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ABSTRACT
While vulnerability research often focuses on technical findings

and post-public release industrial response, we provide an anal-

ysis of the rest of the story: the coordinated disclosure process

from discovery through public release. The industry-wide ‘Trojan

Source’ vulnerability which affected most compilers, interpreters,

code editors, and code repositories provided an interesting natural

experiment, enabling us to compare responses by firms versus non-

profits and by firms that managed their own response versus firms

that outsourced it. We document the interaction with bug bounty

programs, government disclosure assistance, academic peer review,

and press coverage, among other topics. We compare the response

to an attack on source code with the response to a comparable at-

tack on NLP systems employing machine-learning techniques. We

conclude with recommendations to improve the global coordinated

disclosure system.
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1 INTRODUCTION
Following the discovery of a vulnerability that affected most lan-

guages, code editors and repositories, we began an industry-wide

coordinated disclosure. The vulnerability, the Trojan Source attack,

enables the code seen by a human reviewer to differ from that seen

by a compiler or interpreter [1]. This paper describes the real-world

experience of trying to get this vulnerability fixed.
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As the global software supply chain continues to increase in com-

plexity, the ability of software maintainers to respond effectively

to vulnerabilities with broad impact becomes ever more important.

In 2021 we had two high-profile examples: the Log4j vulnerability

which enabled easy remote code execution across a significant por-

tion of the global production ecosystem [2], and the SolarWinds inci-

dent which allowed APT backdoor access to the production systems

of thousands of firms and dozens of government departments [3].

Improving the ability of the industry to respond to threats quickly

and cohesively across organizations is so important to the secu-

rity of critical national infrastructure that the US White House has

called attention to the protection of the software supply chain [4].

The exceptionally broad scope of the Trojan Source vulnera-

bility meant that its disclosure provided a natural experiment to

explore the global coordinated disclosure system, the reporting

tools currently available to security researchers, the financial in-

centives of bounty programs, the process for security engagement

with the open source community, and the challenging interplay of

large-scale coordinated disclosure with peer-reviewed publication.

In this paper, we make the following contributions:

• We present a real-world evaluation of the coordinated dis-

closure system via a unique case study.

• We empirically compare the responses to disclosures from

subgroups within the industry.

• We document which methods and tools succeeded or failed

in the disclosure process.

• We recommend specific, tactical changes to improve the

global coordinated disclosure system.

2 THE VULNERABILITY
In this section, we will briefly describe the Trojan Source vulnera-

bility. For a more detailed presentation, we refer to the technical

paper describing the attack [1].

Unicode is a text-encoding standard aiming to capture all global

character sets into a single specification [5]. Most text, whether in

documents, websites, or source code files, is now represented as

Unicode.

As a consequence of its broad linguistic support, Unicode sup-

ports a wide range of control characters and special symbols. In

particular, it supports both left-to-right and right-to-left text where

the display order is set by the standardized Bidirectional Algo-

rithm [6]. The specification also defines control characters that

allow fine-grained control of text display directionality. This means

that the logically encoded order of text and its visual display order
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Figure 1: Example of a Trojan-Source Attack in Cwhere control
character are visualized in color [1].

Figure 2: Example of a Trojan-Source Attack in C as rendered
to users [1].

can differ, in ways that adversaries can exploit. Such attacks had al-

ready been discussed in the context of natural-language processing

(NLP) systems based on machine learning (ML) [7].

In the Trojan Source attack, adversaries use bidirectional (‘bidi’)

control characters to modify the display order of characters in

source code, so that the logic seen by human code reviewers differs

from the logic seen by the compiler or interpreter. In a nutshell, ad-

versaries use bidi control characters to anagram adversarial source

code so that it appears to be benign.

To smuggle malicious control characters into source code, ad-

versaries can place them into comments and string literals. The

key insight is that the reordered characters can display statements

with valid syntax in order to deceive code reviewers. An example

is given in Figure 1, where the underlying source code encoding as

seen by the compiler is visualized such that RLO sets right-to-left,
LRI sets left-to-right, and PDI resets directionality. Figure 2 shows

how this same code is deceptively rendered to human viewers.

There are two further variants of the attack. The second version

uses homoglyphs, characters that look similar but are distinct. If an

adversary defines a Trojan function in an upstream dependency that

uses homoglyphs to appear visually identical to another function,

they can implement adversarial logic in that function and then

deceptively call the Trojan function in a downstream project.

For example, imagine defining a function called print, but where
the p is actually the Cyrillic character р1. This new function рrint
could be defined to implement adversarial behavior. If this Trojan

function is defined in a package that gets imported into a program’s

global namespace, an adversary need only make a pull request on

the downstream code that references the Trojan function name.

The third and final version of this attack uses invisible charac-

ters – characters that render to the absence of a glyph – to spoof

multiline comments. Consider C-style comments which start with

/* and are terminated with */. An adversary can place an invisible

character such as the Zero-Width Space (ZWSP)
2
between the *

and / character to prevent a compiler from terminating a multiline

comment. Thus, although a comment might appear to a code re-

viewer to terminate, it actually extends across several lines until

the next unperturbed */ sequence.
These techniques all enable an adversary to write vulnerabilities

into source code files at the encoding level. These vulnerabilities

are invisible to humans viewing source code, unless they are using

a tool that will somehow alert them, or block the techniques. The

ability to hide vulnerabilities in plain sight is particularly valuable

1
Unicode character U+440

2
Unicode character U+200B

for supply chain attacks. Many critical systems depend on compo-

nents maintained in open-source projects, to which anyone can

contribute, and where the main defense against malicious code

contribution is human source code review.

3 DISCLOSURE
A broad timeline of the Trojan Source coordinated disclosure pro-

cess is shown in Figure 5. We will now walk through the process in

more detail.

3.1 Initial Disclosures
We first identified Trojan Source attacks on June 26, 2021, largely

building on previous work in adversarial natural language pro-

cessing [7], which we adapted to compilers. After implementing a

series of proofs of concept, we found that our attack pattern worked

against almost every modern language we tested, including C, C++,

C#, JavaScript, Java, Rust, Go, and Python. We also discovered that

the attacks did not trigger any visual alarms in the most common

code editors or in the web frontends to online code repositories.

Any combination of a vulnerable language and a vulnerable editor

or viewer could potentially allow an exploit.

We felt obliged to notify the owners or maintainers of each prod-

uct in which we observed the vulnerability. We therefore wrote a

two-page summary of the attack, including a variety of mitigation

techniques, and sent it to 13 companies and open-source organiza-

tions over the 11-day period between July 25th and August 4th.

The recipients used a variety of different platforms for receiving

disclosures, whichwe illustrate in Figure 3. The disclosure platforms

were divided between five outsourced platforms and eight self-

hosted tools, of which four involved a web form, three asked for

PGP-encrypted email and one requested plaintext email.

3.2 Outsourced Platforms
Of the five initial recipients who used an outsourced platform, four

used HackerOne [8] and one used BugCrowd [9]. These platforms’

business model is to collect incoming vulnerability reports and

triage them according to an agreed scope before sending them to

the client company. They also handle the mechanics of paying bug

bounties, and companies that want one of their systems tested can

use them to advertise bounties to security researchers who work

with their platform.

Our experience with these platforms was mixed. Initial responses

to disclosures tended to be fast, often resulting in a reply within

a few hours. However, the quality of responses tended to be low,

with many reports closed quickly as non-threats.
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Figure 3: The disclosure platforms used for the initial set of
disclosures

We learned that these platforms focus on the identification of

well-known vulnerability patterns such as buffer overflows and

cross-site scripting that are easily demonstrated. However, they

perform poorly with novel threats that do not fit the usual patterns.

One engineer later remarked to us that the platforms operate ac-

cording to scopes defined by their customers, and that defining a

scope for vulnerability reporting can be hard. As a result, novel

vulnerabilities are likely to be dismissed.

We found one way past this problem: to request on the platform’s

discussion board that the disclosure be reviewed by a full-time

employee of the client company. This usually cut through, and

once our reports were reviewed by client company staff they were

typically identified as relevant. This phenomenon was not unique

to outsourced platforms, though – on multiple occasions we found

that disclosures to companies who hosted their own reporting tools

were stalled or ignored. Our strategy then was to reach out to pre-

existing contacts in the affected company and ask them to look at

the case. This would usually result in progress. Presumably some

firms that run their disclosure systems internally also have scope

restrictions for their first responders.

3.3 Bug Bounties
Many companies have bug bounty programs that offer money for

the embargoed disclosure of vulnerabilities. We noticed a corre-

lation between having a bug bounty program and using an out-

sourced disclosure platform (r=0.65, n=19). Another strong indicator

of whether a bug bounty would ultimately be paid was whether

the receiving organization was a commercial firm rather than a

nonprofit open-source project (r=0.46, n=19).

Of the 13 organizations to which we made an initial disclosure,

nine had bug bounty programs. Of these, five paid bounties in the

amounts of $1,337, $525, $1,370, $5,000, and $3,000 USD, totaling

$11,232.

After we sent the initial round of disclosures, the known impact

grew and we sent additional disclosures to other organizations. Two

of the new recipients had bounty programs, but neither of them

Figure 4: Amounts paid by each bug bounty program submis-
sion

ultimately paid anything. We graph the amounts paid for bounty

submissions in Figure 4.

Two of the five organizations that ultimately paid had initially

declined a payment. We received multiple messages in response

to our disclosures stating that the disclosures didn’t align with the

recipient’s bounty payment program. This is understandable in

terms of what we learned about internal scoping. In two of these

cases, recipient company staff eventually agreed a modest payment.

3.4 CERT/CC
The US CERT Coordination Center (CERT/CC) is CISA-backed,

CMU-housed institute which provides support for coordinated dis-

closures [10]. Security researchers can request the assistance of

CERT/CC for circulating broad, embargoed disclosures across an

affected ecosystem.

We asked for assistance with the coordinated disclosure of Trojan

Source attacks fromCERT/CC on September 9, 2021. It was accepted

on the same day, giving us access to a tool called VINCE, a shared

message board that can be used for cross-organization communica-

tion. It also provided a central location for us to upload vulnerability

descriptions, proofs-of-concept, and vulnerability identifiers.

VINCE provides a platform through which affected vendors can

communicate directly with each other, and had been requested

by some of the disclosure recipients for coordinating mitigation

efforts. It was also helpful to us, as it enabled us to monitor a single

location rather than tracking a growing number of email threads

and web-based tools. Even with the thirteen disclosures sent in our

initial outreach, responding to questions and tracking discussion

threads quickly became a multi-week, full-time job.

CERT/CC also added additional vendors to the VINCE case, bring-

ing our total number of advance disclosures to 19.

One downside of using CERT/CC to coordinate disclosure is

that companies typically do not pay bounties for vulnerabilities

notified through this channel. This creates an incentive for security

researchers to either notify bug-bounty vendors earlier than the rest

of the affected ecosystem, or to exclude them from initial VINCE

disclosures while claiming bounties in parallel.
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Figure 5: Trojan Source discovery, disclosure, and release
timeline

3.5 Open Source Disclosures
Sharing embargoed vulnerability disclosures with open-source soft-

ware maintainers is not always straightforward. Some teams expect

issues to be raised in public on GitHub or other open platforms.

Some projects have an established process for confidential dis-

closure; examples include the Rust and LLVM projects. However,

GCC – GNU’s immensely popular C/C++ compiler – does not at the

time of writing advertise any method to send embargoed security

reports.

We found that an effective way of getting through to such

projects is via commercial open-source operating systems such

as Red Hat. These organizations employ significant contributors to

most critical open-source projects, and have an interest in ensuring

that the open-source ecosystem is patched quickly. If a researcher

sends a disclosure to, and requests assistance from, such a company,

its employees can write patches privately for affected software and

release them when the vulnerability is publicly disclosed.

One other key resource in ensuring pre-release preparation

among the open-source community is the distros mailing list [11].

This closed list is read by maintainers of most major Linux operat-

ing systems. It is willing to accept embargoes of up to 14 days in

length, after which time the disclosures must be made public. This

ticking clock is a helpful tool to nudge teams to install patches, or

to pre-brief them on anticipated patch releases.

3.6 CVEs
CVEs (Common Vulnerabilities and Exposures) are universal iden-

tifiers that provide common references for discussing vulnerabili-

ties [12]. We requested two CVEs for different variants of the Trojan

Source attack on October 18, 2021. They were issued on the same

day: CVE-2021-42574 and CVE-2021-42694.

CVEs are issued by CVE Number Authorities, or CNAs. Since

many of our disclosure recipients were CNAs, we had initially

hoped that one or more would issue a CVE for us. This did not

happen.With hindsight, it is understandable that firms are reluctant

to attach their brand to ecosystem-wide vulnerabilities.

Thankfully, MITRE – the organization sponsoring the CVE pro-

gram – acts as the “CNA of Last Resort”. We therefore requested

CVEs from them directly against the Unicode Specification in the

hope of motivating recipients to pay attention to our disclosures.

We were surprised at the speed and simplicity of the process: one

need only send a properly formatted email to a dedicated mail-

box, and a CVE number is sent back shortly thereafter. MITRE

does not appear to take a view on whether something is indeed a

vulnerability.

Our CVEs were helpful in motivating the disclosure process;

we noticed a clear increase in attention after appending them to

existing threads. This is slightly surprising given how easy CVEs

are to get.

3.7 Ecosystem Scanning
During the coordinated disclosure process we were curious to learn

if Trojan Source techniques were already being used in the wild.

We initially tried out a variety of different ecosystem code search

tools we found online, and although we found no signs of exploita-

tion, we had low confidence that they indexed the relevant control

characters well enough to identify the directionality attack.

We therefore partnered with GitHub to scan their backend for

public repositories containing indicators of a directionality control

character attack. This involved us providing a regex to GitHub, after

which they performed the scan and sent us the results. We found

some evidence of adversarial use of directionality control characters,

specifically in crafting misleading smart contracts, but we did not

find any use of the techniques described in our disclosures.

The Rust team also volunteered to scan their package index,

crates.io, for the attacks, and did not find any indications of the

attack pattern in their results.

4 PUBLIC RELEASE
We publicly released information about the Trojan Source attacks

on November 1, 2021 at 0:00 UTC. We now describe the release

process, media coverage, and patches.

4.1 Website
Our primary public releasemethodwas awebsite

3
whichwe launched

at midnight UTC on November 1st. This website hosted a copy of

3
trojansource.codes
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Figure 6:Website launched for public release of Trojan Source

our technical paper, a summary of the attack, and a link to proofs

of concept published simultaneously on GitHub. A screenshot of

the site can be seen in Figure 6.

We tracked access to the site using a GDPR-compliant analytics

tool [13] which logged 42,453 views by 38,888 unique visitors in the

first 48 hours. At the time of writing, just under four months later,

the site has been viewed 106,697 times by 92,762 unique users. Dur-

ing the same period, the GitHub repo has received 1,071 stars. The

combination of a website, technical paper, and proofs-of-concept

has become the standard way of disclosing vulnerabilities of sys-

tematic interest; we suspect that without the websites, significantly

fewer people would read the technical papers.

4.2 Press Coverage
Two days prior to public release, we sent a draft of the Trojan

Source paper to the authors of two security blogs and one tech news

site. Krebs on Security was the first to write about the attack [14],

followed shortly by Schneier on Security [15]. Press coverage fol-

lowed from The Register [16], Gizmodo [17], ZDNet [18], Computer

Weekly [19], Bleeping Computer [20], LWN [21], and many others.

We also wrote a post linking to the website and paper on our

laboratory’s blog [22] and tweeted it. Based on web referrers logged

by our website analytics, Twitter was the most common discovery

path followed by our blog post. Eventually, YouTube, Google, and

GitHub joined the list of top referrers.

We were later contacted by two computer security podcasts –

DevNews [23] and Cyberwire [24] – inviting us to discuss the work

on their shows, which we did.

4.3 Patches
The Trojan Source attack can be mitigated at multiple stages in the

software development pipeline including compilers/interpreters,

code editors, and code repository web front ends. To simplify dis-

cussion, we may refer to the first of these as ‘the language’ and the

last two as ‘the editor’. Static code analysis tools can also play a

role in mitigation.

The fact that the attack can be blocked by either the language or

the editor opens up the possibility of blame shifting. A language

team that can’t be bothered to patch can blame the editor, while

Figure 7: Trojan Source mitigations patched in the GitHub
web UI

the maintainers of an editor can similarly claim that vulnerable

languages should be fixed instead.

In response to our disclosures, a wide array of software was

patched in parallel with the public release of the attackmethodology.

In the following sections, we describe each public patch.

4.3.1 Code Repositories. Three code repositories released patches

to defend against Trojan Source attacks. The most prominent,

GitHub, updated their web-based UI with mitigations and pub-

lished a security advisory [25]. Their mitigations draw attention

to bidirectional overrides by displaying a warning banner, a link

to guidance, a warning symbol on the affected line, and option-

ally a visualization of the bidi character code points. No defenses

appear to have been deployed, though, for the homoglyph and

invisible-character variants of the attack.

Bitbucket, a web-based code repository produced by Atlassian,

also released an advisory and deployed patches [26]. Bitbucket now

displays directionality control characters as Unicode code points by

default; it does not, however, display any other warning messages.

Nor does it have any defenses for the homoglyph and invisible-

character variants.

GitLab, another web-based code repository, also published an

advisory and released a patch [27]. Their defense displays all bidi

characters as the ■? symbol with a red underline. GitLab is the one

repo front-end to provide a defense against homoglyph attacks: it

highlights suspect homoglyphs in red. Here too, invisible characters

remain invisible.

4.3.2 Code Editors. Four code editors also deployed patches to

defend against Trojan Source attacks. Visual Studio Code patched

the UI [28] so that bidi control characters are rendered as code

points and highlighted in red as in Figure 8. Suspect homoglyphs

are also highlighted by rendering a yellow box around them.

Another code editor that released a patch was Emacs, which now

highlights any suspected adversarial use of bidirectional control

characters [29].

Two other code editors, Visual Studio and Sublime Text, now sim-

ply ignore directionality control characters in source code, which

could be considered a partial mitigation.

4.3.3 Compilers. We argued in our technical paper that the most

robust place to defend against Trojan Source attacks is in program-

ming language specifications, as requirements there specified are

guaranteed to be implemented by language-compliant compilers

and interpreters. However, not all languages have formal specifica-

tions, and even for those that do it may be prudent to have interim
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Figure 8: Trojan Source mitigations patched in Visual Studio
Code

defenses in the form of compiler errors or warnings, as specification

changes can take a long time to be agreed and implemented.

Of the compiler teams that we contacted, the Rust team was both

eager to implement defenses and one of the most helpful teams

to work with. Rust published a security advisory and compiler

update in parallel with our public release of the attack [30]. The

Rust compiler patch included a default-enabled warning identify-

ing directionality control characters, which we show in Figure 9.

Interestingly, the Rust compiler already had mitigations to warn

against the homoglyph variant of the attack.

GCC, a common C and C++ compiler produced by GNU, took

a similar approach to Rust and later launched a default-enabled

warning -Wbidi-chars that sounds an alarm for suspected Trojan

Source attacks [31].

Julia, a high-performance scientific language, followed the rec-

ommendation in our technical paper and disallowed unterminated

bidirectional control characters in comments and string literals [32].

As Julia was not a recipient on our embargoed disclosure list, their

action illustrates the benefit of public disclosure.

LLVM, the system underlying the alternate common C and C++

compiler clang, took a slightly different approach: rather than

adding errors in the compiler itself, the project maintainers added

checks to the accompanying linter clangtidy. These checks pro-
vide alerts both for directionality and homoglyph attacks, and were

announced in a dedicated security advisory [33]. This is a helpful

partial mitigation, but it will only benefit users that run clang-tidy
in addition to clang.

Not all compiler teams agreed with implementing mitigations,

however. Java was a key outlier in their response to Trojan Source

attacks. Oracle, the maintainers of Java, provided the following

response to our disclosure:

This report is not about a bug in Java as such, but

rather about a code constructed in such a way it may

confuse reviewers, to allow exploits to be sneaked into

other projects. While we would encourage review and

similar tools to employ heuristics to detect suspicious

constructs, whether or not presented in this bug, the

Java team does not provide review tools, and hence

the ability to help with this problem from the Java

platform is limited.

The issue was subsequently closed as “Not a Bug”. Other lan-

guages, such as Node.js, also considered these attacks not a bug,

Figure 9: Trojan Source warning in Rust compiler

but often with additional justification. Node.js, for example, calls

out the challenges in alerting for errors of this kind in interpreted

languages. Unlike statically compiled languages, the error will not

be detected until runtime and is therefore more likely to cause prob-

lems in the case of false positives. Due to this, Node.js recommends

that their users use code scanning tools to detect these attacks.

Other compiler teams were less committal. Python indicated

that Trojan Source attacks may be tackled in future versions of the

language [34], and we did not receive any commitments from Go

or C#.

4.4 Conference Submissions
During the coordinated disclosure period, we submitted a paper

describing Trojan Source attacks to the 43rd IEEE Symposium on

Security and Privacy. However, the date for public release that we

had already negotiated amongst disclosure recipients and commit-

ted to fell during the review cycle for the conference submission.

According to conference submission rules, “authors may choose

to give talks about their work, post a preprint of the paper to an

archival repository such as arXiv, and disclose security vulnerabil-

ities to vendors. Authors should refrain from widely advertising

their results, but in special circumstances they should contact the

PC chairs to discuss exceptions” [35].

Although the conference rules permit disclosure of security vul-

nerabilities, we sought written permission from the program com-

mittee chairs to publish information about the attack when it was

publicly released, thus ensuring compliance with publicity restric-

tions. This permission was granted; one of the conference chairs

confirmed that since our public release was scheduled following

the rebuttal period it should not interfere with the review process.

To our surprise, the paper was rejected despite initial reviews

that were much more positive than those for another paper that

was accepted at the same conference. The reviewers gave breaking

anonymity via publicity as one of the reasons for rejection, and also

referenced URLs of online discussions in their rejection showing

that they had personally read the coverage. We appealed the re-

jection to the program committee chairs, citing their prior written

approval to release the paper on the specified date, to which we

received a reply that their approval had been a mistake.

4.5 Unicode Working Group
Following the publication of Trojan Source, the Unicode Consor-

tium announced the formation of a working group to address the

issues raised by Trojan Source attacks [36]. We have been contacted

by the working group with various questions, and expect that a
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future version of the Unicode Specification will provide guidance

to help mitigate Trojan Source attacks.

Indeed, we suspect that the long-term fix for Trojan Source at-

tacks will be driven from changes to the Unicode specification. Uni-

code already provides security guidance for some aspects of source

code, such as the characters that should be considered permissible

for identifiers in code. Adding similar guidance for directionality

override characters and documenting methods to identify homo-

glyph and invisible character-based attacks should go a long way

in solving the issue. Guidance in the Unicode Specification is likely

to be adopted downstream by language specifications, and this in

turn is likely to be implemented by maintainers of compilers and

interpreters. However this is the slow boat, and may take several

years to work its way round the world.

In the meantime, many languages remain vulnerable, so miti-

gations in editors and code-scanning tools will remain essential

for any critical project to which adversarial contributions are only

blocked by human code review. In an ideal world, such projects

would use a defense-in-depth strategy: vulnerabilities that cross

domain boundaries along a tool chain or a supply chain, such as

Trojan Source, should ideally be mitigated at more than one point

in the chain.

5 DISCUSSION
5.1 Historical background
Vulnerability disclosure has been a topic of interest for twenty

years now. In 2002 Jean Camp proposed vulnerability markets,

which emerged shortly afterwards [37]. 2004 saw a debate between

Eric Rescorla, who argued on the basis of data from 1988-2003

that disclosing vulnerabilities publicly rather than privately did

not obviously lead to more rapid vulnerability depletion [38], and

Ashish Arora who argued that the improved incentive for bug

fixing tipped the balance in favour of public disclosure, albeit after

a delay [39]. The following year, Andy Ozment published a paper

with data on the likelihood of vulnerability rediscovery, showing

that the rate of vulnerability discovery in OpenBSD was declining

over time [40]; at the same workshop, Ashish Arora and colleagues

had data showing that disclosure caused firms to patch significantly

more quickly [41]. The following year saw not just multiple models

of how patch management might work in theory, but also a paper

by Michael Sutton and Frank Nagle of iDefense, one of the first

firms to operate a vulnerability market, reporting how it worked in

practice [42].

By this time the argument in favour of responsible disclosure had

been won in the core of the tech industry, against both the open-

disclosure radicals (who favoured releasing all bugs anonymously

in public on lists such as bugtraq without giving firms a chance to

patch them), and the traditionalists of the defense establishment

and corporate legal departments (who wanted all disclosure to

be suppressed by the civil or even criminal law). This consensus

has not propagated everywhere; as late as 2013, Volkswagen sued

researchers at the universities of Birmingham and Nijmegen after

they responsibly disclosed a vulnerability in the car company’s

remote key entry system; but they lost the resulting court case [43].

The patching ecosystem became more adversarial after 2013

when the Stuxnet worm alerted governments to the potential use

of vulnerabilities in cyber-weapons, and firms emerged that bought

them for sale to government agencies and to cyber-arms manufac-

turers that work for governments. Competition from these exploit

acquisition firms has driven up the prices of zero-click vulnerabili-

ties in popular platforms such as Android and iOS into six and even

seven figures, compared with the four-to-five figures reported in

2006. This story is told by Nicole Perlroth [44].

Complexity has also increased thanks to the depth and breadth

of modern supply chains. A vulnerability in a widely-used platform

such as Linux, or a widely-used library such as OpenSSL, can force

thousands of firms to scramble to patch their products. Kiran Sridhar

and colleagues analyse the metadata of 434k emails sent through

CERT/CC since 1993 about 46k vulnerabilities to devise the patterns;

vulnerabilities further up the supply chain take longer to coordinate,

and those affecting more vendors require more communication.

CERT/CC is also more likely to coordinate things where there is a

public exploit, or where there is no capable vendor willing to lead

the remediation effort.

5.2 Improving Disclosure Incentives
There is a direct financial benefit to all security researchers, whether

industrial, academic, or hobbyist, who submit vulnerabilities to bug

bounty programs. But not all vendors offer bounties, and those that

do are often spread across multiple platforms. They also typically

limit further disclosure while the issue is being repaired, which

can be in tension with coordinated disclosure, where the goal is to

inform many different entities.

In our case, we sent our disclosure to several bug bounty pro-

grams before discovering the centralized CERT/CC process. This

process can minimize time and maximize impact: researchers need

only disclose the vulnerability once, they receive staff assistance,

and they can answer follow-up questions in a single interface. How-

ever, a disclosure via CERT/CC is, to the best of our knowledge, not

eligible for the bug bounties offered by any major company.

Current programs thus provide the wrong incentives for supply

chain or broad-impact vulnerabilities. A rational, strategic actor

will submit many reports to separate bug bounty programs, rather

than engaging in widespread coordinated disclosure. This is bad

for everyone. Organizations without programs are less likely to

be able to build patches during an embargo period, while security

researchers will spend more time on communications and less on

research. Even companies that do offer bounties may be negatively

impacted if they consume software that goes unpatched.

We therefore recommend that all bug bounty programs should

include coordinated disclosures in their scope. Ideally, they would

not only reward, but actively encourage, the disclosure of cross-

organization vulnerabilities via shared channels or tools such as

CERT/CC. This would re-align incentives for disclosure, make better

use of existing tools, and enhance the technical security posture of

the software ecosystem.

5.3 Academic Publication
Most top computer science conferences use anonymous peer re-

view [45], though there is some variation in procedure; further,

some information about author identity will inevitably leak via

submitted artefacts, the citation of prior work, and from program
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committee members having seen talks about work in progress [46].

In the context of security research, the expectation that the burden

of anonymity falls mostly on authors impedes the effectiveness of

vulnerability disclosure.

Public release is the key component in vulnerability disclosure:

the countdown to disclosure pushes firms to repair their software

quickly. Advertising the vulnerability helps nudge users to install

patches or other mitigations, while also helping to flush out other

software that is impacted but was not initially patched. Unfortu-

nately, advertisement that is effective is likely to break anonymity.

Is it possible to achieve the ecosystem benefits of disclosure while

maintaining the scientific benefits of anonymous peer review? We

believe that the answer is yes. Rather than place the onus on authors

to ensure that reviewers don’t discover their identities online, it

should be the responsibility of reviewers to not seek out information

about the identities of authors. Reviewers should be asked to avoid

searching for online coverage of material in the papers they are

reviewing, and to disregard anything they think they recall. Authors

may be asked to anonymize their conference paper submissions

as far as is reasonably practical, but program committees should

refrain from gold-plating this requirement, and the responsibility

of keeping reviews anonymous should be shared sensibly with the

reviewers.

5.4 Machine-Learning Disclosures
Our work on Trojan Source Attacks was largely based on prior work

(with a different set of authors) in using Unicode perturbations to

attack machine-learning NLP models [7]. That work found that

nearly all text-based machine-learning models are vulnerable to

adversarial examples crafted using Unicode techniques such as

directionality overrides, homoglyph substitutions, and the injection

of invisible characters. These adversarial examples are crafted using

visually imperceptible perturbations; that is, an adversarial example

looks like a benign piece of text when displayed to a user, but its

encoding causes machine-learning models to output either low-

quality or adversarially targeted outputs during inference.

The authors of this prior work notified the companies and orga-

nizations producing the models they found they could break. They

also proposed defenses, ranging from deterministic pre-processing

of inputs to using optical-character recognition to map visual ren-

derings to consistent Unicode representations. Rather than submit-

ting these vulnerabilities to bug bounty programs, they just notified

contacts at the affected companies. It did not seem at the time that

machine-learning pipeline vulnerabilities would be considered in-

scope for bug bounty programs.

It has been over a year since contact was made with the affected

companies, and virtually no changes have been made. The one

exception is Google, which appears to have deployed an update to

its Google Translate model that makes it robust against homoglyph

substitutions and invisible character injections – although it is still

vulnerable to bidi control characters. Such vulnerabilities enable a

range of attacks on systems that process textual input. Hate speech

can be hidden from filters, search can be misdirected, and text

crafted so that automated translations are wrong in targeted ways.

More than a year after disclosure, the vulnerable systems are still

used at scale for a wide range of societally important tasks.

This points to a larger problem with bugs that cross the domain

boundary of two communities – here, the security and NLP com-

munities. Each community, even within a company, can be tempted

to blame the other, and expect someone else to fix the problem.

This is an obvious externality, and although we might normally

expect that externalities can be dealt with by firms that are large

enough to internalize them, this is largely not happening here. If

even single companies cannot identify and handle subtle vulnera-

bilities in machine-learning pipelines, this does not bode well for

wider ecosystems.

There are many possible reasons why ML/NLP systems might

not get patched as quickly, or at all. First, patches that involve

retraining a large model can take time and cost money. Second,

the culture of C programmers is very different from that of data

scientists; people who build operating systems expect that they’ll

have to ship patches quickly. Third, there are different expectations

of dependability. Fourth, these attitudes are reflected in the press;

there was much greater coverage of the Trojan Source vulnerability

on code than of the very similar Bad Characters attack on NLP. And

finally there’s a matter of maturity, of both the technology and the

market.

As traditional attacks like buffer overflows are supplanted by

more modern attacks such as adversarial examples [47, 48, 7], patch

management will get still harder. There is often disagreement about

what is considered a vulnerability, and it is unclear whether mit-

igations within organizations should be driven by traditional se-

curity teams or by machine-learning teams. As we depend more

and more on machine-learning components, we will have to es-

tablish shared definitions of vulnerabilities along with norms for

defense ownership. We will also have to embed security exper-

tise within machine-learning teams, and probably develop new

ways of engineering security end-to-end for systems that contain

machine-learning components.

5.5 Vulnerability Types
Vulnerability type is likely to affect the coordinated disclosure pro-

cess. In Section 3.2, we noted that novel vulnerability patterns are

less likely to garner engagement during the report recipient triage

process, and in Section 5.4 we noted that there is often disagree-

ment over what is considered a vulnerability in ML systems. We

believe that the experience of disclosing the single vulnerability in

this study is of wider interest, and that the literature will benefit

from additional studies published with experiences related to other

vulnerability patterns.

6 CONCLUSION
A vulnerability that affected almost all programming languages

and most editors, and which can still be used to insert malicious

code into any project that uses a combination of an unsafe program-

ming language and an unsafe editor, has provided an interesting

natural experiment in coordinated disclosure. Some versions of

the vulnerability have so far been fixed in most editors and some

programming languages. An analogous vulnerability in NLP-based

machine learning systems has not evinced a similar response, hav-

ing received only a partial fix in the offerings of a single service

provider. In this paper, we have described the tools, timeline, and
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stakeholders involved in the coordinated disclosure process, dis-

cussed their response and analyzed the outcomes. We have also

made some recommendations to improve the system.

Vulnerability research tends to focus on technical findings and

on the actual repairs needed to software systems, and even in the

security-economics community, most attention has been given to

the post-release period of disclosures. Yet there is real potential for

practical improvement in the disclosure process from research on

the often cloaked, pre-public phase of vulnerability disclosure, and

on the incentives facing the various actors in the modern world

of bug bounties and outsourced platforms. This will become ever

more important as more and more disclosures are coordinated

across multiple actors in complex supply chains.
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