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ABSTRACT
Moving target defense (MTD) is a proactive defensive mechanism
proposed to disrupt and disable potential attacks, thus reversing
the defender’s disadvantages. Cyber deception is a complemen-
tary technique that is often used to enhance MTD by utilizing
misinformation to deceive and mislead attackers. Deception ele-
ments, such as honeypot, honey bait, honey token, breadcrumb,
and well-constructed deception scenes, can significantly increase
the uncertainties for attackers. Deception-based MTD techniques
can change the asymmetry situation between defenders and at-
tackers through affecting the attacker’s perception of the system.
However, there is still a lack of understanding about the role of
cyber deception in MTD, and few research works have evaluated
the effectiveness of cyber deception.

In this paper, we propose a concept of deception attack surface to
illustrate deception-based moving target defense. Moreover, we pro-
pose a quantitative method to measure deception, which includes
two core concepts: exposed falseness degree and hidden truth de-
gree. We further formulate a deception game model between an
attacker and a defender, in which the defender attempts to protect
the entry points on the attack surface by creating or changing a
deception attack surface. Furthermore, we provide a detailed exam-
ple scenario and analyze the deception game’s equilibrium. Finally
We verify the effectiveness of our proposed method through a real
attack and defense experiment.
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1 INTRODUCTION
In recent years, increasing security problems in cyberspace present
new requirements to the existing security defense mechanisms.
The certainty, homogeneity, and static nature of computer systems
provide plenty of time and space for attackers to analyze the tar-
get systems and implement intrusion. Furthermore, current cyber
defenses are mostly reactive as the response comes after attacks
have happened. These characteristics provide attackers with sig-
nificant advantages over defenders. Therefore, innovative defense
techniques are needed to break such asymmetric situation.

Moving target defense (MTD) [20] and cyber deception [27]
are two main proactive defensive techniques proposed to disrupt
and disable potential attacks, thus reversing the defender’s disad-
vantages [31]. The fundamental idea of MTD is to dynamically
and randomly alter the attributes of a system, increasing the uncer-
tainty and complexity for attackers. In comparison, cyber deception
utilizes plausible-looking and carefully crafted misinformation to
deceive and mislead attackers. Researches show that MTD tech-
niques can be enhanced by the addition of deception [10]. MTD
and cyber deception are complementary techniques that can be
deployed by defenders simultaneously with common objectives
to defeat the attackers. Due to its diversified deceptive methods,
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as well as the characteristics of low construction cost and easy
construction of deceptive attributes, cyberspace deception provides
a new direction for expanding the attack surface shifting space, and
has become an important technical direction for MTD research.

Approaches combining MTD and deception can be used in vari-
ous domains (e.g., deception network [30], web deception [12], [35],
data deception[36]). However, there are few systematic approaches
to evaluate the effectiveness of deception in MTD techniques. Cur-
rent approaches include evaluating by metrics, mathematical mod-
els or simulation methods. They have three shortcomings: 1) it
is not clear how to quantify the deception effect in the network;
2) many MTD evaluation methods are applicable to specific tech-
nologies and limited to specific application scenarios, so they lack
broad applicability; 3) the MTD system has the characteristics of
dynamics and interaction complexity that traditional evaluation
methods cannot propose a formal specification to describe.

In order to illustrate deception-based moving target defense and
evaluate its effectiveness, in this paper we propose a concept of
deception attack surface, which is defined as the attack surface
observed and perceived by the attackers after the introduction of
deception techniques. To formally measure deception in the decep-
tion attack surface, we bring in the concepts of exposed falseness
degree and hidden truth degree. This enables the quantification
of deception measurement. To better understand the role of de-
ception in MTD, we construct the deception game model between
the attacker and the defender. In this model, the defender aims
to protect the system by creating or changing a deception attack
surface. Through the proposed reward function for attackers and
defenders, we can measure the payoffs and costs of the changes
to the deception attack surface. These changes are usually caused
by defenders’ deception action or attacker’s move. To demonstrate
our model, we provide an example scenario in which a defender
protects real attributes on attack surface via adding deceptive at-
tributes, and then analyze the deception game’s equilibrium. With
evaluation, we demonstrate that our method can effectively mea-
sure the deceptive degree of the deception-based MTD model, and
can successfully model the attack-defense relationship and give a
strategy that satisfies the Nash equilibrium.

Our ultimate aim is to measure the degree of deception and
evaluate the deception-based model. To achieve this, we use a com-
bination of deception metrics and incomplete information dynamic
games. The advantages of our approach are: 1) Metrics can effec-
tively measure the deception effect of the system, and the game
method can evaluate deception benefits; 2) Dynamic changes of
active defense model can be well reflected in the multi-step decision-
making of offensive side and defensive side in signaling deception
game; 3) The fusion method of metrics and game method can help
defenders to continuously optimize the deployment plan, so as to
further improve the deception effect; 4) Our method has applicabil-
ity and is not limited by scenarios.

The major contribution of this paper is as follows:

• It introduces the concept of deception attack surface and
proposes an approach to quantitatively measure deception;

• It applies game model to analyze and understand deception
based MTD;

• Using an example scenario, it studies the equilibrium of the
game model and demonstrates how to compute the payoffs
and costs for different strategies of attackers and defenders.

2 RELATEDWORK
A main research methodology of MTD is to first propose a new
MTD technique, and then evaluate the effectiveness of the method.
In general, existingmethods for evaluating the effectiveness ofMTD
techniques can be divided into three categories: (i) metric-based,
(ii) mathematical model-based, and (iii) simulation-based.

Metric-based. Kinds of metrics have been proposed to measure
the security of MTD system. Thomas et. al. [7] assessed the perfor-
mance of network address shuffling in the light of the attacker’s
success rate. Jafarian et. al. [19] proposed three metrics: deterrence,
deception, and detectability. Warren Connell et. al. [11] presented
a quantitative analysis model to evaluate the resource availability
and performance of MTD via queuing theory. Multiple metrics (pro-
ductivity, success, confidentiality, and integrity) were analyzed for
the attacker and defender [33]. A quantitative evaluation method
of MTD based on entropy is proposed in [22]. Alavizadeh et. al. [3]
proposed four metrics for the comprehensive security assessment
of MTD technology: system risk, attack cost, return on attack, and
availability. Taylor et. al. [28] designed a series of metrics to eval-
uate the costs of mission activities and the benefits in the face of
attacks. Security metrics, such as system risk and reliability, were
used to evaluate MTD techniques [4]. Tuan et. al. [25] used key per-
formance metrics to comprehensively evaluate complex behaviors
of the operating system and MTD strategies. There are few metrics
to measure the effect of deception. The possible metrics include the
proportion of decoys, the shifting rate of deception strategies, the
benefits of deception, etc.

Mathematical model-based. Zhuang et. al. [38] first proposed
usingMarkovmodel to analyzeMTD, in which each state inMarkov
chain represented the current system configuration, and then [23],
[9] have been proposed. Al Amin et. al. [1] used transition prob-
abilities in hidden Markov models to predict paths. One of the
problems with Markov model based MTD methods is that the num-
ber of states increases exponentially with the increase of system
components.

Game theory is also the main method widely used in MTD anal-
ysis and modeling. Game Theory can be used to maximize the secu-
rity of defenders while minimizing the shifting rate of the system,
that is, to achieve the greatest benefits at the lowest cost. Manad-
hata et. al. [24] used the complete and perfect information game
to represent the attack surface shifting. Zhu et. al. [37] proposed
a game theoretic framework to analyze multi-layer attack surface
shifting. Some MTD schemes introduce deception and assess the
security of computer system. Feng et. al. [14] demonstrated that
the security of MTD can be further improved when combined with
information disclosure. Carroll et. al. [8] modeled the interactions
between defender and attacker via a signaling game to evaluate
the effect of deception. Fang et. al. [13] developed a series of game
theory models of network deception and algorithms to calculate the
equilibrium in the game. Ye et. al. [32] proposed a new differentially
private game theoretic approach to model cyber deception.

 

68



Game Theory Approaches for Evaluating the Deception-based Moving Target Defense MTD ’22, November 7, 2022, Los Angeles, CA, USA

Table 1: Comparison between MTD and Cyber Deception

MTD Cyber Deception
Similarity proactive defense aiming at protecting

the system.

Difference

Technical
Idea

change the configu-
ration of the system,
increasing the com-
plexity and diver-
sity of the system,
making the shifting
rate of the system
faster than the at-
tack rate.

Instead of focusing
on changing the
configuration of
the system, cyber
deception hides
the real target
via proactively
disclosing some
information

Information
Disclo-
sure

no, prevent the at-
tacker from gather-
ing information.

yes, only leak un-
necessary, part of
the real informa-
tion or carefully de-
signed decoy infor-
mation.

Cost high load on the
system

low and simple de-
ployment settings,
and lower load on
the system

Object understanding the
system

understanding the
attacker

Relationship complementary defensive approaches,
can be deployed simultaneously

Attack graph describes the attack path under a certain network
configuration. Hong and Kim [18] proposed a two-layer hierarchi-
cal attack representation model (HARM) by incorporating MTD in
attack graph security models. Hamlet et. al. [16] stated that the fea-
sibility of MTD resulted from the moving target controls breaking
critical system dependencies and increasing the complexity of an
attack. Jin et. al. [21] established a multi-dimensional attack graph
model to formalize various complex attack scenarios, and combined
this model to effectively evaluate and optimize MTD strategy.

Markov model, attack graph, and game theory are main meth-
ods of MTD evaluation. How to measure the effects of deception
on MTD is a key issue in MTD research. However there are few
research methods which have been proposed.

Simulation-based.A typical example of simulation-based meth-
ods is [39]. In [39] the authors proposed a preliminary design of
a network MTD system based on simulator NeSSi2 and captured
the effectiveness of the proposed MTD system depending on the
probability of a successful attack. The idea of deception is often
combined with MTD to enhance the computer security. Al-Shaer et.
al. [2] implemented a proof-of-concept for Random Host Mutation
(RHM) in a university campus network. The authors evaluated the
RHM effectiveness against scanning external and internal scanners.
Border et. al. [6] evaluated the effectiveness of decoy IP addresses
to mislead remote network attacks via obfuscating the results at the
reconnaissance phase. Gao et. al. [15] used virtual network topology
to confuse the target network and evaluate the system. Poschinger
et. al. [26] developed a hybrid platform called OpenMTD to evaluate

Figure 1: Deception-based MTD. We have two ways to shift
the deception attack surface: adding a decoy or disguising
the real attributes.

MTD techniques at the network level. Zhang et. al. [34] developed
new models to aggregate the attack surface of different network
resources as a formal security measure to evaluate the ability of
the network to resist zero day attacks. Han et. al. [17] implemented
a network deception framework to evaluate the use of deception
in network applications through experiments. Torquato et. al. [29]
presented a tool for evaluating the effectiveness of time-based MTD
against availability attacks. Existing simulation based MTD meth-
ods are case-dependent and lack extensive applicability. Although
techniques for evaluating MTD already exist, there is a lack of meth-
ods for evaluating the deception degree of MTD systems. Therefore,
this paper proposes to use the deception attack surface and decep-
tion indicators to well quantify the deception of the MTD system.
At the same time, the evaluation method based on game theory can
effectively model and evaluate the deception-based MTD system.

3 DECEPTION-BASED MOVING TARGET
DEFENSE

Moving target defense and cyber deception are complementary
proactive defensive approaches, both of which aim at defeating
the attackers. The difference is that MTD increases the complexity,
diversity, and randomness of a system by constantly changing the
attack surface of the system. Cyber deception mainly misleads the
attacker’s actions by providing seemingly real but false informa-
tion. Deception defense increases the shifting space of system’s
attack surface. Deception elements, such as honeypot, honey bait,
honey token, breadcrumb, well-designed deception stories, andwell-
constructed deception scenes, create huge information entropy that
forces the attacker into a deceptive environment where it’s difficult
to distinguish the real target from the deceptive scenarios. Table 1
shows the comparison between MTD and cyber deception.

3.1 Deception Attack Surface
Attack surface measurement is generally used as an indicator of a
system’s security. A system’s attack surface is the subset of the sys-
tem resources that an attacker can exploit to penetrate the system.
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The larger of the attack surface, the more insecure of the target sys-
tem. Manadhata et. al. [24] first proposed the use of attack surface
shifting in the context of moving target defense. The basic idea of
MTD is to continuously shift the attack surface of the target system.
Albanese et. al. [5] proposed the concept of virtual attack surface,
which is the perceived view of the attacker to the system attack
surface. The proposed method generates an external view of the
system by manipulating outbound traffic. There is a limitation that
manipulation is limited to certain types of traffic. In order to expand
the shifting space of the attack surface, in this paper we introduce
the concept of deception attack surface. Deception techniques
do not modify the real attack surface of the system, but change
the attacker’s perception of the system’s attack surface. Hence the
deception attack surface is defined as the attack surface observed
and perceived by the attacker after the introduction of deception
techniques. Different from the previous work, our proposed decep-
tion attack surface implements deception technology by deploying
various types of attributes, and can acquire knowledge by capturing
the attacker’s behavior. Furthermore, the deception attack surface
can be applied to measure the deception degree of MTD system,
which also provides a basis for the subsequent attack and defense
modeling based on game theory.

Deception-based MTD is a more advanced defense mechanism
where the defenders continuously shift the deception attack surface.
As shown in Figure. 1, there are two ways to shift the deception
attack surface: adding a decoy or disguising the real attributes. IP
address, port, routing, protocol, etc. can all constitute the attribute
of the attack surface, it may be a flaw or a vulnerability that can be
exploited by an attacker.

• Adding a decoy. This technique is mainly used to draw the at-
tacker’s attention away from the critical resource of a system.
Decoys require the system to invent a number of carefully-
prepared decoys with the goal of making the attacker believe
that they are real. Honeypot is a typical example to deceive
the attacker.

• Disguising a real attribute. We can disguise a real attribute
as a deceptive one through several ways. For example, we
can deceive the attacker via making the system mimic the
response of a different version. In addition, we can hide
the service by responding as if it’s not working. Or we can
respond that all services are open so that the attacker can’t
determine which service is running.

In Figure. 1, the defender inserts two decoy attributes, A and B,
to distract the attacker’s attention from the real target. Moreover,
the real attribute 3 is disguised as a deceptive attribute 3’, thus
reducing the attacker’s attention.

3.2 Deception Measurement
To measure deception in the deception attack surface, we propose
the key concepts of exposed falseness degree and hidden truth
degree to quantify deception.

Exposed Falseness Degree. Exposed falseness degree indicates
the similarity between real attribute and deceptive attribute. Based
on indistinguishable confusion theory, in this paper we introduce
the concept of indistinguishable deception to measure the exposed

Figure 2: Exposed Falseness Degree. Assuming n = 3, it is
expressed through feature extraction and deception distance.

Figure 3: Hidden Truth Degree. The upper model has low
hidden truth degree and the lower model has high hidden
truth degree.

falseness degree. Indistinguishability deception indicates the indis-
tinguishability of each deceptive attribute in MTD model, which is
measured by deception distance. As shown in Figure. 2, the core
idea of exposed falseness degree calculation is to map the decep-
tive attribute and original attribute to the feature space through
feature extraction, and use the deception distance to represent the
exposed falseness degree. According to the features and effects of
each deceptive attribute, we extract the n-dimensional feature of
the attribute through the mapping function, form a n-dimensional
feature vector and establish the corresponding feature space. Then,
we use the Euclidean distance to measure the deception distance
of a single attribute, and calculate the deception distance of all
attributes according to the weight value of each attribute.

Assuming that the feature dimension is 3, the features of an
attribute can be extracted from three dimensions: the function, in-
teraction and configuration of the attribute. The features of each
dimension have a number of components. Each feature component
includes two classification states of "1" and "0" ("1" means the feature
component exists, "0" means the feature component does not exist).
The feature value of each dimension is obtained by adding the bi-
nary feature components up, and then the value is normalized. The
feature value of each dimension constitutes the three-dimensional
feature vector of the attribute. The similarity between the attributes
is obtained by calculating the distance between the feature vectors
of the real attribute and the deceptive attribute, which is used to
represent the exposed falseness degree. Taking the FTP service as
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an example attribute, the feature component "listener" belongs to
the function dimension, which indicates whether to listen to the
file transfer status. The feature component "write" belongs to the
interaction dimension, which indicates whether to enable the write
permission. The feature component "anonymous_enable" belongs
to the configuration dimension, which indicates whether anony-
mous users are allowed to access. The features of each dimension
can have many feature components. The dimension of features can
also be expanded.

Our deception-based MTD model is denoted as 𝑆 . We assume
that the attribute is 𝑥 = {𝑥𝑖 }𝑖∈𝑛 , where 𝑥𝑖 is the i-th feature and n
is the number of features. Similarly, the corresponding deceptive
attribute is 𝑦 = {𝑦𝑖 }𝑖∈𝑛 , where 𝑦𝑖 is the i-th deception feature and
n is the number of deception features. So we define the exposed
falseness degree of a single attribute, 𝑒𝑠 , as follows:

𝑒𝑆 = Δ(𝑥,𝑦) =

√√
𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖 )2

We use multi-attribute weighting theory to calculate the decep-
tion distance for all attributes. We assume the set of attributes for
the model is𝑋 = {𝑋𝑖 }𝑖∈𝑁 , where𝑋𝑖 is the i-th attribute and N is the
number of attributes. Similarly, the set of deceptive attributes for
the model is 𝑌 = {𝑌𝑖 }𝑖∈𝑁 , where 𝑌𝑖 is the i-th deceptive attribute
and N is the number of deceptive attributes. The weight of attribute
is expressed as 𝜔 = {𝜔𝑖 }𝑖∈𝑁 . The sum of weights for all attributes
is 1. So the exposed falseness degree of the whole model 𝐸𝑠 is:

𝐸𝑆 = Δ(𝑋,𝑌 ) =
𝑁∑︁
𝑖=1

𝜔𝑖Δ(𝑋𝑖 , 𝑌𝑖 ) =
𝑁∑︁
𝑖=1

𝜔𝑖𝑒
𝑖
𝑆

Hidden Truth Degree. Entropy is an important measure of
MTD redundancy and diversity. In order to measure the hidden
degree of real attributes in the MTD model, we propose the concept
of hidden truth degree. We use the entropy in information theory
to measure the size of hidden truth degree, which is used to evalu-
ate the real scale of the whole system. Authenticity measures the
proportion of real modules in the system, and hidden truth degree
measures the hidden degree of the real attributes of the system.
As shown in Figure. 3, yellow dots and grey dots represent decep-
tive attributes and real attributes respectively. In the upper model,
the distribution of real attributes and deceptive attributes remain
unchanged. Hence the model has a low hidden truth degree. It is
easy for attackers to find out whether the attributes are deceptive.
The lower model, however, changes the distribution of deceptive
attributes frequently and thus has a high hidden truth degree. It is
difficult for attackers to find out which attributes are deceptive.

Our deception-based MTD model is still denoted as 𝑆 . The at-
tribute of the model is expressed as 𝑋 = {𝑋𝑖 }𝑖∈𝑁 , and its weight is
𝜔 = {𝜔𝑖 }𝑖∈𝑁 , where 𝑋𝑖 is the i-th attribute, 𝜔𝑖 is the weight of the
i-th attribute, and N is the number of attributes. The sum of weights
for all attributes is 1. The deceptive attribute of the model can be
described by vector 𝑣 = {𝑣𝑖 }𝑖∈𝑁 , where 𝑣𝑖 ∈ {0, 1}, 1 ≤ 𝑖 ≤ 𝑁

indicates whether the corresponding attribute in 𝑆 has been altered.
We say the attribute 𝑋𝑖 is in a deceptive state if 𝑣𝑖 = 1. So, the

authenticity of model 𝑆 is

𝐻𝑆 =

∑
𝑣𝑖=0 𝜔𝑖∑
𝑋 𝑗 ∈𝑆 𝜔 𝑗

=
∑︁
𝑣𝑖=0

𝜔𝑖 , 1 ≤ 𝑖, 𝑗 ≤ 𝑁

Based on the information entropy theory, the possibility of decep-
tive attribute is uncertain, and it can be measured according to
its probability. If the probability is large, the uncertainty is small;
otherwise, the uncertainty is large. 𝑝 represents the probability of
occurrence of the attribute. The hidden truth degree of model 𝑆 is

𝐼𝑆 = −
𝑁∑︁
𝑖=1

𝜔𝑖𝑝 (𝑣𝑖𝑋𝑖 ) log 𝑝 (𝑣𝑖𝑋𝑖 )

3.3 Game Model
In this section, we formulate the MTD game model between two
players in which the defender tries to protect the system through
shifting the attack surface or creating the deception attack surface.
The attacker will attempt to attack and compromise the target. The
attacker can successfully compromise the normal attributes, but not
deceptive attributes. If the attacker attacks a honey attribute, the
system can observe the attacker’s actions and tracks, and further
improve the defenses. We model the interaction between a defender
and an attacker as follows.

Our stochastic gamemodel is defined as a three tuple < 𝑁,𝐴, 𝑅 >,
where,

• N = {A,D} is the set of players, where player A is the at-
tacker and playerD represents the defender. Nature chooses
the type of each attribute on the attack surface. With proba-
bility 𝛼 , a normal attribute is disguised as deceptive. With
probability 𝛾 , the system adds a decoy and disguises it as
real. And otherwise the system shifts the attribute among a
series of real variants with probability 1 − 𝛼 − 𝛾 .

• A = A𝑎 × A𝑑 is the game action space, where A𝑎 and A𝑑

is the set of actions for attackers and defenders respectively.
– A𝑑 = A𝑑

𝑑
∪A𝑑

𝑛 ∪A𝑑
𝑟 , whereA𝑑

𝑑
represents set of actions

for adding decoys,A𝑑
𝑛 denotes set of actions for disguising

a normal attribute as honey, A𝑑
𝑟 represents a set of real

variants for a normal attribute.
– A𝑎 = A𝑎

𝑎 ∪ A𝑎
𝑡 ∪ A𝑑

𝑟 indicates that an attacker will ei-
ther attack the attribute without determining the attribute
type (A𝑎

𝑎 ), determine the attack based on prior test on a
attribute type (A𝑎

𝑡 ), or retreat (A𝑎
𝑟 ).

• R = {R𝑑 ,R𝑎} represents the defender’s and attacker’s re-
ward function respectively.

Reward Function. When a defender adopts deception based
moving target defense techniques, the defender may benefit from
two ways. First, the defender may mitigate the system’s risk by
shifting the attack surface to deception attack surface. The defender
may enable a deceptive attribute to deceive the attacker’s percep-
tion. Second, the defender may shift the attack surface among series
of real attribute variants. However, the defender’s deception action
may be identified by the attacker and used as a springboard to at-
tack the real target, thus increasing the attack surface measurement.
Hence the defender’s reward function depends on the change on
the attack surface, the change on the attack surface measurement,
and the cost of shifting attack surface. Similarly, when an attacker
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takes a move, the attacker may benefit from the increase in the
attack surface measurement. The attacker will cost more on a suc-
cessful attack because of the shift of the attack surface. Hence the
attacker’s reward function depends on the change on the attack
surface measurement and the cost on launching an attack.

If the defender performs a deception action, 𝑎𝑑 , and the attacker
takes a move, 𝑎𝑎 , then we denote the change on the deception
attack surface by enabling a honey attribute as Δ𝐻𝐴, the change on
the deception attack surface by disguising a real attribute as Δ𝑅𝐴,
and the change in the attack surface measurement as Δ𝐴𝑆𝑀 . So
we define the defender’s reward function, R𝑑 , and the attacker’s
reward function, R𝑎 , as follows:

R𝑑 (𝑎𝑎, 𝑎𝑑 ) = Φ1 (Δ𝐻𝐴) + Φ2 (Δ𝑅𝐴)
− Θ1 (Δ𝐴𝑆𝑀) − Θ2 (𝐶𝑜𝑠𝑡1)

R𝑎 (𝑎𝑎, 𝑎𝑑 ) = Φ3 (Δ𝐴𝑆𝑀) − Θ3 (𝐶𝑜𝑠𝑡2)
Φ𝑖s and Θ𝑖s are mapping functions that map the changes on

attack surface and deception attack surface, attack surface measure-
ment, and cost to real numbers. The numbers reflect the payoffs and
costs related with changes. Game theoretic approaches to attack
surface shifting of non-deceptive MTD are shown in [24].

4 EXAMPLE SCENARIO
A successful attack needs to find an entry point in the attack surface
and determine the attack path from the entry point to the target.
How to ensure the entry points’ (attributes’) security on the attack
surface is a critical part. Deception-based moving target defense
techniques enhance security protection and further change the
information asymmetry between attackers and defenders.

4.1 Deception Game
We consider that a defender protects attributes on the attack surface
via randomly adding deceptive attributes. The attacker wins if he
compromises a real attribute, not deceptive attributes. We propose
to use a Stackelberg game model where the defender as the leader
determining the deceptive attributes’ placement to constitute a de-
ception attack surface with the original real attributes, the attacker
as the follower attempting to compromise an attribute on the attack
surface. Attackers can attack multiple attributes at once, or attack
different attributes continuously. The benefits and costs of both
sides in each round of the game are accumulated by the results
of multiple attributes. The system chooses either type deceptive
attribute (𝐷) or normal attribute (𝑁 ) with probability 𝑃𝑑 and 1−𝑃𝑑 ,
respectively. The attacker will randomly select an attribute to com-
promise. After identifying an attribute on the attack surface, the
attacker will either attack the attribute without determining the
attribute type (𝐴), determining the attack based on prior test on
the attribute type (𝑇 ), or retreat (𝑅). In the next round of the game,
the defender and the attacker will choose strategies and actions
according to the results of the previous round of the game. The
main notation used throughout the paper is summarized in Table 2.

We assume that the cost of placing deceptive attributes is 𝑐𝑑 . If
one of the real attribute is compromised, the defender suffers a loss
of 𝑐𝑙

𝑑
, which includes the financial loss and the cost of restoring the

attribute. If the attribute that the attacker compromised is deceptive,

Table 2: Main notations used throughout the paper

Notation Meaning
𝐷 The attribute is deceptive
𝑅 The attribute is real
𝑃𝑑 Probability that the attribute is deceptive

1 − 𝑃𝑑 Probability that the attribute is normal
𝑐𝑑 Cost of placing and disguising a deceptive attribute
𝑐𝑙
𝑑

Loss of being compromised a normal attribute
𝑔𝑜
𝑑

Benefit of observing an attack on a deceptive attribute
𝑔𝑟
𝑑

Benefit gotten because the attacker retreats
𝐴 Attack the attribute without determining the attribute

type
𝑇 Determining the attack based on prior tests on the

attribute type
𝑅 Retreat, not attack
𝑐𝑎 Cost of attacking an attribute
𝑔𝑎 Benefit of compromising a normal attribute
𝑐𝑙𝑎 Loss of attacking a deceptive attribute
𝑐𝑡 Cost of prior test for an attribute
ℎ signal that an attribute is deceptive
𝑛 signal that an attribute is normal

the defender gains 𝑔𝑜
𝑑
by observing and learning the attacker’s

actions. If the attacker retreats before attacking the attribute, the
defender gains 𝑔𝑟

𝑑
. When the attacker attacks an attribute, it incurs

cost 𝑐𝑎 , regardless of whether the attack succeeds or fails. The
attacker gains 𝑔𝑎 when he compromises a real attribute, and the
profit is 𝑔𝑎 − 𝑐𝑎 . The attacker will lose 𝑐𝑙𝑎 when he attacks a honey
attribute. In addition, the attacker may test the attribute’s type
before launching an attack. The prior tests to determine the attribute
type cost 𝑐𝑡 . After obtaining the tests results, the attacker will either
perform his attack action or abandon the attack. If the attacker tests
for a normal attribute, his payoff is 𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 . Otherwise if he
tests for a honey attribute, he loses 𝑐𝑡 .

The benefit and cost of the offensive and defensive sides de-
pend on multiple indicators and historical statistics. The defense
benefit(𝑔𝑜

𝑑
) is measured by the quantity of attack information cap-

tured by the honeypot. The defense benefit(𝑔𝑟
𝑑
) is measured by the

actual value of the attribute. The defense cost(𝑐𝑑 ) is represented
by software or hardware resources, funds and time used to deploy
deceptive attributes. The defense cost(𝑐𝑙

𝑑
) is represented by same

indicators for recovery. The attack benefit(𝑔𝑎) are determined by
the attack target, including the utilization of resources, the occu-
pation of network bandwidth and the destruction of the system.
The attack cost(𝑐𝑎 or 𝑐𝑙𝑎) is represented by the attack time, attack
domain knowledge and consumed software or hardware resources.
The test cost(𝑐𝑡 ) is represented by time, knowledge and resources
for detection. The weights between indicators can be calculated by
principal component analysis or regression analysis.

4.2 Signaling Deception Game
The deception game set above can be further improved by introduc-
ing a deception signal. The defender can signal that the attribute is
deceptive (ℎ) or normal (𝑛), regardless of the attribute’s actual type.
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Table 3: Attacker’s nine pure strategies

signal 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7 𝑤8 𝑤9
𝑛 𝐴 𝐴 𝐴 𝑇 𝑇 𝑇 𝑅 𝑅 𝑅

ℎ 𝐴 𝑇 𝑅 𝐴 𝑇 𝑅 𝐴 𝑇 𝑅

After receiving the signal, the attacker will choose action 𝐴, action
𝑇 , or action 𝑅.

The defender can adopt four pure strategies: 1) the defender can
signal the attribute’s type is normal (Strategy 𝑠1) or honey (Strategy
𝑠4), independent of the system’s actual type. 2) the defender signals
the attribute is normal or honey that is in accordance with the
attribute’s actual type (Strategy 𝑠2). 3) the defender can signal the
opposite of the attribute’s actual type, that is, the defender signals
that the attribute is honey, while the attribute is normal and signals
the attribute is normal if the attribute is honey (Strategy 𝑠3). The
attacker can adopt nine pure strategies, as in Table 3, indicating that
the attacker can perform different actions for each signal received
from the defender: the attacker can choose action 𝐴 (𝑇, 𝑅) if he
receives signal 𝑛 and choose action 𝑇 (𝐴, 𝑅) if he receives signal ℎ.

4.3 Signaling Deception Game’s Equilibrium
In this section, we will investigate the existence of Perfect Bayesian
Equilibria (PBE) for the deception game. Final equilibrium should
involve from Strategy 𝑠1 to Strategy 𝑠4.

If the defender adopts Strategy 𝑠1 (the defender will signal that
the attribute is normal irrespective of the attribute’s actual type),
and the attacker receives the signal 𝑛, he will choose action 𝐴

while the expected payoff induced by this action is greater than the
expected payoff of action 𝑇 and action 𝑅.

𝑃𝑑 · (−𝑐𝑎 − 𝑐𝑙𝑎) + (1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎) ≥ 𝑃𝑑 · (−𝑐𝑡 )
+(1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 )

𝑃𝑑 · (−𝑐𝑎 − 𝑐𝑙𝑎) + (1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎) ≥ 0

which satisfies,

𝑃𝑑 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
(1)

𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
(2)

Next, we further analyze the interaction of off-equilibrium path
if the defender sends signal ℎ. In this case, we will analyze the
attacker’s strategy𝑤1,𝑤2, and𝑤3. We assume that the attacker’s
belief at the signal that the attribute is honey or normal is expressed
by 𝑞 and 1 − 𝑞 (0 ≤ 𝑞 ≤ 1). For strategy𝑤3, the defender’s optimal
strategy is 𝑠3, not 𝑠1, so we may analyze this equilibrium in sub-
sequent section. The defender will change his deception strategy
from sending signal 𝑛 to signal ℎ if the payoff 𝑔𝑟

𝑑
> 𝑐𝑙

𝑑
. Therefore

if the attacker adopts strategy𝑤1, the attacker’s expected payoff
of action 𝐴 should be greater than the expected payoff of action 𝑇
and action 𝑅, so we have,

𝑞 · (−𝑐𝑎 − 𝑐𝑙𝑎) + (1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎) ≥ 𝑞 · (−𝑐𝑡 )
+(1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 )

𝑞 · (−𝑐𝑎 − 𝑐𝑙𝑎) + (1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎) ≥ 0

which satisfies,

𝑞 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
(3)

𝑞 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
(4)

Similarly if the attacker adopts strategy𝑤2, the attacker’s expected
payoff of action 𝑇 should be greater than the expected payoff of
action 𝐴 and action 𝑅, so we have,

𝑞 · (−𝑐𝑡 ) + (1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 ) ≥ 𝑞 · (−𝑐𝑎 − 𝑐𝑙𝑎)
+(1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎)

𝑞 · (−𝑐𝑡 ) + (1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 ) ≥ 0

which satisfies,

𝑞 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
(5)

𝑞 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
(6)

If the defender adopts Strategy 𝑠1 (the defender will signal that
the attribute is normal irrespective of the attribute’s actual type),
and the attacker receives the signal 𝑛, he will choose action 𝑇

while the expected payoff induced by this action is greater than the
expected payoff of action 𝐴 and action 𝑅.

𝑃𝑑 · (−𝑐𝑡 ) + (1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 ) ≥ 𝑃𝑑 · (−𝑐𝑎 − 𝑐𝑙𝑎)
+(1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎)

𝑃𝑑 · (−𝑐𝑡 ) + (1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 ) ≥ 0

which satisfies,

𝑃𝑑 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
(7)

𝑃𝑑 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
(8)

In this case, we will analyze the attacker’s strategy𝑤4,𝑤5, and𝑤6.
If the attacker adopts strategy 𝑤4, the defender’s optimal action
will be 𝑠2 because his payoff is greater than the payoff −𝑐𝑑 when
he adopts strategy 𝑠1. Moreover, if the attacker adopts strategy𝑤6,
the defender’s optimal action will be 𝑠3. The attacker’s strategy 𝑠5
leads to the equilibrium that satisfies equation (5) and (6).

If the defender adopts Strategy 𝑠1 (the defender will signal that
the attribute is normal irrespective of the attribute’s actual type),
and the attacker receives the signal 𝑛, he will choose action 𝑅

while the expected payoff induced by this action is greater than the
expected payoff of action 𝐴 and action 𝑇 .{

0 ≥ 𝑃𝑑 · (−𝑐𝑎 − 𝑐𝑙𝑎) + (1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎)
0 ≥ 𝑃𝑑 · (−𝑐𝑡 ) + (1 − 𝑃𝑑 ) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 )

which satisfies,

𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
(9)

𝑃𝑑 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
(10)

Under this case, we will analyze the attacker’s strategy𝑤7,𝑤8, and
𝑤9. If the attacker adopts strategy𝑤7, the defender’s optimal action
will be 𝑠2. And the attacker’s strategy𝑤8 leads to the equilibrium
that satisfies equation (5) and (6). Furthermore, if the attacker adopts
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Table 4: The optimal strategies and corresponding conditions if 𝑐𝑡 = 𝑐ℎ𝑡 = 𝑐𝑛𝑡

Game’s Equilibrium On-equilibrium path condition Off-equilibrium path conditionDefender
strategy

Attacker
strategy

𝑠1

𝑤1 𝑃𝑑 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑤2 𝑃𝑑 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

𝑤5 𝑃𝑑 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
𝑞 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

𝑤8 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
𝑞 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

𝑤9 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
𝑞 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑞 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

𝑠4

𝑤1 𝑃𝑑 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑤4 𝑃𝑑 ≤ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

𝑤5 𝑃𝑑 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
𝑞 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

𝑤6 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
𝑞 ≥ 𝑐𝑡

𝑐𝑎 + 𝑐𝑙𝑎
, 𝑞 ≤ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

𝑤9 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
𝑞 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑞 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎

Table 5: The optimal strategies and corresponding conditions if 𝑐ℎ𝑡 ≠ 𝑐𝑛𝑡

Game’s Equilibrium On-equilibrium path condition Off-equilibrium path conditionDefender
strategy

Attacker
strategy

𝑠1

𝑤1 𝑃𝑑 ≤
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≤

𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎

𝑤2 𝑃𝑑 ≤
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≥

𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑤5 𝑃𝑑 ≥
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑃𝑑 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑞 ≥
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑤8 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 −

𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑞 ≥
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑤9 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 −

𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑞 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑞 ≥ 1 −

𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑠4

𝑤1 𝑃𝑑 ≤
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≤

𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎

𝑤4 𝑃𝑑 ≤
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
𝑞 ≥

𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑤5 𝑃𝑑 ≥
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑃𝑑 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑞 ≥
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑤6 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 −

𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑞 ≥
𝑐𝑛𝑡

𝑐𝑎 + 𝑐𝑙𝑎 + 𝑐𝑛𝑡 − 𝑐ℎ𝑡

, 𝑞 ≤ 1 −
𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑤9 𝑃𝑑 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑃𝑑 ≥ 1 −

𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

𝑞 ≥ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
, 𝑞 ≥ 1 −

𝑐ℎ𝑡

𝑔𝑎 − 𝑐𝑎 + 𝑐ℎ𝑡 − 𝑐𝑛𝑡

 

74



Game Theory Approaches for Evaluating the Deception-based Moving Target Defense MTD ’22, November 7, 2022, Los Angeles, CA, USA

Figure 4: Attack Scenario. The attack and defense topography
consists of the manager, the node ends and the attacker.

strategy 𝑤9, the attacker’s expected payoff of action 𝑅 should be
greater than the expected payoff of action 𝐴 and action 𝑇 , so we
have, {

0 ≥ 𝑞 · (−𝑐𝑎 − 𝑐𝑙𝑎) + (1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎)
0 ≥ 𝑞 · (−𝑐𝑡 ) + (1 − 𝑞) · (𝑔𝑎 − 𝑐𝑎 − 𝑐𝑡 )

which satisfies,

𝑃𝑑 ≤ 𝑔𝑎 − 𝑐𝑎

𝑔𝑎 + 𝑐𝑙𝑎
(11)

𝑃𝑑 ≥ 1 − 𝑐𝑡

𝑔𝑎 − 𝑐𝑎
(12)

The analysis of the signaling deception game’s equilibrium when
the defender deploys strategy 𝑠4 is similar. If the defender gives a
different signal for each attribute type, including strategy 𝑠2 and
strategy 𝑠3, this game cannot lead to an equilibrium. The optimal
strategies and corresponding conditions are summarized in Table 4.

Configurations of a honey attribute and a normal attribute are
generally different and costs of tests on determining if an attribute
is honey or normal can also be different. Assume that the test for
a honey attribute costs 𝑐ℎ𝑡 and test for a normal attribute costs 𝑐𝑛𝑡 ,
the corresponding equilibrium and conditions are listed in Table 5.

5 EXPERIMENTAL ANALYSIS
The game model can quantify the benefits of attackers and defend-
ers, and provide the strategic choice of active defense which meets
the Nash equilibrium. We set up a real attack and defense scenario
and demonstrate the efficacy of the proposed approaches.

We build a real honeypot system based on moving target defense,
and use our game method to model and evaluate the system in
practice. As shown in the Figure. 4, the experimental platform
includes a manager and several node-ends. The manager is used to
generate and manage the node-ends, and to receive, analyze and
display the data returned by the node-ends. The node end is used
to build a honeypot service and accept the control of the manager.
Since increasing the deception attack surface will expand the total
attack surface, we deploy honeypots in different nodes to balance

the expanded attack surface and reduce the impact of the deception
attack surface on the attack surface measurement. After deploying
honeypots that sense and withstand attacks on the node, once the
attacker scans and attacks the honeypot, the information on the
attacker and his behavior will be immediately transmitted to the
manager, where we can see the detailed data analysis. The attacker’s
goal is to scan the ports of the target host, identify the real service
and launch the attack. The attacker may connect to the real host
service or enter the honeypot. After a successful attack, the attacker
can gain access to the service and steal important information.

We deploy the real attribute corresponding to the real service
and the deceptive attribute corresponding to the virtual honeypot
on the system. System services include file transfer service, remote
connection service, web service, database services, etc. We open real
services and virtual honeypots, and keep the corresponding ports
open. Services are exposed to potential attacks, such as SSH may
be subject to brute force, and web services may be attacked due to
vulnerabilities. The real services and deceptive services deployed by
the system, and their corresponding ports and possible attack forms
are shown in the table 6. We can deceive attackers by deploying
honeypot services or hiding real services. We first set all services to
switch to deceptive services with a probability of 60%, so as to form
a deception attack surface (𝑃𝑑 = 0.6). If the exposed falseness degree
and the hidden truth degree of the system reach the standard, the
probability of setting is reasonable. Otherwise, we need to readjust
the probability. In this experiment, the standard setting used is that
the exposed falseness degree is less than 0.3 and the hidden truth
degree is greater than 0.5. In different scenarios, the standards for
measuring the degree of deception can be appropriately adjusted
based on the historical data, defenders’ knowledge and experience.
Signals are sent to attackers by marking different ports as real or
deceptive. We can adopt four strategies from Strategy 𝑠1 to Strategy
𝑠4. The attacker can choose action𝐴, action𝑇 , or action 𝑅 according
to the signal. Offensive and defensive confrontation is multi-stage.
In each round of game confrontation, the defender can adjust the
attributes and strategies, and the attacker can re-select the actions
and the attributes to be attacked.

To demonstrate the effectiveness of our deception measurement
method, we collected system services data and calculated the decep-
tion degree of the honeypot system according to the characteristics
of the attributes. We calculated the deception degree of the system
by using the exposed falseness degree and the hidden truth degree.
In this experiment, the services in the system correspond to the
attributes in the attack surface. Ten important features of services
are extracted in each dimension. We assign the classification status
of "0" or "1" to each feature component based on their existence,
add the feature status values, and finally normalize them. The real
mode and deceptive mode of each service are evaluated, and the
evaluation results are listed in the table 7. The weight of each ser-
vice is determined by its own access popularity or the proportion
of each asset’s value in the overall network. All results are normal-
ized. According to the formula in Section 3 and probability 𝑃𝑑 , the
exposed falseness degree is 0.198, and the hidden truth degree is
0.833. Please note that 0 is the minimum and 1 is the maximum
for both the exposed falseness degree and the hidden truth degree.
The exposed falseness degree reflects the similarity between the
real attributes and deceptive attributes in the deception system. A
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Table 6: Types and functions of services

Name Port Type Function Attack Form
SSH honeypot 22 Remote connection service Provide false SSH server Brute force , weak password
Telnet honeypot 23 Remote connection service Provide false Telnet server Brute force , weak password
MYSQL honeypot 3306 Database service Provide false MySQL sever Injection attack, privilege escalation
REDIS honeypot 6379 Database service Provide false REDIS sever Unauthorized access, brute force
Gitlab honeypot 9093 Web service Provide false login interface Vulnerability, web attack
FTP honeypot 21 File transfer service Provide false FTP server Brute force, sniff
Oracle 1521 Database service A database system Injection attack, privilege escalation
MSSQL 1433 Database service A database platform Injection attack, privilege escalation
WebLogic 7001 Web service Manage applications Deserialization , weak password
SMTP 25 Mail service Transmit mail information Mail forgery

Table 7: Feature values and weights of services

Service Weight Interaction Function Configuration
real deceptive real deceptive real deceptive

SSH honeypot 0.05 0.60 0.30 0.70 0.50 1.00 0.80
Telnet honeypot 0.05 0.50 0.30 0.60 0.50 1.00 0.80
MYSQL honeypot 0.15 0.50 0.30 0.70 0.50 1.00 0.80
REDIS honeypot 0.15 0.70 0.40 0.80 0.50 1.00 0.80
Gitlab honeypot 0.15 0.80 0.60 0.50 0.40 1.00 0.70
FTP honeypot 0.05 0.40 0.30 0.50 0.40 1.00 0.90

Oracle 0.15 0.80 0.70 0.90 0.80 1.00 0.90
MSSQL 0.05 0.50 0.40 0.70 0.60 1.00 0.90

WebLogic 0.15 0.80 0.60 0.70 0.60 1.00 0.80
SMTP 0.05 0.40 0.20 0.50 0.40 1.00 0.50

smaller exposed falseness degree indicates the real attribute and
the deceptive attribute have a shorter Euclidean distance between
them, and thus it’s more difficult to distinguish them. That is, the
smaller the exposed falseness degree, the better the deception effect.
The hidden truth degree reflects the concealment degree of the real
target in the deception system. The greater the hidden truth degree,
the better the deception effect. The calculation results show that
the deception metrics process well representation.

After ensuring that the system has appropriate metrics, we use
game to build a model framework to represent the attack and de-
fense confrontation, further optimize the deception probability
according to the strategy and payoff, and give the strategy to meet
the Nash equilibrium. Because the cost of attackers testing decep-
tive attributes and real attributes is different, we consider the case
that 𝑐ℎ𝑡 ≠ 𝑐𝑛𝑡 . The maximum value of benefits and costs is 10. Refer
to historical statistics and multiple indicators, the attack costs are
𝑐𝑎 = 3.0, 𝑐𝑙𝑎 = 2.0, 𝑐ℎ𝑡 = 0.5 and 𝑐𝑛𝑡 = 1, and the attacker gains
a value with 𝑔𝑎 = 5.00 if he successfully compromises a normal
attribute. The cost of setting a honey attribute is 𝑐𝑑 = 1.00 , and
the defender loss a value with 𝑐𝑙

𝑑
= 5.0 if the attacker compromises

a normal attribute. The defender gains a value with 𝑔𝑜
𝑑
= 6.0 if

he can observe an attack on a deceptive attribute. The defender
gains a value with 𝑔𝑟

𝑑
= 5.0 if the attacker retreats. We then eval-

uate and analyze the equilibrium results on the basis of Table 5.
Only strategy (𝑠1,𝑤5) and (𝑠4,𝑤5) are possible and the defender’s
payoff is 0.6𝑔𝑟

𝑑
− 0.6𝑐𝑑 − 0.4𝑐𝑙

𝑑
= 0.4. Thus, the attacker is most

likely to adopt the attack strategy𝑤5 in order to achieve the attack
target, while the defender should take the initiative to adopt the
Strategy 𝑠1 or 𝑠4 in order to achieve the best defense effect. The
information interaction in the process of offensive and defensive
confrontation is complex, so the information transmission in the
signal game can better reflect the interaction. For the defender, the
strategy of information transmission and the prediction of attack
strategy are very important. Through the game, we can derive the
best strategy for information transfer and the prediction of attack
strategy. According to the defender’s strategy and payoff, we can
further optimize the model by adjusting the deception probability
𝑃𝑑 in the next stage. It is proved that our proposed method can
model and evaluate the attack and defense scenarios, and provide
the optimal defense strategy.

6 CONCLUSION
In this paper we propose a concept of deception attack surface to il-
lustrate the deception-based moving target defense techniques. We
also propose indicators that can measure the degree of deception
in MTD systems. Based on this, we formulate the deception game
model between an attacker and a defender. We also give the detailed
example scenario to analyze the deception game’s equilibrium. Ex-
periments show that our method is effective. For future work, we
may investigate the optimal strategies under a hybrid strategy to
provide more effective deception techniques and strategies.
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