column of Table III shows that  the bound obtained from inequality 
(4.4) is, in this case, a gross underestimate for the least value of L. We have found 
that the value obtained from the left inequality of (4.4) is generally a poor 
estimate of the value of L that should be used to obtain a good approximation to 
f Instead, it only provides a first approximation from which a more sensible value 
of L can be determined. The question now arises of how to obtain a more sensible 
value of L in the absence of any further information about f. Unfortunately, there 
is no pleasing answer to this question, as the value of L has to be obtained by 
trial and error. However, we show, by an example, that  it is far preferable to 
choose a large value of L than to choose too small a value. 

To show the effect of choosing too small or too large a value for L, we consider 
the cases when L is allowed to take values at the extreme ends of the range 

least value consistent with the data, < L < 0% (4.5) 

and k has the value 3. 

4.1 The Effect of Choosing Too Small a Value for L 

Figure 3 shows the optimal estimate of the data of Table I when L = 714.8739, 
which is a value very close to the least value of L when k = 3. In this case the 
resulting approximation is sometimes called the BEST interpolant (see [2]). 
Figure 3 shows that this interpolant is a very poor approximation to the data of 
Table I. For example, compare it with the good approximation shown in Fig. 2a. 

The reason for this poor approximation can be seen in Fig. 4, where we have 
shown the range of possible values of f when L = 714.8739. Thus, for instance, 
the figure shows that  the oscillations in ~(x, 714.8739), between the first three 
and the last four data points, are due to the large differences in the magnitudes 
of the functions I and u in these regions. For example, compare Fig. 4 with Fig. 
2b. These large differences are the result of imposing the unrealistic constraint 
that the third derivative of f be uniformly "small" throughout the interval x~ _ 
x _< x,6, or equivalently that  the unknown function f is a quadratic polynomial! 

Now, since all functions that  interpolate f at the values in Table I and that  
satisfy the bound 

max l f(3)(x) I -< 714.8739, xl <-- x _ x16 (4.6) 

ACM Transactions on Mathematmal Software, Vol 9, No 1, March 1983 
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Fig. 3. The optimal estimate 
~2(x, 714.8739) for the data of Table 
I when k ffi 3. 

lie between the two curves shown in Fig. 4a, it follows that  the so-called BEST 
interpolant also lies between these two curves. Therefore, in this case, the BEST 
interpolant is in fact a very poor interpolant. 

In general, we do not recommend using a value of L close to the least value of 
I[ f(k)[[ ~ that is consistent with the given function values. Rather, we recommend 
choosing a large value of L. 

4.2 The Effect of Choosing a Large Value of L 

When the value of L is large, compared to the value at the left end of the interval 
(4.5), the optimal estimate usually provides a good p i e c e w i s e  polynomial approx- 
imation to the data. In fact, as L tends to infinity, Gaffney and Powell [6] proved 
that the optimal estimate converges to the unique spline function ~ of degree 
k - 1 which passes through the given function values and which has the 
n - k knots that are the solution of the equations 

n - - k  ~ 7,*+1 
~, (-1) J Mh,,(x) d x  = O, i = 1, . . . ,  n - k .  (4.7) 

J=0 

(Compare with eqs. (2.5)-(2.6).) 
We note that this spline function, w h i c h  d o e s  n o t  d e p e n d  o n  t h e  v a l u e  L ,  is 

called the optimal interpolation formula by Gaffney and PoweU [6]. We recom- 
mend the method described by Gaffney [4] for computing ~. For the data of 
Table I, the optimal interpolant when k = 3 is shown in Fig. 5. 

The figure shows that  ~ is not too different from the approximation shown in 
Fig. 2. However, in the limited number of test examples that we have run, we 
have found that the optimal estimate t2(x, L), for a sensible value of L, usually 
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when L -- 714.8739. (b) The irregular behavior in the region indi- 
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Fig. 5. T h e  opt imal  in terpolant  
for the  da ta  of  Tab le  I when  k = 3. 
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(a) and (b) are classic examples of choosing too large a value 
for the  degree of  the  interpolation formula. 
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provides a more accurate approximate than the optimal interpolation formula 
~(x). To see that this is true in the present example, we first note that  the data 
of Table I are obtained from the function 

f ( x )  = 0.3 + (0.5 + 25x2) -~. (4.8) 

Thus, we can compute the error functions 

E~(x )  = I f ( x )  - ~(x)] (4.9) 

and 

E2(x ,  L) ffi If(x) - f~(x, L) l ,  (4.10) 

at any value of x. We computed these functions at 501 equally spaced values of 
x in the range [-5, 5]. The maximum value attained by E l ( x )  is 0.17192172. 
Furthermore, the maximum value attained by E2 (x, L), for a sequence of values 
of L, is shown in Fig. 6. 

The figure shows that the error E2 (x, L) increases when the value of L 
approaches its lower limit. Moreover, although it is not apparent from Fig. 6, the 
inequality 

max E2(x ,  L) < 0.17192172 (4.11) 

is valid when L is greater than or equal to 8000, and the minimum value of the 
maximum of E2 occurs when L is equal to 11000. 

4.3 The Value of k 

We now consider the problem of choosing a sensible value for k. In general, the 
value of k should be very much smaller than the number of data points n. This 
ensures that the resulting approximation ~2(x, L) is composed of a large number 
of polynomial pieces. Thus, in this case, we would expect to achieve all the 
benefits of piecewise polynomial approximation. A value of k less than 8 should 
usually be sufficient. In fact, k ffi 2, 3, or 4 will suffice for most practical problems. 
Whatever value is chosen for k, it is important that the user examine the 
approximation ~(x, L), preferably in graphical form. In this way, any unexpected 
behavior will be discovered immediately. 

The effect of choosing too large a value of k can be seen in Fig. 7a and b. This 
figure shows the functions ~2(x, L) for the data of Table I when k -- 4 and 5. The 
large oscillations are due entirely to the fact that these values of k are too large 
for the data of Table I. The corresponding function when k = 3 is almost identical 
to the one shown in Fig. 5. 

4.4 Conclusion 

In this section we have shown the types of approximation that  may be obtained 
by different choices of the parameters L and k. In general, it is sensible to use 
RANGE when function values and a bound L on the kth derivative of fa re  given. 

If only function values are provided, then it is possible to obtain, by trial and 
error, a bound on one of the derivatives of f. However, in this case, extreme care 
should be exercised in the choice of this bound and in the choice of k. In practice 
we have found that a large value of L and a small value of k are usually sufficient 
to provide an acceptable approximation to f In this context, "large" is measured 
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ONTAMINATED WITH RANDOM.,.,,.,..,.-, - ' ~  

~ ~o 

SET THE VALUE OF k AND L REMEMBER 
L MUST BE GREATER THAN THE LEAST 

VALUE OF MAX If (k)(x)l x 1 ~<x~<x n 

THAT IS CONSISTENT WITH THE VALUES 
f l ' "  ,fn IN PARTICULAR THE 
INEQUALITIES L > 0  AND 
kl Lf(x v , X l + k ) l ~ L , t =  1 , , n - k  

MUST HOLD 

SET THE VALUE OF THE ARGUMENT o~AT 
WHICH THE OPTIMAL ESTIMATE IS REQUIRED. 
SET THE VALUE OF THE VARIABLE lAG TO +1, 
(SEE THE ARGUMENT LIST FOR RANGE). 

CALL RANGE 
TO COMPUTE THE KNOTS (n~ }, {~ }, THE 

BOUNDS UP AND LOW, AND THE OPTIMAL 
ESTIMATE ~.,(~, L) 

NO 

YES 

~I - [  SEEK iDVICE I 

STRICTLY SPEAKING YOU 
_ SHOULD NOT USE AN 
r APPROXIMATION WHICH IS 

BASED ON INTERPOLATION 

RESET lAG TO COMPUTE UP, I 
I TO + 2 LOW, AND ~Z(o~, L) 

Figure 7 
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relative to the least value of maxx<_=~_=lf(k)(x) ] tha t  is consistent with the  given 
function values. Since this quant i ty  is, in general, unknown, a number  of i terations 
may be required to obtain a sensible value for L. Therefore ,  when a bound on one 
of the derivatives of f is not  readily available, we do not  r ecommend  using 
RANGE.  Instead we recommend using the optimal interpolat ion formula ~ [4]. 
In this case, the only parameter  tha t  has to be chosen is k, and it  is sensible to 
choose a value of k tha t  is much  smaller than  the number  n of funct ion values. 

5. SOFTWARE STANDARDS 

Subroutine R A N G E  was writ ten to conform to 1966 American National  S tandard  
F O R T R A N  IV, and it has been verified using the Bell Te lephone  Laborator ies  
F O R T R A N  verifier, P F O R T  [12]. 

T h e  subroutine has been extensively tested on a wide variety of tes t  problems, 
and it has been analyzed for errors using DAVE [10]. 

To  make the subroutine easier to read, it  has been reformat ted  using P O L I S H  
[3]. 

6 LOGICAL FLOWCHART 

In this section we present  a flowchart  (Figure 7) tha t  describes the  way in which 
subroutine R A N G E  should be called. Prospective users are advised to consult  
the flowchart before incorporating subroutine R A N G E  into a F O R T R A N  pro- 
gram. In particular, we note tha t  if the subroutine is to be called repeatedly  for 
a sequence of values of a, then  the variable l A G  should be reset  to a value greater  
than one after  the first call to R A N G E .  In this way, the knots  {~,} and {$,} are 
computed only once and the remaining calculation is fast. 

ACKNOWLEDGMENTS 

I wish to thank Dr. J. K. Reid for diligently testing the F O R T R A N  subroutines 
in this package, using the W A T F I ¥  compiler on the  IBM computer  a t  Harwell.  
His results and comments  have led to improvements  in the code. I am also 
indebted to Dr. R. C. Ward and Dr. I. S. Duff  for making suggestions t ha t  have 
improved the presentat ion of the paper. Finally, I wish to thank  Teresa  Craig for 
her excellent typing of the manuscript.  

REFERENCES 
1. CURRY, H.B., AND SCHOENBERG, I.J. On Pdlya frequency functions, IV. J. Anal. Math. 17, pp. 

71-107; also, Bull. Am Math Soc 53, Abstr. 380t (1947),Al14. 
2. DE BOOR, C. A Practwal Guide to Sphnes. Applied Mathematical Sciences, Series 27, Springer- 

Verlag, New York, 1978, pp. 222-227. 
3. DORRENRACHISR, J ,  PADDOCK, D., WISNI~,SKI, D., AND FOSDICK, L.D. POLISH, A FORTRAN 

program to edit FORTRAN programs. Univ. Colorado, Dep. Computer Science Tech. Rep. CU- 
CS-050-76 (Rev), Aug. 1979. 

4. GAFFNEY, P.W To compute the optimal interpolation formula Math Comput. 32, 143 (July 
1978). 

5. GAFFN]~Y, P.W. Optimal interpolation. D. Phil. Thesis, Oxford Univ., Oxford, England, 1977. 
6. GAFFNEY, P.W., AND POWELL, M.J.D. Optimal interpolation. In Proc. Conference on Numerical 

Analysis (Univ. Dundee, Dundee, Scotland), G.A. Watson (Ed.), Springer-Verlag, New York, 
Number 506 m Lecture Notes in Mathematics Series, 1975. 

ACM Transact]ons on Mathematical Software, Vol. 9, No. 1, March 1983 



1 14 • Algorithms 

7. GAFFNEY, P.W. The range of possible values off(x).  J. Inst. Math. ItsAppl. 21 (1978), 211-226. 
8. GAFFNEY, P.W. FORTRAN subroutines for computing the optimal interpolatmn formula. 

AERE Rep. R8781, 1977. 
9. M*CCHEU.I, G.A., AND RlVLIN, T.J. Optimal Est~matton in Approximation Theory. Plenum, 

New York, 1977. 
10. OSTERWEIL, L.J., AND FOSDICK, L.D. DAVE--A validation error detection and documentation 

system for FORTRAN programs. Softw.--Pract. Exper 6 (1976), 473-486 
11. POWELL, M.J.D. Approximation Theory and Methods. Cambridge University Press, Cambridge, 

England, 1981. 
12. RYDER, B.G. The PFORT Verifier. Softw.--Pract. Exper. 4 (1974), 359-377. 

ALGORITHM 

[A part of the listing is printed here. The  complete listing is available from the 
ACM Algorithms Distribution Service (see page 141 for order form).] 

SUBROUTINE RANGE(IAG, N, X, F, K, WK, LWK, AL, ALPHA, IL, 
* LEP, ETA, PSI, LOW, UP, OMEGA, IFAIL) 

C ******************************************************************** 
C PURPOSE * 
C ******************************************************************** 
C * 
C GIVEN VALUES OF A FUNCTION F(X) AT N DISTINCT POINTS * 
C X(1).LT.X(2),...,.LT.X(N) AND GIVEN A FINITE BOUND,AL, * 
C ON THE KTH. DERIVATIVE OF F(X), I.LE.K.LE.N, * 
C THIS SUBROUTINE COMPUTES THE CLOSEST POSSIBLE BOUNDS * 
C ON F(ALPHA), WHERE ALPHA IS A SPECIFIED VALUE OF X. * 
C THE SUBROUTINE ALSO PROVIDES THE ESTIMATE, OMEGA, OF * 
C F(ALPHA) WHOSE ERROR HAS THE SMALLEST POSSIBLE BOUND. * 
C * 
C ******************************************************************** 
C 
C 
C **** I N P 
C 
C IAG 
C 
C 
C 
C 
C 
C 
C 
C 
C N 
C 
C 
C 
C X 
C 
C 
C 
C 
C 
C F 
C 
C 
C 
C K 
C 
C 
C 
C 
C 
C 
C 

U T **** 

IS AN INTEGER VARIABLE WHICH MUST BE SET TO THE VALUE +I 
AT THE FIRST CALL OF THE SUBROUTINE. THE SUBROUTINE MAY 
BE RE-ENTERED WITH A DIFFERENT VALUE OF ALPHA. IN THIS 
CASE IF THE VALUE OF IAG IS GREATER THAN I, AND THE 
REMAINING PARAMETERS ARE UNALTERED, THEN EXECUTION IS 
MUCH FASTER.NOTE THAT THE CODE DOES NOT CHECK THAT THE 
REMAINING PARAMETERS ARE UNALTERED. 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 

IS AN INTEGER VARIABLE WHICH MUST BE SET TO THE NUMBER 
OF DATA POINTS X(1),Iffil,...,N. RESTRICTION: N.GE.2 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 

IS A REAL ARRAY OF LENGTH AT LEAST N WHICH MUST BE 
SET TO THE VALUES OF THE DATA POINTS X(I),I=I,...,N. 
RESTRICTION: THE DATA POINTS MUST BE DISTINCT AND 
THEY MUST BE IN ASCENDING ORDER. 
THIS ARGUMENT IS NO~ ALTERED BY THE SUBROUTINE. 

IS A REAL ARRAY OF LENGTH AT LEAST N WHICH MUST BE 
SET TO THE FUNCTION VALUES F(X(1)),...,F(X(N)). 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 

IS AN INTEGER VARIABLE WHICH MUST BE SET TO THE ORDER 
OF THE DERIVATIVE OF F(X) FOR WHICH A FINITE BOUND IS 
GIVEN. THE VALUE OF K SHOULD BE VERY MUCH SMALLER THAN 
THE VALUE OF N. IN FACT WE RECOMMEND THAT ONLY IN 
EXCEPTIONAL CIRCUMSTANCES AND THEN ONLY ON SOUND 
NUMERICAL GROUNDS, SHOULD THE VALUE OF K BE GREATER 
THAN 8. RESTRICTION: 1.LE.K.LE.N 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 
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RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 

10 
20 
30 
4O 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
17o 
180 
190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
320 
330 
340 
350 
360 
370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 



C 
C WK 
C 
C 
C 
C 
C 
C LWK 
C 
C 
C 
C 
C AL 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C ALPHA 
C 
C 
C 
C 
C 
C IL 
C 
C 
C LEP 
C 
C 
C 
C 
C **** O U T 
C 
C ETA 
C 
C 
C 
C PSI 
C 
C 
C 
C LOW 
C 
C 
C UP 
C 
C 
C OMEGA 
C 
C 
C 
C 
C 
C IFAIL 
C 
C 
C 
C 
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IS A REAL ARRAY OF LENGTH AT LEAST: 

5*N-2*K+I+(N-K)*MIN(K,N-K) 

WHICH IS USED AS WORKSPACE. 

IS AN INTEGER VARIABLE WHICH MUST BE SET TO THE 
LENGTH OF WK. 
RESTRICTION: LWK.GE.5*N-2*K+I+(N-K)*MIN(K,N-K). 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 

IS A REAL VARIABLE WHICH MUST BE SET TO THE VALUE 
L, OF THE FINITE BOUND ON THE KTH. DERIVATIVE OF 
F(X) 
RESTRICTION: L MUST BE GREATER THAN THE LEAST VALUE 
OF THE MAXIMUM ABSOLUTE VALUE OF THE KTH. DERIVATIVE 
OF F(X) THAT IS CONSISTENT WITH THE GIVEN FUNCTION 
VALUES F(X(1)),...,F(X(N)). IN PARTICULAR L MUST 
SATISFY THE INEQUALITIES 

L .GT. 0 
AND 

L .GE. FACTORIAL(K)*ABS(F(X(1),...,X(I+K)) 
I=I,...,N-K, 

WHERE F(X(I),...,X(I+K)) DENOTES THE KTH. DIVIDED 
DIFFERENCE OF F(X) BASED ON THE POINTS X(1),...,X(I+K). 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 

IS A REAL VARIABLE WHICH MUST BE SET TO THE VALUE 
OF THE ARGUMENT X AT WHICH THE RANGE OF POSSIBLE 
VALUES OF F(X) IS COMPUTED. 
RESTRICTION: X(1).LE.ALPHA 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 

IS AN INTEGER ARRAY OF LENGTH AT LEAST N. IT IS USED 
AS WORKSPACE. 

IS AN INTEGER VARIABLE WHICH MUST BE SET TO THE LESSER 
LENGTH OF ARRAYS ETA AND PSI. RESTRICTION: LEP.GE.N-K. 
THIS ARGUMENT IS NOT ALTERED BY THE SUBROUTINE. 

P U T **** 

IS A REAL ARRAY OF LENGTH AT LEAST N-K. ON EXIT 
FROM THE SUBROUTINE ETA CONTAINS THE KNOTS 
OF THE PERFECT SPLINE U(X). 

IS A REAL ARRAY OF LENGTH AT LEAST N-K. ON EXIT 
FROM THE SUBROUTINE PSI CONTAINS THE KNOTS OF THE 
PERFECT SPLINE L(X). 

IS A REAL VARIABLE. ON EXIT FROM THE SUBROUTINE 
LOW IS SET TO THE GREATEST LOWER BOUND OF F(ALPHA). 

IS A REAL VARIABLE. ON EXIT FROM THE SUBROUTINE 
UP IS SET TO THE LEAST UPPER BOUND OF F(ALPHA). 

IS A REAL VARIABLE. ON EXIT FROM THE SUBROUTINE 
OMEGA IS SET TO THE OPTIMAL ESTIMATE OF F(ALPHA). 
THE SMALLEST VALUE OF THE ERROR OF THIS ESTIMATE 
OF F(ALPHA) IS ZERO, AND THE MAXIMUM VALUE WHICH 
IT CAN ATTAIN IS THE QUANTITY: 0.5*ABS(UP-LOW). 

IS AN ERROR RETURN FLAG. ON EXIT FROM THE SUBROUTINE 
IT HAS ONE OF THE FOLLOWING VALUES: 

SUCCESSFUL ENTRY 
1 N .LT. 2 

RAN 510 
RAN 520 
RAN 530 
RAN 540 
RAN 550 
RAN 560 
RAN 570 
RAN 580 
RAN 590 
RAN 600 
RAN 610 
RAN 620 
RAN 630 
RAN 640 
RAN 650 
RAN 660 
RAN 670 
RAN 680 
RAN 690 
RAN 700 
RAN 710 
RAN 720 
RAN 730 
RAN 740 
RAN 750 
RAN 760 
RAN 770 
RAN 780 
RAN 790 
RAN 800 
RAN 810 
RAN 820 
RAN 830 
RAN 840 
RAN 850 
RAN 860 
RAN 870 
RAN 880 
RAN 890 
RAN 900 
RAN 910 
RAN 920 
RAN 930 
RAN 940 
RAN 950 
RAN 960 
RAN 970 
RAN 980 
RAN 990 
RAN 1000 
RAN 1010 
RAN 1020 
RAN 1030 
RAN 1040 
RAN 1050 
RAN 1060 
RAN 1070 
RAN 1080 
RAN 1090 
RAN 1100 
RAN 1110 
RAN 1120 
RAN 1130 
RAN 1140 
RAN 1150 
RAN 1160 
RAN 1170 
RAN 1180 
RAN 1190 
RAN 1200 
RAN 1210 
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C 2 
C 3 
C 4 
C 
C 5 
C 
C 6 
C 
C 
C 7 
C 8 
C 9 
C 10 
C 
C 

K .LT. 1 OR K .GT. N 
X(I) .GE. X(I+l) FOR SOME I 
L .LT. FACTORIAL(K)*ABS(F(X(I),...,X(I+K)) 
FOR SOME I 
MORE THAN IMAX ITERATIONS NEEDED TO CALCULATE 
THE KNOTS ETA AND/OR PSI. 
THE METHOD USED TO CALCULATE THE KNOTS ETA, 
AND PSI, FAILED. THIS IS USUALLY BECAUSE L 
IS TOO SMALL OR THE VALUE OF K IS TOO LARGE. 
L .LE. 0 
THE ARRAY WK IS TOO SMALL 
THE ARRAYS ETA AND PSI ARE TOO SMALL 
ALPHA .LT. X(1) 

C **** ADDITIONAL ROUTINES **** 
C 
C 
C 
C SUBROUTINE KNOTS 
C SUBROUTINE RESID 
C SUBROUTINE JAC 
C 
C 
C 
C 
C 
C 
C **** QUALITY ASSURANCE AND SOFTWARE STANDARD **** 

THE FOLLOWING ADDITIONAL ROUTINES ARE SUPPLIED WITH RANGE: 

SINCE THESE ROUTINES ARE CALLED FROM WITHIN RANGE THE USER 
SHOULD ENSURE THAT THERE ARE NO POTENTIAL PROBLEMS DUE TO 
NAME CONFLICTS. 

THE SUBROUTINES THAT COMPRISE THIS PACKAGE 
HAVE BEEN WRITTEN TO CONFORM TO THE FORTRAN IV 
ANSI STANDARD 1966, AND THEY HAVE BEEN VERIFIED 
USING THE BELL TELEPHONE LABORATORIES FORTRAN 
VERIFIER: PFORT. 
THE SUBROUTINES HAVE BEEN EXTENSIVELY TESTED ON 
A VARIETY OF TEST PROBLEMS, AND THEY HAVE BEEN 
ANALYSED FOR ERRORS USING THE DAVE SYSTEM FROM 
THE UNIVERSITY OF COLORADO. 
TO MAKE THE CODE EASY TO READ THE SUBROUTINES 
HAVE BEEN REFORMATTED USING POLISH. 

C **** P.W.GAFFNEY DECEMBER 30. 1981 **** 
C 

******************************************************************** 

RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 
RAN 

1220 
1230 
1240 
1250 
1260 
1270 
1280 
1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 
1380 
1390 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1670 
1680 

ACM Transactions on Mathematical Software, Vol 9, No 1, March 1983 


