
Inferring Class-Label Distribution in Federated Learning
Raksha Ramakrishna

rakshar@kth.se

KTH Royal Institute of Technology

Stockholm, Sweden

György Dán

gyuri@kth.se

KTH Royal Institute of Technology

Stockholm, Sweden

ABSTRACT
Federated Learning (FL) has become a popular distributed learning

method for training classifiers by using data that are private to

individual clients. The clients´ data are typically assumed to be

confidential, but their heterogeneity and potential class-imbalance

adversely impact the accuracy of the trained model. The class-

imbalance may not be common knowledge or may even be confi-

dential information itself. Thus, the inference of the class-label dis-

tribution of the training data is important both from a performance

and from a privacy perspective. In this paper, we study the problem

of class-label distribution inference from an adversarial perspective,

based on model parameter updates sent to the parameter server.

Firstly, we present conditions under which exact inference is possi-

ble. We then introduce four new methods to estimate class-label

distribution in the general FL setting. We evaluate the proposed

inference methods on four different datasets and our results show

that they significantly outperform state of the art methods.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols; • Comput-
ing methodologies→ Supervised learning by classification;
Cost-sensitive learning; Classification and regression trees; Multi-
agent systems;

KEYWORDS
Federated Learning, Class-imbalance, privacy leakage, class-label

distribution

ACM Reference Format:
Raksha Ramakrishna and György Dán. 2022. Inferring Class-Label Distri-

bution in Federated Learning. In Proceedings of the 15th ACM Workshop
on Artificial Intelligence and Security (AISec ’22), November 11, 2022, Los
Angeles, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3560830.3563725

1 INTRODUCTION
Federated learning (FL) is a form of distributed machine learning

(ML) where during the training process, an aggregator or server

collectsmodel parameter or gradient updates from clients, computes

an aggregated value and sends the updated model parameters to

the clients [13]. This process is carried out until convergence, i.e.,

until the value of the model parameters does not change. In the

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike International 4.0 License.

AISec ’22, November 11, 2022, Los Angeles, CA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9880-0/22/11.

https://doi.org/10.1145/3560830.3563725

end, a trained ML model is available for use-both to the server and

to the clients.

In FL, the training data used to update model parameters re-

mains local and private to each of the clients, as is common in

distributed learning. However, this also means that the server may

not be aware of potential class-imbalance, i.e., clients having vastly

different composition of training data [2], which is prevalent in

classification tasks. The fact that the server has no knowledge of the

class imbalance can be approached from at least two perspectives.

On the one hand, from a performance stand-point, class-imbalance

is known to negatively affect the classification accuracy of the

trained model, therefore detecting and mitigating it is important

for training accurate models using FL. On the other hand, from the

adversarial perspective, the composition of the clients’ training data

could be sensitive information that the clients do not want to reveal.

Applications with class-imbalance and where the label distribution

may be sensitive include fraud detection, claim prediction, default

prediction, churn prediction, spam detection, anomaly detection,

outlier detection, intrusion detection, and conversion prediction

[11].

In both cases, the fundamental question that arises is how well

the server can estimate the class-label distribution of individual

clients. In this paper, we look at this problem from an adversarial

perspective. The server plays the role of the adversary that tries

to infer the class-label distribution of each client given the model

parameter updates that the clients share with the server. We firstly

discuss the case when exact inference is possible under certain

conditions and then propose estimators that perform well on av-

erage in a general setting. Our numerical results show that the

proposed methods of inference outperform state-of-art methods

of label composition estimation [17]. We also discuss a mitigation

measure that the client can utilize so that the adversary cannot infer

the class-label distribution effectively. Finally, we illustrate how the

knowledge of class-label distribution can be used to improve model

accuracy in FL.

The rest of the paper is organized as follows. In Section 2 we

review related work. In Section 3, we describe the problem setting

of class-label distribution inference in a federated learning scenario

and from the perspective of an adversary. Then, in Section 4, we

study the attack-i.e. class-label distribution inference for a neu-

ral network classifier. Then, we analyze how the inference would

change when the conditions required for exact inference are not

satisfied. On this basis, in Section 5, we propose four estimators for

class-label distribution inference based on different approximations.

In Section 6, we provide empirical evidence of the superiority of

the proposed methods of inference in comparison to state of the

art. Furthermore, we also discuss a simple countermeasure to the

privacy attack and demonstrate how class-label inference could be

45

https://doi.org/10.1145/3560830.3563725
https://doi.org/10.1145/3560830.3563725
https://creativecommons.org/licenses/by-nc-sa/4.0/
hhttps://creativecommons.org/licenses/by-nc-sa/4.0/
hhttps://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3560830.3563725
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560830.3563725&domain=pdf&date_stamp=2022-11-07

AISec ’22, November 11, 2022, Los Angeles, CA, USA Raksha Ramakrishna and György Dán

used to improve accuracy of the trained model. Lastly, conclusions

are drawn and future work is outlined.

2 RELATEDWORK
Works in the literature either use class-label distribution inference

to address class-imbalance in federated learning or they treat the

inference as a form of property inference attack. There are many

works that address class-imbalance in federated learning by ei-

ther making changes to the loss function [3, 17] or by efficiently

clustering or selecting clients at every iteration so that the model

parameters are updated by more homogeneous data distributions

[5, 6, 12, 18]. For both these approaches, class-label distribution

inference is used as an intermediate step.

In [17], a new loss function called the ratio-loss is introduced in

order to combat class-imbalance in federated learning. The ratio-

loss function utilizes an estimate of the global data composition,

i.e., class-label distribution of all the training data from the clients.

In [18], an online learning framework to address class-imbalance is

introduced. The framework is based on a client selection algorithm,

which takes as input an estimate of the class-label distribution of

all the clients. Similarily, in [12] authors assume that the class-label

distribution is available to the server and this information is used to

group clients by minimizing Earth mover’s distance (EMD) between

clients in a group and the global class-label distribution. In [5], a

self-balancing scheme is designed to address class imbalance by

selecting clients using a mediator. The mediator selects clients so

that the KL divergence between the overall class-distributions of

clients and the uniform distribution is minimized.

A different line of works treat class-label distribution inference as

a property inference attack where the adversary is interested to find

out private information about the clients. For example, preference

profiling attacks in federated learning [21] against clients tend to

reveal user preferences for a certain majority or minority class of

data. The attack in [21] is carried out by training meta-classifiers [1]

to extract training data information such as class-label proportion

and the degree of class-imbalance using gradients received from

the clients.

Additionally, the gradients from clients in federated learning

are particularly vulnerable to attacks. It has been shown in [22]

that it is possible to reconstruct both training data and their re-

spective labels from the gradients alone. Other variations on the

method above [8, 14, 20] also make a strong case for mitigating

gradient leakage in federated learning systems. However, these

methods only work when clients use small batches of training data

to produce gradients. In a more realistic setting, the batch sizes are

larger thereby rendering the aforementioned methods ineffective

in practice.

More directly related to the methodology of class-label distri-

bution inference presented in this paper is [16], where client-level

labels are leaked in a federated learning setup by using gradients

from the last layer. In [16], the sum of the gradient vectors of the

weights connected to the output that corresponds to a certain class-

label is used to extract label proportion information. However, the

method in [16] has the drawback that as the model converges, the

attack success rate decreases whereas in our proposed methods,

the estimation accuracy increases as the iterations progress.

Compared to previous work, our main contributions can be

summarized as follows:

• To the best of our knowledge, this paper is the first to propose

an exact inference method for class-label distribution for any

type of neural network classifier with a few assumptions on

the initialization of parameters.

• For cases where the assumption for exact inference are not

satisfied, we propose four estimators to infer class-label dis-

tribution in a federated learning system.

• We show that the proposed estimation methods outperform

the state of the art label proportion estimationmethod in [17],

and discuss the reasons for their superior performance.

• Focusing on class-label distribution inference in the adver-

sarial setting, we show that random oversampling is a very

effective countermeasure that renders the attacks ineffective.

3 PROBLEM FORMULATION
We consider a classification problem in a federated learning (FL)

scenario. The task of the classifier given an input or feature 𝒙 ∈ R𝐷
is to identify the most suitable class for the input amongst𝐶 classes.

Let the output of the classifier be a vector of length 𝐶 denoted by

𝒚, where each entry [𝒚]𝑐 is the probability that the input belongs

to a particular class 𝑐 , 𝑐 = 1, 2, . . .𝐶 , i.e.,
∑
𝑐 [𝒚]𝑐 = 1. Therefore,

the classifier output 𝒚 lies in the probability simplex 𝚫
𝐶−1

, i.e., 𝒚 ∈
𝚫
𝐶−1

, also called the the𝐶−1 unit simplex. The classifier is modeled

as a function 𝒇 : R𝐷 → 𝚫
𝐶−1

parameterized by vector 𝜽 . Then,
the output of the classifier is 𝒚 = 𝒇 (𝒙 ;𝜽). The classifier 𝒇 described

above is trained in a federated manner. The clients are indexed

by 𝑘 ∈ {1, 2, . . . , 𝐾}. The training data for client 𝑘 consists of 𝑁𝑘
training samples and is denoted by the set D𝑘 ≜ {𝒙𝑘𝑖 , 𝒆

𝑘
𝑖
}𝑖=1,2,...𝑁𝑘

,

where 𝒙𝑘
𝑖
is the feature or input vector and 𝒆𝑘

𝑖
∈ {0, 1}𝐶 is the class-

label that is a one-hot vector so that the entry corresponding to

class 𝑐 is 1 and the rest are zero. Let us denote by 𝑁𝑐,𝑘 the number of

training samples in dataset D𝑘 of client 𝑘 with class-label 𝑐 . Then,

the class-label distribution of the training data of client 𝑘 is defined

as

𝒑𝑘 =
1

𝑁𝑘

𝑁𝑘∑︁
𝑖=1

𝒆𝑘𝑖 ∈ 𝚫
𝐶−1, 𝑖 .𝑒 ., [𝒑𝑘]𝑐 ≜

𝑁𝑐,𝑘∑𝐶
𝑐=1 𝑁𝑐,𝑘

, (1)

As usual in the case of classification, the loss function for training

is assumed to be the cross entropy for each client in the federated

learning setup. Therefore, the optimization problem is

min

𝜽
L(𝜽) where L(𝜽) =

𝐾∑︁
𝑘=1

𝜇𝑘L𝑘 (𝜽), (2)

and L𝑘 (𝜽) = −
1

𝑁𝑘

𝑁𝑘∑︁
𝑖=1

𝐶∑︁
𝑐=1

[𝒆𝑘𝑖]𝑐 log
([
𝒇 (𝒙𝑘𝑖 ;𝜽)

]
𝑐

)
(3)

Here 𝜇𝑘 > 0,
∑
𝑘 𝜇𝑘 = 1. There are many approaches to solving the

problem in (2) [13] [19]. Broadly, at communication round 𝑡 + 1,
each client obtains the classifier parameter 𝜽 𝑡 from the server, and

locally updates the classifier parameter using its training data. We

denote by 𝜽 𝑡+1
𝑘

the locally updated parameter. Then, the one step

update of client 𝑘 in round 𝑡 + 1 is

𝜽 𝑡+1
𝑘
← 𝜽 𝑡

𝑘
− 𝜂∇L𝑘 (𝜽 𝑡) . (4)

46

Inferring Class-Label Distribution in Federated Learning AISec ’22, November 11, 2022, Los Angeles, CA, USA

The above local update can be repeated a number of times, called

epochs 𝐸, each time on small batches of training data of size 𝐵 from

D𝑘 . The process in (4) is called stochastic gradient descent (SGD).

The server aggregates the local classifier parameter estimates to

form the global parameter estimate in round 𝑡 + 1 as

𝜽 𝑡+1 ←
𝐾∑︁
𝑘=1

𝜇𝑘𝜽
𝑡+1
𝑘

(5)

The weights 𝜇𝑘 capture the importance of each client’s update in

the global parameter update. In the literature, the common choices

are 𝜇𝑘 = 1

𝐾
or 𝜇𝑘 =

𝑁𝑘∑
𝑘 𝑁𝑘

.

3.1 Adversarial Model and Privacy
We consider an adversary that wants to infer the label distribution

for client 𝑘 , i.e., 𝒑𝑘 . The adversary has access to parameter updates

sent from and to the FL server at different iterations 𝑡 , that is,

𝜽 𝑡 and 𝜽 𝑡
𝑘
∀𝑡 . While this adversarial model may seem strong, the

FL server is a third party in many industrial applications, which

justifies the considered honest-but-curious attack model.

We quantify the (in)ability of the attacker to infer the class-label

distribution by the deviation of the estimated label distribution

from the true label distribution, analogous to the notion of privacy.

Definition 1 (Privacy Measure). The measure of privacy at client 𝑘
is given by the mean-squared error (MSE) between the true and the
estimated label distributions, 𝒑𝑘 and 𝒑̂𝑘 respectively, i.e.

MSE𝑘 = ∥𝒑𝑘 − 𝒑̂𝑘 ∥22 (6)

The larger the privacy measure, the better hidden is the sensitive

information 𝒑𝑘 . Hence, the adversary will try to minimize the MSE

while the defender aims at maximizing it. The privacy measure is

bounded since both the true and the estimated distributions lie in

the probability simplex i.e. 𝒑𝑘 ,𝒑𝑘 ∈ 𝚫𝐶−1.
The goal of this paper is to study label distribution inference at-

tacks in general deep neural network based classifiers. Nonetheless,

to gain intuition, we first discuss attacks on logistic regression and

then attacks on binary classifiers since they are simpler. We then

extend the attacks to non-binary classifiers.

3.2 Analytic Example: Federated Logistic
Regression

Logistic regression is a binary classifier where the decision bound-

ary is dictated by a sigmoid function whose argument is linear with

respect to the feature vector 𝒙𝑘
𝑖
. The parameters of the classifier

are the weight vector𝒘 and the bias 𝑏. The posterior distribution

of class 𝑐 given feature vector 𝒙𝑘
𝑖
is a sigmoid function,

𝑝 (𝑐 = 1|𝒙𝑘𝑖)=𝜎 (𝒘
⊤𝒙𝑘𝑖 + 𝑏)=

1

1 + exp
{
−𝒘⊤𝒙𝑘

𝑖
+ 𝑏

} . (7)

Thus, the log-likelihood ratio for a binary classifier is an affine

function of parameter𝒘 ,

ln

(
𝑝 (𝑐 = 1|𝒙𝑘𝑖)

/
𝑝 (𝑐 = 2|𝒙𝑘𝑖)

)
= 𝒘⊤𝒙𝑘𝑖 + 𝑏. (8)

Consequently, classification can be done using the decision rule

𝑦𝑘𝑖 =

{
1, 𝒘⊤𝒙𝑘

𝑖
+ 𝑏 ≥ 0, 𝑐 = 1

0, 𝒘⊤𝒙𝑘
𝑖
+ 𝑏 < 0, 𝑐 = 2

(9)

The parameters𝒘, 𝑏 are learnt jointly by the clients using training

data D𝑘 ≜ {𝒙𝑘𝑖 , 𝑒
𝑘
𝑖
} with 𝑒𝑘

𝑖
∈ {0, 1} in the FL setting via gradient

descent.

3.2.1 Privacy attack. We drop the subscript𝑘 denoting clients since

the attack is the same for every client. We summarize the privacy

attack in the following proposition.

Proposition 1. Assume that the adversary knows the learning rate
𝜂 and has access to weight updates𝒘𝑡 , 𝑏𝑡 from the client. Then, if the
server starts with weight vector initialized to zero, i.e, 𝒘0 = 0, and
bias 𝑏0, the adversary’s attack is given by

[𝒑̂]
2
=

∑
𝑖 𝑒𝑖

𝑁
=

Δ𝑏1

𝜂
+ 𝜎 (𝑏0) (10)

where Δ𝑏1 = 𝑏1 − 𝑏0 is the change in bias after the first iteration.
This is an exact inference, i.e., [𝒑]

2
= [𝒑̂]

2
.

Weprovide the proof in the Appendix. From (10), the attacker can

obtain an estimate of the proportion of positive labels, i.e., 𝑒𝑖 = 1 if

it has access to the bias update Δ𝑏1 and the step 𝜂. Importantly, we

can extend the attack in Proposition 1 to a multi-class setting where

class-labels are coordinate vectors, 𝒆𝑖 ∈ {0, 1}𝐶 . The parameters to

infer in the case of multi-class regression can be written as a matrix

W =
[
𝒘1 𝒘2 · · · 𝒘𝐶

]
, (11)

and the bias vector 𝒃 . The classifier outputs class 𝑐 for a feature
vector 𝒙𝑖 via a softmax function 𝝈

(
W⊤𝒙𝑖 + 𝒃

)
defined as[

𝝈
(
W⊤𝒙𝑖 + 𝒃

)]
𝑐
=

exp{𝒘⊤𝑐 𝒙𝑖 + 𝑏𝑐 }∑
𝑐 exp{𝒘⊤𝑐 𝒙𝑖 + 𝑏𝑐 }

. (12)

The class 𝑐 is then decided as the class with maximum posterior

probability,

𝑐∗ = argmax

𝑐

[
𝝈
(
𝑾⊤𝒙 + 𝒃

)]
𝑐
. (13)

We summarize the attack in the following corollary.

Corollary 1. Consider federated multi-class logistic regression with
labels 𝒆𝑖 ∈ {0, 1}𝐶 . Assume that 𝜂 is known and the server starts with
weight matrix W0 = 0. Then the label distribution can be inferred
exactly as

𝒑̂ =
1

𝜂
Δ𝒃1 + 𝝈 (𝒃0). (14)

where 𝒑̂ = 1

𝑁

∑
𝑛 𝒆𝑖 and Δ𝒃 = 𝒃1 − 𝒃0 is the weight update at the

first iteration (𝑡 = 1).

In what follows, we show how to extend these attack strategies

to generic neural network classifiers.

47

AISec ’22, November 11, 2022, Los Angeles, CA, USA Raksha Ramakrishna and György Dán

Input
x

Intermediate
layers

fully connected
layer

[h]2

[h]1

...
[h]N

[z]2

[z]1

...
[z]C

b1

b2

bC

exp{[z]1}∑
c exp{[z]c}

exp{[z]2}∑
c exp{[z]c}

exp{[z]C}∑
c exp{[z]c}

softmax

[y]1

[y]2

[y]C

Output

w11

w
12

w
1C

Figure 1: A generic neural network classifier with fully-
connected output layer and softmax layer before the clas-
sification output. The weights and biases from the fully-
connected output layer are used to estimate the class-label
distribution in this paper.

4 CLASS-LABEL DISTRIBUTION INFERENCE
FOR NEURAL NETWORK CLASSIFIERS

While there are several works that discuss privacy attacks on neural

network architectures, existing approaches are mostly empirical,

without analytical guarantees. In this section, we show that it is

possible to construct attacks that are theoretically guaranteed to

succeed under certain assumptions. We consider a generic neural

network architecture with any type and number of intermediate

layers, a fully-connected output layer followed by the softmax op-

eration. One such example network is depicted in Fig.1. In what

follows, we show that the parameters pertaining to the last (fully-

connected output) layer are sufficient to infer the class-label distri-

bution, under appropriate assumptions on the initialization of the

connection weights between the fully-connected layer before the

output and the output layer.

4.1 Exact Inference for Neural Network
Classifiers

Let us denote by𝑚𝐿 the number of neurons in the fully-connected

layer before the output. The number of neurons in the output

layer is 𝐶 , and thus the connection weight matrix between the

fully-connected layer and the output layer for client 𝑘 is a matrix

W𝑘 ∈ R𝑚𝐿×𝐶
. Let the bias parameters for each of the 𝐶 neurons in

the output layer be 𝒃𝑘 ∈ R𝐶 , and denote by 𝒉𝑖,𝑘 ∈ R𝑚𝐿
the input to

the fully-connected layer. Then the output of the fully-connected

layer, 𝒛𝑘
𝑖
∈ R𝐶 is a vector

𝒛𝑘𝑖 ≜ W⊤
𝑘
𝒉𝑖,𝑘 + 𝒃𝑘 . (15)

The softmax activation function, 𝝈 : R𝐶 → 𝚫
𝐶−1

, defined as

[𝝈 (𝒛)]𝑐 =
exp{[𝒛]𝑐 }∑
𝑐 exp{[𝒛]𝑐 }

, (16)

is applied to 𝒛𝑘
𝑖
to produce the output of the classifier,

𝒚𝑘𝑖 = 𝝈
(
𝒛𝑘𝑖

)
. (17)

In what follows we omit the subscript 𝑘 as the attack is the same

for every client.

We assume that the loss function used for training is cross en-

tropy and the learning rate is 𝜂. The class labels are one-hot vectors,

𝒆𝑖 ∈ [0, 1]𝐶 , there are 𝐶 neurons in the output and the activation

function is softmax like in (16). For such classifiers, we can formu-

late a privacy attack as described in the following proposition.

Proposition 2. Consider that the loss function used for training
is the cross entropy, and assume that the learning rate 𝜂 is known.
If the number of local epochs 𝐸 = 1, full-batch gradient descent is
undertaken, if the weight matrix of the last layer is initialized to
W0 = 0 and the bias vector is initialized as 𝒃0, then the class-label
distribution 𝒑̂ is

𝒑̂ = 𝒑 =
1

𝑁

∑︁
𝑖

𝒆𝑖 =
1

𝜂
Δ𝒃 + 𝝈 (𝒃0) (18)

where Δ𝒃 = 𝒃1 − 𝒃0 is the bias update at the first iteration (𝑡 = 1).

The proof can be found in the Appendix. Proposition 2 can be

applied in the federated learning setting, if the server provides an

initialization of all zeros in the last layer, W0 = 0 and demands a

parameter update after 𝐸 = 1 local epoch from every client as in (4).

Then the bias update 𝒃1 from each client after a full-batch gradient

descent (𝐵 = 𝑁) can be used to compute the label distribution 𝒑̂
exactly.

If FedSGD is used for optimization, the clients are sending gradi-

ent updates i.e. 𝐸 = 1, 𝐵 = 𝑁 naturally. This lends itself perfectly to

the attack condition when the weights initialized to zero, W0 = 0.
However, if FedAvg is used, then the conditions of attack are dif-

ficult to satisfy owing to epoch and batch size used by the clients.

We discuss this next.

4.2 Non-exact Inference for Neural Network
Classifiers

In this subsection, we discuss the attack when the conditions for

exact inference are not satisfied. We discuss what happens to class-

label distribution inference when the clients undertake a generic

local update. More specifically, the general conditions are when the

weights are not initialized to zero, i.e., W0 ≠ 0, when the clients

do not use full-batch or use stochastic gradient descent with batch

size 𝐵 < 𝑁 and when the number 𝐸 of local epochs at an client is

greater than 1. We use the gained insight for designing estimators

based on different approximations in Section 5.

Let us consider now a generic local update that is initialized by

non-zero global weightsW𝑡
at iteration 𝑡 . Let the batch size 𝐵 < 𝑁

and local epochs be 𝐸 > 1. Also, let 𝑗 = 1, 2, . . . 𝐽 index the batch

number and N𝑗 be the set of data samples in batch 𝑗 . Hence, the

total number of mini-batches per epoch is 𝐽 ≜ ⌊𝑁 /𝐵⌋ times where

⌊.⌋ is the floor operator. The bias update is then

𝒃𝑡+1
𝑘

= 𝒃𝑡 − 𝜂

𝑁𝑘

𝐸∑︁
ℓ=1

𝐽∑︁
𝑗=1

∑︁
𝑖∈N𝑗

𝝈 (𝒛𝑘,𝑗,ℓ
𝑖
) + 𝜂𝐸

𝑁𝑘

∑︁
𝑖

𝒆𝑖 , (19)

48

Inferring Class-Label Distribution in Federated Learning AISec ’22, November 11, 2022, Los Angeles, CA, USA

Client 1

Client 2

Client K

𝑓𝑓 𝑥𝑥; 𝜃𝜃
Classifier

Known parameters:
Learning rate 𝜂𝜂 , training data size N , epochs E

Auxiliary data: 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 samples from all C classes
Construct matrices: Σ𝑎𝑎𝑎𝑎𝑎𝑎 ,𝐵𝐵𝑎𝑎𝑎𝑎𝑎𝑎 ,𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎

Initialized bias Soft label

Aux-grad Aux-weight

Exact Inference:
𝑝̂𝑝 = 1

𝜂𝜂
bt+1k − bt + 𝜎𝜎 𝑏𝑏𝑡𝑡

Non-Exact Inference
methods

𝑝̂𝑝 = 1
𝜂𝜂𝜂𝜂

bt+1k − bt + 𝜎𝜎 𝑏𝑏𝑡𝑡 𝑝̂𝑝 = 1
𝜂𝜂𝜂𝜂

I − Σ𝑎𝑎𝑎𝑎𝑎𝑎 −1 bt+1k − bt

𝑝̂𝑝 = Baux−1 bt+1k − bt 𝑝̂𝑝 = Waux
−1 vec Wt+1

k − Wt

Collect global parameter 𝑊𝑊𝑡𝑡 , 𝑏𝑏𝑡𝑡 and update for client k 𝑊𝑊𝑡𝑡+1
𝑘𝑘 , 𝑏𝑏𝑡𝑡+1𝑘𝑘

Is 𝑊𝑊𝑡𝑡= 0,
𝐸𝐸 = 1 ,

batch size=N?

yes no

𝜃𝜃𝑡𝑡+11

𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+1𝐾𝐾

𝜃𝜃𝑡𝑡

𝜃𝜃𝑡𝑡+12

𝜃𝜃𝑡𝑡

Class-imbalance
estimation

Server

Figure 2: Block diagram of the proposed class-label distribution inference attacks.

where

𝒛𝑘,𝑗,ℓ
𝑖

= (W𝑗,ℓ

𝑘
)⊤𝒉𝑖 + 𝒃 𝑗,ℓ𝑘 (20)

W𝑗=1,ℓ=1

𝑘
←W𝑡 , W𝑡+1

𝑘
= W𝑗=𝐽 ,ℓ=𝐸

𝑘
(21)

𝒃 𝑗=1,ℓ=1
𝑘

← 𝒃𝑡 , 𝒃𝑡+1
𝑘

= 𝒃 𝐽 ,𝐸
𝑘
. (22)

Now, the class-label distribution can be written as

1

𝑁𝑘

∑︁
𝑖

𝒆𝑘𝑖 =
(𝒃𝑡+1
𝑘
− 𝒃𝑡)

𝜂𝐸
+ 1

𝐸

𝐸∑︁
ℓ=1

𝐽∑︁
𝑗=1

∑︁
𝑖∈N𝑗

𝝈 (𝒛𝑘,𝑗,ℓ
𝑖
) (23)

From (23), it is clear that the adversary has access to 1) initialized

parameters (global parameters at iteration 𝑡) W𝑡 , 𝒃𝑡 2) updated
parameters W𝑡+1

𝑘
, 𝒃𝑡+1
𝑘

. Furthermore, if the adversary knows the

number of epochs 𝐸, then it can calculate the first term in (23). It

needs to find, however, an approximation for the second term to

obtain an estimator for class distribution inference. We propose

four estimators in the next section.

5 ESTIMATORS FOR CLASS-LABEL
DISTRIBUTION

In this section we propose four estimators for class-label distribu-

tion inference. One of them is based on Proposition 2. The other

three utilize auxiliary datasets Daux containing 𝑁aux samples from

each of the 𝐶 classes. Auxiliary data that resembles clients’ data

could be obtained from the public domain or could be generated

synthetically. One could also consider a case where a client is collud-

ing with the server and offers its training data to serve as auxiliary

data.

5.1 Inference using initialized bias
In this method, the second term in (23) is approximated by the

softmax output of the initialized bias 𝒃𝑡 . In other words,

𝒛 𝑗,ℓ
𝑖

= (W𝑗,ℓ

𝑘
)⊤𝒉𝑖 + 𝒃 𝑗,ℓ𝑘 ≈ 𝒃𝑡 ∀𝑖, 𝑗, ℓ, 𝑘 (24)

The approximation holds with high accuracy if 1) the product

(W𝑗,ℓ

𝑘
)⊤𝒉𝑖 is small or close to zero and 2) if the bias is not up-

dated much in subsequent iterations, 𝒃 𝑗,ℓ
𝑘
≈ 𝒃𝑡 . The estimator for

the class-label distribution of client 𝑘 at global iteration 𝑡 is then

𝒑̂init

𝑘,𝑡
=
(𝒃𝑡+1
𝑘
− 𝒃𝑡)

𝜂𝐸
+ 𝝈 (𝒃𝑡) . (25)

Furthermore, if it is known that the client is using all of its dataset

to update at every global iteration, another more robust estimator

of the class-label distribution is the average over all 𝑇 observed

global iterations,

𝒑̂init

𝑘
=

1

𝑇

𝑇∑︁
𝑡=1

𝒑̂init

𝑘,𝑡
. (26)

To further improve the estimate, the attacker could wait until the

approximation holds with better accuracy, i.e., for large values of 𝑡

(say 𝑇), and use 𝒑̂init

𝑘
= 𝒑̂init

𝑘,𝑇
.

5.2 Inference using approximated softmax
output

Using this method, we approximate the second term in (23) using

an auxiliary dataset for every class 𝑐 , D𝑐
aux
≜ {𝒙𝑐

𝑖
, 𝒆𝑐
𝑖
}𝑖=1,...,𝑁aux

,

which contains 𝑁aux samples from class 𝑐 to compute the output

of the client for every epoch ℓ . At epoch ℓ , we assume that

𝐽∑︁
𝑗=1

∑︁
𝑖∈N𝑗

𝝈 (𝒛𝑘,𝑗,ℓ
𝑖
) ≈

𝐶∑︁
𝑐=1

[𝒑]𝑐𝝈 (𝒛ℓ𝑐,aux), (27)

49

AISec ’22, November 11, 2022, Los Angeles, CA, USA Raksha Ramakrishna and György Dán

where 𝝈 (𝒛ℓ𝑐,aux) is the average softmax output for auxiliary data

belonging to class 𝑐 when fed singly to update the model parameters

at epoch ℓ i.e.,

𝝈 (𝒛ℓ𝑐,aux) =
1

𝑁aux

𝑁aux∑︁
𝑖=1

𝝈 ((Wℓ
aux,𝑐)⊤𝒉𝑐𝑖 + 𝒃

ℓ
aux,𝑐) (28)

Wℓ+1
aux,𝑐 ←Wℓ

aux,𝑐 − 𝜂∇Wℓ
aux,𝑐
L𝑐,aux (𝜽𝑡) (29)

L𝑐,aux (𝜽𝑡) = −
1

𝑁aux

𝑁aux∑︁
𝑖=1

[𝒆𝑐𝑖]𝑐 log
([
𝒇 (𝒙𝑐𝑖 ;𝜽𝑡)

]
𝑐

)
. (30)

Therefore, the approximation considered is

1

𝐸

𝐸∑︁
ℓ=1

𝐽∑︁
𝑗=1

∑︁
𝑖∈N𝑗

𝝈 (𝒛𝑘,𝑗,ℓ
𝑖
) ≈ 1

𝐸

𝐶∑︁
𝑐=1

[𝒑]𝑐
𝐸∑︁
ℓ=1

𝝈 (𝒛ℓ𝑐,aux). (31)

Let 𝝈 (𝒛𝑐,aux) ≜ 1

𝐸

∑𝐸
ℓ=1 𝝈 (𝒛ℓ𝑐,aux). We can then rewrite (23) as

𝒑𝑘 ≈ (1/𝜂𝐸) (𝒃𝑡+1𝑘
− 𝒃𝑡) +

𝐶∑︁
𝑐=1

[𝒑𝑘]𝑐𝝈 (𝒛𝑐,aux) (32)

(I − 𝚺aux) 𝒑𝑘 ≈
(𝒃𝑡+1
𝑘
− 𝒃𝑡)

𝜂𝐸
, (33)

where 𝚺aux ≜
[
𝝈 (𝒛1,aux) 𝝈 (𝒛2,aux) . . . 𝝈 (𝒛𝐶,aux)

]
. Thus, we

propose the estimator

𝒑̂soft-label

𝑘,𝑡
=

1

𝜂𝐸
(I − 𝚺aux)−1 (𝒃𝑡+1𝑘

− 𝒃𝑡) . (34)

Note 1. If the matrix (I − 𝚺aux) is not invertible, then one can use a

low-rank approximation of the matrix obtained via singular-value

decomposition.

5.3 Inference using approximated gradient
In this method, we use the same type of auxiliary dataset per class,

D𝑐
aux

as in the last section. Instead of approximating the softmax

output, we use the auxiliary dataset to compute an approximation

of the sum of gradients in local epochs for a client. We make the

assumption that the sum of gradients that contribute to change in

the bias are composed of proportional changes in bias when the

model is updated singly with data from class 𝑐 . More specifically,

we approximate the bias update as

(𝒃𝑡+1
𝑘
− 𝒃𝑡)

𝜂𝐸
≈

𝐶∑︁
𝑐=1

[𝒑]𝑐∇𝒃auxL𝑐,aux (𝜽𝑡) . (35)

Furthermore, we approximate the gradient ∇𝒃auxL𝑐,aux (𝜽𝑡) using
the bias updates when auxiliary data from class 𝑐 is used to update

the model parameters,

∇𝒃auxL𝑐,aux (𝜽𝑡) ≈
𝒃𝐸
aux,𝑐 − 𝒃𝑡

𝜂𝐸
, (36)

where 𝒃𝐸
aux,𝑐 is the bias obtained by updating the model 𝐸 epochs

initialized at 𝜽𝑡 . The bias update for each epoch is similar to (29).

This leads to the estimator

𝒑̂
grad

𝑘,𝑡
= B−1

aux
(𝒃𝑡+1
𝑘
− 𝒃𝑡), (37)

where Baux=
[
𝒃𝐸
aux,1
− 𝒃𝑡 𝒃𝐸

aux,2
− 𝒃𝑡 · · · 𝒃𝐸

aux,𝐶
− 𝒃𝑡

]
. (38)

Corollary 2. When 𝐸 = 1, 𝐵 = 𝑁𝑘 , the weight matrix of the last
layer is initialized to W0 = 0 and the bias vector is initialized as 𝒃0,
then the estimators at iteration 𝑡 = 1, 𝒑̂init

𝑘,1
, 𝒑̂

soft-label
𝑘,1

𝒑̂
grad
𝑘,1

are exact

i.e. 𝒑̂init
𝑘,1

= 𝒑̂
soft-label
𝑘,1

= 𝒑̂
grad
𝑘,1

= 𝒑.

𝒑̂init
𝑘,1

= 𝒑̂
soft-label
𝑘,1

= 𝒑̂
grad
𝑘,1

=
1

𝜂
(𝒃1
𝑘
− 𝒃0) + 𝝈 (𝒃0) = 𝒑 (39)

We provide the proof of the above corollary in the Appendix.

5.4 Inference using weights from the last layer
Similar to the method described above, we make the assumption

that the sum of gradients pertaining to the weight matrix in the last

layer that contribute to change in the weight matrix of the last layer

are composed of proportional changes in weight matrix when the

model is updated singly with data from class 𝑐 . Like the previously

described methods, same type of auxiliary dataset per class, D𝑐
aux

is used for this method. We use the following approximation,

1

𝜂𝐸
(𝑾𝑡+1

𝑘
−𝑾𝑡) ≈

𝐶∑︁
𝑐=1

[𝒑]𝑐∇𝑾aux
L𝑐,aux (𝜽𝑡). (40)

Thus, we propose the estimator

𝒑̂
wt-grad

𝑘,𝑡
= W−1

aux
vec(𝑾𝑡+1

𝑘
−𝑾𝑡) (41)

Waux=

[
vec(𝑾𝐸

aux,1
−𝑾𝑡) · · · vec(𝑾𝐸

aux,𝐶
−𝑾𝑡)

]
. (42)

Note 2. The proposed estimators are not guaranteed to produce an

estimate that lies in the probability simplex 𝚫
𝐶−1

. Therefore, the

attacker can add a step of projecting the obtained estimate onto the

probability simplex,

𝒑̂ ← argmin

𝒑∈𝚫𝐶−1
∥𝒑 − 𝒑̂∥2

2
(43)

A pseudo-code to solve the problem above is provided in [7] and is

employed in the numerical results.

6 NUMERICAL RESULTS
We evaluated the performance of the proposed estimators on four

datasets: UCI Census Income dataset [4], MNIST [10], CIFAR-10 and

CIFAR-100 [9]. An open-source implementation is also provided
1

For the UCI Census Income dataset the task is income classification

(above or below 50k USD), which is a binary classification problem.

The MNIST and CIFAR-10 datasets are used for multiclass 𝐶 = 10

classification tasks where the task in MNIST is digit classification,

and in CIFAR-10 it is image classification. Finally, the CIFAR-100

is a 100 class image classification task. The architectural details

of the classifiers are given in the Appendix. All of them have a

last softmax layer that is needed for classification. The number

of clients simulated for each case is 𝐾 = 10 and each client has

𝑁𝑘 ∈ [100, 3000] training samples drawn uniformly and the clients’

training sets are disjoint, i.e., D𝑘 ∩ D𝑗 = ∅ ∀𝑘 ≠ 𝑗 .

To simulate a variety of class-label distributions, for each client

𝑘 , the class-label distribution 𝒑𝑘 is sampled uniformly from the

probability simplex 𝚫
𝐶−1

. An algorithm [15] to do so involves

1
https://github.com/raksha-ramakrishna/Inferring-Class-Label-Distribution-in-

Federated-Learning

50

https://github.com/raksha-ramakrishna/Inferring-Class-Label-Distribution-in-Federated-Learning
https://github.com/raksha-ramakrishna/Inferring-Class-Label-Distribution-in-Federated-Learning

Inferring Class-Label Distribution in Federated Learning AISec ’22, November 11, 2022, Los Angeles, CA, USA

(a) UCI Census (b) MNIST

(c) CIFAR-10 (d) CIFAR-100

Figure 3: Boxplot of MSE of all the proposed estimators on 4 data sets. Labels ‘initialized bias’ refer to estimator in 5.1, ‘soft
label’ to estimator in 5.2, ‘aux bias grad’ to 5.3 and ‘aux weight grad’ to 5.4. Labels ‘Wang et.al’ and ‘Wang (GitHub)’ refer to
methods used as baselines for comparison.

sampling𝐶 − 1 points uniformly at random from the interval [0, 1],
sort them in ascending order by padding with 0 and 1 on either side.

The consecutive difference between the points yields values [𝒑𝑘]𝑐 .
The same set of clients are used for global parameter update

at every iteration. The total number of global parameter update

iterations is𝑇 = 20. For all the datasets, the number of local epochs

is 𝐸 = 5 and the batch size is 𝐵 = 256. The learning rate is 𝜂 = 0.01.

The adversary can undertake the class-label inference at any global

iteration 𝑡 ≤ 𝑇 . We simulate 10 different FL setup by simulating

different class-label distributions for 𝐾 = 10 clients. Therefore,

overall, there are 100 different test samples per global iteration. The

FL training procedure is run for 𝑇 = 20 iterations and the average

mean squared error (MSE) per iteration is used as the performance

metric.

Table 1: Mean MSE per iteration of proposed estimators and baselines for comparison

Dataset Iteration Initialized bias Soft-label Aux-bias grad Aux-weight grad Wang et.al [17] Wang(GitHub)

1 0.0966 0.1061 0.0878 0.3118 0.5712 0.1944

UCI Census 10 0.0454 0.0885 0.0719 0.0773 0.4129 0.1521

20 0.0418 0.0869 0.0711 0.0745 0.3913 0.1494

1 0.1579 0.8679 0.1384 0.0520 0.8836 0.2133

MNIST 10 0.1932 0.5007 0.1612 0.1401 0.6923 0.1871

20 0.2040 0.4461 0.1688 0.1353 0.6528 0.1897

1 0.1210 0.7031 0.2493 0.8836 0.7802 0.1462

CIFAR-10 10 0.0980 0.0331 0.0318 0.0591 0.1526 0.1541

20 0.0662 0.0186 0.0169 0.0427 0.1141 0.1338

1 0.0083 0.1592 0.0546 0.6073 0.9189 0.0083
CIFAR-100 10 0.0083 0.0043 0.0043 0.0051 0.1719 0.0096

20 0.0078 0.0040 0.0040 0.0055 0.1342 0.0095

51

AISec ’22, November 11, 2022, Los Angeles, CA, USA Raksha Ramakrishna and György Dán

(a) UCI Census (b) MNIST

(c) CIFAR-10 (d) CIFAR-100

Figure 4: Average MSE of all estimators with respect to global iteration 𝑡 .

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

p

E
st
im

at
e
p̂

p̂
Wang (GitHub) p̂

p̂ = p
p̂ = 1/2

Figure 5: Actual and estimated class-label proportion for UCI
Census income dataset at 𝑡 = 10. Note that the proposed
method (best for iteration 𝑡 = 10) provides more accurate
estimates compared to Wang (GitHub) which provides 𝑝 =

1/𝐶 irrespective of the actual proportion.

As baselines for comparison we use two methods. First, the

method proposed in [17] for estimating the proportion of train-

ing data in each class for federated learning. Second, we consider

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

p

E
st
im

at
e
p̂

Aux-grad p̂10
Wang (GitHub) p̂10

p̂10 = p10
p̂10 = 1/10

Figure 6: Actual and estimated class-label proportion for class
10 for CIFAR-10 dataset at 𝑡 = 10. Note that the proposed
method (best for iteration 𝑡 = 10) provides more accurate
estimates compared toWang (GitHub)which provides [𝒑̂]10 =
1/𝐶 irrespective of the actual proportion.

the open source implementation
2
of the method described in [17],

2
https://github.com/balanced-fl/Addressing-Class-Imbalance-FL

52

https://github.com/balanced-fl/Addressing-Class-Imbalance-FL

Inferring Class-Label Distribution in Federated Learning AISec ’22, November 11, 2022, Los Angeles, CA, USA

(a) Imbalanced datasets (b) Balanced datasets via random oversampling

Figure 7: Performance of the class-label estimation methods for highly imbalanced datasets before and after random oversam-
pling is used as a countermeasure. US Census Income dataset is used here.

which includes an undocumented threshold step after ([17] eqn. (7)).

We refer to the open-source implementation as “Wang (GitHub)".

6.1 Estimation performance
We start with comparing the performance of the proposed estima-

tors to the baselines. Fig 3 shows the boxplot of the MSE for each

of the estimators at global iterations 𝑡 ∈ {1, 5, 10, 15, 20}. The figure
shows that the median of the distribution of the MSE decreases

with the global iterations, while the variance of the MSE is higher

for the proposed methods that use an auxiliary dataset, which is

to be expected due to the diversity of the auxiliary dataset. We

can also see that the median of the distributions for the proposed

methods is much lower than that for the method “Wang (GitHub)".

Fig 4 shows the average MSE (averaged over the number of

test samples) as a function of the the global iteration 𝑡 . The figure

shows that the proposed estimators clearly outperform the scheme

proposed in [17] and also perform better than “Wang (GitHub)",

especially as the number of iterations 𝑡 increases. Table 1 shows

the average MSE for global iterations 𝑡 ∈ {1, 10, 20} for all the
estimators and shows in bold the best estimator, i.e., the one with

least average MSE. We see that it is one of our proposed methods

that performs best for all datasets, outperforming [17] by an order

of magnitude and significantly in the case of “Wang (GitHub)". The

results from Table 1 also show that the longer the adversary waits

(i.e., more global iterations), the better are the estimates of the class-

label distribution obtained using the proposed estimators. This is

because the approximations underlying the estimators are more

accurate as the global parameters are closer to the local parameters.

The method of “Wang et.al" follows a similar trend because the

estimator is based on the same principle using auxiliary dataset.

On the contrary, for “Wang (GitHub)", although there is a decrease

in MSE with increasing global iterations, it is not significant.

To explain the good performance of the proposed estimators,

note that the main intuition behind the approximations used for

the estimators is that (i) the auxiliary data with class-label 𝑐 would

provide similar model updates as would client data with class-label

𝑐 and that (ii) the overall model update by a client is proportional

to the class-label distribution in the form of a linear combination

of model updates given data from each class 𝑐 . Note that the same

approximated values computed via auxiliary data are used to infer

the class-label distributions for all the clients. Hence, the difference

between the model updates at different clients is assumed to stem

solely from the difference between their class-label distributions.

Although the estimators introduced in Section 5 in general do not

have theoretical guarantees unless certain conditions hold, as in

Corollary 2, they work well in practice and show that the intuition

behind the proposed approximations is valid, i.e., if the auxiliary

data provide the same input feature to class label mapping as the

data at the clients, then the assumption about it providing similar

model updates holds.

In other words, the more similar the auxiliary data and the client

data are in feature space, the better the approximation. For example,

if the auxiliary data for class 𝑐 and client data with label class 𝑐

are similar in feature space then the estimation performance is

very good. With decreasing similarity, the estimators performance

would also decrease.

We further examine the difference in performance between

“Wang (GitHub)" and the best performing proposed method for

two datasets: UCI Census Income and CIFAR-10. Fig. 5 shows the

estimate of one of the classes with respect to the actual label pro-

portion for that class after 10 global iterations. The figure shows

that the estimates 𝑝 obtained using “Wang (GitHub)" are generally

close to 1/𝐶 = 0.5 irrespective of the true value 𝑝 . Whereas the

estimates using the proposed method of initialized bias more closely

match the true value. Similarly, in Fig 6 we show the estimate for

class 10 after 10 global iterations. Even here, the estimate by “Wang

(GitHub)" is close to 1/𝐶 = 0.1 whereas the estimate using the

proposed method of “aux-grad" lies closer to the true value. It is

possible that the thresholding step in “Wang (GitHub)" results in

class-label distribution estimates to be a uniform distribution over

the number of classes. This makes their estimates particularly in-

correct when the true distribution is highly imbalanced. Note that

better estimates of class-label distribution are even more impor-

tant from the perspective of correcting class-imbalance when the

true distribution is skewed towards a few classes. Therefore, we

conclude that not only do the proposed methods provide better

estimates on average, their performance is excellent even when the

distributions are highly skewed.

53

AISec ’22, November 11, 2022, Los Angeles, CA, USA Raksha Ramakrishna and György Dán

0 20 40 60 80 100 120 140 160 180 200

0.6

0.8

1

iteration t

A
U
C

Without client removal

Client removal using pinit
k,5

Figure 8: Area under the ROC curve (AUC) at iteration 𝑡 for
cases with and without client removal. US Census Income
dataset used here.

6.2 The case of exact inference
When the conditions for exact inference that are outlined in Propo-

sition 2 are satisfied, the class-label distribution estimate is exact.

To verify this, we consider the same number of clients as before and

same learning rate but to satisfy the conditions for exact inference,

we consider one global iteration, 𝑇 = 1, local epoch 𝐸 = 1 and

full-batch, 𝐵 = 𝑁 . Furthermore, we initialize the weight connection

matrix to zero,𝑾0 = 0. The mean MSE at global iteration 𝑡 = 1 is

given in Table 2. Note that among the proposed methods of infer-

ence, all except ‘aux-weight grad’ estimator give the correct solution

barring numerical precision i.e. 𝒑̂init

𝑘,1
= 𝒑̂soft-label

𝑘,1
= 𝒑̂

grad

𝑘,1
= 𝒑 in

accordance with Corollary 2.

6.3 Random oversampling as a countermeasure
In this section, we evaluate random oversampling as a counter-

measure to the proposed attacks. Random oversampling involves

sampling with replacement from the class with least proportion un-

til all the classes are equally represented in the training dataset. We

perform this experiment on the UCI Census income dataset since it

is easy to analyze a binary case. Before random oversampling, the

class-label distributions are imbalanced, i.e., 𝑝 ∈ [0, 0.2] ∪ [0.8, 1].
Recall that the estimators we propose perform better than the base-

lines for such cases (c.f., Fig. 7a). Fig. 7b shows the results after

random oversampling is used to make class-labels uniformly dis-

tributed (𝑝 = 0.5). The figure shows that all estimators (proposed

and baselines) fail to estimate the original class-label distribution.

Indeed, all estimators estimate 𝑝 = 0.5, which is the class-label

distribution after oversampling. We can thus conclude that ran-

dom oversampling is indeed an effective countermeasure against

all existing attacks, including the ones proposed in this paper. The

results also indicate that one may need shadow datasets for making

stronger attacks.

6.4 Addressing class imbalance in federated
learning using class-label distribution
estimate

It has been shown in prior works that when the clients in a federated

learning system have imbalanced datasets, the overall convergence

is slower and the accuracy is lower. To mitigate this problem, [12]

proposed to group clients in a pairwise fashion based on their class-

label distribution and select groups to send parameter updates at a

certain global iteration. [12] showed empirically improved model

accuracy as well as faster convergence. However, authors in [12]

assume that the class-label distribution is known beforehand.

In a similar vein, we perform an experiment to demonstrate how

one could use the estimated class-label distribution in order to im-

prove accuracy with fewer global iterations in FL. We use the US

Census Income dataset for this purpose. At a certain global iteration

where the estimate of class-label distribution is fairly accurate, an

additional step is undertaken by the server wherein clients with

imbalanced class-label distribution estimates are removed (their

contribution is not considered while updating the model parame-

ters). We evaluate the accuracy of the global model at iteration 𝑡

for a validation set of 100 samples using the AUC (area under the

ROC curve) score, since the considered data set involves binary

classification. As a baseline we consider that no action is taken

to address class imbalance. Fig. 8 shows the AUC with respect to

iteration 𝑡 for the two schemes. We see improved accuracy and

faster convergence to higher AUC when removing clients based on

the class imbalance estimate. The improved performance is due to

the accurate estimation of the class-label distribution using which

we are able to effectively remove the clients with class imbalance

and see an improved accuracy in the global model compared with

the scheme where no action is taken. This illustrates a benevolent

use case of class-label distribution inference.

7 CONCLUSION
In this paper we proposed exact and approximate methods for class-

label distribution inference in federated learning systems based on

parameter updates from the clients. We evaluated the efficacy of

the proposed methods on four different datasets and found that

our proposed methods outperform the state of the art by a large

margin, and provide a rather accurate estimate of the class-label

distribution during training. Our results are not only useful as a

means of detecting potential class imbalance in client data sets in

FL, but they also reveal potential privacy leakage in FL and provide

an effective countermeasure of random oversampling. Furthermore,

we also illustrate how the estimate of class-label distribution can

be used to address class-imbalance in federated learning.

ACKNOWLEDGMENTS
This workwas partly funded by the Vinnova Competence Center for

Trustworthy Edge Computing Systems and Applications (TECoSA)

at KTH and by the Swedish Foundation for Strategic Research

through the CLAS project (grant RIT17-0046).

REFERENCES
[1] Giuseppe Ateniese, Luigi V Mancini, Angelo Spognardi, Antonio Villani,

Domenico Vitali, and Giovanni Felici. 2015. Hacking smart machines with

smarter ones: How to extract meaningful data from machine learning classifiers.

International Journal of Security and Networks 10, 3 (2015), 137–150.
[2] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

2002. SMOTE: Synthetic Minority Over-sampling Technique. Journal of Artificial
Intelligence Research 16 (2002), 321–357.

[3] Yen-Hsiu Chou, Shenda Hong, Chenxi Sun, Derun Cai, Moxian Song, and

Hongyan Li. 2022. GRP-FED: Addressing Client Imbalance in Federated Learning

54

Inferring Class-Label Distribution in Federated Learning AISec ’22, November 11, 2022, Los Angeles, CA, USA

Table 2: Mean MSE at iteration 𝑡 = 1 when conditions for exact inference are met

Dataset Initialized bias Soft-label Aux-bias grad Aux-weight grad Wang et.al [17] Wang (GitHub)

UCI Census 9.473 × 10−12 9.471 × 10−12 1.07 × 10−11 0.7446 0.1950 0.1861

MNIST 2.986 × 10−11 2.998 × 10−11 2.924 × 10−11 0.0033 0.1132 0.0932

CIFAR-10 3.018 × 10−11 3.023 × 10−11 2.667 × 10−11 0.0106 0.1227 0.1324

CIFAR-100 3.155 × 10−10 3.155 × 10−10 3 × 10−10 9.675 × 10−4 0.0848 0.0084

via Global-Regularized Personalization. In Proceedings of the 2022 SIAM Interna-
tional Conference on Data Mining (SDM). SIAM, 451–458.

[4] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:

//archive.ics.uci.edu/ml

[5] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang

Liang. 2020. Self-balancing federated learning with global imbalanced data in

mobile systems. IEEE Transactions on Parallel and Distributed Systems 32, 1 (2020),
59–71.

[6] Moming Duan, Duo Liu, Xinyuan Ji, YuWu, Liang Liang, Xianzhang Chen, Yujuan

Tan, and Ao Ren. 2021. Flexible Clustered Federated Learning for Client-Level

Data Distribution Shift. IEEE Transactions on Parallel and Distributed Systems
(2021).

[7] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. 2008. Effi-

cient projections onto the l 1-ball for learning in high dimensions. In Proceedings
of the 25th international conference on Machine learning. 272–279.

[8] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.

2020. Inverting Gradients - How easy is it to break privacy in federated

learning?. In Advances in Neural Information Processing Systems, H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran As-

sociates, Inc., 16937–16947. https://proceedings.neurips.cc/paper/2020/file/

c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf

[9] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[10] Yann LeCun. 1998. The MNIST database of handwritten digits. http://yann. lecun.
com/exdb/mnist/ (1998).

[11] Charles X Ling and Chenghui Li. 1998. Data Mining for Direct Marketing:

Problems and Solutions.. In International Conference on Knowledge Discovery
Data Mining, Vol. 98. 73–79.

[12] Jiahua Ma, Xinghua Sun, Wenchao Xia, Xijun Wang, Xiang Chen, and Hongbo

Zhu. 2021. Client selection based on label quantity information for federated

learning. In 2021 IEEE 32nd Annual International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC). IEEE, 1–6.

[13] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Net-

works from Decentralized Data. In Artificial Intelligence and Statistics. PMLR,

1273–1282.

[14] Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Hamed Haddadi, and

Soteris Demetriou. 2020. Layer-wise characterization of latent information

leakage in federated learning. arXiv preprint arXiv:2010.08762 (2020).
[15] Noah A Smith and Roy W Tromble. 2004. Sampling uniformly from the unit

simplex. (2004).

[16] Aidmar Wainakh, Fabrizio Ventola, Till Müßig, Jens Keim, Carlos Garcia Cordero,

Ephraim Zimmer, Tim Grube, Kristian Kersting, and Max Mühlhäuser. 2022.

User-Level Label Leakage from Gradients in Federated Learning. Proceedings on
Privacy Enhancing Technologies 2022, 2 (2022), 227–244.

[17] Lixu Wang, Shichao Xu, Xiao Wang, and Qi Zhu. 2021. Addressing Class Imbal-

ance in Federated Learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 10165–10173.

[18] Miao Yang, Ximin Wang, Hongbin Zhu, Haifeng Wang, and Hua Qian. 2021.

Federated learning with class imbalance reduction. In 2021 29th European Signal
Processing Conference (EUSIPCO). IEEE, 2174–2178.

[19] Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. 2018.

Byzantine-robust distributed learning: Towards optimal statistical rates. In Inter-
national Conference on Machine Learning. PMLR, 5650–5659.

[20] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved deep

leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).
[21] Chunyi Zhou, Yansong Gao, Anmin Fu, Kai Chen, Zhiyang Dai, Zhi Zhang,

Minhui Xue, and Yuqing Zhang. 2022. PPA: Preference Profiling Attack Against

Federated Learning. arXiv preprint arXiv:2202.04856 (2022).
[22] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep Leakage from Gradients. In

Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran

Associates, Inc.

A PROOF OF PROPOSITION 1
Proof. In the binary classification problem, the negative log

likelihood of the observed data with respect of parameters 𝜽⊤ =[
w⊤ 𝑏

]
is the cross-entropy loss function routinely considered for

classification schemes as discussed in Section 3. This can be written

as

𝐿(𝜽) = − 1

𝑁

∑︁
𝑖

𝑒𝑖 ln𝜎
(
w⊤𝒉𝑖 + 𝑏

)
+ (1 − 𝑒𝑖) ln

(
1 − 𝜎

(
w⊤𝒉𝑖 + 𝑏

))
(44)

The weight update for 𝑏 after a single iteration of full-batch

gradient descent can be expressed as

Δ𝑏 = 𝑏1 − 𝑏0 = −𝜂
𝜕𝐿(𝜽)
𝜕𝑏

= − 𝜂
𝑁

∑︁
𝑖

𝜎

(
(w0)⊤𝒉𝑖 + 𝑏0

)
− 𝒆𝑖 .

Since all weights for the last layer are initialized to zero in the

proposition,

w0 = 0 =⇒ 𝜎

(
(w0)⊤𝒉𝑖 + 𝑏0

)
= 𝜎 (𝑏0) ∀𝑖, (45)

thus, we get,

Δ𝑏 = −𝜂𝜎 (𝑏0) +
𝜂

𝑁

∑︁
𝑖

𝒆𝑖 (46)

rearranging (46) gives (10) and completes the proof. □

B PROOF OF PROPOSITION 2
Proof. The negative log-likelihood (cross-entropy) for themulti-

class classifier is

𝐿(𝜽) = − 1

𝑁

∑︁
𝑖

(𝒆𝑖)⊤ ln𝝈 (𝒛𝑖), 𝒛𝑖 = W⊤𝒉𝑖 + 𝒃 (47)

where 𝝈 refers to the softmax function applied at the output layer.

The gradient with respect to the bias 𝒃 is given by

∇𝒃𝐿(𝜽) =
1

𝑁

∑︁
𝑖

𝝈 (𝒛𝑖) − 𝒆𝑖 . (48)

When initialized withW0 = 0, the update Δ𝒃 = 𝒃1 − 𝒃0 from (48)

becomes

Δ𝒃 = −𝜂𝝈 (𝒃0) + 𝜂
𝑁

∑︁
𝑖

𝒆𝑖 (49)

Rearranging the equations above, we get (18) which completes the

proof. □

55

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c4ede56bbd98819ae6112b20ac6bf145-Paper.pdf

AISec ’22, November 11, 2022, Los Angeles, CA, USA Raksha Ramakrishna and György Dán

Table 3: US Census Model Architecture

Layer Size Activation function

(input) 104 × 1 -

Linear -1 32 × 104 none

Linear -2 16 × 32 none

Linear -3 8 × 16 none

Linear -4 2 × 16 softmax

Table 4: MNIST Model Architecture

Layer Size Activation function

(input) 28 × 28 × 1 -

Conv 2D-1 3 × 3 × 1 × 8 ReLU

Maxpool-1 2 × 2 -

Conv 2D-2 3 × 3 × 8 × 16 ReLU

Linear 10 × 3136 softmax

Table 5: CIFAR-10 and CIFAR-100 Model Architectures.
CIFAR-100 has Linear-2 size 100 × 64

Layer Size Activation function

(input) 32 × 32 × 3 -

Conv 2D-1 5 × 5 × 3 × 32 ReLU

Maxpool-1 3 × 3 -

Conv 2D-2 5 × 5 × 32 × 32 ReLU

Maxpool-2 3 × 3 -

Linear -1 64 × 1568 ReLU

Linear-2 10 × 64 softmax

C A GENERIC LOCAL UPDATE
In the mini-batch update, a small batch of data is used to update the

parameters and this process is repeated until all the data samples

are incorporated in the update. Let 𝑗 = 1, 2, . . . 𝐽 index the batch

number and N𝑗 be the set of data samples in batch 𝑗 . Thus, there

are 𝐽 mini-batch updates. Update after a single iteration can be

written as

𝒃 𝑗+1 = 𝒃 𝑗 − 𝜂
∑︁
𝑖∈N𝑗

𝝈 (𝒛 𝑗
𝑖
) − 𝒆𝑖 , (50)

where 𝒛 𝑗
𝑖
= (W𝑗)⊤𝒉𝑖 + 𝒃 𝑗𝑘 (51)

A generic local update at a client with 𝐽 mini-batch updates per

epoch, 𝐸 epochs and weights not initialized to zero is given by

𝒃𝑡+1
𝑘

= 𝒃𝑡 − 𝜂
𝐸∑︁
ℓ=1

𝐽∑︁
𝑗=1

∑︁
𝑖∈N𝑗

𝝈 (𝒛 𝑗,ℓ
𝑖
) + 𝜂𝐸

∑︁
𝑖

𝒆𝑖 (52)

where 𝒛 𝑗,ℓ
𝑖

= (W𝑗,ℓ)⊤𝒉𝑖 + 𝒃 𝑗,ℓ𝑘 , and 𝒃𝑡+1
𝑘

= 𝒃 𝐽 ,𝐸
𝑘

. Note that the

adversary will have access to 𝒃𝑡+1
𝑘

since it is sent by the client to the

server. It also knows 𝒃𝑡 as it is sent by the server to all the clients.

However, the sum of softmax values over different mini-batches is

unknown to the adversary. The quantity of interest is

∑
𝑖 𝒆𝑖 .

D PROOF OF COROLLARY 2
Proof. Given the conditions 𝐸 = 1 and𝑾0 = 0, from proposi-

tion 2 it is clear that the initialized bias estimator, 𝒑̂init

𝑘,1
is the same

as in proposition 2. Thus, 𝒑̂init

𝑘,1
= 𝒑.

To prove that 𝒑̂soft-label

𝑘,1
= 𝒑 when 𝐸 = 1 and 𝑾0 = 0, in (33),

𝝈 (𝒛𝑐,aux) can be written as

𝝈 (𝒛𝑐,aux) = 𝝈 (𝒛𝑐,aux1) =
1

𝑁aux

𝑁aux∑︁
𝑖=1

𝝈 (𝒃0) = 𝝈 (𝒃0), ∀𝑐 (53)

Thus,

𝐶∑︁
𝑐=1

[𝒑]𝑐𝝈 (𝒛𝑐,aux) = 𝝈 (𝒃0)
𝐶∑︁
𝑐=1

[𝒑]𝑐 = 𝝈 (𝒃0) (54)

Then, the estimator from (33) is

𝒑soft-label

𝑘,1
=

1

𝜂
𝒃1
𝑘
− 𝒃0 + 𝝈 (𝒃0) = 𝒑, (55)

which proves that 𝒑soft-label

𝑘,1
= 𝒑 under the said conditions.

Now, to prove that 𝒑̂
grad

𝑘,1
= 𝒑 when 𝐸 = 1 and𝑾0 = 0, from (35)

we get

𝒃1
𝑘
− 𝒃0 =

𝐶∑︁
𝑐=1

[𝒑]𝑐 (𝒃1𝑎𝑢𝑥,𝑐 − 𝒃0) (56)

Now, 𝒃1𝑎𝑢𝑥,𝑐 can be written as

𝒃1𝑎𝑢𝑥,𝑐 = 𝒃0 − 𝜂

𝑁aux

𝑁aux∑︁
𝑖=1

𝝈 (𝒛𝑖,𝑐) − 𝒆𝑐 , (57)

where 𝒆𝑐 refers to the coordinate vector (one-hot vector) corre-

sponding to class 𝑐 . From the initial conditions, as in proposition 2,

we have 𝒛𝑖,𝑐 = 𝒃0 ∀𝑖,∀𝑐 . Then, we can write (57) as

𝒃1𝑎𝑢𝑥,𝑐 = 𝒃0 − 𝜂𝝈 (𝒃0) + 𝜂𝒆𝑐 (58)

Now, (56) becomes

1

𝜂
(𝒃1
𝑘
− 𝒃0) =

𝐶∑︁
𝑐=1

[𝒑]𝑐 (𝒆𝑐 − 𝝈 (𝒃0)) =
𝐶∑︁
𝑐=1

[𝒑]𝑐𝒆𝑐 − 𝝈 (𝒃0)
𝐶∑︁
𝑐=1

[𝒑]𝑐

(59)

=

𝐶∑︁
𝑐=1

[𝒑]𝑐𝒆𝑐 − 𝝈 (𝒃0) (60)

The last equality is obtained since

∑𝐶
𝑐=1 [𝒑]𝑐 = 1. Also, note that∑𝐶

𝑐=1 [𝒑]𝑐𝒆𝑐 = 𝒑 by definition. Thus, rearranging (60) we get (39).

□

56

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Adversarial Model and Privacy
	3.2 Analytic Example: Federated Logistic Regression

	4 Class-Label Distribution Inference for Neural Network Classifiers
	4.1 Exact Inference for Neural Network Classifiers
	4.2 Non-exact Inference for Neural Network Classifiers

	5 Estimators for class-label distribution
	5.1 Inference using initialized bias
	5.2 Inference using approximated softmax output
	5.3 Inference using approximated gradient
	5.4 Inference using weights from the last layer

	6 Numerical Results
	6.1 Estimation performance
	6.2 The case of exact inference
	6.3 Random oversampling as a countermeasure
	6.4 Addressing class imbalance in federated learning using class-label distribution estimate

	7 Conclusion
	Acknowledgments
	References
	A Proof of Proposition 1
	B Proof of Proposition 2
	C A generic local update
	D Proof of Corollary 2

