
20

Machine-learning-driven Architectural Selection of Adders
and Multipliers in Logic Synthesis

JIAWEN CHENG, Tsinghua University, China

YONG XIAO, YUN SHAO, and GUANGHAI DONG, Giga Design Automation Co., Ltd., China

SONGLIN LYU and WENJIAN YU, Tsinghua University, China

Designing high-performance adders and multiplier components for diverse specifications and constraints is

of practical concern. However, selecting the best architecture for adder or multiplier, which largely affects the

performance of synthesized circuits, is difficult. To tackle this difficulty, a machine-learning-driven approach

is proposed for automatic architectural selection of adders and multipliers. It trains a machine learning model

for classification through learning a number of existing design schemes and their performance data. Exper-

imental results show that the proposed approach based on a multi-perception neural network achieves as

high as 94% prediction accuracy with negligible inference time. On a CPU server, the proposed approach

runs about 4× faster than a brute-force approach trying four candidate architectures and consumes 10%~20%

less runtime than the DesignWare datapath generator for obtaining the optimal adder/multiplier circuit. The

adder (multiplier) generated with the proposed approach achieves performance metrics close to the optimal

and has 1.6% (5.2%) less area and 2.2% (7.1%) more worst negative slack averagely than that generated with

the DesignWare datapath generator. Our experiment also shows that the proposed approach is not sensitive

to the size of training subset.

CCS Concepts: • Hardware→Circuit optimization; • Computing methodologies→Machine learning

approaches;

Additional Key Words and Phrases: Logic synthesis, datapath, adder/multiplier, machine learning, architec-

tural selection

ACM Reference format:

Jiawen Cheng, Yong Xiao, Yun Shao, Guanghai Dong, Songlin Lyu, and Wenjian Yu. 2023. Machine-learning-

driven Architectural Selection of Adders and Multipliers in Logic Synthesis. ACM Trans. Des. Autom. Electron.

Syst. 28, 2, Article 20 (March 2023), 16 pages.

https://doi.org/10.1145/3560712

1 INTRODUCTION

With the outbreak of the internet of things (IoT) and embedded artificial intelligence (AI)

applications, various low-power and high-performance integrated circuits (ICs) are greatly

This work is partially supported by the National Natural Science Foundation of China (NSFC) Research Projects under

Grant 62090025.

Authors’ addresses: J. Cheng, S. Lyu, and W. Yu (corresponding author), Tsinghua University, Beijing, China, 100084; emails:

{cjw21, lvst17}@mails.tsinghua.edu.cn, yu-wj@tsinghua.edu.cn; Y. Xiao, Y. Shao, and G. Dong, Giga Design Automation Co.,

Ltd., Shenzhen, Guangdong, China, 518055; emails: {yxiao, yshao, ghdong}@giga-da.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be

honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1084-4309/2023/03-ART20 $15.00

https://doi.org/10.1145/3560712

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

https://orcid.org/0000-0002-3421-1872
https://orcid.org/0000-0001-8565-4457
https://orcid.org/0000-0002-4414-3519
https://orcid.org/0000-0002-0859-9519
https://orcid.org/0000-0001-6036-7531
https://orcid.org/0000-0003-4897-7251
https://doi.org/10.1145/3560712
mailto:permissions@acm.org
https://doi.org/10.1145/3560712
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560712&domain=pdf&date_stamp=2023-03-06

20:2 J. Cheng et al.

demanded. Various electronic design automation (EDA) technologies have been employed to
build the flow for designing, analyzing, and verifying these ICs. Logic synthesis is an important
part of EDA that translates the high-level description of a circuit (such as in Verilog) into a gate-
level circuit and imposes some optimizations on it.

Datapath, which consists of arithmetic operation units, registers, and buses, and performs data
processing operations [11], is a key module in ICs. Addition and multiplication are the most fun-
damental and frequently used arithmetic operations in the datapath, and the optimization for the
basic adder and multiplier components affects the datapath’s cost and performance significantly.
The logic synthesis tool performs circuit optimization iteratively, where other parts of the circuit
impose constraints on the adder and multiplier components in terms of bit width, working fre-
quency, input and output delay, and so on. These constraints may change during the iterations.
Therefore, how to implement the optimal adder or multiplier (in terms of a certain pre-defined
cost function) under a wide variety of constraints is of concern.

Different architectures for adders and multipliers have been proposed, which have different
costs or performances under different scenarios. The basic adder architecture is the carry ripple
adder [32], which connects several full adders in series. To reduce the timing delay, a variety of
parallel adder architectures were proposed, such as carry lookahead adder [18] and parallel prefix
adders, including Sklansky adder [29], Brent-Kung adder [4], and Kogge-Stone adder [13]. The
basic multiplier is shift add multiplier [1]. Booth proposed the idea of properly using addition and
subtraction to accelerate multiplication [2], which derives the Booth multipliers. Several tree ar-
chitectures were also proposed to further improve the efficiency of multiplication, such as Wallace
tree multiplier [31] and Dadda tree multiplier [7].

There are some works for optimizing the design of prefix adder for specific performance objec-
tives, solely at the stage of logic synthesis or considering physical design metrics [14–17, 24, 25, 35,
36]. These works are based on a certain kind of adder architecture, instead of choosing the architec-
ture that usually has a larger impact on the circuit’s performance in the iterative logic-synthesis
optimization process. For example, an algorithm was proposed to pursue area minimization for
parallel prefix adders under bitwise delay constraints [17] and a polynomial time algorithm was
proposed to synthesize parallel prefix adders with maximum fan-out restriction [24]. They do not
consider non-parallel prefix adder architectures such as carry select adder, carry skip adder, and
carry lookahead adder. How to automatically select the architecture of an adder or a multiplier in
a larger design space is the concern of our work. And, it is orthogonal to the work for optimizing
a certain kind of adder or multiplier architecture.

However, the great progress of machine learning (ML) promotes its application to logic syn-
thesis [23] and other EDA problems [6, 33]. For example, a cross-layer optimization approach for
prefix adder design was recently proposed in Reference [16] that employs machine learning-based
design space exploration to predict the Pareto frontier of adders in the physical domain. And in
Reference [8], the decision tree (DT)-based approach was proposed for fast logic minimization
of Boolean functions. Further, Geng et al. employed graph convolutional networks (GCN) to
do multi-objective design space exploration for optimizing high-speed prefix adders [9].

In this work, we investigate the architecture selection problem of adder and multiplier design
with the help of machine learning technology. A machine-learning-driven approach is proposed to
select adder/multiplier architecture among several candidates of architecture for a given set of spec-
ifications/constraints. The proposed approach consists of the following three steps: First, different
adders (multipliers) following the candidate architectures are synthesized under a set of various
specifications/constraints. According to the specified selection criterion or performance metric, the
best architecture is selected (labeled) for each specification/constraint. This results in a dataset for
training, where each data includes the correspondence between the specification/constraint and

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

Machine-learning-driven Architectural Selection 20:3

Fig. 1. Different architectures of an adder in 4-bit width.

the best architecture. Then, with the training set, a supervised ML method, e.g., support vector

machine (SVM), multi-layer perception neural network (MLP-NN), or decision tree (DT),
is applied to train a multi-class classifier for selecting the architecture. Finally, the trained ML clas-
sifier is used to predict the architecture of the adder/multiplier for a tested specification/constraint.
It should be pointed out that the proposed machine-learning-driven approach is not restricted to
the optimization of adder and multiplier design. It can be easily extended to the problem of divider
design and would help synthesize better datapath circuits more efficiently.

The proposed approach is validated with the experiments based on the results obtained with a
commercial logic synthesis tool. We consider the variable inputs of bit widths of operands, clock
period of the component, input delay, and output delay, set four candidate architectures for adder
and multiplier individually, and evaluate the performance of SVM, MLP-NN, and DT as a clas-
sifier. The results show that the MLP-NN-based classifier outperforms the SVM and DT models
and achieves as high as 94% prediction accuracy and a 0.9489 weighted F1-score. The proposed
approach is compared with a brute-force approach trying four candidate architectures and the De-
signWare datapath generator, which is the component inside Design Compiler (a commercial logic
synthesis tool) for automatically selecting adder/multiplier architecture. The proposed approach
has negligible runtime penalty on inference using the trained classifier, enabling about 4× speedup
over the brute-force approach and 10%~20% time saving over DesignWare datapath generator, on
the same CPU machine. The adder (multiplier) generated with the proposed approach achieves
performance metrics close to the optimal and has 1.6% (5.2%) less area and 2.2% (7.1%) more worst

negative slack (WNS) averagely than that generated with the DesignWare datapath generator. In
addition, our experiment shows that the proposed approach is not sensitive to the size of training
subset.

2 BACKGROUND

In this section, we first briefly introduce the widely used architectures of adder and multiplier.
Without loss of generality, we suppose the bit widths of two operands of an adder/multiplier are
both n. Then, several machine learning techniques for classification are reviewed.

2.1 Architecture of Adder

The input of an adder includes an n-bit operand x , an n-bit operand y, and a 1-bit carry cin . The
output includes an n-bit sum s and a 1-bit carry cout . The simplest way to implement an adder
is to connect n full adders (FAs) in series. In this way, the carry propagates from the lowest
significant bit to the highest significant bit like a ripple. So, it is called carry ripple adder (CRA)

[32]. Figure 1(a) illustrates the architecture of a typical 4-bit CRA.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

20:4 J. Cheng et al.

Fig. 2. Different architectures of a multiplier in 4-bit width.

Carry generation is the main source of timing delay in CRA. For reducing the delay, a variety
of parallel adder architectures were proposed to accelerate carry generation, by generating each
carry ci in parallel. Among them, carry lookahead adder (CLA) [18] and parallel prefix adders
such as Sklansky adder (SA) [29], Brent-Kung adder (BKA) [4], and Kogge-Stone adder (KSA)

[13] are commonly used. Because ci only depends on the two operands’ low i−1 bits xi−1xi−1 . . . x0,
yi−1yi−1 . . . y0 and the input carry cin , each FAi has all the information for calculating si and ci+1

at the same time. Based on this, CLA, SA, BKA, and KSA all utilize a parallel carry generator
and n propagation generators (PGi) to generate carries in parallel. They have similar overall
architecture, which of 4-bit width is illustrated in Figure 1(b). The only difference among them
is the structure of the parallel carry generator. The overhead of these architectures is larger area
compared to CRA.

2.2 Architecture of Multiplier

The input of a multiplier includes two n-bit operands x ,y and the output includes an (2n)-bit
product p. Shift add multiplier (SAM) [1] simulates the process of long multiplication, using
several adders to add each line of n-bit summands. Figure 2(a) illustrates the architecture of 4-bit
SAM, where the “&” block is an AND gate and the “+” block is an adder that generates the sum and
carry of input bits (the same below). SAM only multiplies one bit and the multiplicand at a time,
which is a lack of efficiency. Therefore, a technique multiplying multiple bits can be adopted to
reduce the number of additions [19]. The SAM that multipliesm bits at a time is called Radix-2m−1

SAM.
To accelerate the multiplication, another architecture, i.e., Booth multiplier (BM) [2], was

proposed. BM properly utilizes addition and subtraction to reduce the number of additions in SAM.
It is based on the fact that sequential 0s in the multiplicator require no addition but only shifting
of the partial product, and a string of 1 s in the multiplicator from the kth bit to the mth bit can
be treated as the subtraction of 2k from 2m+1. According to the number of bits checked in one
iteration of accumulating, BM adopts different recoding schemes for partial product generation.
The BM that checksm bits in one iteration is called Radix-2m−1 Booth multiplier.

Another kind of multiplier, Wallace tree multiplier (WTM) [31], was proposed to reduce the
amount of additions by adding three bits at one time instead of two bits in SAM. It first generates
all sums simultaneously, then groups every three sums of one bit together into an FA to generate
carry out and sum for the next level. If there are only two remaining sums, then one input bit of
the FA will be replaced by zero. Otherwise, the remaining sum is directly outputted to the next
level. WTM keeps grouping three sums to carry out and sum until reaching the last level where
high-order bits can only generate two sums. Finally, they are put into an adder to generate the
final product. The architecture of 4-bit WTM is illustrated in Figure 2(b).

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

Machine-learning-driven Architectural Selection 20:5

Fig. 3. The classifiers based on SVM, MLP-NN, and DT.

2.3 Machine Learning Techniques for Classification

In ML terminology, classification is the process of predicting the category (label) of a new observa-
tion (data) based on a training set where data has known labels. Many ML techniques can be used
to do classification. Below, we briefly introduce a few of them.

Support vector machine (SVM) [5] is a classic ML technique for binary classification. In SVM,
a hyperplane is constructed to separate two groups of labeled data, as shown in Figure 3(a). The
special properties of the classification hyperplane ensure the high generalization ability of SVM.
If the sets of data to discriminate are not linearly separable, the kernel trick can be used to map
the original data to a higher dimensional space, presumably making the separation easier. After
this mapping, the inner product in the original space needs to be replaced by a new one called
kernel function, which is then used for training the classifier. An example of kernel function is the
Gaussian radial basis function (RBF):

K (x1,x2) = e−γ ‖x1−x2 ‖2 , (1)

where x1 and x2 are two data in the original space, andγ > 0 is a given parameter. With the One-vs-

One (OvO) or One-vs-Rest (OvR) strategy, SVM can be extended to do multi-class classification.
The OvO strategy splits a multi-class classification problem into the binary classification problem
for all pairs of classes, while the OvR strategy splits the problem into the binary classifications for
each class versus the remaining classes.

Multi-layer perceptron neural network (MLP-NN) is a kind of simple artificial neural
network that can also be used in classification. With linear transformations and a nonlinear
activation function, MLP-NN maps inputs into outputs, as shown in Figure 3(b). Similar to
other deep learning methods, MLP-NN uses the error back-propagation to train its parame-
ters [26]. At the output layer, the softmax function is often used as the activation function for
classification.

Decision tree (DT) has a binary tree structure, as shown in Figure 3(c), where each non-leaf
node represents a test on a feature. An incoming observation goes to the left child node if and
only if the condition is satisfied. When the observation reaches the leaf node, it is classified as the
category belonging to that node. Several algorithms have been proposed to generate a DT, among
which the most commonly used are CART [3], ID3 [21], and C4.5 [22].

3 METHODOLOGY

In this section, we present the approach for selecting the architecture for the logic synthesis of
adders (multipliers) based on machine learning, along with implementation details.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

20:6 J. Cheng et al.

Table 1. The Specifications/Constraints Used in This Work

Specifications/Constraints Description
w1 Bit width of operand 1
w2 Bit width of operand 2
T Clock period
di1 Input delay of operand 1
di2 Input delay of operand 2
do Output delay

3.1 The Overall Idea

The idea is that we can select the optimal architecture of the adder/multiplier via a well-trained
classifier. The optimality refers to the best among several candidate architectures mentioned in
Sections 2.1 and 2.2 and is in terms of certain predefined performance metric. This turns into a
classification problem that requires a dataset for training and a proper ML technique.

The gate-level circuit of an adder/multiplier component can be synthesized from its high-
level architecture with logic synthesis tools under a certain standard cell library and specifica-
tions/constraints. Suppose that the standard cell library is fixed, the specifications/constraints such
as clock period are the data input to the classifier. In this work, the specifications/constraints used
are listed in Table 1.

These parameters also form the features of each data, while the classifier’s output (label for each
data) is the selected adder/multiplier category. The data representation of this problem is relatively
simple, so the basic ML techniques in Section 2.3 are suitable for this classification problem.

3.2 Generation of Parameter Samples for Training Data

We consider the sample values for each input feature or specification/constraint. For w1 and w2,
we set the sample value to all multiples of 4 ranging from 4 to 64. This covers various adders (mul-
tipliers) in the arithmetic systems using at most 64-bit numbers. Besides, due to the symmetry of
the two operands of an adder/multiplier, we further specify thatw1 is not less thanw2. Since input
and output delays tend to increase from the least significant bit (LSB) to the most significant

bit (MSB) in practice, we set them similarly. Given a slope parameter s and 0 ≤ s ≤ 1, the in-

put/output delay of the kth (0 ≤ k < n) bit is set to s · k
n−1 · T , where n is the bit width of the

input/output. Namely, the input/output delay of LSB is set to 0 and that of MSB is set to sT . For di1,
di2, and do , their slope parameters s are all sampled within 0, 0.2, 0.4, and 0.6, which guarantees
that the timing constraints can be satisfied.

For other specifications/constraints, their value range for sampling should be properly deter-
mined. Take the clock period T as an example. If its sample value is too small to be satisfied, then
the result from the logic synthesis tool will be the component with minimized timing delay and
relatively large area. And, this result will keep unchanged for smaller clock period. However, if
the clock period increases beyond an upper bound, then the synthesized result will converge to a
component with a smaller area and relatively large delay. Thus, we first determine the lower and
upper bounds of the reasonable clock period for each set of bit widths. Because the clock period
should be larger than the delay, we consider the delay of the synthesized component for setting
the bounds of the clock period. Two extreme conditions with 0 and an infinitely large clock period
are input to the logic synthesis tool. Then, the delays of the synthesized components in these two
extreme scenarios are set as the lower bound and upper bound of the clock period, respectively.
The experimental results show that both bounds are approximately proportional to the bit width,
as shown in Figure 4. The linear regression formulas obtained with our experiments are:

Tmin (w) = 0.004w + 0.246, Tmax (w) = 0.091w + 0.044 (2)

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

Machine-learning-driven Architectural Selection 20:7

Fig. 4. The trends of lower and upper bounds of delay of the synthesized component.

for adder and

Tmin (w) = 0.010w + 0.664, Tmax (w) = 0.372w − 0.940 (3)

for multiplier, where w = (w1 +w2)/2. The unit of clock period is nanosecond.
Multiple sample values of the clock period should be set. With the experiments, we see that

the synthesized result (e.g., area) is more sensitive to the clock period when the clock period is
smaller. It suggests that we should set more samples at the smaller-value range, instead of set
samples uniformly in the whole value range. Supposing the number of discrete values is N , we
can generate the sample values of clock periods with the following quadratic formula:

Ti = Tmin + (Tmax −Tmin)
(i

N − 1

)2
, 0 ≤ i < N , (4)

where Ti is the ith sample of the clock period, and Tmin and Tmax are the lower and upper bounds
of the clock period obtained with Equations (2) or (3).

For other specifications/constraints, a similar approach can be applied for generating the sample
values. With the sample values for each input parameter, a set of training data can be generated
representing various specifications/constraints for which the optimized adder/multiplier design is
needed.

3.3 Selection Criterion of Architecture

The selection criterion of architecture is related to the design target. The optimal architecture
may be different under different targets (performance metrics). The actual performance metric for
designing a good adder/multiplier is usually a combination of area, delay, and power consump-
tion and depends on the application scenario of the whole circuit. In this work, we consider the
following two selection criteria for different performance preferences in actual scenarios:

(1) Delay first, area second (DFAS). This criterion is for first considering the satisfaction of
timing constraint and then minimizing the area. It selects the architecture with the minimum area
if satisfying the timing constraint, i.e., the WNS ts is not less than 0. Otherwise, the one with the
highest WNS will be selected. The corresponding cost function for minimization is

fcost =
⎧⎪⎨
⎪
⎩

Area − λ · ts , ts < 0,

Area, ts ≥ 0,
(5)

where Area is the area of the synthesized adder/multiplier, λ is a large positive number.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

20:8 J. Cheng et al.

(2) Balanced delay and area (BDA). This is for the scenario where the timing constraint is not
a dominant factor for design. The corresponding cost function for minimization is

fcost =
Area

Areamin
− λ′ ·min

(ts
T
, 0
)
, (6)

where Areamin is the minimum area of all candidate architectures, λ′ is the weight of delay, andT
is the clock period. Area/Areamin and ts/T represent the normalized area and WNS, respectively.
With different values of λ′, the selected architecture brings more optimized delay or area.

3.4 Implementation Details

Each entry of data has six features and a label, which are the input to the classifiers based on
SVM, MLP-NN, or DT. For SVM, the RBF in Equation (1) with γ = 1/(5Varx) is used as the kernel
function, where Varx denotes the variance of the input data. To do multi-class classification, we
employ the OvO strategy. For MLP-NN, a four-layer neural network including two 16-node hidden
layers is built. Batch normalization [10] is used and the activation function for the hidden layers
is ReLU:

ReLU(x) = max(0,x). (7)

The Adam optimizer [12] is applied to training the weights and biases of linear layers. The weight
decay of the L2 penalty and the initial learning rate are both set to 1e-3. The maximum epoch is
1,000 and an early-stop technique with a patience of 50 epochs is used. For DT, the CART algorithm
[3] is applied to construct the tree structure.

4 EXPERIMENTAL RESULTS

To validate the proposed approach, we consider the designs of adder and multiplier with varied
bit widths of operands and clock period. Their sample values are set as described in Section 3.2.
Besides, the number of samples for the clock period T is NT = 11. Considering all parameter

combinations, we generate NT · (Nw (Nw+1)
2) · Ni1 · Ni2 · No = 11 × 16 × 17 × 4 × 4 × 4/2 = 95, 744

items of data for adder and multiplier individually, where Nw = 16 is the number of sample values
for bit width w . Ni1, Ni2, and No (all equal 4) represent the number of sample values for the slope
parameters s of di1, di2, and do , respectively. Design Compiler (v2016) [30] from Synopsys, Inc. is
used as the logic synthesis tool to generate the circuits of the adder and multiplier components.
The architectures of CLA, SA, BKA, and KSA for adder and SAM, Radix-4 SAM (R4SAM), Radix-
4 BM (R4BM), and Radix-8 BM (R8BM) for multiplier are the candidates for selection. For each
combination of a data item and an architecture, the component is synthesized with the Nangate
45 nm standard cell library [28] under the specifications/constraints represented by the data. In
terms of the two criteria (DFAS and BDA), the architecture resulting in the lowest cost is regarded
as the best and is attached to the data as the label or ground truth.

The distributions of the best architecture for adder and multiplier datasets are shown in Table 2.
The difference in the distributions shows the influence of selection criteria on adder/multiplier
selection.

Each dataset is split into a training subset and a test subset. Then, we train the classifier using
the training subset with SVM, MLP-NN, and DT techniques. The test subset is used to evaluate
the performance of the resulted classifiers. For this purpose, the weighted F1-score metric [34] is
employed. The definition of F1-score is

F1 =
2P · R
P + R

, with P =
TP

TP + FP
, R =

TP

TP + FN
, (8)

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

Machine-learning-driven Architectural Selection 20:9

Table 2. The Distributions of the Best Architecture in

Four Categories under Two Selection Criteria

#Data Criterion #Data of Criterion
of Adder DFAS BDA Multiplier DFAS BDA

CLA 17,818 15,847 SAM 10,034 10,168
SA 23,598 27,942 R4SAM 13,448 10,708

BKA 34,356 37,602 R4BM 50,915 52,139
KSA 19,972 14,353 R8BM 21,347 22,729

Total 95,744 95,744 Total 95,744 95,744

Table 3. Weighted F1-Scores of SVM-based, MLP-NN-based, and

DT-based Classifiers on the Test Subsets of Two Datasets

F1-score Criterion F1-score Criterion
(Dataset 1) DFAS BDA (Dataset 2) DFAS BDA

SVM 0.9222 0.8830 SVM 0.9125 0.9255
MLP-NN 0.9347 0.9160 MLP-NN 0.9409 0.9489

DT 0.9062 0.8928 DT 0.9160 0.9202

where P is the precision, R is the recall, and TP, FP, and FN are the numbers of true positive,
false positive, and false negative samples, respectively. F1-score ∈[0, 1] is a harmonic average of
precision and recall. The weighted F1-score is

F1weighted =

∑k
i=1 Ni · F1i∑k

i=1 Ni

, (9)

where k is the number of categories, Ni is the number of samples in category i , and F1i is the
F1-score of category i .

The classifiers are implemented in Python. Specifically, SVM-based and DT-based classifiers
are implemented with the Scikit-Learn package [27], while MLP-NN-based classifier is with the
PyTorch package [20]. All experiments are carried out on a Linux server with two 8-core Intel
Xeon E5-2620 CPUs @ 2.10GHz.

4.1 Results of the Classifiers for Architectural Selection

We refer to the dataset of adder as Dataset 1 and the dataset of multiplier as Dataset 2. For each
of them, 67,021 entries of data (70% of the whole dataset) are used as the training subset and the
remainder as the test subset. The DFAS or BDA (λ′ = 8) selection criterion is set as the selection
criterion.

With the test subset, we evaluate the SVM-based, MLP-NN-based, and DT-based classifiers. The
confusion matrices for selecting adder and multiplier architecture are shown in Figures 5 and 6,
respectively. From it, we see that the prediction accuracy ranges from 88% to 94%.

The weighted F1-scores are listed in Table 3. From the results, we observe that the classifiers
overall have good performance, among which the MLP-NN-based classifier remarkably outper-
forms the other two classifiers. Besides, the classifier for predicting adder architecture with DFAS
criterion has better performance, with up to 0.9489 F1-score.

4.2 Comparison with DesignWare Datapath Generator

DesignWare datapath generator is the component inside Design Compiler that automatically se-
lects adder/multiplier architecture. Therefore, it is necessary to compare the proposed approach

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

20:10 J. Cheng et al.

Fig. 5. The inference results of SVM-based, MLP-NN-based, and DT-based classifiers on the test subset of

Dataset 1, under different selection criteria.

Fig. 6. The inference results of SVM-based, MLP-NN-based, and DT-based classifiers on the test subset of

Dataset 2, under different selection criteria.

with it. We use the “set_dp_smartgen_options” command in Design Compiler to control the archi-
tecture used by DesignWare datapath generator in the process of logic synthesis.

To compare the efficiency of different methods, we record the inference time of the classifiers
and the time for synthesizing the component with the selected architecture. The average times for
synthesizing a component (including architectural selection) are listed in Table 4. DesignWare

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

Machine-learning-driven Architectural Selection 20:11

Table 4. Average Time for Synthesizing a Component with Difference Approaches

Time (s) SVM MLP-NN DT DesignWare Datapath Generator Brute-force
Adder 5.42 6.12 5.29 6.75 20.98

Multiplier 21.98 22.54 21.33 28.34 85.64

Table 5. Average Cost, Area, Worst Negative Slack, and Critical Path Delay of the

Synthesized Components with Different Approaches

Dataset 1
Metric

Dataset 2
Metric

Cost Area (μm2) WNS (ns) CPD (ns) Cost Area (μm2) WNS (ns) CPD (ns)
Optimal 1.263 296.0 0.138 1.140 Optimal 3.121 4,342.8 0.183 4.294
Proposed 1.265 297.1 0.137 1.141 Proposed 3.128 4,348.2 0.180 4.297

DesignWare 1.276 302.0 0.134 1.144 DesignWare 3.209 4,586.3 0.168 4.309
CLA 1.913 403.5 0.078 1.200 SAM 3.703 5,900.6 0.124 4.353
SA 1.499 378.9 0.032 1.246 R4SAM 3.435 6,291.3 0.065 4.412

BKA 1.421 367.2 0.098 1.180 R4BM 3.289 4,729.7 0.161 4.316
KSA 1.805 541.0 0.084 1.194 R8BM 3.721 4,872.9 0.082 4.395

datapath generator and a brute-force approach, which synthesizes the components of four ar-
chitectures and then picks the best one, are also tested as the baselines. From Table 4, we see
that the proposed ML-driven approach saves 10%~20% time compared to DesignWare datapath
generator and only costs about one-fourth of the time by the brute-force approach, as the pro-
posed approach only synthesizes one component and the inference time of the trained classifier is
marginal.

To compare the performance of components obtained with the proposed approach and the
baselines, we draw the cost functions of BDA criterion for all 28,723 test data of two datasets
in Figure 7(a) and 8(a). “Optimal” and “Proposed” denote the values of cost function derived from
the brute-force approach (reordered to exhibit a non-declining curve) and our MLP-NN-based ap-
proach, respectively. From the figure, we see that in most cases our approach achieves the best
performance of the synthesized component. As a comparison, the BDA costs of the components
derived from DesignWare datapath generator and always selecting a single architecture are shown
in Figures 7(b)–(f) and 8(b)–(f). They highlight that the proposed approach leads to much better
circuit performance with a little sacrifice on the time for ML model inference. In addition, the
components selected by the proposed approach have better performance than those by Design-
Ware datapath generator while costing less time. The average cost, area, WNS, and critical path

delay (CPD) of the synthesized components with different approaches are listed in Table 5. This
also demonstrates that the performance of the components obtained by the proposed approach
is distinctly better than those by DesignWare datapath generator and close to the optimal. For
a better demonstration of the proposed approach’s benefits, we group the area and CPD of the
synthesized components by 11 different clock period settings described in Equation (4) and then
calculate the average. The results are listed in Tables 6–9 and show that the proposed approach
is consistently better than DesignWare datapath generator with different clock periods. We also
group the area and CPD by bitwidths of the adders/multipliers and list the averaged metrics in
Table 10 for adders/multipliers with both bitwidths not less than 32 and Table 11 for those with
at least one bitwidth below 32. The results show that the proposed approach is suitable for both
higher bitwidth adders/multipliers and the other cases.

4.3 Sensitivity of the ML Techniques to Training Subset’s Size

To evaluate how the size of training subset affects the performance of the classifiers, more datasets
with different sizes of training subsets are constructed. The smallest training subset only contains

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

20:12 J. Cheng et al.

Fig. 7. The cost values of the synthesized adders derived from all 28,723 test data of Dataset 1 and different

architectural selection strategies.

Fig. 8. The cost values of the synthesized multipliers derived from all 28,723 test data of Dataset 2 and

different architectural selection strategies.

10% of the whole dataset (i.e., 9,574 data). Then, for each one the classifiers based on SVM, MLP-
NN, and DT are trained and evaluated for classification accuracy on the corresponding test subsets.
The results of weighted F1-scores are plotted in Figure 9, which illustrates that the classifiers’
performance decreases very slowly as the training set becomes smaller and the MLP-NN-based

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

Machine-learning-driven Architectural Selection 20:13

Table 6. Average Area of the Synthesized Components in Dataset 1 (Adder) Grouped by

11 Clock Period Settings with Different Approaches (μm2)

Clock Period Tmin T1 T2 T3 T4 T5 T6 T7 T8 T9 Tmax

Optimal 345.6 335.6 325.2 316.6 306.1 295.6 285.8 276.5 265.2 256.8 246.6
Proposed 346.8 336.7 326.3 318.0 307.3 297.3 287.3 276.6 267.7 257.7 247.0

DesignWare 350.8 339.7 330.8 323.2 316.7 299.9 291.1 281.8 273.8 260.5 253.7
CLA 453.1 447.6 434.6 426.5 412.4 398.2 392.6 381.1 377.6 361.4 352.8
SA 427.2 420.1 410.4 402.1 385.4 380.6 369.2 361.5 350.6 337.1 323.5

BKA 411.6 410.9 400.4 385.7 378.0 370.5 355.8 341.7 338.0 330.9 315.3
KSA 592.9 579.7 572.8 561.6 548.1 542.5 526.1 518.0 512.0 503.6 494.2

Table 7. Average Critical Path Delay of the Synthesized Components in Dataset 1 (Adder)

Grouped by 11 Clock Period Settings with Different Approaches (ns)

Clock Period Tmin T1 T2 T3 T4 T5 T6 T7 T8 T9 Tmax

Optimal 0.231 0.261 0.337 0.470 0.651 0.882 1.168 1.497 1.885 2.329 2.822
Proposed 0.231 0.261 0.338 0.470 0.652 0.885 1.169 1.499 1.887 2.331 2.825

DesignWare 0.233 0.263 0.342 0.472 0.655 0.887 1.169 1.504 1.896 2.333 2.827
CLA 0.294 0.321 0.402 0.530 0.710 0.941 1.225 1.559 1.955 2.386 2.879
SA 0.338 0.373 0.445 0.575 0.752 0.987 1.272 1.613 2.000 2.432 2.920

BKA 0.281 0.300 0.379 0.510 0.687 0.918 1.207 1.538 1.931 2.368 2.862
KSA 0.288 0.315 0.393 0.520 0.705 0.934 1.223 1.555 1.945 2.384 2.870

Table 8. Average Area of the Synthesized Components in Dataset 2 (Multiplier) Grouped by

11 Clock Period Settings with Different Approaches (μm2)

Clock Period Tmin T1 T2 T3 T4 T5 T6 T7 T8 T9 Tmax

Optimal 4,591.7 4,562.1 4,500.0 4,440.4 4,387.8 4,348.4 4,307.7 4,249.1 4,184.8 4,118.9 4,079.7
Proposed 4,594.4 4,569.9 4,505.9 4,448.2 4,394.0 4,351.6 4,311.6 4,255.9 4,194.3 4,121.8 4,082.1

DesignWare 4,859.4 4,779.0 4,715.1 4,672.1 4,618.9 4,575.2 4,540.3 4,501.9 4,438.1 4,396.8 4,352.2
SAM 6,170.0 6,099.4 6,050.2 6,003.1 5,969.0 5,903.9 5,840.1 5,773.5 5,728.2 5,712.0 5,657.7

R4SAM 6,553.0 6,481.6 6,419.7 6,410.3 6,339.7 6,270.3 6,236.9 6,208.0 6,131.8 6,106.0 6,047.9
R4BM 4,999.3 4,949.5 4,858.6 4,827.2 4,769.2 4,743.9 4,687.9 4,608.5 4,589.7 4,527.2 4,465.6
R8BM 5,118.9 5,054.2 5,026.7 4,977.0 4,908.7 4,865.6 4,827.6 4,779.6 4,741.3 4,674.7 4,627.5

Table 9. Average Critical Path Delay of the Synthesized Components in Dataset 2 (Multiplier)

Grouped by 11 Clock Period Settings with Different Approaches (ns)

Clock Period Tmin T1 T2 T3 T4 T5 T6 T7 T8 T9 Tmax

Optimal 0.802 0.901 1.197 1.704 2.400 3.293 4.396 5.695 7.185 8.881 10.777
Proposed 0.803 0.902 1.200 1.706 2.403 3.294 4.399 5.698 7.192 8.888 10.784

DesignWare 0.811 0.911 1.218 1.716 2.412 3.312 4.410 5.701 7.201 8.904 10.798
SAM 0.855 0.961 1.264 1.756 2.461 3.351 4.448 5.751 7.245 8.942 10.844

R4SAM 0.921 1.017 1.316 1.817 2.519 3.418 4.510 5.807 7.306 9.006 10.900
R4BM 0.825 0.924 1.218 1.718 2.418 3.316 4.412 5.718 7.214 8.907 10.804
R8BM 0.906 1.007 1.303 1.800 2.497 3.394 4.493 5.793 7.288 8.984 10.879

model always outperforms the other two models. Even trained with only 9,574 data, the MLP-
NN-based approach can achieve a high weighted F1-score, which is about 0.92 for both adder and
multiplier. This means that the proposed approach for selecting adder/multiplier architecture is
not sensitive to the size of training subset.

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

20:14 J. Cheng et al.

Table 10. Average Area and Critical Path Delay of the Synthesized Components

(Both Bitwidths Not Less Than 32) with Different Approaches

Dataset 1
Metric

Dataset 2
Metric

Area (μm2) CPD (ns) Area (μm2) CPD (ns)
Optimal 401.1 1.622 Optimal 5,710.7 6.208
Proposed 403.1 1.624 Proposed 5,717.6 6.210

DesignWare 407.2 1.628 DesignWare 5,898.4 6.226
CLA 509.9 1.681 SAM 7,009.1 6.261
SA 476.1 1.728 R4SAM 7,549.8 6.323

BKA 464.1 1.663 R4BM 6,182.9 6.228
KSA 637.9 1.678 R8BM 6,275.8 6.307

Table 11. Average Area and Critical Path Delay of the Synthesized Components

(at Least One Bitwidth Below 32) with Different Approaches

Dataset 1
Metric

Dataset 2
Metric

Area (μm2) CPD (ns) Area (μm2) CPD (ns)
Optimal 257.8 0.965 Optimal 3,845.4 3.598
Proposed 258.5 0.965 Proposed 3,850.2 3.602

DesignWare 263.7 0.968 DesignWare 4,109.2 3.612
CLA 364.8 1.025 SAM 5,497.5 3.659
SA 343.6 1.071 R4SAM 5,833.6 3.717

BKA 332.0 1.004 R4BM 4,201.2 3.621
KSA 505.8 1.018 R8BM 4,362.8 3.700

Fig. 9. The weighted F1-scores of testing with different ML classifiers for architectural selection, which are

trained with varied-size training sets.

5 CONCLUSIONS

In this work, a machine-learning-driven approach is proposed to automatically select the architec-
ture of the adder or multiplier components for achieving a good performance of the synthesized
circuit. The approach is realized by transforming the problem into a multi-class classification prob-
lem with several architecture candidates and a run-only-once procedure of data preparation and
model training. The experiments with different bit widths of operands and clock periods demon-
strate that the MLP-NN-based classifier stably achieves better performance than the classifiers
based on SVM and DT. It can accurately predict (with up to 94% accuracy and 0.9489 weighted

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

Machine-learning-driven Architectural Selection 20:15

F1-score) the best architecture of adder or multiplier for a given set of specifications/constraints.
Compared with a brute-force approach trying four candidate architectures, the proposed approach
costs only one-fourth of runtime and sacrifices little on the performance of the synthesized circuit.
Furthermore, the adder (multiplier) generated with the proposed approach achieves performance
metrics close to the optimal and has 1.6% (5.2%) less area and 2.2% (7.1%) more worst negative
slack averagely than that generated with the DesignWare datapath generator. And, the proposed
approach is insensitive to the size of training subset.

In the future, we will apply the proposed approach to the datapath design in larger and more
realistic circuits. Considering the adaptability of machine learning libraries in a GPU computing
environment, the proposed approach could show more runtime and performance advantages on
the GPU server, over the existing approach for architecture selection.

REFERENCES

[1] Charles R. Baugh and Bruce A. Wooley. 1973. A two’s complement parallel array multiplication algorithm. IEEE Trans.

Comput. C-22, 12 (1973), 1045–1047. DOI:https://doi.org/10.1109/T-C.1973.223648

[2] Andrew D. Booth. 1951. A signed binary multiplication technique. Quart. J. Mech. Appl. Math. 4, 2 (1951), 236–240.

DOI:https://doi.org/10.1093/qjmam/4.2.236

[3] Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone. 1984. Classification and Regression Trees.

Chapman & Hall, Boca Raton, FL.

[4] Richard P. Brent and Hsiang T. Kung. 1982. A regular layout for parallel adders. IEEE Trans. Comput. C-31, 3 (1982),

260–264. DOI:https://doi.org/10.1109/TC.1982.1675982

[5] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Mach. Learn. 20, 3 (1995), 273–297. DOI:https://

doi.org/10.1007/BF00994018

[6] Ganqu Cui, Wenjian Yu, Xin Li, Zhiyu Zeng, and Ben Gu. 2019. Machine-learning-driven matrix ordering for power

grid analysis. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’19). 984–987.

DOI:https://doi.org/10.23919/DATE.2019.8715086

[7] Luigi Dadda. 1965. Some schemes for parallel multipliers. Alta Frequenza 34 (1965), 349–356.

[8] Brunno A. de Abreu, Augusto Berndt, Isac S. Campos, Cristina Meinhardt, Jonata T. Carvalho, Mateus Grellert, and

Sergio Bampi. 2021. Fast logic optimization using decision trees. In Proceedings of the International Symposium on

Circuits and Systems (ISCAS’21). 1–5. DOI:https://doi.org/10.1109/ISCAS51556.2021.9401664

[9] Hao Geng, Yuzhe Ma, Qi Xu, Jin Miao, Subhendu Roy, and Bei Yu. 2021. High-speed adder design space exploration

via graph neural processes. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. (2021). DOI:https://doi.org/10.1109/TCAD.

2021.3114262

[10] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep network training by reducing inter-

nal covariate shift. In Proceedings of the International Conference on Machine Learning (ICML’15). 448–456.

[11] Marellasv Kamaraju, Kondepudi Lal Kishore, and A. V. N. Tilak. 2010. Power optimized ALU for efficient datapath. Int.

J. Comput. Applic. 11 (2010), 39–43.

[12] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. DOI:https://doi.org/10.48550/

arXiv.1412.6980

[13] Peter M. Kogge and Harold S. Stone. 1973. A parallel algorithm for the efficient solution of a general class of recurrence

equations. IEEE Trans. Comput. C-22, 8 (1973), 786–793. DOI:https://doi.org/10.1109/TC.1973.5009159

[14] Jianhua Liu, Shuo Zhou, Haikun Zhu, and Chung-Kuan Cheng. 2003. An algorithmic approach for generic parallel

adders. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’03). 734–740. DOI:https://doi.

org/10.1109/ICCAD.2003.159758

[15] Jianhua Liu, Yi Zhu, Haikun Zhu, Chung-Kuan Cheng, and John Lillis. 2007. Optimum prefix adders in a comprehen-

sive area, timing and power design space. In Proceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC’07). 609–615. DOI:https://doi.org/10.1109/ASPDAC.2007.358053

[16] Yuzhe Ma, Subhendu Roy, Jin Miao, Jiamin Chen, and Bei Yu. 2019. Cross-layer optimization for high speed adders:

A Pareto driven machine learning approach. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 38, 12 (2019), 2298–2311.

DOI:https://doi.org/10.1109/TCAD.2018.2878129

[17] Taeko Matsunaga and Yusuke Matsunaga. 2007. Area minimization algorithm for parallel prefix adders under bitwise

delay constraints. In Proceedings of the Great Lakes Symposium on VLSI (GLSVLSI’07). 435–440. DOI:https://doi.org/

10.1145/1228784.1228886

[18] Yu-Ting Pai and Yu-Kumg Chen. 2004. The fastest carry lookahead adder. In Proceedings of the International Workshop

on Electronic Design, Test and Applications (DELTA’04). 434–436. DOI:https://doi.org/10.1109/DELTA.2004.10071

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

https://doi.org/10.1109/T-C.1973.223648
https://doi.org/10.1093/qjmam/4.2.236
https://doi.org/10.1109/TC.1982.1675982
https://doi.org/10.1007/BF00994018
https://doi.org/10.23919/DATE.2019.8715086
https://doi.org/10.1109/ISCAS51556.2021.9401664
https://doi.org/10.1109/TCAD.2021.3114262
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.1109/ICCAD.2003.159758
https://doi.org/10.1109/ASPDAC.2007.358053
https://doi.org/10.1109/TCAD.2018.2878129
https://doi.org/10.1145/1228784.1228886
https://doi.org/10.1109/DELTA.2004.10071

20:16 J. Cheng et al.

[19] Behrooz Parhami. 2010. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University Press, New York,

NY.

[20] Pytorch. 2022. PyTorch. Retrieved from https://pytorch.org/.

[21] John R. Quinlan. 1986. Induction of decision trees. Mach. Learn. 1 (1986), 81–106. DOI:https://doi.org/10.1007/

BF00116251

[22] John R. Quinlan. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, CA.

[23] Shubham Rai, Walter Lau Neto, Yukio Miyasaka et al. 2021. Logic synthesis meets machine learning: Trading exactness

for generalization. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’21).

1026–1031. DOI:https://doi.org/10.23919/DATE51398.2021.9473972

[24] Subhendu Roy, Mihir Choudhury, Ruchir Puri, and David Z. Pan. 2016. Polynomial time algorithm for area and power

efficient adder synthesis in high-performance designs. IEEE Trans. Comput.-aid. Des. Integ. Circ. Syst. 35, 5 (2016),

820–831. DOI:https://doi.org/10.1109/TCAD.2015.2481794

[25] Subhendu Roy, Yuzhe Ma, Jin Miao, and Bei Yu. 2017. A learning bridge from architectural synthesis to physical design

for exploring power efficient high-performance adders. In Proceedings of the International Symposium on Low Power

Electronics and Design (ISLPED’17). 1–6. DOI:https://doi.org/10.1109/ISLPED.2017.8009168

[26] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1985. Learning Internal Representations by Error

Propagation. Technical Report. California University.

[27] Scikit-Learn. 2022. Scikit-learn: Machine Learning in Python. Retrieved from https://scikit-learn.org/stable/.

[28] Silicon Integration Initiative, Inc. 2022. Open-Cell Library - Silicon Integration Initiative. Retrieved from https://si2.

org/open-cell-library/.

[29] Jack Sklansky. 1960. Conditional-sum addition logic. IRE Trans. Electron. Comput. EC-9, 2 (1960), 226–231. DOI:https://

doi.org/10.1109/TEC.1960.5219822

[30] Synopsys, Inc. 2022. Design Compiler NXT. Retrieved from https://www.synopsys.com/implementation-and-signoff/

rtl-synthesis-test/design-compiler-nxt.html.

[31] Christopher S. Wallace. 1964. A suggestion for a fast multiplier. IEEE Trans. Electron. Comput. EC-13, 1 (1964), 14–17.

DOI:https://doi.org/10.1109/PGEC.1964.263830

[32] A. Weinberger and J. L. Smith. 1958. A logic for high-speed addition. Nat. Bur. Stand. Circul. 591 (1958), 3–12.

[33] Dingcheng Yang, Wenjian Yu, Yuanbo Guo, and Wenjie Liang. 2021. CNN-Cap: Effective convolutional neural network

based capacitance models for full-chip parasitic extraction. In Proceedings of the IEEE/ACM International Conference

on Computer Aided Design (ICCAD’21). IEEE, 1–9.

[34] Yiming Yang. 1999. An evaluation of statistical approaches to text categorization. Inf. Retr. 1 (1999), 69–90.

[35] Yi Zhu, Jianhua Liu, Haikun Zhu, and Chung-Kuan Cheng. 2008. Timing-power optimization for mixed-radix Ling

adders by integer linear programming. In Proceedings of the Asia and South Pacific Design Automation Conference

(ASPDAC’08). 131–137. DOI:https://doi.org/10.1109/ASPDAC.2008.4483926

[36] Reto Zimmermann. 1996. Non-heuristic optimization and synthesis of parallel-prefix adders. In Proceedings of the

International Workshop on Logic and Architecture Synthesis (IWLAS’96).

Received 18 March 2022; revised 13 July 2022; accepted 19 August 2022

ACM Transactions on Design Automation of Electronic Systems, Vol. 28, No. 2, Article 20. Pub. date: March 2023.

https://pytorch.org/
https://doi.org/10.1007/BF00116251
https://doi.org/10.23919/DATE51398.2021.9473972
https://doi.org/10.1109/TCAD.2015.2481794
https://doi.org/10.1109/ISLPED.2017.8009168
https://scikit-learn.org/stable/
https://si2.org/open-cell-library/
https://doi.org/10.1109/TEC.1960.5219822
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-nxt.html
https://doi.org/10.1109/PGEC.1964.263830
https://doi.org/10.1109/ASPDAC.2008.4483926

