
Detecting Anomalous Misconfigurations in AWS Identity and
Access Management Policies

Thijs van Ede
University of Twente

The Netherlands, Enschede
t.s.vanede@utwente.nl

Niek Khasuntsev
University of Twente

The Netherlands, Enschede
n.a.khasuntsev@alumnus.utwente.nl

Bas Steen
PwC Advisory N.V.

The Netherlands, Amsterdam
bas.steen@pwc.com

Andrea Continella
University of Twente

The Netherlands, Enschede
a.continella@utwente.nl

ABSTRACT
In recent years, misconfigurations of cloud services have led to
major security incidents and large-scale data breaches. Due to the
dynamic and complex nature of cloud environments, misconfigured
(e.g., overly permissive) access policies can be easily introduced
and often go undetected for a long period of time. Therefore, it
is critical to identify any potential misconfigurations before they
can be abused. In this paper, we present a novel misconfiguration
detection approach for identity and access management policies in
AWS. We base our approach on the observation that policies can be
modeled as permissions between entities and objects in the form of
a graph. Our key idea is that misconfigurations can be effectively
detected as anomalies in such a graph representation. We evaluate
our approach on real-world identity and access management policy
data from three enterprise cloud environments. We investigate the
effectiveness of our approach to detect misconfigurations, showing
that it has a slightly lower precision compared to rule-based systems,
but it is able to correctly detect between 3.7 and 6.4 times as many
misconfigurations.

CCS CONCEPTS
• Security and privacy→ Access control; Intrusion/anomaly
detection andmalwaremitigation; •Networks→Cloud com-
puting.

KEYWORDS
Identity and access management, Anomaly detection, Cloud com-
puting

ACM Reference Format:
Thijs van Ede, Niek Khasuntsev, Bas Steen, and Andrea Continella. 2022.
Detecting Anomalous Misconfigurations in AWS Identity and Access Man-
agement Policies. In Proceedings of the 2022 Cloud Computing Security Work-
shop (CCSW ’22), November 7, 2022, Los Angeles, CA, USA. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3560810.3564264

This work is licensed under a Creative Commons Attribution
International 4.0 License.

CCSW ’22, November 7, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9875-6/22/11.
https://doi.org/10.1145/3560810.3564264

1 INTRODUCTION
Data breaches are a dangerous threat to our society [34]. In 2019,
Capital One, an American bank holding, suffered a data breach
where data of over a hundred of million people was stolen [18].
More recently, the credit card details of more than hundred million
hotel guests were stolen [32], personal data of over 10 million
church-goers was leaked [31], and inmate records were leaked
from a prison system [2]. All these data breaches have two common
characteristics: the data was hosted in the cloud; and the cloud
access policies were misconfigured.

Since its introduction in 2006, the use of cloud computing solu-
tions, such as Amazon Simple Storage Service (S3), Microsoft Azure,
and Google Cloud Platform increased. While the adoption of cloud
services offers a wide range of benefits, it also brings a number
of security challenges [11]. As the aforementioned data breaches
already demonstrate, security misconfigurations, such as publicly
accessible private data, are a considerable threat in cloud security.
Attackers even collect publically available lists of misconfigured to
find common vulnerabilities in cloud systems [26]. Moreover, the
majority of misconfigurations are reported only when they lead to
security incidents [16, 23, 24], making the problem even larger than
it first appears. As most cloud environments are exposed to the
Internet, misconfigurations create a large attack surface, making it
easy for attackers to scan for misconfigured services and exploit
them.

To prevent breaches, cloud solutions offer identity and access
management (IAM). IAM allows cloud operators to define and man-
age the roles and access privileges of network users and systems,
offloading responsibility to cloud administrators [9, 12]. When con-
figured correctly, IAM systems prevent unauthorized access to
protected resources, ensuring that only specified users get access
to the specified resources. However, for each newly introduced or
modified resource, role or user, these IAM policies must be reconfig-
ured. This (re)configuration is challenging and may unintentionally
introduce incorrect rules, which allow access to resources that are
undesirable (e.g., guest users accessing sensitive data), potentially
leading to security issues. We refer to these undesirable rules as
misconfigurations and further explain them in Section 2. As cloud
environments are often large, dynamic, and complex, the configu-
ration of security services becomes difficult and error prone. There-
fore, there is a need for systems to flag potential misconfigurations

63

https://doi.org/10.1145/3560810.3564264
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3560810.3564264
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560810.3564264&domain=pdf&date_stamp=2022-11-07

CCSW ’22, November 7, 2022, Los Angeles, CA, USA Thijs van Ede, Niek Khasuntsev, Bas Steen, and Andrea Continella

as soon as they are introduced and before such misconfigurations
can be abused.

Existing solutions such as Cloud Custodian [19] use a rule-based
approach to prevent the introduction of security misconfigurations
in cloud environments. Before deployment, such systems compare
IAM policies against existing rules to detect misconfigurations.
However, rule-based approaches are limited by the fact that rules
need to be created and maintained to adhere to security policies
for each specific organization. A rule-based system requires con-
stant effort to keep rules up-to-date, has different requirements per
organization, and can be error prone due to manual rule creation.
Other approaches, such as P-DIFF [35], monitor access and control
behavior to detect misconfigurations. However, this is a reactive
approach, meaning that misconfigurations are detected only when
they are abused. Unfortunately, at this point, it is often too late, as
data is already leaked.

To overcome the limitations of existing solutions, we propose
a novel misconfiguration detection approach that is proactive in
detection, but is able to take into account the context of a specific
organization and does not require high maintenance like rule-based
detection. We achieve this by collecting all identity and access man-
agement policies from cloud environments before they are rolled
out. Next, we model identity and access management policies as
a graph where rules are represented by edges between nodes that
model entities (users, groups, and roles) and resources. In such
graphs, we observed that similar policies within the same envi-
ronment also have similar graph representations. This means that,
correctly configured policies are similar to each other, while mis-
configurations show up as anomalies. Leveraging our observation,
we apply anomaly detection to spot outliers and raise real-time
alerts about potential misconfigurations.

To validate our proposed approach, we collected real-world iden-
tity and access management policy data of AWS cloud environments
from three different companies. We manually labelled the data as
correct policies and potential misconfigurations. On these datasets,
our proposed approach correctly detected between 3.7 and 6.4 times
as many misconfigurations as rule-based approaches.
In summary, our paper makes the following contributions:

• We introduce a novel approach to model AWS identity and
access management policies in the form of a graph model;

• We present a novel system that uses anomaly detection tech-
niques to identify potential misconfigurations in Amazon
AWS environments;

• We show that our approach correctly detects between 3.7
and 6.4 times as many misconfigurations than state-of-the-
art rule-based approaches on a real-world dataset of IAM
policies from three AWS cloud environments.

To foster future research on the automatic identification of mis-
configurations in cloud environments, we release our prototype
open-source: https://github.com/utwente-scs/misdet-code.

2 BACKGROUND AND MOTIVATION
We first detail the main concepts used in IAM and then focus on
better understanding when access to cloud resources is misconfig-
ured. While we focus on AWS, the concepts discussed here can be
applied to any IAM system.

Cloud Identity and Access Management. Identity and access
management allows administrators to limit access to their cloud
services and resources. Using IAM, the administrator can create
and manage different entities that can consist of individual users,
groups of multiple users, and roles that can be linked users, groups
or even other systems. Each entity has certain permissions that
allow or deny certain actions on cloud resources, such as reading
or writing. Sets of permission rules are captured in policies that
allow administrators a more high level view of related permissions.
Cloud providers have different ways of implementing IAM policies,
Figure 1 gives an example of an AWS’ IAM policy [6] in JSON
format, which describes an AdministratorAccess policy that allows
an administrator to perform any action (*, wildcard) on any resource
(*). In this example, the policy itself is related to a resource, which
means that it still needs to be attached to an entity, i.e. either a user,
group, or role. The entity is then granted the permissions specified
in the policy.
Misconfigurations.While cloud providers often include IAM sys-
tems, it is the responsibility of the customer to specify IAM policies
for their organization [12]. As organizations differ in their needs,
so do the policies they need in place for access and restriction to
cloud resources. Keeping a balance between access for maintaining
company workflow, and restrictions to improve security is difficult,
especially for large organizations where policies often change de-
pending on new needs. This can introduce misconfigurations into
IAM policies in several ways. We identify three types of misconfig-
urations:

(1) Overly permissive policies allow entities actions on re-
sources that they should not be able to perform.

(2) Overly restrictive policies denies entities actions on re-
sources that they should be able to perform.

(3) Incorrectly attached policies specifies correct actions on
resources, but for the incorrect entity.

Misconfigured policies open up vulnerabilities that can poten-
tially be exploited by attackers. While there exist some approaches
to detect misconfigurations [19, 35], they are either (1) rule-based,
requiring a large effort to maintain rules, or (2) reactive, thus de-
tecting misconfigurations only after they are abused. Our approach
tackles the following challenges: (i) Proactive, misconfigurations
need be detected before they lead to security incidents; (ii)Context-
specific, misconfigurations depend on the organization for which
they are detected. Some organizations may require stricter or more
permissive policies, depending on their workflow; (iii) Lowmainte-
nance, administrators should not have to maintain rules or perform
manual fine-tuning for detecting misconfigurations.

{
"Version":"2012-10-17",
"name":"AdministratorAccess",
"Statement":{

"Effect":"Allow",
"Action":"*",
"Resource":"*"

}
}

Figure 1: AdministratorAccess policy that allows all actions
(*) on all resources (*).

64

https://github.com/utwente-scs/misdet-code

Detecting Anomalous Misconfigurations in AWS IAM Policies CCSW ’22, November 7, 2022, Los Angeles, CA, USA

3 APPROACH
We aim to detect potential misconfigurations in IAM policies based
on the cloud environment for which they are defined. We recall
that IAM policies define allowed/disallowed actions on resources
and link them as permissions to entities. We propose to model these
connections in a graph to represent the connected nature of policies,
providing advantages for analyzing and visualizing the policies.

By modelling IAM policies as a graph, we observe that policies
permissiveness level is naturally represented through the number
of connections (i.e., degree) of each node. Intuitively, an overly
permissive policy will have many direct connections to allowed
actions, whereas overly restrictive policies will have many direct
connections to disallowed actions. We use this observation and
leverage anomaly detection techniques [28] to detect misconfigu-
rations. The idea is that we can automatically learn an expected
permissiveness level for each resource of an organization given
that most policies will be correctly configured. Finally we use these
learned models to detect deviations representing overly permissive
or restrictive policies and alert operators.

Figure 2 shows a high-level overview of the three phases of our
approach:

(1) Graph Creation builds a graph model from the identity and
access management policies.

(2) GraphEmbedding extracts relevant features from the graph
to apply anomaly detection methods.

(3) Anomaly Detection trains on past, verified policy data and
analyzes new, unverified policies for anomalous misconfig-
urations. Upon detection we alert an operator for manual
verification.

3.1 Graph Creation
For the creation of the graph, we transform the policies of a cloud
instance into a graph representation. The nodes of the graph repre-
sent one of the following types: policy, action, resource, or entity,
where entity represents either a user, group, or role. Policy nodes
represent the identity and access management policies specified
in the environment. Action nodes represent the specified actions
within the permissions in the policy, while resource nodes repre-
sent the resources on which the actions apply. Entity nodes are the
identities that are present within the environment and can make
use of the policies. The relationships between the nodes are defined
as edges in the graph as follows:

(Entity)-[ATTACHED_TO]->(Policy)
(Policy)-[ALLOWS | DENIES]->(Action)
(Action)-[WORKS_ON]->(Resource)

3.2 Graph Embedding
While our graph model accurately represents IAM policies, they
cannot directly be used by existing anomaly detection models. This
is because anomaly detection models rely on features that indicate
normal behavior and find deviations in those features. Therefore,
we first transform the graph into a feature representation that
anomaly detection models can interpret. We recall that intuitively,
a large number of allowed actions and low number of disallowed

actions attached to a resource may indicate overly permissive poli-
cies. Vice versa, a low number of allowed actions and high number
of disallowed actions may indicate overly restrictive policies. How-
ever, these features may have different values depending on the
attached resource, entities or even the type of organization imple-
menting these policies. Therefore, we require method that captures
the contextual differences of nodes attached to policies, i.e., type
of attached entities, actions and resources. To this end, we use
Node2Vec [21], an algorithm that uses random path sampling to
create embeddings for each node in the graph [20]. The idea be-
hind Node2Vec is that we select a target node in the graph and
perform various random walks, starting from that node. During
these walks, we record the types of other nodes we encounter and
encode them into a low-dimensional feature space (we use the cur-
rent best-practice of 128 features). By performing multiple walks
for each node in the graph, we capture both information about the
number of allowed and disallowed actions, but also of the attached
resources and entities. If other nodes have a similar number of
allowed and disallowed actions for similar resources and entities,
the resulting vector representations will also be similar. We note
that there exist other methods that capture similar information,
such as graph2vec [27]. However, graph2vec embeds a graph as a
whole, making it more difficult to identify which specific policy is
misconfigured. As Node2Vec allows us to identify the individual
policy node, we argue that it is a better graph embedding for our
purpose.

3.3 Anomaly Detection
Now that we have embedded policy nodes of the graph, we can use
anomaly detection methods to identify potential misconfigurations.
We recall that similar policies will also have similar graph represen-
tations. Therefore, embeddings of properly configured policies will
be similar to each other, and misconfigurations will be different.
Anomaly detection techniques will be able to spot these outliers
and thereby detect potential misconfigurations.

The anomaly detection model should ideally be trained on prop-
erly configured policies (we discuss misconfigurations in training
data in Section 6.3). These can be policies that follow security poli-
cies, adhere to industry best practices, or are created through the
use of existing tools to ensure proper configuration. Then, when
policies change or when new policies are introduced, the anomaly
detection model checks them for outliers and marks them as po-
tential misconfigurations. This continuous monitoring of changes
in cloud environments enables our approach to detect potential
misconfigurations immediately when there is a change in policies.
This quick reaction time minimizes the time a cloud environment
is exposed, and therefore minimizes the possibility for abuse.

Based on our empirical evaluation in Section 6, we use Local
Outlier Factor [10] (LOF) as our anomaly detection model. LOF is a
density-based model, where a data point is considered an outlier if
it has a lower local density compared to its neighbors. The model
does not make any assumption on the probability distribution of
the data and it provides some tolerance in case of outliers in the
training set, making it a generic solution suitable for our approach.

65

CCSW ’22, November 7, 2022, Los Angeles, CA, USA Thijs van Ede, Niek Khasuntsev, Bas Steen, and Andrea Continella

Figure 2: Overview of our proposed approach to detect potential misconfigurations. First, we create graph model represen-
tations of the IAM policies in the cloud environment (Graph Creation); then, we transform the graph model into vector
representations (Graph Embedding), and finally, we apply anomaly detection to spot outliers and thereby detect potential
misconfigurations.

4 IMPLEMENTATION
While we described our approach as a generic cloud IAMmisconfig-
uration detection system, our implementation focuses on the AWS
cloud platform, as it is currently the largest cloud provider [33].
Graph Creation. To create our graph, we pull the IAM policies
from the monitored AWS environment in JSON format and trans-
form the file to a Neo4j graph database [4]. We recall from Section 2
and Figure 1 that policies contain multiple statements that specify
actions and resources. We create nodes for each policy, action and
resource in the JSON file, and connect them with edges according to
their relationship defined in the statements. We perform a similar
operation for the entities defined in the JSON file and connect them
to their corresponding policies. Figure 3 shows an example of a
resulting graph, where yellow nodes represents the policy names,
blue nodes represent actions, and purple nodes represent resources.
Existing graphs can easily be updated if changes are made to the
policies in the environment. We define a change as adding, remov-
ing or modifying nodes, edges or any of their properties. Changes
in policies can be automatically detected from differing lines in
IAM JSON files and can be applied as updates to the graph. This
mechanism updates the graph rather than recreating it entirely,
making it more efficient (see Section 6.4). Moreover, because the
updates are triggered automatically, there is minimal overhead for
security operators as they only have to focus on verifying detected
misconfigurations.
Graph Embedding. Next, we transform a graph to vectors rep-
resenting policies which we can then use in anomaly detection
models. We run the algorithm Node2vec [21] included in Neo4j on
each policy node in the graph to produce an embedded vector of
128 features (128 features are currently considered best practice).
We then store the resulting embedded feature vectors as properties
in the policy nodes. This way, we can access the embedded vectors
by querying the database, enabling us to easily extract the vectors
for anomaly detection.

Iam:List*

Iam:Get*

Iam:
Access*

Iam:
Request*

IAM
ReadOnly
Access

*

Figure 3: Example of a graph representation of a policy in
the environment. Policies (yellow) allow actions (blue) on
resources (purple).

Anomaly Detection. Finally, we use the scikit-learn Python li-
brary [29]. This library implements a wide range of machine learn-
ing algorithms, including the Local Outlier Factor algorithm and
other algorithms used in our evaluation. More details on the imple-
mentation of the anomaly detection will be discussed in Section 6.

5 DATASET
To evaluate our prototype, we need real IAM policies containing
labelled misconfigurations. We collected a total of 2480 different
policies from three organizations that use AWS cloud environments
over a period of several weeks. These datasets are detailed in Table 1.
The first two datasets were collected from two different financial or-
ganizations with approximately 12,000 (dataset 1) and 130 (dataset
2) employees. The third dataset belongs to a smaller tech/software
development company with 4 employees. These datasets represent
small, medium and large enterprises, giving us a variety of real-
world deployments. While this dataset is relatively small (three
organizations), we use all the deployed policies from real-world

66

Detecting Anomalous Misconfigurations in AWS IAM Policies CCSW ’22, November 7, 2022, Los Angeles, CA, USA

environments, minimizing potential sampling bias. A further ad-
vantage is that we have a realistic ratio of misconfigurations (which
are relatively scarce), minimizing any base rate fallacy.

We collected this data with a script that uses the AWS CLI [1] to
periodically pull IAM policies from the cloud environments of these
organizations1. We collected all IAM policies, as well as all entities
(user, groups, and roles) from each environment and store it locally
in a spreadsheet. Please note that collecting AWS IAM policies can
contain sensitive data about the resources used by an organization
and should therefore be treated confidently or be sanitized (e.g.,
replacing ARNs with generic identifiers) when shared with third
parties.

As shown in Table 1, the organizations implemented between
812 and 842 policies. This relatively high number of policies is
due to the fact that all companies used the 515 default IAM poli-
cies provided by AWS themselves. Each company added between
297 and 327 custom policies for their environment. The first two
datasets do not contain any users or user groups because those
environments authenticate users with a separate identity provider
that issues temporary cloud credentials. This automatically ensures
users assume roles rather than having permissions on their own
user account, a common industry best-practice. We note that this
does not impact our approach as we treat users, groups and roles all
as entities. Furthermore, we collected IAM policies of each organi-
zation at regular intervals during a period of multiple weeks (least
2 as shown in Table 1). This allows us to evaluate the performance
of our approach when misconfigurations are introduced after the
initial configuration.
Data Labeling. To evaluate our proposed approach, the collected
policies were manually labelled into correct and misconfigured
policies. Each policy has been manually reviewed with respect to
the level of permissiveness. Policies that contain a high number of
allowed actions, on a high number of resources, were considered
with extra care. Each policy has been compared against current
industry best practices [8], and, by following these guidelines, we
attempted to minimize label inaccuracy. An example of a potential
misconfiguration is the previously mentioned AdministratorAccess
policy (see Figure 1). This policy has a high level of permissiveness
since it grants permission to perform all the actions on all the
resources.When not attached to the proper entities this policy could
be a potential misconfiguration. All three datasets were labeled,
and contain 12, 11, and 6 misconfigurations, respectively. During
our evaluation, we analyze misconfigurations that were introduced
after initial configuration. However, our labelling process showed
that no newmisconfigurations were introduced in themodifications.
Therefore, in those sections, we simulate the temporal aspect by
manually introducing misconfigurations after the initial setup.

6 EVALUATION
To evaluate our prototype, we take care to follow good practices in
machine learning detailed by Arp et al. [5] and TESSERACT [30]. In
each experiment, we briefly discuss how we tried to avoid relevant
common pitfalls.

We evaluate our prototype by comparing it against Cloud Cus-
todian [19], one of the main rule-based tools used for validating
1Code available at https://github.com/utwente-scs/misdet-code

many AWS IAM policies, which can be seen as our experimental
baseline. Cloud Custodian allows operators define custom rules
to ensure deployed IAM policies adhere to organizational require-
ments. The organizations represented in our dataset did not have
any predefined rules in place. Thus, we instead compared our ap-
proach against Cloud Custodian using open-source IAM rules2. We
note that open-source rules such as those used for this experiment
are not tailored towards a specific setting and will therefore likely
not give the best possible results. To make the comparison more
fair, we also performed the same experiment where we manually
selected open-source rules that are applicable to the organizations
in our dataset, removing rules producing incorrect detections. This
emphasizes the fundamental limitation of rule-based systems, i.e.,
there are no generic rules that can be applied to all cloud environ-
ments. Hence, an anomaly-based solution like ours can help reduce
the manual effort required for detecting IAM misconfigurations
while potentially detecting more misconfigurations.

Table 2 shows the performance of both our approach using the
LOF anomaly detector (see Section 6.1), and the two rulesets of
Cloud Custodian on all three datasets split randomly into 90/10
training and testing sets. While Cloud Custodian performs better
over all policies, we find that for misconfigurations, our approach
performs better, correctly detecting between 3.7 and 6.4 times as
many misconfigurations. The reason for this is that rule-based
systems such as Cloud Custodian are very precise in their detection,
i.e. if there exists a rule for a misconfiguration, it will only trigger
for the misconfiguration and not for other rules. Our approach on
the other hand is anomaly-based, meaning that it may incorrectly
flag some correct configurations as misconfigurations, but it is also
able to detect misconfigurations not captured by rules. Therefore,
our approach shows a promising direction for detecting additional
misconfigurations using anomaly detection, improving the overall
cloud security.
Misclassifications. During our evaluation, we found some oc-
curences of false positives (correct policies flagged as misconfigu-
rations) and false negatives (undetected misconfigurations). The
common characteristics of our false positives are high levels of
permissiveness, which in many scenarios are misconfigurations,
but under certain circumstances can be allowed. An example of
such policy is the ReadOnly policy, which, in dataset 1 permits 762
read-only actions, making it very permissive. However, since in this
dataset, all read-only permissions are for on non-critical resources
the policy was not considered a misconfiguration. As our anomaly
detector does not have a sense of which resources are critical or not,
our approach plays it safe and classifies these policies as potential
misconfigurations.

Conversely, false negatives can occur when a policy does not
seem permissive but actually allows certain high-impact actions.
A policy such as the PowerUserAccess allows only a small number
of actions, for a limited number of entities, but works on critical
resources and can have a high impact. Therefore, to reduce the num-
ber of misclassifications, further research is needed into methods
that take into account the impact of policies.

2https://github.com/davidclin/cloudcustodian-policies

67

https://github.com/utwente-scs/misdet-code
https://github.com/davidclin/cloudcustodian-policies

CCSW ’22, November 7, 2022, Los Angeles, CA, USA Thijs van Ede, Niek Khasuntsev, Bas Steen, and Andrea Continella

Table 1: Overview of three datasets used for the evaluation. We show the size of the datasets in terms of number of employees
working for each organization as well as the number of policies, users, groups, roles defined in the IAM policies. To evaluate
changes in datasets, we collected policies multiple times over a period of multiple weeks indicated by Number of collections.

Total number of Number of
Dataset employees policies users groups roles collections

1 12,000 842 0 0 55 8
2 130 812 0 0 34 2
3 4 826 2 1 10 12

Table 2: Overall evaluation. Performance of our approach compared with Cloud Custodian using all rules, and using rules
specifically selected for our dataset. We show the performance for detecting misconfigurations (top) and the overall perfor-
mance (bottom). While Cloud Custodian seems to perform better overall, its recall is low, meaning the majority of misconfig-
urations go undetected.

Our approach Cloud Custodian Cloud Custodian
All rules Selected rules

DS Prec. Recall F1-score Prec. Recall F1-score Prec. Recall F1-score

M
is
co
nf
. 1 66.67% 66.67% 66.67% 7.89% 10.34% 4.48% 100.00% 10.34% 9.37%

2 70.00% 63.34% 66.67% 13.73% 17.07% 7.61% 100.00% 17.07% 14.58%
3 75.00% 50.00% 60.00% 15.38% 11.32% 6.52% 100.00% 11.32% 10.17%

O
ve
ra
ll 1 91.58% 91.58% 91.58% 97.93% 97.60% 97.76% 98.99% 98.98% 98.57%

2 92.03% 92.31% 92.15% 97.40% 97.09% 97.24% 98.75% 98.73% 98.28%
3 94.97% 95.45% 95.03% 98.93% 97.88% 96.87% 98.12% 98.08% 97.33%

6.1 Anomaly Detectors
We have shown that our approach correctly detects more miscon-
figurations than rule-based approaches using LOF as our anomaly
detector. The only requirement for our detector is that it can de-
tect anomalies based on a vector representation. Therefore, before
choosing LOF, we compared four different anomaly detection tech-
niques to empirically find the best performing technique for our
approach: 1) One-Class Support Vector Machine; 2) Local Outlier
Factor; 3) Isolation Forest; 4) Robust Covariance.

For this experiment, we limit ourselves to dataset 1 to minimize
the data snooping bias that the result of this experiment may intro-
duce to our overall evaluation. Ideally, such evaluation would be
performed on a separate dataset to exclude bias completely. How-
ever, due the limited availability of data we chose to still report the
performance of dataset 1 in Table 2, but show the results separately
for each dataset, demonstrating that the performance generalizes
accross datasets. We follow our proposed approach as described in
Section 3. First, we create a graph model representation from the
first collected IAM policies. Second, we apply node2vec to embed
the policy nodes into vector representations. The vector represen-
tations are the same for all four tested anomaly detectors. Next,
we split dataset 1 into a 90/10 training and testing set, following
machine learning best practices [5, 30]. Dataset 1 contains a total
of 842 policies conatining 12 misconfigurations. To ensure that the
anomaly detection model is solely trained on correctly configured
policies, we temporarily remove the misconfigurations from the
dataset, leaving us with 830 correct policies. Using a 90/10 split, we

create a training set consisting of 747 (90%) correct policies without
any misconfiguration. The test set consists of the remaining 83
(10%) correct policies, and the 12 misconfigurations, for a total test
size of 95 policies. We choose a 90/10 training testing split as IAM
policy changes are often relatively small compared to the existing
policies. In these environments, the majority of policies are created
initially when the environment is setup. New policies are added
through the life-cycle of the environment, but comprise a smaller
part of the total amount. Additionally, the test set is imbalanced
as there are considerably more correct policies than misconfigura-
tions which is also representative of real-world deployments, since
misconfigurations are introduced much less frequently than correct
modifications [5, 30]. In this setting, the training set can be seen
as the initial deployment of a cloud environment. The test set then
simulates the changes made to the policies in the environment, both
additions of policies as well as modifications, and can therefore be
considered new observations.

Each anomaly detector goes through the same process outlined
in Section 3.3. We first train the model using the correct training
policies. Then, we evaluate the performance of the model using
the test set, containing both correct policies and misconfigurations.
We evaluate the performance using the following metrics: preci-
sion, recall, F1-score, and ROC Area Under Curve (ROC AUC). The
precision measures the proportion of correctly identified misconfig-
urations in all detected misconfigurations. The recall measures the
proportion of correctly identified misconfigurations in all actual
misconfigurations. The F1-score is the harmonic mean of precision

68

Detecting Anomalous Misconfigurations in AWS IAM Policies CCSW ’22, November 7, 2022, Los Angeles, CA, USA

Table 3: Comparison of anomaly detectors. Performance of
anomaly detectors after parameter optimization (dataset 1).

Algorithm Precision Recall F1-Score AUC

One-Class SVM 88.78% 89.47% 89.06% 0.70
Local Outlier Factor 91.58% 91.58% 91.58% 0.66
Isolation Forest 84.08% 87.37% 84.50% 0.60
Robust Covariance 87.94% 89.47% 87.90% 0.65

and recall, and conveys the balance between the precision and the
recall. The ROC AUC measures the relationship between the True
Positive and False Positive Rate of the anomaly detector.
Parameter optimization. The performance of each anomaly de-
tector depends on the use of specific parameters that determine
how each algorithm separates misconfigurations from valid con-
figurations. Therefore, we performed a grid-search on dataset 1 to
find the optimal parameters for each of the four anomaly detection
algorithms. The effect of the parameters on the performance met-
rics can be found in Figure 4. For each parameter, we choose the
best performing according to the ROC AUC metric as a high ROC
AUC will not only give a high precision, but will also be robust
against variations in the data. Using our grid-search, we found the
following optimal parameters for each anomaly detector:

• One-Class SVM: gamma = 0.001, nu = 0.5
• Local Outlier Factor: n_neighbours = 5
• Isolation Forest: n_estimators = 30
• Robust Covariance: contamination = 0.1

Results.With the aforementioned selected optimal parameters, we
evaluate the performances of the four anomaly detection techniques.
Table 3 shows the obtained overall performance for each anomaly
detector for their optimal parameters. Our first observation is that
all four techniques have relatively high precision and recall. Both
metrics are important since precision measures whether detected
misconfigurations are actual misconfigurations, while recall mea-
sures the proportion of detected misconfigurations. In our approach,
however, we prefer a high recall above a high precision because
potentially missed misconfigurations have a considerably larger
impact to cloud security than a false positive detection, which can
be manually filtered out by an operator.

From the results in Table 3 we find that the Local Outlier Factor
(LOF) has the best performance in precision, recall and F1-score.
The ROC AUC of the One-Class SVM is slightly higher, meaning
that the choice of decision boundary is slightly more robust and
will therefore depend less on the chosen parameters. Nevertheless,
the ROC AUC of the LOF algorithm is the second highest and gives
a better overall performance, making it our algorithm of choice.
Additionally, LOF has the great advantage of being more resilient
in cases where the training set contains anomalous data points (see
Section 6.3). In fact, by measuring the local deviation of data points
with respect to their neighbors, LOF can identify local outliers in
the training set, providing some tolerance for misconfigurations
already present during the training.

6.2 Parameter Transferability
Our approach shows promising results for detecting more mis-
configurations than rule-based approaches. However, with large
manual effort, rules may be tweaked to the extent that they cover
nearly every edge case. Therefore, we want to evaluate whether our
anomaly-based approach requires a similar level of tweaking, or
whether our internal parameters are transferable accross settings.
To this end, we take our optimal LOF parameter (n_neighbours =
5) for dataset 1 as found in Section 6.1 and apply them to datasets 2
and 3 to see how well they generalize.

Analogous to our approach, we create separate graph models
for the two new datasets and embed the policy nodes into vector
representations. We then apply the same 90/10 training testing split
as in the previous experiment and obtain 737 correct policies for
training and 11 misconfigurations and 64 correct policies for testing
dataset 2. For dataset 3, the training set contains 743 correct policies
and the testing set contains 6 misconfigurations, and 77 correct
policies. We create separate LOF models for the training sets, using
the n_neighbours = 5 parameter and evaluate the performance
using the test sets.

Table 4 shows the results of this experiment. We observe that
all metrics are quite similar compared to the baseline, and even
slightly improved. The reason that parameters are transferable is
the relatively high similarity between AWS IAM policies. By de-
fault, there are 515 IAM policies managed and provided by AWS,
meaning that there is a significant overlap (> 60%) of policies be-
tween the datasets. As these default policies are well-checked, our
model is trained on properly configured policies that are available
in nearly all real-world scenarios. The small variance between our
baseline and the other datasets can be explained by the level of
permissiveness for policies in the dataset. In dataset 1, policies were
more permissive, without being classified as misconfigurations,
meaning it is more difficult to distinct between correct and mis-
configured policies. In conclusion, we find that that the parameter,
n_neighbours = 5, seems to be transferable between datasets.

6.3 Misconfigurations in Training Data
As our approach is based on anomaly detection, misconfigurations
in training data may lead to undetected misconfigurations during
deployment. To test the resilience against misconfigurations in the
training data, we introduced known misconfigurations during the
training phase of all four algorithms and tested the performance
with respect to the amount of introduced misconfigurations.

Table 5 shows the result of this experiment. We see that for the
One-class SVM and Isolation Forest, the recall drops significantly
with respect to the data in Table 3. The Local Outlier Factor and

Table 4: Parameter transferability. LOF detection perfor-
mance on dataset 2 and 3, with parameter n_neighbours = 5.

Dataset Precision Recall F1-Score ROC AUC

1 (baseline) 91.58% 91.58% 91.58% 0.66

2 92.03% 92.31% 92.15% 0.73
3 94.97% 95.45% 95.03% 0.72

69

CCSW ’22, November 7, 2022, Los Angeles, CA, USA Thijs van Ede, Niek Khasuntsev, Bas Steen, and Andrea Continella

0.1 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Parameter: a (nu)

Pe
rf
or
m
an
ce

Precision
Recall
F1-score
AUC

(a) One-Class SVM

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Parameter: n_neighbours

Pe
rf
or
m
an
ce

Precision
Recall
F1-score
AUC

(b) LOF

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Parameter: No. estimators

Pe
rf
or
m
an
ce

Precision
Recall
F1-score
AUC

(c) Isolation Forest

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

Parameter: contamination

Pe
rf
or
m
an
ce

Precision
Recall
F1-score
AUC

(d) Robust Covariance

Figure 4: Parameter selection. Detection performance metrics during parameter optimization for the four anomaly detection
techniques

Robust Covariance algorithms are much more resilient against mis-
configurations in the training data. We also note that increasing the
number of misconfigurations seems to increase the precision, recall
and F1-score. However, this is due to fewer misconfigurations in the
test data as they were included in the training data instead. From
Table 2, we found that evaluation metrics over misconfigurations
are relatively lower, hence having fewer misconfigurations slightly
skews the evaluation upwards. Nevertheless, our experiments show
that both the Local Outlier Factor and Robust Covariance algorithms
are relatively robust against misconfigurations in the training data.

6.4 Runtime Performance
During our experiments, we measured the runtime performance
of the graph creation and model training stage of our approach for
various input sizes. All experiments were performed on an Intel(R)
Core(TM) i7-10750H CPU @ 2.60GHz laptop running Ubuntu 20.04
LTS. We report the average runtime over 10 runs.

Graph Creation. During Graph Creation, the IAM policy data is
transformed into a graph model representation. Figure 5 shows the
runtime performance of the Graph Creation stage. The performance
scales linearly, but larger datasets can take up a significant amount
of time. For our largest dataset (1) with 842 policies, graph creation
took 20minutes and 55 seconds. It is worthmentioning that only the
initial graph creation is this long, due to the fact that all nodes must
be created. Graph updates are considerably faster since the number
of new nodes is generally low. To evaluate this, we performed 10
experiments where we took the graph of Dataset 3 consisting of
826 nodes. Next, we added 10 random policies and added these to
the graph, which took on average 0.581 seconds versus 833.986
seconds for recreating the graph. This shows that our graph update
achieved a speedup of a factor 1091 versus recreating the graph
from scratch. While the speedup depends on both the total size of
the graph (influencing the recreation of the graph) and the number

70

Detecting Anomalous Misconfigurations in AWS IAM Policies CCSW ’22, November 7, 2022, Los Angeles, CA, USA

Table 5: Misconfigurations in training data. We show the influence of including a certain number of misconfigurations in the
training dataset.

Algorithm No. Misconfigurations Precision. Recall F1-score

One-class SVM 1 (0.12% of training) 90.68% 50.05% 63.15%
One-class SVM 5 (0.61% of training) 90.81% 48.20% 61.83%
One-class SVM 10 (1.21% of training) 92.09% 49.71% 63.49%

Local Outlier Factor 1 (0.12% of training) 91.07% 95.24% 93.10%
Local Outlier Factor 5 (0.61% of training) 91.78% 95.61% 93.65%
Local Outlier Factor 10 (1.21% of training) 92.67% 95.78% 94.20%

Isolation Forest 1 (0.12% of training) 88.67% 17.10% 23.94%
Isolation Forest 5 (0.61% of training) 91.08% 28.47% 39.81%
Isolation Forest 10 (1.21% of training) 91.86% 30.10% 42.84%

Robust Covariance 1 (0.12% of training) 90.64% 81.73% 85.91%
Robust Covariance 5 (0.61% of training) 91.57% 85.07% 88.17%
Robust Covariance 10 (1.21% of training) 92.37% 82.65% 87.19%

100 200 300 400 500 600 700 800
0

200
400
600
800

1,000
1,200

Number of data points (policies)

Ti
m
e
in

se
co
nd

s

Figure 5: Overview of runtime performance for the creation
of the graph model

of added nodes (influencing the average update time), we believe
our experiment shows a considerable speedup in a realistic scenario.
Graph Embedding. After the graph has been created, we run
the Node2vec algorithm on the policy nodes to transform nodes
into vectors, which took on average 57 milliseconds for our entire
dataset.
Model Training and Prediction. We also consider the model
training overhead of the Local Outlier Factor anomaly detection
model. The LOF model is trained on correct policies and then used
to determine whether new observations are also correct or poten-
tial misconfigurations. The measured runtime performance of the
LOF model can be found in Figure 6. We find that the runtime
performance is negligible with respect to creating the graph model
with 26 milliseconds for our largest dataset. For the prediction, we
measured an average of 6 milliseconds for our largest test dataset
of 86 policies and is therefore also negligible.

7 DISCUSSION AND FUTUREWORK
Challenges. We recall from Section 2 that our approach aims to
be proactive, context-specific, and low maintenance. Our ap-
proach can be automatically triggered upon changes in IAM policies
as explained in Section 4. Furthermore, our evaluation in Section 6.4

100 200 300 400 500 600 700 800
0.000
0.005
0.010
0.015
0.020
0.025
0.030

Number of data points (policies)

Ti
m
e
in

se
co
nd

s

Figure 6: Overview of runtime performance for training the
LOF anomaly detector.

has shown that our approach can also be run in a reasonable times-
pan, allowing for proactive misconfiguration detection. Addition-
ally, our evaluation in Table 2 has shown that our anomaly-based
approach detects more misconfigurations, compared to generic rule-
based approaches, meaning it is better able to take into account
the context-specific (mis)configurations for an organization. And
finaly, with our Parameter Transferability evaluation in Section 6.2,
we have shown that our approach is low maintenance, showing
promising results for all our criterea.
Misconfigurations in training data.Our approach assumed that
we only train the anomaly detection model on correct policies.
While our evaluation in Section 6.3 showed that Local Outlier Factor
and Robust Covariance have some robustness with small numbers
of misconfigurations, ideally the training data should not contain
misconfigurations. The policy data collected for our experiments is
from real-world cloud environments. Each dataset has been manu-
ally reviewed, and potential misconfigurations have been removed
from the training set. This is a costly human operation that is error
prone and may not be feasible in all use cases. Therefore, a possible
approach could be to train only on the 515 default IAM policies
provided by AWS. In this scenario, we can be sure that there are
no misconfigurations in the training data. As a disadvantage, our

71

CCSW ’22, November 7, 2022, Los Angeles, CA, USA Thijs van Ede, Niek Khasuntsev, Bas Steen, and Andrea Continella

approach will not be able to learn the context-specific environment
and may flag policies that seem misconfigured with respect to IAM
policies, but are permissible in certain cases. In short, we believe
that with careful review, the number of misconfigurations that slip
through manual detection is sufficiently low, and we have shown
that for low numbers of misconfigurations, Local Outlier Factor
and Robust Covariance still produce good results.
Advanced embedding and anomaly detection. In our approach,
we have used the graph embedding technique Node2vec, which
is currently the state-of-the-art of graph embedding. Node2vec
in combination with LOF has already provided us with good re-
sults in detecting potential misconfigurations. There are however
newer techniques in the making that might be able to transform
the graph in a better and more efficient way. An example of such
a new embedding technique is GraphSage [22], which uses induc-
tive representation learning to also enable the embedding of node
properties. Furthermore, we have only considered four anomaly de-
tection algorithms in our approach.More complexmachine learning
techniques could further enhance the performance of our approach.
Examples of such techniques are Graph Convolutional Networks
[25], and One-Class Neural Networks [13].
Different policy types. In our current approach, we only consider
identity-based policies. There are, however, more IAM policie types
in cloud environments3:

• Resource-based policies,
• Permission boundaries,
• Organization service contol policies,
• Access control lists,
• Session policies.

These policies cover different scenarios and can be represented
using other node types in a graph. E.g., a resource-based policy
can set a storage service node to be either publicly or privately
accessible. Such policies specify actions that are only allowed on
that specific resource, regardless of who is performing the action.
These different policy types can be created and stored in the same
way as identity-based policies but may show different behaviour
when analyzed using our approach. Therefore, we recommend
future investigation into using our approach with different policy
types.
FutureWork. From our current approach, we see several potential
future directions for improvement. First, a feedback loop may be
added after a security operator verifies or discards flagged miscon-
figurations. The model can be updated with such new information
and prevent other similar alerts in the future.

Second, our work focused on the AWS cloud platform. While we
only evaluated our approach on AWS IAM datasets, the technique
itself may be extended to other cloud platforms that provide IAM
policies where entities can be linked to resources through policies.
Besides AWS, other major cloud platforms such as Google Cloud
Platform and Microsoft Azure support such policy structures. Our
approach can be extended by adding collection services for addi-
tional cloud providers. While the rest of our approach should be
independent of the cloud provider, future research should show
whether our approach achieves similar results on those platforms.

3https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Finally, our approach is able to detect misconfigurations, but is
not yet able to provide suggestsions for IAM policy modifications.
To this end, we could explore link prediction techniques that indi-
cate which links should be added or removed. While link prediction
is technically possible to implement in our graph, we consider this
out of scope for the current research.

8 RELATEDWORK
Access control is a subfield of the broader area of identity and ac-
cess management, and has been studied extensively. P-Diff [35]
monitors access and control behavior by using decision tree algo-
rithms. While effective, P-Diff has one major limitation: it learns
access control policies from access logs. This means that detection
is therefore limited to the information contained in the access logs,
which makes the approach reactive. As a consequence, misconfigu-
rations can only be detected after abuse, once anomalies show up
in the access logs. Instead, our approach is proactive and aims at
identifying misconfigurations as soon as they are introduced in the
cloud environment. Baaz [15] infers permission misconfigurations
in an enterprise network by monitoring updates made to the access
control metadata, and looking for potential inconsistencies among
peers. The major limitation of Baaz is that it relies on the definition
of what should be considered as an inconsistency. This parameter
can be tweaked by administrators, but could still cause problems
and influence the performance of the system.

Rule-based solutions rely on predefined rules to which the newly
created or modified cloud resources must adhere—these rules have
to be created, monitored and maintained throughout the life cycle
of the cloud environment. Cloud Custodian [19] is a widely used
open-source rule-based system. Cloud Custodian enables users to
be well managed in the cloud. It allows for the easy definition of
rules to manage the cloud infrastructure. These rules are collected
in policies. The policies can be as simple or as complex as the person
creating them wants them to be. Examples of such policies can be
the blocking of all the public access to S3 buckets or the detection
of an account receiving admin privileges. AWS Remediation Frame-
work [17] is another example of an open-source solution. As the
name suggests, it is a project that identifies and remediates AWS
security issues to ensure AWS usage is compliant with a set of rules.
Although these rule-based solutions can be very powerful and have
clear advantages, there are also a number of limitations. First of all,
the rules need to be created and maintained to adhere to security
policies. This has to be performed manually and can require a large
effort. Furthermore, this process can be error prone and security
policies can be insufficient to detect all misconfigurations. Secondly,
cloud environments are generally extremely dynamic and change
frequently. There are situations in which a certain action can be
seen as a misconfiguration, while it is needed for a certain opera-
tion, predefined rules can therefore be too rigid too handle these
quick changes, which will impact the performance of the system.

Cloud providers have also started offering solutions for detect-
ing misconfigurations. AWS provides CloudTrail [3], which is an
AWS service that enables governance, compliance, and auditing
of the AWS account and all the corresponding resources. It pro-
vides logging and continuous monitoring of the AWS environment.
Cloudtrail can be used in two ways to detect misconfigurations.

72

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

Detecting Anomalous Misconfigurations in AWS IAM Policies CCSW ’22, November 7, 2022, Los Angeles, CA, USA

First, it can be used to log and raise alerts in case any changes
are made to the identity and access management configurations of
the cloud resources. Second, it can be used to detect unauthorized
access if misconfigurations are abused. Both ways have limitations.
Either over-alerting administrators on every change made, or react-
ing to already happened abuse, thus being too late. Besides, AWS
has some mechanisms in place to prevent misconfigurations. For
example, when overly permissive identity and access management
roles are created, the system raises a warning. This already cre-
ates a first line of defense, however, it can be easily overridden by
administrators and only identifies major and obvious errors.

Other studies, which are orthogonal to our research, focused
on measuring misconfigurations. Continella et al. [14] investigated
permission misconfigurations on Amazon Simple Storage Service
(S3) buckets [7]. Another research has been performed on the cause
of data leaks when cloud platforms are used as mobile app back-
ends [38]. Finally, Zahoor et al. developed a formal method for
detecting conflicting policies [36] and extended this method to work
accross multiple cloud providers [37]. These conflicts cover cases
where some policies allow entities access to a resource, whereas
another policies deny overlapping entities from accessing to same
resource. While such policies are also misconfigurations, they are
orthogonal to the context-specific overly permissive or restrictive
policies that our work focuses on.

9 CONCLUSION
In this paper, we presented a novel approach for detecting miscon-
figurations of AWS identity and access management policies. The
goals for this approach were to be proactive, context-specific, and
requiring low maintenance. To achieve these goals, we first created
a graph model representing IAM policies from a given cloud envi-
ronment. We then created context-specific representations of all
policies using node2vec embeddings. Finally, we trained an anomaly
detection model on correct policy embeddings and used it to detect
potential misconfigurations in new policies. We have evaluated our
approach on real-world IAM policies from three organizations and
have shown that our approach correctly detects between 3.7 and
6.4 times more misconfigurations than state-of-the-art approaches
at the cost of a slight decrease in precision. Furthermore, we have
shown that the parameters for the anomaly detection algorithms
are transferable between environments, while still maintaining a
similar detection performance, ensuring low maintenance costs. As
security misconfigurations in cloud environments have detrimental
consequences, our approach performs an important step to reduce
the risk of security misconfigurations.

REFERENCES
[1] 2006. AWS Command Line Interface. https://aws.amazon.com/cli/
[2] 2020. Misconfigured AWS S3 Bucket Leaks 36,000 Inmate Records.

https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-
cloud/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records

[3] 2021. AWS CloudTrail. https://aws.amazon.com/cloudtrail/
[4] 2021. Graph Database Platform: Graph Database Management System: Neo4j.

https://neo4j.com/
[5] 2022. Dos and Don’ts of Machine Learning in Computer Security. In 31st USENIX

Security Symposium (USENIX Security 22). USENIX Association, Boston, MA.
https://www.usenix.org/conference/usenixsecurity22/presentation/arp

[6] AmazonWebServices. 2003. AWS IAM. https://aws.amazon.com/iam/
[7] AWS. 2002. Amazon Simple Storage Service (Amazon S3). https://

aws.amazon.com/s3/

[8] AWS. 2003. AWS IAM Best Practices. https://docs.aws.amazon.com/IAM/latest/
UserGuide/best-practices.html

[9] KellyW Bennett and James Robertson. 2019. Security in the Cloud: understanding
your responsibility. In Cyber Sensing 2019, Vol. 11011. International Society for
Optics and Photonics, 1101106.

[10] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. 2000.
LOF: identifying density-based local outliers. , 93–104 pages.

[11] JM Brook, A Getsin, G Jensen, L Jameson, M Roza, N Thethi, A Kurmi, S Levy,
S Shamban, V Hargrave, et al. 2019. Top Threats to Cloud Computing: The
Egregious Eleven. Cloud Security Alliance (2019).

[12] Herbert G. Buff. 2000. Compliance. https://aws.amazon.com/compliance/shared-
responsibility-model/

[13] Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay Chawla. 2018.
Anomaly detection using one-class neural networks. arXiv preprint
arXiv:1802.06360 (2018).

[14] Andrea Continella, Mario Polino, Marcello Pogliani, and Stefano Zanero. 2018.
There’s a Hole in that Bucket! A Large-scale Analysis ofMisconfigured S3 Buckets.
In Proceedings of the ACM Annual Computer Security Applications Conference
(ACSAC).

[15] Tathagata Das, Ranjita Bhagwan, and Prasad Naldurg. 2010. Baaz: A System for
Detecting Access Control Misconfigurations.. In USENIX Security Symposium.
161–176.

[16] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig.
2018. Investigating system operators’ perspective on security misconfigurations.
In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security. 1272–1289.

[17] Flatironhealth. 2021. Aws Remediation Framework. https://github.com/
flatironhealth/aws-remediation-framework

[18] Emily Flitter and KarenWeise. 2019. Capital One Data Breach Compromises Data
of Over 100 Million. https://www.nytimes.com/2019/07/29/business/capital-
one-data-breach-hacked.html

[19] Linux Foundation. 2020. Cloud Custodian. https://cloudcustodian.io/
[20] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applications,

and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.
[21] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[22] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. arXiv preprint arXiv:1706.02216 (2017).

[23] Muhammad Kazim and Shao Ying Zhu. 2015. A survey on top security threats in
cloud computing. (2015).

[24] Issa M Khalil, Abdallah Khreishah, Salah Bouktif, and Azeem Ahmad. 2013.
Security concerns in cloud computing. In 2013 10th International Conference on
Information Technology: New Generations. IEEE, 411–416.

[25] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[26] Nag. 2021. S3-Leaks. https://github.com/nagwww/s3-leaks
[27] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, Yang Liu, and Shantanu Jaiswal. 2017. graph2vec: Learning distributed
representations of graphs. arXiv preprint arXiv:1707.05005 (2017).

[28] Salima Omar, Asri Ngadi, and Hamid H Jebur. 2013. Machine learning tech-
niques for anomaly detection: an overview. International Journal of Computer
Applications 79, 2 (2013).

[29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. , 2825–2830 pages.

[30] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. 2019. {TESSERACT}: Eliminating experimental bias in mal-
ware classification across space and time. In 28th USENIX Security Symposium
(USENIX Security 19). 729–746.

[31] Tara Seals. 2020. Good Heavens! 10M Impacted in Pray.com Data Exposure.
https://threatpost.com/10m-impacted-pray-com-data-exposure/161459/

[32] Tara Seals. 2020. Millions of Hotel Guests Worldwide Caught Up in Mass
Data Leak. https://threatpost.com/millions-hotel-guests-worldwide-data-
leak/161044/

[33] Katy Stalcup. 2020. AWS vs Azure vs Google Cloud Market Share 2020: What
the Latest Data Shows. https://www.parkmycloud.com/blog/aws-vs-azure-vs-
google-cloud-market-share/

[34] Lance Whitney. 2021. 2020 sees huge increase in records exposed in data
breaches. https://www.techrepublic.com/article/2020-sees-huge-increase-in-
records-exposed-in-data-breaches/

[35] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen, Haochen Huang,
Tianyin Xu, Yuanyuan Zhou, Cindy Moore, Xinxin Jin, and Tianwei Sheng. 2019.
Towards Continuous Access Control Validation and Forensics. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security.
113–129.

73

https://aws.amazon.com/cli/
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records
https://www.trendmicro.com/vinfo/us/security/news/virtualization-and-cloud/misconfigured-aws-s3-bucket-leaks-36-000-inmate-records
https://aws.amazon.com/cloudtrail/
https://neo4j.com/
https://www.usenix.org/conference/usenixsecurity22/presentation/arp
https://aws.amazon.com/iam/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://github.com/flatironhealth/aws-remediation-framework
https://github.com/flatironhealth/aws-remediation-framework
https://www.nytimes.com/2019/07/29/business/capital-one-data-breach-hacked.html
https://www.nytimes.com/2019/07/29/business/capital-one-data-breach-hacked.html
https://cloudcustodian.io/
https://github.com/nagwww/s3-leaks
https://threatpost.com/10m-impacted-pray-com-data-exposure/161459/
https://threatpost.com/millions-hotel-guests-worldwide-data-leak/161044/
https://threatpost.com/millions-hotel-guests-worldwide-data-leak/161044/
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/
https://www.parkmycloud.com/blog/aws-vs-azure-vs-google-cloud-market-share/
https://www.techrepublic.com/article/2020-sees-huge-increase-in-records-exposed-in-data-breaches/
https://www.techrepublic.com/article/2020-sees-huge-increase-in-records-exposed-in-data-breaches/

CCSW ’22, November 7, 2022, Los Angeles, CA, USA Thijs van Ede, Niek Khasuntsev, Bas Steen, and Andrea Continella

[36] Ehtesham Zahoor, Zubaria Asma, and Olivier Perrin. 2017. A formal approach
for the verification of AWS IAM access control policies. In European Conference
on Service-Oriented and Cloud Computing. Springer, 59–74.

[37] Ehtesham Zahoor, Asim Ikram, Sabina Akhtar, and Olivier Perrin. 2018. Autho-
rization policies specification and consistency management within multi-cloud

environments. In Nordic Conference on Secure IT Systems. Springer, 272–288.
[38] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. 2019. Why does your data leak?

uncovering the data leakage in cloud from mobile apps. In 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 1296–1310.

74

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Graph Creation
	3.2 Graph Embedding
	3.3 Anomaly Detection

	4 Implementation
	5 Dataset
	6 Evaluation
	6.1 Anomaly Detectors
	6.2 Parameter Transferability
	6.3 Misconfigurations in Training Data
	6.4 Runtime Performance

	7 Discussion and Future Work
	8 Related Work
	9 Conclusion
	References

