Check for
Updates

Enhancing Video Analytics Accuracy via Real-time Automated
Camera Parameter Tuning

Sibendu Paul
Purdue University
West Lafayette, USA

Murugan Sankaradas
NEC Laboratories America, Inc.
New Jersey, USA

Kunal Rao
NEC Laboratories America, Inc.
New Jersey, USA

Oliver Po
NEC Laboratories America, Inc.
San Jose, USA

Giuseppe Coviello
NEC Laboratories America, Inc.
New Jersey, USA

Y. Charlie Hu
Purdue University
West Lafayette, USA

Srimat Chakradhar
NEC Laboratories America, Inc.
New Jersey, USA

ABSTRACT

In Video Analytics Pipelines (VAP), Analytics Units (AUs) such as
object detection and face recognition running on remote servers
critically rely on surveillance cameras to capture high-quality video
streams in order to achieve high accuracy. Modern IP cameras come
with a large number of camera parameters that directly affect the
quality of the video stream capture. While a few of such parameters,
e.g., exposure, focus, white balance are automatically adjusted by
the camera internally, the remaining ones are not. We denote such
camera parameters as non-automated (NAUTO) parameters. In this
paper, we first show that environmental condition changes can
have significant adverse effect on the accuracy of insights from
the AUs, but such adverse impact can potentially be mitigated by
dynamically adjusting NAUTO camera parameters in response to
changes in environmental conditions. We then present CAMTUNER,
to our knowledge, the first framework that dynamically adapts
NAUTO camera parameters to optimize the accuracy of AUs in a
VAP in response to adverse changes in environmental conditions.
CAMTUNER is based on SARSA reinforcement learning and it in-
corporates two novel components: a light-weight analytics quality
estimator and a virtual camera that drastically speed up offline RL
training. Our controlled experiments and real-world VAP deploy-
ment show that compared to a VAP using the default camera setting,
CaMTUNER enhances VAP accuracy by detecting 15.9% additional
persons and 2.6%-4.2% additional cars (without any false positives)
in a large enterprise parking lot and 9.7% additional cars in a 5G
smart traffic intersection scenario, which enables a new usecase of
accurate and reliable automatic vehicle collision prediction (AVCP).
CaMTUNER opens doors for new ways to significantly enhance
video analytics accuracy beyond incremental improvements from
refining deep-learning models.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SenSys ’22, November 6-9, 2022, Boston, MA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9886-2/22/11...$15.00
https://doi.org/10.1145/3560905.3568527

ACM Reference Format:

Sibendu Paul, Kunal Rao, Giuseppe Coviello, Murugan Sankaradas, Oliver
Po, Y. Charlie Hu, and Srimat Chakradhar. 2022. Enhancing Video Analyt-
ics Accuracy via Real-time Automated Camera Parameter Tuning In The
20th ACM Conference on Embedded Networked Sensor Systems (SenSys °22),
November 6-9, 2022, Boston, MA, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3560905.3568527

1 INTRODUCTION

Significant progress in machine learning and computer vision tech-
niques for analyzing video streams [32], along with the explosive
growth in Internet of Things (IoT), edge computing, and high-
bandwidth access networks such as 5G [15, 45], have led to the
wide adoption of video analytics systems. Such systems deploy
cameras throughout the world to support diverse applications in
entertainment, health-care, retail, automotive, transportation, home
automation, safety, and security market segments. The global video
analytics market is estimated to grow from $5 billion in 2020 to $21
billion by 2027, at a CAGR of 22.70% [21].

A typical video analytics system consists of a video analytics
pipeline (VAP) that starts with one or more surveillance cameras
capturing live feed of the target environment. These live feeds are
sent over a 5G network to servers at the edge of the 5G network
where one or more analytics units (AUs) such as object detection,
face detection, and face recognition use deep learning models to
mine valuable information in the live video streams, as shown in
Figure 1. These AUs critically rely on the cameras to capture high-
quality real-time video streams in order to achieve high accuracy.

Modern IP cameras come with and expose a large number of
camera parameters that direcly affect the quality of the video stream
capture. While a few of such parameters, e.g., exposure, focus, white
balance are automatically adjusted by the camera internally, the
remaining camera parameters are not. We denote such camera
parameters as non-automated (NAUTO) parameters.

In this paper, we first show that as the environmental conditions
around the cameras change, the quality of video frames captured by
the cameras also changes, and this can adversely affect the accuracy
of insights derived by the analytics units. In our experiments, we
kept all automatic parameter setting features turned on and thus

Corrected Version of Record. V.1.1. Published March 26, 2024.

https://doi.org/10.1145/3560905.3568527
https://doi.org/10.1145/3560905.3568527
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3560905.3568527&domain=pdf&date_stamp=2023-01-24

SenSys ’22, November 6-9, 2022, Boston, MA, USA

Device | Edge Cloud
Camera : ’
Camera parameters

8

Image (« ')))9 AUs N
Processing (face, person..)

L |8

Image
Sensor data

RAW ‘—»

Optics Sensor

Figure 1: Video analytics pipeline.

our experiments show that those automatic settings are not enough
to adapt to different environments for better analytics accuracy

Next, we experimentally show that by (manually) dynamically
adjusting a prominent set of NAUTO camera parameters, in par-
ticular, four image appearance parameters including brightness,
contrast, color-saturation (also known as colorfulness), and sharp-
ness, which are available in both PTZ and non-PTZ cameras, it is
possible to mitigate the potential loss in accuracy due to adverse
environmental changes. We chose these NAUTO parameters in
our study because they not only directly affect image qualities and
hence AU accuracy but also are challenging to tune due to their
large ranges of values.

Since streaming video analytics systems operate around the
clock (24 hours a day, seven days a week), it is not practical for
humans to manually adjust tens of configurable camera parameters
in real-time in response to every environmental change. Therefore,
we propose CAMTUNER, a system that detects and dynamically
adapts to the changes in environmental conditions by automat-
ically adjusting camera parameters in real-time to improve AU
accuracy. CAMTUNER uses online reinforcement learning (RL) [48]
to continuously learn good camera settings and update the camera
parameters to enhance the accuracy of the AUs in the VAP. In par-
ticular, CAMTUNER uses SARSA [52], which is faster to train and
achieves slightly better accuracy in our video stream processing
context than other popular RL approaches like Q-learning.

Although RL is a fairly standard technique, applying it to tuning
camera parameters in a real-time video analytics system poses two
unique challenges.

First,implementing online RL requires knowing the reward/penalty
for every action taken during exploration and exploitation. Since no
ground truth for an AU task like face detection is available during
the online operation of a VAP, calculating the reward/penalty due
to an action taken by an RL agent is a key challenge. To address this
challenge, we propose an AU-specific analytics quality estimator
that can accurately estimate the accuracy of the AU. Our estimator
is light-weight, and it can run on a low-end PC or a simple IoT
device to process video streams in real-time.

Second, bespoke online RL learning at each camera deployment
setup requires initial RL training, which can potentially take a long
time for two reasons: (1) capturing the environmental condition
changes such as the time-of-the-day effect can take a long time, and
(2) taking an action on the real camera (i.e., changing the camera
parameter setting) by using the APIs provided by the camera vendor
incurs a significant delay of about 200 ms. This limits the speed
of state transitions during RL exploration, and hence the training
speed of RL, to about 5 changes (actions) per second. To address
these two sources of RL training inefficiencies, we propose a novel
concept called virtual camera. A virtual camera mimics (in software)

Sibendu Paul, et al.

the effect of changing parameters of a physical camera to capture a
scene. There are two key benefits of doing this: (1) we can complete
an action of “camera setting change” almost instantaneously; and
(2) we can digitally augment a single frame captured by the real
camera to derive many new synthetically transformed frames, as
if we had physically captured many different frames of the same
scene by using a real camera at different environmental conditions
(i.e., time-of-day, lighting conditions, seasonal changes etc.). These
two benefits allow the RL agent to explore actions at a much faster
rate than possible in using a real camera. This drastically reduces
the RL training time required to develop a good, initial RL model,
which can then be further refined in a short period (adaptation
phase) after camera deployment.
Our paper makes the following contributions:

e We show that environmental condition changes can have

a significant negative impact on the accuracy of AUs in

video analytics pipelines, but the negative impact can be

mitigated by dynamically adjusting a set of NAUTO camera
parameters.

We develop, to our knowledge, the first system that auto-

matically and adaptively learns and tunes the set of NAUTO

camera parameters in response to unpredictable environmen-
tal condition changes to improve the accuracy of insights
from video analytics pipelines.

e We present two novel techniques that make the RL-based
camera-parameter-tuning design feasible: a light-weight AU-
specific analytics quality estimator that enables online RL
without requiring ground truth, and a virtual camera that
enables fast initial RL model training.

e We show that CAMTUNER improves AU accuracy in con-
trolled experiments and in real VAP deployment. In particu-
lar, in a real world deployment where two cameras deployed
side-by-side (one camera is managed by CAMTUNER, while
the other is not) are monitoring a large enterprise parking
lot, and the live video streams are carried over a 5G net-
work, the camera managed by CAMTUNER detected 15.9%
(146) additional persons (in a 5-minute span) during evening
hours, without any false positives. The camera managed by
CAMTUNER detected 2.6%-4.2% (861-881) additional cars (in
a 5-minute span) during morning and evening hours, again
without any false positives.

o Furthermore, by recording a real-world car accident scenario

at a traffic intersection (at one of our customer locations)

and by using VC to emulate frame captures at different times

of the day, the VAP with CAMTUNER reliably detected 9.7%

(122) additional cars (across the frames in a 1.5-minute span),

which dramatically improves the accuracy (and lead time)

of collision prediction.

We show that CAMTUNER incurs very low computation over-

head and CAMTUNER can be easily incorporated into VAPs

that are executing on low-end PC or IoT devices that are
directly attached to the camera.

2 BACKGROUND

Figure 1 also shows the image signal processing (ISP) pipeline
within a camera. Photons from the external world reach the image
sensor through an optical lens. The image sensor uses a Bayer

Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning

Table 1: Parameters exposed by popular cameras. Parameters
with “*” are auto-adjusted by the camera internally.

Camera Setting Parameters Video Stream Parameters
Brightness
sharpness Resolution
Image .
Appearance contrast Image Compression
PP color level Appearance Rotate image
Exposure Control*
Max Exposure Time GOP length
. Encoder
Exposure Exposure Zones . H.264 profile
. . Settings
Settings Max gain
IR cut filter”
Defog Effect Type of Use
Noise Reduction Bitrate Target Bitrate
Image e -
c i Stabilizer Control Priority
OITECton | Auto Focus Enabled*
White Type* Video Stream Max FPS
Balance window™ MJPEG Max frame size

filter [7] to create raw-image data, which is further enhanced by
a variety of image processing techniques such as demosaicing,
denoising, white balance, color-correction, sharpening and image
compression (JPEG/PNG or video compression using H.264 [5],
VP9 [4], MJPEG, etc.) in the image-signal processing (ISP) stage [46]
before the camera outputs an image or a video frame.

The camera capture forms the initial stage of the VAP, which
may include a wide variety of analytics tasks such as face detection,
face recognition, human pose estimation, license plate recognition
etc. (see Figure 1).

In this paper, we study video analytics applications that are based
on surveillance cameras. Such cameras are running 24X7 in contrast
to DSLR, point-and-shoot or mobile cameras that capture videos on-
demand. Popular IP video surveillance cameras are manufactured by
vendors such as AXIS [17], Cisco [13], and Panasonic [25]. These
surveillance camera manufacturers have exposed many camera
parameters via REST APIs which can be set by applications to
control the image generation process, which in turn affects the
quality of the produced image or video. The exposed parameters
include those for changing the amount of light that hits the sensor,
the zoom level and field-of-view (FoV) at the image-sensor stage,
and those for changing the color-saturation, brightness, contrast,
sharpness, gamma, acutance, etc. in the ISP stage. Table 1 lists
the parameters exposed by a few popular surveillance cameras in
the market today. Remotely changing the camera setting via the
exposed APIs, however, incurs a significant delay, e.g., about 200
ms on Axis Q1615, Axis Q3515, Axis Q6128-E and Axis Q3505 MK
I network camera.

While a few of these camera parameters, e.g., exposure, focus,
balance, are automatically adjusted by the camera internally, the
remaining camera parameters are not adjusted automatically. We
denote such camera parameters as non-automated (NAUTO) param-
eters.

In this paper, we focus our study on the four image appearance
camera parameters, denoted as I-A parameters in the rest of the pa-
per, which are widely available in both PTZ and non-PTZ cameras:
brightness, contrast, color-saturation (also known as colorfulness),

SenSys 22, November 6-9, 2022, Boston, MA, USA

and sharpness. We choose the above four NAUTO camera param-
eters in our study in this paper for two reasons: (1) they directly
affect the quality of the image which is essential to AUs which typi-
cally extract insights, e.g., face recognition, from individual frames;
(2) These parameters are more challenging to tune due to the large
range (for example, between 1 and 100 for each of the parameters on
Axis Q1615, Axis Q3515, Axis Q6128-E, Axis Q3505 MK II network
camera etc.) compared to other NAUTO camera parameters which
have either a few fixed settings or just a binary ON/OFF switch. Sev-
eral AUTO parameters, e.g., exposure and white-balance, affect the
raw capture before the four I-A parameters are applied in the ISP
stage. Thus, there is no mutual interference between those AUTO
and I-A parameters when analyzing the impact of I-A parameters
on capture quality.

3 MOTIVATION

We motivate the need for dynamically adjusting NAUTO camera
settings by experimentally showing the impact of environmental
changes on AU accuracy despite all the auto-setting features are left
on, and that tuning a set of NAUTO camera settings can improve
AU accuracy under the same environmental conditions.

3.1 Impact of Environment Change on AU
Accuracy

Environmental changes happen for at least three reasons. First,
such changes can be induced due to the change of the Sun’s move-
ment throughout a day, e.g., sunrise and sunset. Second, they can
be triggered by changes in weather conditions, e.g., rain, fog, and
snow. Third, even for the same weather condition at exactly the
same time of the day, the videos captured by the cameras at differ-
ent deployment sites (e.g., parking lot, factory, shopping mall, and
airport) can have diverse content and ambient lighting conditions.

To illustrate the impact of environmental changes on image qual-
ity, and consequently on the accuracy of AUs, we experimentally
measure the accuracy of two popular AUs (face detection and per-
son detection) throughout a 24-hour (one-day) period. Since there
are no publicly available video datasets that capture the environ-
mental variations in a day or a week by using the same camera
(outside the baseball stadium which was fairly crowded through-
out the day), we use several proprietary videos provided by our
customers that were captured with the default camera setting — in
this paper, the default camera setting refers to when all auto-setting
features are turned on and NAUTO parameters are set to the default
values provided by the manufacturers. These videos were captured
outside airports and baseball stadiums by stationary surveillance
cameras, and we have labeled ground-truth information for several
analytics tasks including face detection and person detection.

We use RetinaNet [19] for face detection and EfficientDet-v8 [50]
for person detection. We compute the mean Average Precision
(mAP) by using pycocotools [16]. Figure 2a shows that the average
mAP values for the face detection AU during four different time peri-
ods of the day (morning 8AM - 10AM, noon 12PM - 2PM, afternoon
3PM - 5PM, and evening 6PM - 8PM), and with the default camera
setting, can vary by up to 40% as the day progresses (blue bars). Sim-
ilarly, Figure 2b shows that the average mAP values for the person
detection AU (with the default camera parameter setting) can vary
by up to 38% during the four time periods. We also observed similar

SenSys ’22, November 6-9, 2022, Boston, MA, USA

100 100

75 75

50 50

mAP
mAP

25 25

Moring Noon Afternoon Evening Morning Noon Afternoon Evening

(a) Face detection (b) Person detection
Figure 2: AU accuracy variation in a day under the default
camera setting.

accuracy variation while using other face-detection (MTCNN) and
person-detection models (Yolov5). These results show that changes
in environmental conditions can adversely affect the quality of
the frames retrieved from the camera, and consequently adversely
impact the accuracy of the insights that are derived from the video
data.

3.2 Impact of Image Appearance Camera
Settings on AU Accuracy

We experimentally show that adjusting the four image appearance
(I-A) (NAUTO) camera settings, i.e., brightness, contrast, color-
saturation (also known as colorfulness), and sharpness, can help
to mitigate the adverse impact of environmental changes on AU
accuracy.

Analyzing the impact of camera settings on video analytics in
general faces a significant challenge: it requires applying different
camera parameter settings to the same input scene and measuring
the resulting accuracy of insights from an AU. The straightforward
approach is to use multiple cameras with different camera parame-
ter settings to capture the same input scene. However, this approach
is impractical as there are thousands of different combinations of
even just the four camera parameters we consider. To overcome
the challenge, we proceed with the following workaround which
uses a single real camera.

We use a real camera, Axis Q3505 MK II Network camera, to cap-
ture (at 10 FPS) the same real-world scene repeatedly under varying
camera settings, and compare the accuracy of object detection AU
for "default" and several "modified" settings — in this paper, a "mod-
ified" setting refers to modifying the four I-A camera settings while
keeping all other camera parameter values the same as the default
setting. In our scene, two people walk from the camera towards two
parked cars, and each of them then starts driving a separate car in a
loop within the parking lot, parks the car in the same parking spot,
and walks back towards the camera. The entire sequence of steps
takes around 2 minutes and we repeat these exact steps over and
over again for 26 different camera settings (including the "default”
setting). These experiments are conducted immediately one after
another in quick succession to minimize the effect of environmental
change. Thus, all 2-minute video clips have almost exactly the same
content.

We consider object detection AU in this experiment, which de-
tects cars and persons in the scene. Specifically, we use Efficient-
det [50] object detector. An illustration of the scene is shown in
Figure 4 with two side-by-side frames, where the right one is with

Cum. Car Detection Count

Sibendu Paul, et al.

=== Default Setting
—— Modified Setting

additional
detections

0 20 40 60 80
Time (Seconds)

100 120

(a) Car Detection

S 700
o
O 600
c
2 500
g
2 400
0)
© 300
& 200
2 100

on

e

Cum
o

pm——rlta

’

96
additional
detections

—=—- Default Setting
Modified Setting

0 20 40 60 80 100 120
Time (Seconds)

(b) Person Detection

Figure 3: Impact of camera settings on object detection.

Left: Modified Setting

Right: Default Setting

Figure 4: Same scene with different camera settings.

Table 2: Best settings for different environment.

Environment Best Camera Setting
(Time-of-day) | [brightness, contrast, color, sharpness]
Dawn [80, 75, 50, 75]
Morning [30, 30, 50, 50]
Evening [90, 90, 50, 50]

the "default” camera setting and the left one is with a "modified"
camera setting. Here, the AU can accurately detect two persons
and two cars on the frame with the modified camera setting while
from the camera capture under the default setting, the AU can only
detect one car. We observe that the accuracy of the AU varies across
different camera settings and Figure 3 shows the cumulative num-
ber of true-positive car and person detection counts ! for "Default
Setting" and for "Modified Setting", which shows the highest accu-
racy among the 25 different camera settings. We see that "Modified
Setting" correctly detected 1890 additional cars and 96 additional
persons across 1300 frames compared to “Default Setting”. We also
note that the additional detections for remaining camera settings
is quite scattered, thus showing that even within a subset of 26
settings, it is quite difficult to choose the best camera setting.

To understand if the modified camera setting that provides the
highest AU accuracy remains the same as the environment under-
goes changes, we repeat the above experiment for three different
times of the day, i.e., dawn, morning and evening, which have vary-
ing sunlight, while enacting the same scene for camera capture. Ta-
ble 2 shows that the I-A camera setting that provides the highest
AU accuracy is not the same as the manufacturer-provided default
setting and it varies for different times of the day, i.e., different
environmental conditions. Thus, it is very difficult to find the best
camera setting among thousands of possible camera settings.

3.3 Optimal camera setting is AU-specific

Along with the environment, to observe the impact of camera pa-
rameters on various AUs, we printed 12 different person cutouts
obtained from COCO dataset [35] and placed them in front of an

! An object detection is true-positive if the detector correctly predicts the object label
and the IoU between the detected and ground-truth bounding box is more than 0.7.

Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning

(a) DAY

(b) NIGHT

Figure 5: Camera captures under different environment and
visual impact.

Axis network camera. we use Efficientdet [50] as person-detection
AU and RetinaNet [19] as face-detection AU and observe the impact
on each of these AUs individually under DAY and NIGHT condition
simulated inside our lab using two light sources. One of them is
always kept ON, while the other light source is manually turned
ON or OFF to simulate DAY and NIGHT environmental conditions,
respectively. For each of these conditions, we vary the four image
appearance camera parameters, i.e., brightness, contrast, sharpness
and color-saturation ranging from 0 to 100 at a step of 10. Figure
5 shows the images captured under the default camera setting for
DAY and NIGHT condition. To find the “Best” settings for a specific
AU, we change the four camera parameters to find the setting that
gives the highest mAP. Specifically, we vary each parameter from 0
to 100 in steps of 10 and capture the frame for each camera setting.
This gives us ~14.6K (11) frames for each condition. Changing the
camera setting through the VAPIX API takes about 200ms, and in
total it took about 7 hours to capture and process the frames for
each condition.

Table 3 shows that the best I-A camera parameter setting for
different AUs are unique. Furthermore, these Best camera settings
not only vary across different AUs but change due to environmental
condition changes (i.e., from DAY to NIGHT), also shown in Table
3. This motivates the need for capturing AU specific perception in
tuning the camera parameters.

Table 3: Best settings across different AUs for various env.

AU-best Best camera setting

[brightness, contrast, color, sharpness]

DAY NIGHT
Person Detection-best | [80,90,70,100] [40,90,60,100]
Face Detection-best [80,90,60,80] [60,40,90,90]

4 CHALLENGES AND APPROACHES

Designing CAMTUNER to automatically tune camera parameter set-
tings to enhance video analytics accuracy faces several challenges.
In this section, we discuss these challenges and our approaches to
address each one of them.

Challenge 1: Identifying the best camera setting for a par-
ticular scene. Cameras deployed across different locations observe
different scenes. Moreover, the scene observed by a particular cam-
era at any one location keeps changing based on the environmental
conditions, lighting conditions, movement of objects in the field
of view, etc. In such a dynamic environment, how can we identify
the best camera setting that will give the highest AU accuracy for a
particular scene? The straightforward approach of collecting data
for all possible scenes that can ever be observed by the camera and

SenSys 22, November 6-9, 2022, Boston, MA, USA

training a model that gives the best camera settings for a given
scene is infeasible.

Approach. To address this challenge, we propose to use an on-
line learning method. Particularly, we use Reinforcement Learning
(RL) [48], in which the agent learns the best camera settings on the
go. Out of several recent RL algorithms, we choose the SARSA [52]
RL algorithm for identifying the best camera settings (more details
provided in §5.1).

Challenge 2: No Ground truth in real-time. Implementing
online RL requires knowing the reward/penalty for every action
taken during exploration and exploitation, i.e., what effect a partic-
ular camera parameter setting will have on the accuracy change of
the AU. Since no ground truth of the AU task, e.g., face detection, is
available during normal operation of the real-time video analytics
system, detecting a change in accuracy of the AU during runtime
is challenging.

Approach. We propose to estimate the accuracy of the AU. Each
AU, depending on its function has a preferred method of measuring
accuracy, e.g., for face detection AU, a combination of mAP and
true-positive IoU is used, whereas for face recognition AU, the
true-positive match score is used. Accordingly, we propose to have
a separate estimator for each AU. We design such AU-specific
analytics quality estimators to be light-weight so that they can be
used by the RL agent in real-time (more details provided in §5.2).

Challenge 3: Extremely slow initial RL training. Online
learning at each camera deployment setup requires initial RL train-
ing, which can potentially take a very long time for two key reasons:
(1) Capturing the environmental condition changes such as the time-
of-the-day effect requires waiting for the Sun’s movement through
the entire day until night, and capturing weather changes requires
waiting for weather changes to actually happen. (2) Taking an ac-
tion on the real camera, i.e, changing the camera parameter setting,
incurs a significant delay of about 200 ms. This delay fundamentally
limits the speed of state transition and hence the learning speed of
RL to only 5 actions per second.

Approach. In order to speed up the initial RL training, we pro-
pose a novel concept called Virtual Camera (VC). A VC mimics the
effect of environmental conditions and camera setting changes on
the frame capture of a real camera. This has two immediate bene-
fits. First, it can effectively complete an action of “camera setting
change” almost instantaneously. Second, it can augment a single
frame captured by the real camera with many new transformed
frames as if they were captured by the real camera under different
conditions. Together, these two benefits allow the RL system to
explore an order of magnitude more states and actions per unit
time (more details provided in §5.3).

5 CamTuner DESIGN

Figure 6 shows the system-level architecture for CAMTUNER, which
automatically and dynamically tunes the camera parameters to
enhance the accuracy of AUs in the VAP. CAMTUNER augments
a standard VAP shown in Figure 1 with two key components: a
Reinforcement Learning (RL) engine, and an AU-specific analytics
quality estimator. In addition, it employs a third component, a
Virtual Camera (VC), for fast initial RL training.

SenSys ’22, November 6-9, 2022, Boston, MA, USA

Camera processing pipeline

Device | Edge Cloud
_—— —

Camera
parameters
Image ﬁ gﬁ : AUs -
Sensor (face, person...)

5G
ﬁ@_} RAW sensor Image (@D)]
data processing l ~— CamTuner

Optics : AU specific
: Analytics
Quality Estimator
: |REWARD
Camera SARSA
parameters RLAgent
~ 200 msec
latency

Figure 6: CamTuner system design.

5.1 Reinforcement Learning (RL) Engine

The RL engine is the heart of CAMTUNER system, as it is the one that
automatically chooses the best camera settings for a particular scene.
Q-learning [51] and SARSA [52] are two popular RL algorithms
that are quite effective in learning the best action to take in order to
maximize the reward. We compared these two algorithms and found
that training with SARSA achieves slightly faster convergence and
also slightly better accuracy than with Q-learning. Therefore, we
use SARSA RL algorithm in CAMTUNER.

SARSA is similar to other RL algorithms. An agent interacts with
the environment (state) it is in, by taking different actions. As the
agent takes actions, it moves into a new state or environment. For
each action, there is an associated reward or penalty, depending on
whether the new state is desirable or not. Over a period of time,
as the agent continues taking actions and receiving rewards and
penalties, it learns to maximize the rewards by taking the right
actions, which ultimately lead the agent towards desirable states.

SARSA does not require any labeled data or pre-trained model,
but it does require a clear definition of the state, action and reward
for the RL agent. This combination of state, action and reward is
unique for each application and needs to be carefully chosen, so
that the agent learns exactly what is desired. In our setup, we define
them as follows:

State: A state is a tuple of two vectors, s; =< Py, M; >, where P;
consists of the current brightness, contrast, sharpness, and color-
saturation parameter values on the camera, and M; consists of
the measured values of brightness, contrast, color-saturation, and
sharpness of the captured frame at time ¢, measured as in [8, 18, 23,
44).

Action: The set of actions that the agent can take are (a) increas-
ing or decreasing one of the brightness, contrast, sharpness or
color-saturation parameter value, or (b) not changing any parame-
ter values. We choose the increase or decrease of camera parameters at
a granularity of 10 only. The choice of such a granularity of camera pa-
rameter setting adjustment is to strike a balance between adjustment
complexity and potential gain. In particular, we search in a discrete
action space of increments of 10 to make the camera parameter tuning
problem tractable.

Reward: We use an AU-specific analytics quality estimator as
the immediate reward function (r) for the SARSA algorithm. Along
with considering immediate reward, the agent also factors in future
reward that may accrue as a result of the current actions. Based
on this, a value, termed as Q-value (also denoted as Q(sz, ar)) is

Sibendu Paul, et al.

calculated for taking an action a; when in state s; using Equation 1.

Q(st,ar) < Q(star) + a[r+y - Q(se+1,a41) — Qs ar)] (1)
Here, «a is learning rate (a constant between 0 and 1) used to control
how much importance is to be given to new information obtained
by the agent. A value of 1 will give high importance to the new
information while a value of 0 will stop the learning phase for the
agent.

Similar to «, y (also known as the discount factor) is another
constant used to control the importance given by the agent to any
long term rewards. A value of 1 will give very high importance to
long term rewards while a value of 0 will make the agent ignore
any long term rewards and focus only on the immediate rewards.
If the environmental conditions change very frequently, a lower
value, e.g., 0.1, can be assigned to y to prioritize immediate rewards,
while if the conditions do not change frequently, a higher value,
e.g., 0.9, can be assigned to prioritize long term rewards.

Exploration vs. Exploitation. We define a constant called €
(between 0 and 1) to control the balance between exploration vs.
exploitation in taking actions. At each step, the agent generates a
random number between 0 and 1; if the random number is greater
than the set value of ¢, then a random action (exploration) is chosen.

5.2 AU-specific Analytics Quality Estimator

In online operations, the RL engine needs to know whether its
actions are changing the AU accuracy in the positive or negative
direction. In the absence of ground truth, the analytics quality
estimator acts as a guide and generates the reward/penalty for the
RL agent.

Challenges. There are three key challenges in designing an
online analytics quality estimator. (1) During runtime, AU quality
estimation has to be done quickly, which implies a model that
is small in size. (2) A small model size implies using a shallow
neural network. For such a network, what representative features
should the estimator extract that will have the most impact on the
accuracy of AU output? (3) Since different types of AUs (e.g., face
detector, person detector) perceive the same representative features
differently, the estimator needs to be AU-specific.

Insights. We make the following observations about estimating
the quality of AUs. (1) Though estimating the precise accuracy
of AU on a frame requires a deep neural network, estimating the
coarse-grained accuracy, e.g., in increments of 1%, may only require
a shallow neural network. This insight is based on the observation
that binning the accuracy into coarse-grained bins (with 1% incre-
ments) and predicting which bin the accuracy of the DNN falls into is
a simpler task than estimating the precise accuracy. (2) Most of the
“off-the-shelf” AUs use convolution and pooling layers to extract
representative local features [11]. In particular, the first few lay-
ers in the AUs extract low-level features such as edges, shapes, or
stretched patterns that affect the accuracy of the AU results. We can
reuse the first few layers of these AUs in our estimator to capture
the low-level features. (3) To capture different AU perceptions from
the same representative features extracted in the early layers, we
need to design and train the last few layers of each quality estima-
tor to be AU-specific. During training, we need to use AU-specific
quality labels.

Design. Motivated by the above insights, we design our light-
weight AU-specific analytical quality estimator to consist of two

Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning

Truncated Inception V3 Quality Classifier

LTI T
N

N . N i N

xS

}! Labels

@ CONV @8 MAXPOOL @8 CONCAT @ FC

" e

e

Figure 7: AU-specific analytics quality estimator design.

components: (1) feature extractor and (2) quality classifier, as shown
in Figure 7. We use supervised learning to train the AU-specific
quality estimator.

Feature Extractor. Different AUs and environmental conditions
can manipulate local features of an input frame at different granu-
larities [22]. For example, blur (i.e., motion or defocus blur) affects
fine textures while light exposure affects coarse textures. While
face detector and face recognition AUs focus on finer face details,
person detector is coarse-grained and it only detects the bounding
box of a person. Similarly, in convolution layers, larger filter sizes
focus on global features while stacked convolution layers extract
fine-grained features. To accommodate such diverse notions of
granularities, we use the Inception module from the Inception-v3
network [49], which has convolution layers with diverse filter sizes.

Quality classifier. The goal of the quality classifier is to take
the features extracted by the feature extractor and estimate the
coarse-grained accuracy of the AU on an input frame, e.g., in incre-
ments of 1%. As such, we divide the AU-specific accuracy measure
into multiple coarse-grained labels, e.g., from 0% to 99%, and use
fully-connected layers whose output nodes generate AU-specific
classification labels.

Detailed design and training of two concrete AU-specific analyt-
ics quality estimators are described as follows.

(1) Face recognition AU: The quality classifier of face recognition
consists of 2 fully-connected layer and has 101 output classes. One
of the classes signifies no match, while the remaining 100 classes
correspond to match scores between 0 to 100% in units of 1%.

To generate the labeled data, we used 300 randomly-sampled
celebrities from the celebA dataset [37]. We choose two images
per person. We use one of them as a reference image and add it to
the gallery. We use the other image to generate multiple variants
by applying digital transformations on the image. These variants
(~4 million) form the query images. For each query image, we
obtain the match score (a value between 0 and 100%) using the Face
recognition AU, Neoface-v3. The query images along with their
match score form the labeled samples, which are used to train the
quality estimator.

(2) Face and object detection AU. The quality classifier of face
and object (i.e., car and person) detection AU consists of 2 fully-
connected layers, and has 201 output classes to predict the quality
estimate of the face and object detection AU for a given frame.
One of the classes signifies AU cannot detect anything accurately,
and the remaining 200 classes correspond to the cumulative mAP
score between 0 to 100 and IoU score between 0 to 1, i.e., mAP +
IOUTrye—Positive * 100. To generate the labeled data to train face-
detection AU specific quality estimator, we used the Olympics [39]
and HMDB [33] datasets, and created ~7.5 million variants of the

SenSys 22, November 6-9, 2022, Boston, MA, USA

Virtual Camera

Input
Framef, v
Virtual Camera Model
™ MDT

Time-of-day Lookup Lookup X Image Output

1T table table ® | P - Frame f

P (T » M) 6 X) rocessing o

4
Virtual Knob ‘

setting vV

Figure 8: VC block diagram.

Time-of- Metric Tuple (M,) Delta Change Transformation
day (T tile_1 tile_2 | . () Tuple (X)
10:00 | <159,53,1 | <157,55.9, | ... <0.5,0.7,1.5,2> <0.7,0.6,1.1,1.2>
1,2122> 2103>
<10,18,5,9> <1.5,2.4,1.6,1.5>
10:15 <160,52,1 | <159,56,1 |
3,2100> 5,2080>
(a) TM table (b) MDT Table

Figure 9: Offline generated tables for VC.

video frames by applying digital transformations. Then, for each
frame, we use the face detection AU (i.e.,, RetinaNet [19]) to deter-
mine the analytical quality estimate. Similarly, we use the object
detection AU (i.e., EfficientDet [50]) on labeled images from COCO
dataset [35] that contain car and person object classes and their
augmented variants. The video frames/images and their quality
estimates form the labeled samples, which are used to train the
estimator model.

For both the classifier training, we use a cross-entropy loss func-
tion to train AU-specific analytics quality estimators, initial learning
rate is 107>, and we use Adam Optimizer [31]

5.3 Virtual Camera

Definition. A VC (shown in Figure 8) takes an input frame f;,
captured by a real camera, the target time-of-the-day T, and VC
parameter settings V, as input, and outputs a frame f;, as if it was
captured by the physical camera at time T. To generate a frame at
time Ty, VC uses a composition function Compose(Xj, V), which
composes output frame f;, using Xj, which is the transformation
that augments the environmental effects corresponding to the tar-
get time Ti on input frame f;, and V, which is the VC parameter
settings. The composition function is defined as X}, ¥ 10V =% which
considers X and V simultaneously, similar to a real camera. Using
this composition function, X}, is scaled up if the value of V is greater
than 0.5 and scaled down if the value is less than 0.5; no scaling of
X happens for V equal to 0.5.

To understand how VC works, we first introduce an important
definition. Each frame f;, from a real physical camera, possesses
distinct values of brightness, contrast, colorfulness and sharpness
metrics, denoted as a metric (or feature) tuple M; =< ap, fp, YMm»
{m >. The unique metric tuple encapsulates the environmental
conditions and the default physical camera settings when the frame
was captured.

Offline profiling phase: VC derives two tables for a given
physical camera deployment during an offline profiling phase and
then uses the two tables during online operation to generate the
output frame f.

SenSys ’22, November 6-9, 2022, Boston, MA, USA

The first table (TM) maps a given time-of-the-day Tj. to the metric
tuple My which captures the distinct values of brightness, contrast,
colorfulness and sharpness metrics of frames taken by the physical
camera with the default settings at time T;.. We generate the table
to cover the full 24-hour period with a granularity of 15 minutes,
i.e., the table has one mapping for every 15 minutes, for a total of 96
mappings. To construct the table, we use a full 24-hour long video
and break it into 15-minute video snippets. We extract all the frames
from the video snippet for each 15-minute interval Tj.. We divide
each frame into 12 tiles, obtain the corresponding metric tuple for
each tile, and compute the mean metric tuple for the corresponding
tiles in all frames in the 15-minute interval as the metric tuple for
that tile, and the list of tuples for all 12 tiles form the entry for time
Ti. in the table, as shown in Figure 9a.

The second table (MDT) maps the difference between two metric
tuples M; and Mg, 6(M;, My), to the corresponding transformation
tuple Xj that would effectively transform a frame captured by the
physical camera with metric tuple M; to become a frame captured
by the physical camera for the same scene with metric tuple M.
We note since each camera parameter can take 11 values, from
0 to 100 with increments of 10, the difference between any two
metric tuples can possibly be mapped to one of these 14K (11%)
settings. We construct the entries for the table backward as follows.
(1) We select a random frame from each 15-minute interval to form a
collection of 96 frames with varying environmental conditions, i.e.,
corresponding to different time-of-the-day. (2) For each possible
transformation X}, we transform the 96 frames into 96 virtual
frames. We then obtain the delta metric tuples between each pair
of original and transformed frames, calculate the median of the 96
delta metric tuples, dg, and store the pair of < 8, Xj > in the table.
(3) We repeat the above process for all possible transformation
settings (14K in total) to populate the table, as shown in Figure 9b.

Finally, at runtime when the table is used by the VC, if the entry
for a given delta metric tuple d; is empty, we return the entry whose
delta metric tuple J is closest to §; using L1-norm.

Online phase. VC transforms the input frame f; to output frame
fo in five steps. (1) It measures the current metric tuple M; =< ayy,
Bt YMs v > curr from input frame f;; (2) It looks up Time-to-Metric
(TM) table for the metric tuple My =< ap, Pm, YM> (M >desired
that corresponds to the target time of the day (Tj); (3) It calculates
the difference between M; and My, §(M;, M) or &;; (4) It looks up
Metric-difference-to-Transformation (MDT) table to find the trans-
formation Xy =< ax, fx, yx, {x >appliea that corresponds to
Oik; (5) It applies X; along with V using the composition function
Compose(Xg, V) to input frame f; and generates output frame f,.

Since different parts of an input frame may exhibit varying local
feature or metric values, to improve the effectiveness of virtual
knob transformation, instead of applying the above steps directly
to input frame f;, we split it into 12 (3 X 4) equal-sized tiles, apply
Steps 1-3 to each of the 12 tiles, i.e., each of M;, My, and §;; consists
of 12 sub-tuples corresponding to the 12 tiles, respectively. The
12 sub-tuples in ;. are looked up in the MDT table to find 12
transformation tuples. Finally, to ensure smoothness, we calculate
the mean of these 12 sub-tuples X, which is then applied to input
frame f;.

Sibendu Paul, et al.

5.4 Integrating VC with the RL engine

During initial RL training, the RL agent performs fast exploration
by leveraging VC as follows. It reads each frame f; from the input
training video, and repeats the following exploration steps for all
time-of-the-day values Ti. At each exploration step j, the agent
which is at state s =< Pj, M; > performs tasks: (1) based on current
state (s), it takes a random action a and apply that on V;, which is VC
equivalent of P; for a real camera, to get a new virtual knob setting
for next exploration step (j+1), Vj+1; (2) it invokes the VC with frame
fi for the target time-of-the-day Ty, and current VC parameters
Vj+1 as input, and the VC outputs frame f,. The measured tuple
Mj,1 of brightness, contrast, colorfulness and sharpness metric
values of output frame f, along with the virtual knob setting Vj41,
form the new state of the RL agent, spew =< Vji1, Mj+1 >; (3) it
calculates the reward/penalty by feeding f, into the AU-specific
quality estimator; and (4) it updates the Q-table entry Q(s, a).

The above initially trained SARSA model with the VC is then
deployed in the real camera for the normal operations of CAMTUNER.
First, the € value is set to low (0.1) and « is set to high (0.85) so
that the SARSA RL agent will go through a short adaptation phase,
e.g., for an hour, by performing primarily exploration. Afterward,
the € and « values are set to high (0.9) and low (0.15), respectively,
so that SARSA performs primarily exploitation using the trained
model.

6 IMPLEMENTATION

6.1 Hardware Setup

For the evaluation, we implemented a VAP using an Axis Q3505 MK
1I network surveillance camera. We run CAMTUNER on a low-end
Intel NUC box 2 while face detection and object detection AUs
and initial pre-training with VC run on a high-end edge-server
equipped with Xeon(R) W-2145 CPU and GeForce RTX 2080 GPU.
The captured frames are sent for AU processing on the edge-server
over a 5G network with an average frame uploading latency of 39.7
ms.

6.2 Software Implementation

We implemented the SARSA RL agent in Python, the light-weight
AU-specific analytics quality estimators in pytorch framework
which runs as a service using the ZeroMQ [3] networking library,
and the Virtual Camera in Python which is trained on the GPU
edge server. We use PIL [14] and OpenCV [2] for image processing
during the offline profiling phase in VC design and also during
offline training of the SARSA RL agent. We use Axis’ VAPIX API to
change the camera parameters decided by the SARSA-RL agent as
well as to capture input frames.

Similar to a real camera, our VC runs continuously during offline
SARSA RL training and streams the output frames on a NATS [1]
queue at the same frames-per-second (FPS) with which the video
was captured. Each frame is sent in BSON format which includes
the frame number, frame data (i.e., array of bytes), and timestamp.
Like a real camera, VC exposes REST APIs that are used to query
and change its settings to allow augmenting various environmental
effects.

2 Currently it is performed at the edge (an Intel-NUC box), but camera parameter tuning
can be performed either at the edge or on a device.

Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning

7 EVALUATION

We extensively evaluate the effectiveness of CAMTUNER by measur-
ing its impact on AU accuracy improvement in a VAP via controlled
experimental emulation and in a real deployment (§7.1 — §7.4). We
also evaluate its system performance (§7.5) and the efficacy of its
two key components, AU-specific analytics quality estimator and
VC (§7.6).

7.1 End-to-end VAP Performance

We first evaluate the effectiveness of CAMTUNER by comparing AU

accuracy of five different VAPs.
7.1.1 Experimental Setup. We compare three CAMTUNER variants

against two baseline VAPs. All system variants, including Cam-
TUNER, only differ in how the four I-A camera parameters are tuned,
while keeping all automatic parameter setting features turned on
and the rest NAUTO parameters at the default values. (1) Baseline:
In the Baseline VAP, the I-A camera parameters are not adapted
to any environmental changes. (2) Strawman: The Strawman ap-
proach applies a time-of-the-day heuristic that tunes the four I-A
camera parameters based on a human perception metric. In par-
ticular, we use the BRISQUE quality metric [38] and exhaustively
search for the best camera parameters for the first few frames in
each hour and then apply the best camera setting found for the
remaining frames in that hour. This exhaustive search of camera
settings using initial frames takes a few minutes (which is expen-
sive) and our results show that performing this adaptation more
often than once per hour does not give significant improvement. (3)
CaMTUNER-f: This variant of CAMTUNER only uses a few rounds of
online exploration (i.e., which takes about 1 hour, same as in online
exploration performed by CAMTUNER), i.e., the SARSA RL agent
does not rely on the VC for initial offline exploration. Instead, at the
start of online exploration, the CAMTUNER-f framework is initially
seeded with an empty Q-table. (4) CAMTUNER-a: This variant of
CaMTUNER adjusts the I-A camera setting dynamically by using
only the offline trained SARSA RL agent, i.e., the agent does not
perform any exploration during online operation. (5) CAMTUNER:
The complete CAMTUNER framework is seeded with offline trained
SARSA RL agent, and then during online operation, the agent con-
tinues exploration initially and then moves towards exploitation, as
described in §5.4. For CAMTUNER-f, CAMTUNER- and CAMTUNER,
the RL agent adaptively adjusts the four I-A camera parameters
periodically; the time interval is configurable and we choose it to
be 10s.

Experimental methodology. Comparing these 5 VAPs in a real-
world deployment is difficult because (1) even with 5 co-located
cameras, it is difficult to see the identical scene from the same
angle; (2) furthermore, in a real-world deployment, the captured
scenes do not have the ground-truth to measure the AU accuracy.
To overcome the above challenge, we loop a pre-recorded (original)
5-minute video snippet (a customer video captured at an airport)
labeled with ground-truth through VC - VC is used here not for RL
training but for generating augmented input videos that emulate
different environmental changes to be fed into the five VAPs. In par-
ticular, we gradually change the VC model parameters (i.e., digital
transformations) to simulate the changes that happen during the
day as the Sun changes its position and finally sets, and we ensure
(through manual inspection) that same ground-truths are carried

SenSys 22, November 6-9, 2022, Boston, MA, USA

wZZ Strawman
NN CamTuner-B
s CamTuner-a
B CamTuner

73 Strawman
XN CamTuner-B
@& CamTuner-a
EFER CamTuner

o

et veereraezerme

o

over baseline (%)

i
4
B

(a) Face detection AU

mAP improvement
over baseline (%)
e
X
mAP improvement

R e
R P e

<h.
&
<B
IS

i
SR

Sltion,

|
i
;
%
I

I |
V3 v4 V5 V6 v7 VB

s

<k

Y
V2

o
sy

< L

Stzzz. L

6

(b) Person detection AU

Figure 10: mAP improvements for different AUs.

over in the VC generated videos from the original video. We then
project these VC-generated videos on a monitor screen in front of a
real camera, and run each of the five VAPs in turn. We note that the
above controlled experimental setup is the closest approximation
to a real-world deployment.
7.1.2 End-to-end Accuracy. We evaluate the AU accuracy improve-
ment of VAPs 2-5 over VAP 1 for eight 5-minute video segments
randomly selected from the VC-generated videos consisting of 7500
frames each, and the video segments are separated by 1 hour apart.
Using the labeled ground-truth, we evaluate the detection accuracy
of the 5 VAPs for face-detection and person-detection AUs.

Figure 10 shows the bar-plot of mAP improvement of VAPs
2-5 over VAP 1 for the eight 5-min video segments correspond-
ing to eight different hours of the day. We make the following
observations. The strawman approach based on the time-of-the-day
heuristic can provide only nominal improvement over Baseline, i.e.,
less than 1% on average across the videos for both face detection and
person detection. Just a few hours of “slow” online exploration (i.e.,
with no VC-accelerated offline exploration) enables CAMTUNER-f3
to improve face detection accuracy by 2.70% on average and person
detection accuracy by 2.31% on average over Baseline. In contrast,
fast offline exploration using virtual camera (with no online ex-
ploration) helps CAMTUNER-« to improve face detection accuracy
by 6.01% on average and person detection accuracy by 5.49% on
average over Baseline. Finally, dynamically tuning the real camera
parameters with online learning in CAMTUNER improves the face
detection AU accuracy by up to 13.8% and person detection AU
accuracy by up to 9.2%, with an average improvement of 8.63% and
8.11% for face detection AU, and average improvement of 7.25% and
7.08% for person detection AU compared to Baseline and Straw-
man, respectively. Note that the environment observed by the camera
during the hours corresponding to bars v5-v8 in Figure 10 has not
changed significantly while the environment observed for bars vi-v4
is largely different from that during offline exploration. This explains
why the improvement gap between CAMTUNER-a and CAMTUNER
over VAP 1 seems to diminish for bars v5-v8.

In summary, during offline phase VC helps the SARSA RL agent
to quickly train through fast and equivalent environmental changes
and camera parameter changes applied to the input scene. Then
during online operation, a few rounds of exploration helps Cam-
TUNER to achieve better accuracy than directly using the initially
trained SARSA model with VC (CAMTUNER-«).

7.1.3 In-depth Analysis. Next, we show how CAMTUNER dynami-
cally adjusts the camera parameter setting for one of the 5-minute

SenSys ’22, November 6-9, 2022, Boston, MA, USA

®
o

Sibendu Paul, et al.

(a) capture under SS1 (b) capture under (c) CAMTUNER cam-

SS2

era capture

Figure 12: Sample static & CAMTUNER camera captures.

Objects detected

100

80

60

40

20

0

Static
camTuner

N

Objects detected

100

80

60

40

20

0

= camTuner

20 40 60 80 100 120
Time (seconds)

20 40 60 80 100 120
Time (seconds)

(a) suboptimal setting 1 (SS1)

(b) suboptimal setting 2 (SS2)

270
9]
D 60 ,
3 \ NN ———
o
© 30
@ ,,] | Brightness = Sharpness
% 0l T Contrast == Baseline
O ——— Color-Saturation
0
0 50 100 150 200 250 300
Time (seconds)
(a) Camera setting adaptation
1.0
P § -
0.8 @ o A
5 ? @® . T #..-' ® " o
0 0.6 ® e, o o« R ° e 5 ®° s
c | s o0 o® ° °y° °°% ©
® ° %% & o
° ® ® Q x @ ® @
v 04 o ° o L 4 r
=) LIS ° . ®
. . H s
@
02 [o Baseline x CamTuner] ® °
0.0 o o o o o o
0 50 100 150 200 250 300

Time (seconds)
(b) mIoU variation

Figure 11: CamTuner in operation.

video snippet (i.e,, V3 in Figure 10) used in §7.1.2 for face-detection
AU. Recall at every 10 seconds, based on the current environmen-
tal condition and content seen by the camera, CAMTUNER either
chooses to “increment” or “decrement” one of the four parame-
ters, i.e., increase or decrease by 10 within the parameter range
of [0, 100], or keep the previous parameter setting. Figure 11a
shows how the camera parameters are adapted throughout the
video length during the exploitation phase, and Figure 11b shows
how the corresponding mean intersection-over-union (mloU) (i.e.,
IoU across all ground-truth bounding boxes in each frame) varies
for the CAMTUNER-based VAP and the Baseline VAP.

We make the following observations. (1) Starting with the default
camera parameter setting, i.e., [50, 50, 50, 50], CAMTUNER decre-
ments the sharpness parameter after looking into the initial two
frames, and then decrements contrast after 7 tuning intervals (at
70 second). At the 13th tuning interval, it increments a third pa-
rameter, brightness. Then again after two intervals (at 150th second),
it increments the sharpness parameter. In the subsequent interval,
CAMTUNER decides to decrement color-saturation after looking into
the most recently captured scene. Finally, CAMTUNER further decre-
ments the sharpness parameter three more times where the first
two are separated by 10s but the last parameter change (at 270
second) happens after a 90s gap. Throughout the 5-minute video,
CAMTUNER adjusts the camera setting 8 times. The camera setting
adaption improves the mIoU per frame by 0.026 on average with
the maximum mloU improvement of 0.67 in comparison with using
the default camera parameter setting. (2) CAMTUNER improves the
mloU for 24.8% of the video frames (by a maximum of 0.67) and
only minimally reduces the mIoU for 1.6% of the frames (by a max-
imum of 0.005). An mIoU value of zero implies that no face in the
input scene is detected by the face-detection AU. (3) Figure 11b also
shows that while faces are not detected under the default setting
for 2.4% of the frames, the face-detection AU can detect faces in
those frames once CAMTUNER adapts the camera parameters.

Figure 13: CAMTUNER reaction to suboptimal settings (Nor-
malized Moving average of total object detection is computed
over last 100 frames, shown in Y axis.)

7.2 How quickly does CAMTUNER react to
suboptimal settings

Here, we evaluate how quickly CAMTUNER can react if the camera is
set to a suboptimal setting that leads to degraded analytical outcome.
We place two side-by-side cameras in front of a scene consisting
of 3D objects as shown in Figure 12. In this scene, 3D slot cars are
continuously moving over the track and 3D human models are kept
stationary. Both cameras start with a same suboptimal setting (we
use two suboptimal settings denoted as SS1 and SS2) and stream
at 10 FPS for 2-minute period, during which the I-A parameters of
Camera 1 are kept to the same initial suboptimal values, while the
I-A parameters of Camera 2 are tuned by CAMTUNER every 2s. On
every frame streamed from camera, we use Yolov5 [28] as the object
detector to detect and record the type of objects with their bounding
boxes 3. Figure 13 plots the normalized moving average of the total
number of object detections in the last 100 frames in the Y axis
(to clearly show the trend) of the two cameras under two different
initial suboptimal settings, SS1 and SS2. We observe a small initial
gap between the performance of YOLOv5 between the two camera
streams which indicates that within the first 10 seconds, CAMTUNER
changes the camera parameters once based on analytics quality
estimator output and achieves better object detection. Furthermore,
we observe that CAMTUNER gradually converges to a best-possible
setting within a minute that enables Yolov5 to detect all objects
from the scene (total 5-7 more object detections per frame).

7.3 Real-world Deployment (Parking Lot)

To validate that similar accuracy improvement from video-playback
in §7.1.2 is achieved in real-world deployment where the I-A param-
eters of the camera are continuously reconfigured by CAMTUNER,
we evaluated our deployment of CAMTUNER at a large enterprise
parking lot. The real-world deployment has two co-located cameras,
as shown in Figure 14. One camera is part of the Baseline VAP (VAP
1) while the other camera is part of the CAMTUNER VAP (VAP 2).

3Manual inspection confirms no false-positive detection in the 2-minute period.

Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning

Figure 14: CAMTUNER real-world deployment setup.

Both VAP deployments use Axis Q3505 MK II Network cameras,
which upload the captured frames over 5G network to a remote
edge-server (with a Xeon processor and an NVIDIA GPU) running
the Efficientdet [50] object detection model to detect cars and per-
sons in the parking lot. In VAP 2, the captured frames are also sent
in parallel to CAMTUNER which runs on a low-end Intel-NUC box
(with a 2.6 GHz Intel i7-6770HQ CPU). CAMTUNER is seeded with
the same initially VC-trained RL agent as in §7.1.2 and it performs
a few initial online exploration rounds and then starts exploitation
and adjusts camera settings every 30 seconds. To evaluate the ac-
curacy of the AUs in the VAPs, we ensure that both cameras view
almost identical scenes at the same time.

We ran both VAPs side-by-side for 8 continuous hours in a day
and recorded the videos from both VAPs. Since we want to man-
ually inspect and validate the detections from both VAPs, we ran-
domly picked detections for 5-minute spans during Morning and
Evening time and compare car and person detections across the
two VAPs. Figure 15 shows the cumulative number of true-positive
car and person detections. Figure 15a and Figure 15¢ show that
CAMTUNER detects 2.2% (3) and 15.9% (146) additional persons than
Baseline during Morning and Evening, respectively. CAMTUNER
also detects 2.6% (861) and 4.2% (881) more cars than the Baseline
VAP during Morning and Evening, respectively, as shown in Figure
15b and Figure 15d. Upon manual inspection of the videos, we con-
firmed that CAMTUNER does not have any false positive detections
for car/person.

7.4 5G Use Case: Automatic Vehicle Collision
Prediction (AVCP)

AVCP is an important use case in Intelligent Transportation Systems
(ITS). This use case requires extremely low latency because it is
very critical to predict collision and react almost instantaneously in
order to prevent a potential life-threatening accident. In particular,
low latency in the order of milliseconds is desired for this use case
which can be achieved by using 5G, which promises ultra-reliable
low latency communication (URLLC). In AVCP usecase, reliably
detecting and tracking vehicles and pedestrians is one of the most
critical building blocks; without this, the collision prediction won’t
work properly and may lead to life-threatening accidents. Cam-
TUNER plays an important role in AVCP usecase, where it changes
the camera settings dynamically in reaction to the environmental
changes. Since the environment does not change within seconds,
CAMTUNER’s quick (in the order of milliseconds) adjustment of
camera setting improves the detection and tracking of vehicles and
pedestrians at all times.

SenSys "22, November 6-9, 2022, Boston, MA, USA

€
310, = < 35000
g 140 3 §30000 -==- Baseline
§ 120 additional o —— CamTuner
‘© 100 detections S 25000 861
9 o
@ 80 $ 20000 additional
o -
2 60 8 15000 detections
o
240 - © 10000
kY 2 —-=-- Baseline o 5000
g —— CamTuner £
0 3
S O 0
© 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (Seconds) Time (Seconds)
(a) Morning-time video (b) Morning-time video
€
3 1000 £ ;
g; _____ 3 20000 Baseline
S 800 o CamTuner
= Y 5
(9]
3 600 additional B 15000
] - -
a detections 3 additional
S 400 4 10000 detections
o —
o ©
8 200 --- Baseline 8 s000
€ —— CamTuner E
S 0 o 0
o 0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time (Seconds) Time (Seconds)

(c) Evening-time video (d) Evening-time video

Figure 15: CAMTUNER performance in Parking lot.

(a) Intersection (b) Before accident

(c) Car accident

Figure 16: Car accident prevention scenario.

g100|m Baseline _ EEEEfamTunerl
NTTEERE
NI EREERR
SRR RERERE
M EERERE:
E 0 %M ?;M S%AM 1§M j%M :iM fl%’M

Figure 17: CAMTUNER performance in Accident Prevention
scenario.

To evaluate this use case, we recorded a 1.5-minute-long car
accident scenario, as shown in Figure 16, at one of our customer
sites that has a 5G smart traffic intersection testbed. We then used
the experimental methodology described in §7.1.1 to emulate the
same car accident scenario at 7 different hours (i.e., environmental
conditions) of the same day, and running 2 VAPs (VAP 1 uses the
default camera settings, denoted as Baseline and VAP 2 runs Cam-
TUNER) that detect cars using EfficientDet object detector. Figure
17 reports the true-positive car detection count * observed under both
VAPs. Compared to VAP 1, VAP 2 using CAMTUNER detects 6.2%
additional cars on average across the different hours, and as much
as 9.7% (122) more cars at 1 AM, as shown in Figure 17.

4A detection is considered as true-positive (TP) when the class labels both for predicted
and ground-truth bounding box are the same and IoU (intersection over union) between
them is atleast 0.7

SenSys ’22, November 6-9, 2022, Boston, MA, USA

Table 4: Accuracy of VC.

Parameter | Brightness Contrast Color | Sharpness
-Saturation
Mean error 5.4% 13.8% 17.3% 19.8%
Std. dev. 1.7% 43% 9.6% 8.1%

7.5 System Performance

Since CAMTUNER runs in parallel with the AU, it does not add any
additional latency to the VAP and hence the AU latency. In the
following, we show that the normal online operation of CAMTUNER
is light-weight, and the initial training phase using VC can explore
each action extremely fast.

First, during online operation, each iteration of CAMTUNER in-
volves three tasks: evaluating the AU-specific quality estimator,
evaluating the Q-function by the SARSA agent, and changing the
parameters of the physical camera. We run CAMTUNER on a low-
end edge device, an Intel-NUC box equipped with a 2.6 GHz Intel
i7-6770HQ CPU. The AU-specific quality estimator takes 40ms on
the Intel-NUC edge device, i.e., 10X faster than the SOTA image clas-
sifiers, and the SARSA RL agent takes less than 1 ms to complete
Q-function calculation and Q-table update. Since the two tasks can
be pipelined with changing the physical camera settings which
takes up to 200 ms on the AXIS Q3505 MK II Network camera we
used, each iteration of CAMTUNER takes 200 ms, i.e., 5 iterations
per second, and the average CPU utilization is only 15% with 150
MB memory footprint.

Next, we run the initial RL training phase on a high-end PC with
a 3.70 GHz Intel(R) Xeon(R) W-2145 CPU and GeForce RTX 2080
GPU. During the one-hour training phase performed in §7.6, in
each iteration of the RL exploration, VC takes 4 ms to output f;,
the quality estimator takes 10 ms, and the RL agent take less than 1
ms to evaluate the Q-function and update the Q-table, for a total of
15 ms. As a result, CAMTUNER can explore around 70 actions per
second, which is 14X faster than using the physical camera. The
CPU utilization in this case is steady at 60%.

7.6 Accuracy of Offline Trained Models

Finally, we evaluate the efficacy of two key components of Cam-
TuNER which are trained offline: VC and AU-specific analytics
quality estimator model.

Virtual camera. VC is designed to render a frame taken at
one time (T}) to another time (T3), as if the rendered frame were
captured at time Ty. First, we trained VC in the offline profiling
phase as discussed in §5.3 using a 24-hour long video obtained
from one of our customer locations at an airport. To evaluate how
well VC works online, we obtained several video snippets at 6
different hours of the day from the same camera. Next, we fed 1
video snippet V'S from one particular hour Hy through VC which
applies different digital transformation to generate 5 video snippets
VS corresponding to the hours of the other 5 videos. For each
generated video snippet VS;, we calculated the relative error of
the metric tuple values of each frame in V'S; relative to that of the
corresponding original video frame and average such error across
all the frames in V'S; (over 37.5K frames). We obtained 5 VC error
metric tuples for one video, each corresponding to the hour of the
other 5 video snippets. We repeated the above experiment for the

Sibendu Paul, et al.

|@ Pearson
0.7 r

I Spearman|

=3
o
<

"

N

|
7
Zilll
ZIl
2

o
n

Cogrelgtlon
KON

.

A

I
Y
N

0.1 V/‘ ‘ ‘;

I

0.0 AL

Face Face Object
Recognition Detection Detection

Figure 18: Analytics quality estimator performance.

5 other original video snippets to obtain a total of 30 VC error
tuples. Table 4 shows the mean error and standard deviation among
all 30 VC error tuples. We observe that the average VC errors are
5.4%, 13.8%, 17.3%, and 9.8% for brightness, contrast, color-saturation
and sharpness, respectively.

AU-specific analytics quality estimator. Next, we evaluate
the performance of AU-specific quality estimators. Since the AU-
specific estimator is a lightweight model that predicts coarse-grained
accuracy measure of the heavyweight DNN model (i.e., used in AU),
it is not meaningful to compare its accuracy against the accuracy
achieved by the heavyweight model (derived using ground truth).
Instead, we measure the quality of the AU-specific quality estima-
tor by measuring the Spearman and Pearson correlation between
the two accuracies for three different AUs i.e. face-recognition,
face-detection, and person-detection. First, we trained the three
estimators through supervised learning as described in Section 5.2.
To evaluate the face-recognition estimator, we used the celebA-
validation dataset which contains 200 images (i.e., different from
the 300 original training images used in Section 5.2) and their about
2 million variants from augmenting the original images using the
python-pil image library [14]. Figure 18 shows that the quality pre-
dicted by the face-recognition analytics quality estimator is strongly
correlated with the output by the AU (both Pearson and Spearman
correlation are greater than 0.6) [9, 47].

To evaluate the face-detection quality estimator, we used anno-
tated video frames from the olympics [39] and HMDB datasets [33]
and their 4 million variants that were generated. To evaluate object-
detection analytics quality estimator, we used labelled images (i.e.,
only consist car and person object classes) from the COCO dataset [35]
and their 7 million augmented variants Figure 18 shows that there
is a strong positive correlation between the measured mAP and IoU
metric and the predicted quality estimate for both face-detection
and object-detection AUs. In summary, the strong correlation be-
tween the prediction by the estimators and the actual quality of AUs
based on ground truth, enables CAMTUNER’s RL agent to effectively
tune camera parameters.

8 DISCUSSION

CaMTUNER can be applied to dynamically determine either optimal
IP camera parameters or optimal digital transformation that can
be applied after capture, e.g., for cameras that do not expose such
REST APIs for remote camera parameter tuning.

It is important to note that modifying camera parameters to
capture a better image or video feed is fundamentally different
from applying transformations to the frames already retrieved from
the camera. To study the impact of post-capture image processing,

Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning

12 12
1 ——- I =ttt e = W= Gt ==&
g b ob af Sh S SR 25
= 08 ® -S1 with Postprocessing i” ® -S2 with Postprocessing
go6 == Best Setting g6 == Best Setting
- R ep-ing)

-4 04 [~ 04

0.2 0.2

0.550.560.570.580.59 0.6 0.610.620.630.640.65 0.550.560.570.580.59 0.6 0.610.62 0.63 0.64 0.65
Threshold Threshold

(a) Suboptimal Setting-1 (S1) (b) Suboptimal Setting-2 (S2)

1.2 1.2

1 ettt = === == I et tm === b=t ==&
~8-S3 -S4
—0.8 8 . =08 =
= S3 with Postprocessing = = -S4 with Postprocessing
Q0.6 == Best Setting go6 =4 Best Setting
o4 =
0.2 0.2

0.550.56 0.570.58 0.59 0.6 0.610.62 0.63 0.64 0.65
Threshold

0.550.56 0.57 0.58 0.59 0.6 0.610.62 0.63 0.64 0.65
Threshold

(c) Suboptimal Setting-3 (S3) (d) Suboptimal Setting-4 (S4)

Figure 19: Parameter tuning vs. postprocessing for NIGHT.

we place face cutouts of 10 unique individuals in front of the camera
as a fixed static scene and evaluate the performance of the most
accurate face-recognition AU (Neoface-v3 [42]°) for multiple face
matching thresholds across various camera settings for the NIGHT
condition (see §3.3). We intentionally change the camera settings to
four different settings denoted as S1, S2, S3 and S4 and measure the
Recall (i.e., true-positive rate) for the face recognition AU. In these
settings, the frames from the camera are of poor quality and the
Recall for various thresholds are quite low for all settings. Then, we
apply digital transformation on these frames and note the highest
Recall value that we can obtain.

Figure 19 compares the results of actual camera parameter tun-
ing and post-capture transformations. We see that for each of the
four sub-optimal camera settings, post-processing improved the
Recall compared to the original video, but the Recall is still quite
low. In contrast, if we directly change the actual camera parameters,
shown as “Best setting", then we are able to achieve the highest
possible Recall (i.e., 100%).

The above results show that modifying camera parameters to
capture a better image or video feed is fundamentally different from
applying post-capture transformations to the frames. In particular,
if the image captured by the camera is sufficiently poor due to sub-
optimal camera settings, no further transformations of the video
stream from the camera can improve the accuracy of analytics. In
addition to providing better accuracy improvement, in-camera tun-
ing also provides lower end-to-end latency than the after-capture
post-processing. For these reasons, in this work we directly used
the camera-exposed APIs to change camera settings rather than
applying transformations to the frames.

9 RELATED WORK

Similar to our findings, Jang et al. [26] also show that environmental
condition changes affect VAP, but their approach to adapt to such
changes is to use different AUs depending on the environmental
conditions, e.g., using Haar cascade for detection when lighting
is sufficient and switch to HOG when environment gets darker.
Since there could be several reasons for change in environment as

5This face-recognition AU is ranked first in the world in the most recent face-
recognition technology benchmarking by NIST.

SenSys 22, November 6-9, 2022, Boston, MA, USA

discussed in §3.1, developing an AU for every kind of environment
is not feasible. In contrast, CAMTUNER takes a different approach
where the AU is fixed and camera settings are adjusted to adapt to
environmental changes.

Several works investigate tuning parameters of a VAP after cam-
era capture and before sending it to an AU or changing the AU
based on the input video content. Videostorm [55], Chameleon [27],
and Awstream [54] tune the after-capture video stream parameters
such as frames-per-second or frame resolution to ensure efficient
resource usage while processing video analytics queries at scale.
In contrast, CAMTUNER dynamically tunes camera parameters to
improve the AU accuracy of VAPs.

More recent work, e.g., Focus [24], NoScope [29], Ekya [41], and
AMS [30], studied how to adapt AU model parameters based on
captured video content. Such an approach requires additional GPU
resources for periodic model retraining and is also less reactive
to video content changes. In contrast, CAMTUNER quickly adapts
the camera parameters in real-time according to environmental
changes.

Several frame filtering techniques on edge devices [10, 12, 34, 43]
can work in conjunction with CAMTUNER and potentially further
improve CAMTUNER’s performance. Our AU-specific analytics qual-
ity estimator shares similar goal as the AQuA-quality estimator [43]
but differs in that CAMTUNER’s quality estimator performs quality
estimation that is specific to each AU, while AQuA performs much
more coarse-grained AU-agnostic image quality estimation.

There is a large body of work on configuring the Image Signal
Processing pipeline (ISP) in cameras to improve human-perceived
quality of images from the cameras [20, 36, 40, 53]. In contrast, we
study dynamic camera parameter tuning to optimize the accuracy
of VAPs. OpenTuner [6] is a SOTA autotuning framework that
performs one-time parameter tuning for compilers, hardware, and
general programs that cannot be hand tuned. In contrast, Cam-
TuNER performs dynamic tuning and adapts the camera parameters
continuously as the environment changes.

10 CONCLUSION

In this paper, we presented the design and evaluation of CAMTUNER,
to our knowledge the first adaptive VAP framework that adaptively
learns the best setting for its NAUTO camera parameters deployed
in the field in reaction to environmental changes to enhance AU
accuracy. Our controlled experiments and real-world VAP deploy-
ment show that compared to a VAP using the default camera setting,
CAMTUNER allows the VAP to detect 15.9% additional persons and
2.6%—-4.2% additional cars (without any false positives) in a large
enterprise large parking lot and 9.7% additional cars in a 5G smart
traffic intersection scenario. CAMTUNER dynamically determines
how to tune IP camera parameters, which can be executed either
directly inside the camera via the exposed REST APIs for remotely
configuring the camera setting, or via digital transformation after
camera capture, e.g., for cameras that do not expose such APIs. Fur-
thermore, we believe CAMTUNER’s design and its key components,
Virtual Camera and light-weight AU-specific analytics quality esti-
mators, can be applied to dynamically tune other complex sensors
such as depth and thermal cameras.

Acknowledgment. This project is supported in part by NEC Labs
America and by NSF grant 2211459-CNS.

SenSys ’22, November 6-9, 2022, Boston, MA, USA

REFERENCES

(1]

(1

[12]

[13]

==
LA

[16]
[17]

(18]

[23]

[24]

[25]

[26]

[27

[28

[29]

[30

[31]

NATS: Connective Technology for Adaptive Edge & Distributed Systems. https:
//nats.io/.

Open Source Computer Vision Library. https://opencv.org/.

Zeromq: An open-source universal messaging library. https://zeromq.org/.
Vp9. https://www.webmproject.org/vp9/, 2017.

x264. http://www.videolan.org/developers/x264.html, 2021.

J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J. Bosboom, U.-M. OReilly,
and S. Amarasinghe. Opentuner: An extensible framework for program auto-
tuning. In International Conference on Parallel Architectures and Compilation
Techniques, Edmonton, Canada, Aug 2014.

B. E. Bayer. Color imaging array, July 20 1976. US Patent 3,971,065.

S. Bezryadin, P. Bourov, and D. Ilinih. Brightness calculation in digital image
processing. In International symposium on technologies for digital photo fulfillment,
volume 2007, pages 10-15. Society for Imaging Science and Technology, 2007.
T. BMJ. correlation-and-regression. https://www.bmj.com/about-bmj/resources-
readers/publications/statistics-square-one/11-correlation-and-regression, 2019.
C. Canel, T. Kim, G. Zhou, C. Li, H. Lim, D. G. Andersen, M. Kaminsky, and
S. Dulloor. Scaling Video Analytics on Constrained Edge Nodes. In A. Talwalkar,
V. Smith, and M. Zaharia, editors, Proceedings of Machine Learning and Systems,
volume 1, pages 406-417, 2019.

E.H. Chen, P. Rothig, J. Zeisler, and D. Burschka. Investigating Low Level Features
in CNN for Traffic Sign Detection and Recognition. In 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), pages 325-332, 2019.

T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan. Glimpse:
Continuous, real-time object recognition on mobile devices. In Proceedings of
the 13th ACM Conference on Embedded Networked Sensor Systems, pages 155-168,
2015.

CISCO. Cisco Video Surveillance IP Cameras. https://www.cisco.com/c/en/us/
products/physical-security/video-surveillance-ip-cameras/index.html.

A. Clark and Contributors. Pillow library. https://pillow.readthedocs.io/en/stable/.
CNET. How 5G aims to end network latency. CNET_5G_network_latency_time,
2019.

cocoapi github. pycocotools.
master/PythonAPI/pycocotools.
A. Communication. AXIS Network Cameras. https://www.axis.com/products/
network-cameras.

K. De and V. Masilamani. Image sharpness measure for blurred images in fre-
quency domain. Procedia Engineering, 64:149-158, 2013.

J. Deng, J. Guo, Z. Yuxiang, J. Yu, I. Kotsia, and S. Zafeiriou. RetinaFace: Single-
stage Dense Face Localisation in the Wild. In arxiv, 2019.

S. Diamond, V. Sitzmann, F. Julca-Aguilar, S. Boyd, G. Wetzstein, and F. Heide.
Dirty Pixels: Towards End-to-end Image Processing and Perception. ACM Trans-
actions on Graphics (TOG), 40(3):1-15, 2021.

V. Gaikwad and R. Rake. Video Analytics Market Statistics: 2027, 2021.

A. Gupta, A. Anpalagan, L. Guan, and A. S. Khwaja. Deep learning for object
detection and scene perception in self-driving cars: Survey, challenges, and open
issues. Array, 10:100057, 2021.

D. Hasler and S. E. Suesstrunk. Measuring colorfulness in natural images. In
Human vision and electronic imaging VIII, volume 5007, pages 87-95. International
Society for Optics and Photonics, 2003.

K. Hsieh, G. Ananthanarayanan, P. Bodik, S. Venkataraman, P. Bahl, M. Philipose,
P. B. Gibbons, and O. Mutlu. Focus: Querying Large Video Datasets with Low
Latency and Low Cost. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 269-286, Carlsbad, CA, Oct. 2018. USENIX
Association.

i PRO. i-PRO Network Camera. http://i-pro.com/global/en/surveillance.
S.Y.Jang, Y. Lee, B. Shin, and D. Lee. Application-Aware IoT Camera Virtualiza-
tion for Video Analytics Edge Computing. 2018 IEEE/ACM Symposium on Edge
Computing (SEC), pages 132-144, 2018.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica. Chameleon: scalable
adaptation of video analytics. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 253266, 2018.

G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, NanoCode012, Y. Kwon, TaoXie,
J. Fang, imyhxy, K. Michael, Lorna, A. V, D. Montes, J. Nadar, Laughing, tkianai,
yxNONG, P. Skalski, Z. Wang, A. Hogan, C. Fati, L. Mammana, AlexWang1900,
D. Patel, D. Yiwei, F. You, J. Hajek, L. Diaconu, and M. T. Minh. ultralytics/yolov5:
v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference,
Feb. 2022.

D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia. NoScope: Optimizing
Neural Network Queries over Video at Scale. Proc. VLDB Endow., 10(11):1586-1597,
Aug, 2017.

M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh. Real-Time
Video Inference on Edge Devices via Adaptive Model Streaming. arXiv preprint
arXiv:2006.06628, 2020.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

https://github.com/cocodataset/cocoapi/tree/

(32

[33

(34]

[36

[37

'@
&

[54

[55

Sibendu Paul, et al.

A. Krizhevsky, L. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, pages 1097-1105, 2012.

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video
database for human motion recognition. In Proceedings of the International
Conference on Computer Vision (ICCV), 2011.

Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Netravali. Reducto:
On-Camera Filtering for Resource-Efficient Real-Time Video Analytics. In Pro-
ceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication, pages 359-376, 2020.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and
C. L. Zitnick. Microsoft coco: Common objects in context. In European conference
on computer vision, pages 740-755. Springer, 2014.

L. Liu, X. Jia, J. Liu, and Q. Tian. Joint demosaicing and denoising with self
guidance. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2240-2249, 2020.

Z.Liu, P. Luo, X. Wang, and X. Tang. Deep Learning Face Attributes in the Wild.
In Proceedings of International Conference on Computer Vision (ICCV), December
2015.

A. Mittal, A. K. Moorthy, and A. C. Bovik. No-reference image quality assessment
in the spatial domain. IEEE Transactions on image processing, 21(12):4695-4708,
2012.

J. C. Niebles, C.-W. Chen, and L. Fei-Fei. Modeling temporal structure of decom-
posable motion segments for activity classification. In European conference on
computer vision, pages 392-405. Springer, 2010.

J. Nishimura, T. Gerasimow, S. Rao, A. Sutic, C.-T. Wu, and G. Michael. Automatic
ISP image quality tuning using non-linear optimization, 2019.

A.Padmanabhan, A. P. Iyer, G. Ananthanarayanan, Y. Shu, N. Karianakis, G. H. Xu,
and R. Netravali. Towards Memory-Efficient Inference in Edge Video Analytics.
M. N. Patrick Grother and K. Hanaoka. Face Recognition Vendor Test (FRVT).
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8271.pdf, 2019.

S. Paul, U. Drolia, Y. C. Hu, and S. T. Chakradhar. Aqua: Analytical quality
assessment for optimizing video analytics systems. In 2021 IEEE/ACM Symposium
on Edge Computing (SEC), pages 135-147. IEEE, 2021.

E. Peli. Contrast in complex images. JOSA A, 7(10):2032-2040, 1990.
Qualcomm. How 5G low latency improves your mobile experiences.
Qualcomm_5G_low-latency_improves_mobile_experience, 2019.

R. Ramanath, W. E. Snyder, Y. Yoo, and M. S. Drew. Color image processing
pipeline. IEEE Signal Processing Magazine, 22(1):34-43, 2005.
Statisticssolutions. Pearson correlation coefficient. https://www.
statisticssolutions.com/free-resources/directory-of-statistical-analyses/
pearsons-correlation-coefficient/, 2019.

R.S. Sutton, A. G. Barto, et al. Introduction to reinforcement learning, volume 135.
MIT press Cambridge, 1998.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2818-2826, 2016.

M. Tan, R. Pang, and Q. V. Le. Efficientdet: Scalable and efficient object detec-
tion. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 10781-10790, 2020.

C.J. C. H. Watkins and P. Dayan. Q-learning. In Machine Learning, pages 279-292,
1992.

M. Wiering and J. Schmidhuber. Fast Online q(A). Machine Learning, 33(1):105—
115, Oct 1998.

C.-T. Wu, L. F. Isikdogan, S. Rao, B. Nayak, T. Gerasimow, A. Sutic, L. Ain-kedem,
and G. Michael. VisionISP: Repurposing the image signal processor for computer
vision applications. In 2019 IEEE International Conference on Image Processing
(ICIP), pages 4624-4628. IEEE, 2019.

B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee. Awstream: Adaptive
wide-area streaming analytics. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 236-252, 2018.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and M. J. Freed-
man. Live Video Analytics at Scale with Approximation and Delay-Tolerance. In
14th USENIX Symposium on Networked Systems Design and Implementation (NSDI
17), pages 377-392, Boston, MA, Mar. 2017. USENIX Association.

https://nats.io/
https://nats.io/
https://opencv.org/
https://zeromq.org/
https://www.webmproject.org/vp9/
http://www.videolan.org/developers/x264.html
https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression
https://www.bmj.com/about-bmj/resources-readers/publications/statistics-square-one/11-correlation-and-regression
https://www.cisco.com/c/en/us/products/physical-security/video-surveillance-ip-cameras/index.html
https://www.cisco.com/c/en/us/products/physical-security/video-surveillance-ip-cameras/index.html
https://pillow.readthedocs.io/en/stable/
https://www.cnet.com/news/how-5g-aims-to-end-network-latency-response-time/
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
https://github.com/cocodataset/cocoapi/tree/master/PythonAPI/pycocotools
https://www.axis.com/products/network-cameras
https://www.axis.com/products/network-cameras
http://i-pro.com/global/en/surveillance
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8271.pdf
https://www.qualcomm.com/news/onq/2019/05/13/how-5g-low-latency-improves-your-mobile-experiences/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/
https://www.statisticssolutions.com/free-resources/directory-of-statistical-analyses/pearsons-correlation-coefficient/

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Impact of Environment Change on AU Accuracy
	3.2 Impact of Image Appearance Camera Settings on AU Accuracy
	3.3 Optimal camera setting is AU-specific

	4 Challenges and Approaches
	5 CamTuner Design
	5.1 Reinforcement Learning (RL) Engine
	5.2 AU-specific Analytics Quality Estimator
	5.3 Virtual Camera
	5.4 Integrating VC with the RL engine

	6 Implementation
	6.1 Hardware Setup
	6.2 Software Implementation

	7 Evaluation
	7.1 End-to-end VAP Performance
	7.2 How quickly does CamTuner react to suboptimal settings
	7.3 Real-world Deployment (Parking Lot)
	7.4 5G Use Case: Automatic Vehicle Collision Prediction (AVCP)
	7.5 System Performance
	7.6 Accuracy of Offline Trained Models

	8 Discussion
	9 Related Work
	10 Conclusion
	References

