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Producing secure software is challenging. The poor usability of security Application Programming Inter-

faces (APIs) makes this even harder. Many recommendations have been proposed to support developers by

improving the usability of cryptography libraries—rooted in wider best practice guidance in software engineer-

ing and API design. In this SLR, we systematize knowledge regarding these recommendations. We identify

and analyze 65 papers, offering 883 recommendations. Through thematic analysis, we identify seven core

ways to improve usability of APIs. Most of the recommendations focus on helping API developers to con-

struct and structure their code and make it more usable and easier for programmers to understand. There

is less focus, however, on documentation, writing requirements, code quality assessment, and the impact of

organizational software development practices. By tracing and analyzing paper ancestry, we map how this

knowledge becomes validated and translated over time. We find that very few API usability recommenda-

tions are empirically validated, and that recommendations specific to usable security APIs lag even further

behind.
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1 INTRODUCTION

Programming is hard to do well, and, even more so, securely. Developers frequently combine func-
tions from Application Programming Interfaces (APIs), but some are notoriously difficult to
use correctly [50, 73], with cryptography and security libraries often singled out as being partic-
ularly obtuse [44, 59]. Strategies ranging from Gamma et al.’s design patterns [25] to the design
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principles of Saltzer and Schroeder [76] have been influential on software engineering practices
as well as security API design. We investigate how such strategies may have informed recom-
mendations for designing APIs, especially those APIs that provide security and cryptographic
functionality.

Over the past 10 years, to help API designers produce security APIs that are more usable,
various papers have proposed usability guidelines, principles and recommendations [31, 53, 56,
70]—hereafter recommendations.

Tracing the ancestry of papers offers a means to systematize knowledge that inform recommen-
dations for improving usability of security APIs: providing a deeper understanding of current areas
of focus, how these have been validated, and where more evidence may be required.

Although previous studies have highlighted existing guidance available to developers [85], no
work, to date, has systematized knowledge across this guidance, traced ancestral relationships, as
well as the impact of such ancestry on current recommendations for security API usability.

Our SLR begins with 13 papers that provide Security API designer recommendations. We trace
and analyze their ancestry, identifying 883 recommendations in 65 papers (categorized in Table 1).
These include papers offering general API design recommendations, those providing general secu-
rity best practice, and broader software engineering design guidance and recommendations. We
categorize these recommendations and analyze their ancestry to answer three research questions:

RQ1: What do current recommendations focus on? Using thematic analysis, we develop
36 descriptive themes across 883 recommendations. These 36 themes are consolidated into seven
broad categories. While many papers recommend improving documentation to assist developers [7,
10, 11, 56, 60, 69, 70, 73, 86, 89], we see how this is reflected in Security API designer papers. For
instance, we find that only 17% of Security API designer recommendations focus on aspects related
to code’s documentation, whereas 36% of these recommendations address the code’s construction.

RQ2: How, and to what extent, have various recommendations been validated? Reviewing
recommendations by different paper types shows that less than a quarter (across the whole cor-
pus) have been empirically validated. Empirical validation is the scientific method of verifying a
theory through thorough application to test its effectiveness and validity. Only three papers from
Security API designer guidance fall within this category. We also identify areas of guidance that
seem to receive greater focus from the research community regarding empirical validation and
where potential gaps may lie.

RQ3: What are the implications of this coverage, in terms of ancestry and their valida-
tion, for the emerging set of Security API designer recommendations? In tracing how the
guidance has developed over time, we find extended ancestry chains—histories where literature
has built on prior work—for almost half of these papers, however, empirical validation is limited
within those chains. We explore how these ancestries develop—by addressing usability challenges
arising from APIs relating to particular languages, specific security problems pertaining to partic-
ular applications, or via experiences from developing security analysis and verification tools.

Our key findings show:

• A breakdown of the different guidance for improving the usability of security APIs (Table 4).
We show that API and software engineering-focused papers tend to focus on how one struc-
tures code and makes it understandable, only the security-focused papers consider organiza-
tional factors, and that security-focused papers specifically touching on APIs tend to ignore
documentation or validation aspects (RQ1: Section 4.1).
• A lack of empirical validation across the field. Empirical validation tests recommendations

and prevents ineffective recommendations from being propagated over time. However, only
22% of the guidance is empirically validated in the literature through independent experi-
mentation (RQ2: Section 4.2).
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Table 1. Count of Recommendations (Papers) Analyzed in the Study, Broken Down by Category of Paper

Paper Category Description Count Papers

Security API designer
recommendations

Literature that explicitly provides
recommendations for improving the
usability of security APIs through design.

84 (13) [1, 13, 22, 26, 31,
37, 53, 54, 56,
64, 66, 70, 87]

API designer
recommendations

Literature that focuses on APIs, which
may include limited elements of general
practice that permits good security, but
does not explicitly attend to security
itself.

285 (15) [7, 10, 11, 17, 20,
34, 40, 47, 50,
63, 69, 73, 74,
85, 89]

Software
engineering
recommendations

Literature that is around generic
software engineering and best practices
in the form of recommendations.

207 (17) [3, 16, 19, 24, 25,
32, 33, 39, 41,
42, 45, 57, 58,
60, 61, 71, 83]

Security
engineering
recommendations

Literature in software engineering and
computer security that explicitly make
related recommendations but does not
specifically focus on API security.

307 (20) [4, 6, 12, 15, 23,
27, 29, 36, 38,
49, 51, 52, 55,
67, 68, 75, 76,
79, 80, 86]

Total 883 (65)

• A well defined ancestry linking much of the security API guidance going back 47 years to
Saltzer and Schroeder’s seminal work in 1974 [75], amongst others (RQ3: Section 4.3).

Through a systematic literature review, we identify and analyze the challenges addressed by
the 883 recommendations and trace the origins of the recommendations from our 13 security API
designer papers. Our SLR results in a set of eight meta-recommendations that summarize 47 years
of design guidance targeted at software engineering and computer security.

Forty-seven years later, we find that much of the current guidance is still dealing with issues
Saltzer and Schroeder and other earlier works raised almost half a decade ago.

2 BACKGROUND: AN INTRODUCTION TO SALTZER AND SCHROEDER’S
PRINCIPLES

Our SLR begins with 13 papers that present recommendations to help improve the design of Se-
curity APIs. But how did these recommendations come to be? As we trace the ancestry of these
recommendations, we discovered a number of papers from which the ancestries stemmed, the
earliest work being that of Saltzer and Schroeder [75].

2.1 Saltzer and Schroeder’s Design Principles

In 1974, Saltzer addressed the challenge of protection and control of information sharing in Mul-
tics (Multiplexed Information and Computing Service). Saltzer offered five design principles to
help evaluate different designs. These design principles addressed access control lists, identifica-
tion and authentication of users, hierarchical control of access specifications, and primary memory
protection. In 1975, Saltzer and Schroeder presented eight design principles and a series of desired
functions with the intention of protecting computer-stored information from unauthorised access
and modification. At the time software application could store information and be simultaneously
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Table 2. Saltzer and Schroeder’s Eight Principles to Guide the Design of Information Protection

Mechanisms in Computer Systems [76]

Principle Description

Economy of Mechanism Keep the design as simple as possible. Design and
implementation errors that result in unwanted access paths will
not be noticed during normal use (since normal use usually does
not include attempts to exercise improper access paths).

Fail-safe defaults Base access decisions on permission rather than exclusion.

Complete mediation Every access to every object must be checked for authority.

Open design The design should not be secret. The mechanism should not
depend on the ignorance of potential attackers, but rather on the
possession of specific, more easily protected, keys or passwords.

Separation of privilege Where feasible, a protection mechanism that requires two keys
to unlock it is more robust and flexible than one that allows
access to the presenter of only a single key.

Least privilege Every program and every user of the system should operate
using the least set of privileges necessary to complete the job.
Primarily, this principle limits the damage that can result from
an accident or error.

Least common mechanism Minimize the amount of mechanism common to more than one
user and depended on by all users. Every shared mechanism
(especially one involving shared variables) represents a potential
information path between users and must be designed with great
care to be sure it does not unintentionally compromise security.

Psychological acceptability It is essential that the interface be designed for ease of use, so
that users routinely and automatically apply the protection
mechanisms correctly.

used by several users. The key challenge Saltzer and Schroeder wanted to address was that of mul-
tiple use. For applications with users who do not have equal authority, a system is needed to en-
force the desired authority structure in the application [76]. Saltzer and Schroeder’s work became
very influential and applicable to a wide range of fields such as enforcing security policies [78],
evaluating the Java security architecture [28], and minimising user-related faults in information
systems security [82]. However, it was in 1995 when Saltzer and Schroeder’s principles were first
applied to the design of security APIs through Cryptlib [35]. In 1995, Gutmann designed Cryptlib,
a cryptographic library, based on the adaptation of Saltzer and Schroeder’s principles [35].

3 METHOD

3.1 Identifying the 13 Security API Designer Papers

3.1.1 Step 1: Online Search. We used Google Scholar, IEEExplorer, and ACM Digital Library
with the following search terms to select papers that offer Security API designer recommendations:

API
(

Usability|Guidelines|
Principles|Design|Librar(y|ies)

)
? (Security)?

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 60. Pub. date: April 2023.
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We used a snowball-method [88] on the papers identified from the online search; and using
forward and backward snowballing, we checked to see if there were other relevant papers.

3.1.2 Step 2: Review of relevant journals and conferences. To ensure that the online search did
not miss any key works, we reviewed ten relevant venues from their first issue to their latest
available (November 2021) and added any paper that appeared to offer Security API designer rec-
ommendations to our initial set. We also ran a snowball method [88] on the papers we found
through our review of these 10 venues to find more relevant papers. We reviewed the following
venues as they represented the leading security and software engineering venues from the ACM,
IEEE, and USENIX communities:

• ACM Transactions on Software Engineering and Methodology (TOSEM),
• IEEE Symposium on Security and Privacy (Oakland),
• IEEE Transactions on Software Engineering (TSE),
• International Conference on Software Engineering (ICSE),
• USENIX Security Symposium (USENIX),
• International Symposium on Usable Privacy and Security (SOUPS), and
• ACM Conference on Computer and Communications Security (CCS),
• Network and Distributed System Security Symposium (NDSS),
• ACM Foundations of Software Engineering (FSE),
• ACM Conference on Human Factors in Computing Systems (CHI)

We reviewed these ten venues as an additional check to build on top of the initial set of

papers identified through the Google Scholar/IEEEXplorer/ACM DL search. Papers from
other venues were identified through the snowballing process (Table 3). We identified an initial
45 candidate papers, through step 1 and 2, that provided Security API Designer recommendations.

3.1.3 Step 3: Selecting Relevant Work. Each paper was reviewed independently by three authors.
During the review, we used the following inclusion and exclusion criteria to decide whether a paper
would be included in our list of Security API designer papers or not.

Inclusion:

• The paper gave recommendations about improving an API or programming interface.
• The recommendations aimed to improve the usability of the security API.
• The API was designed to be used by programmers for building an application, rather than

end-users using a program for security tasks (e.g., to accomplish PGP encryption).

Exclusion:

• The recommendations were not about APIs, but rather a technology an API might wrap (e.g.,
the use of various cryptographic modes such as ECB).
• The recommendations were targeted at improving the engineering quality of an API rather

than security directly. Whilst a secure API is often a well engineered API, the recommenda-
tions did not focus on security but rather broader engineering concerns (e.g., reducing an
API’s size to a few clear methods may reduce confusion, and be easier to verify—but unless
the paper explicitly stated that this was for security, it would not be included).
• The recommendations must discuss an API—several papers gave security recommendations

for configuration management that were similar to recommendations for securing APIs; but
these papers focused on advising IT workers who maintain these systems and did not de-
scribe programming interfaces.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 60. Pub. date: April 2023.
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Table 3. Where Each of the 65 Papers Providing the 883 Actionable

Recommendations for Usability and Security Are Published

Venue or Publisher Count References

IEEE S&P . . . . . . . . . . . . . . . . . . . . . . 6 [1, 4, 13, 31, 52, 53]
USENIX Security . . . . . . . . . . . . . . . 5 [36, 37, 39, 66, 87]
IEEE Software . . . . . . . . . . . . . . . . . . 4 [50, 61, 73, 86]
SOUPS . . . . . . . . . . . . . . . . . . . . . . . . . 4 [6, 29, 64, 70]
IEEE VL/HCC . . . . . . . . . . . . . . . . . . 3 [7, 47, 85]
CACM . . . . . . . . . . . . . . . . . . . . . . . . . 3 [57, 58, 75]
ACM CCS . . . . . . . . . . . . . . . . . . . . . . 3 [22, 23, 26]
IEEE TSE . . . . . . . . . . . . . . . . . . . . . . 2 [38, 41]
Carnegie-Mellon University . . . . . 2 [69, 79]
Elsevier VL&C . . . . . . . . . . . . . . . . . 2 [3, 33]
OWASP . . . . . . . . . . . . . . . . . . . . . . . . 2 [67, 68]
Addison Wesley . . . . . . . . . . . . . . . . 2 [10, 24]
IEEE/ACM ICSE . . . . . . . . . . . . . . . . 1 [54]
ACM OOPSLA . . . . . . . . . . . . . . . . . 1 [11]
IEEE QRS . . . . . . . . . . . . . . . . . . . . . . 1 [56]
ECOOP . . . . . . . . . . . . . . . . . . . . . . . . 1 [25]
ACM CHI . . . . . . . . . . . . . . . . . . . . . . 1 [60]
PPIG . . . . . . . . . . . . . . . . . . . . . . . . . . 1 [17]
People and Computing . . . . . . . . . . 1 [32]
ACM SIGDOC . . . . . . . . . . . . . . . . . . 1 [45]
EclipseCon . . . . . . . . . . . . . . . . . . . . . 1 [20]
ACM CCSC . . . . . . . . . . . . . . . . . . . . . 1 [63]
HCSE . . . . . . . . . . . . . . . . . . . . . . . . . . 1 [34]
IJCSNS . . . . . . . . . . . . . . . . . . . . . . . . 1 [89]
Microsoft . . . . . . . . . . . . . . . . . . . . . . 1 [55]
BSIMM . . . . . . . . . . . . . . . . . . . . . . . . 1 [15]
Proceedings of the IEEE . . . . . . . . . 1 [76]
ACM Software Engineering Notes 1 [51]
IEEE SESS . . . . . . . . . . . . . . . . . . . . . 1 [12]
Secure Software, Inc. . . . . . . . . . . . . 1 [80]
IEEE ACSAC . . . . . . . . . . . . . . . . . . . 1 [49]
IEEE COMPSAC . . . . . . . . . . . . . . . . 1 [42]
Human-Computer Interaction . . . 1 [71]
ACM TOIS . . . . . . . . . . . . . . . . . . . . . 1 [16]
National Computer Conference . . 1 [83]
Pearson Education . . . . . . . . . . . . . . 1 [19]
ACM Queue . . . . . . . . . . . . . . . . . . . . 1 [40]
ESE . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 [74]
IEEE SCAM . . . . . . . . . . . . . . . . . . . . 1 [27]

Overall . . . . . . . . . . . . . . . . . . . . . . . . 65

• The recommendations given were too generic to offer any meaningful advice (e.g., “an API
must be secure”—we agree, but this recommendation offers no advice on how to achieve
this).
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Although our 13 Security API designer papers meet our inclusion and exclusion criteria, the con-
text of each paper and the challenges they address range greatly. For example, Brown et al. work is
categorised as a Security API designer paper [13]. Brown et al. identified a series of effective checks
to find bugs in JavaScript (JS) run-time systems like; Node.js, Blink, and PDFium. Brown et al.
also developed a library with a usable security API, that prevented bugs without imposing signif-
icant overhead. Brown et al. further goes on to explain that the bugs are not explicit to JS, but
instead said that identical challenges and flaws could be found in other scripting languages like
Ruby and Python, concluding that a more principled API design would benefit those languages as
well.

Georgiev et al. identified poorly designed SSL implementations vulnerable to MITM attacks [26].
Georgiev et al. analysed applications that consisted of general APIs interacting with security APIs,
like the Crypto API and SSL APIs. Georgiev et al. concluded that the vulnerabilities are due to
poorly designed security APIs, and provided recommendations to address Security API design.
Through the inclusion and exclusion criteria, 13 Security API designer papers were taken forward.

3.2 Tracing the Ancestry of the 13 Security API Designer Papers

We identified earlier works that influenced the recommendations of the 13 Security API designer
papers by following the cited works associated with the recommendations. We repeated this pro-
cess on the recommendations of these earlier works and continued until no more recommendations
were offered and we reached the origin of the recommendations from the 13 Security API designer
papers. For every paper we identified, along the ancestry chain, we checked if these works were
validated or referred to by other works (Table 6). At the end of this step, we had 156 papers includ-
ing the 13 Security API designer papers (Table 1, Figure 1).

3.3 Identifying Actionable Recommendations

We sought papers that provide specific steps to improve APIs, rather than general engineering guid-
ance. From the 156 papers offering recommendations through the initial search and snowballing,
we narrowed our recommendations to those that are actionable—that is they detail specific and
clear steps to improving the usability of an API, such as:

Improved Usability.

“Easy to use, even without documentation: Developers like end-users do not like to
read manuals [· · · ]. If the API is not self-explanatory or worse gives the false impres-
sion that it is, developers will make dangerous mistakes.” [31]

Offered Guidance.

“Economy of mechanism: Keep the design as simple and small as possible. [· · · ] de-
sign and implementation errors that result in unwanted access paths will not be no-
ticed during normal use [· · · ]. As a result, techniques such as line-by-line inspection
of software and physical examination of hardware that implements protection mech-
anisms are necessary. For such techniques to be successful, a small and simple design
is essential.” [76]

Recommendations that were too general (i.e., not actionable), such as a general principle that
should be taken into account to improve the usability of an API without detailing specifics about
how that principle should be implemented were excluded, such as:

Developing General Principles.

“If it’s hard to find good names, go back to the drawing board.” [11]

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 60. Pub. date: April 2023.
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From the 156 papers, we identified 65 papers providing 883 actionable recommendations for
improving usability and security (Table 3).

From our 65 actionable papers, two authors allocated each paper to one of four paper types,
shown in Table 1, based on an inductive process derived from the papers themselves. This results
in Security API designer and three additional paper types. This process offers a high-level overview
of what each paper category broadly addresses and helps us to understand how recommendations
propagate against different communities.

3.4 Categorizing the Recommendations

To understand the different areas of recommendation focus, we categorized our 65 actionable pa-
pers. To alleviate bias from predefined categorization the analysis followed an inductive, bottom-
up approach [72], drawing out recommendation themes.

(1) Two authors, in joint discussion, selected 50 recommendations to identify different codes to
build a mutual understanding of the recommendations. An initial codebook [2] with 28 codes
was created.

(2) Over three iterations, the 883 recommendations were categorized using the initial codebook.
Additional codes were created to capture the diversity of recommendations identified during
the process. The initial codebook was updated to include 19 categories and 75 descriptive
sub-categories.

(3) Through a visual whiteboard mapping discussion between three authors, the number of
codes were reduced and amalgamated. This resulted in a consolidated codebook with seven
categories, and 36 descriptive sub-categories, as shown in Table 4. The mappings of cate-
gories onto recommendations was updated using the new codebook.

Most recommendations were assigned a single top-level category and one of its sub-categories.
A sixth ( 162

883 , 18%) were more complex—exhibiting multiple elements for API design, security or
general software engineering guidance into one—and so two categories were used. No recommen-
dation required more than two top-level categories. For example, Pane and Myers [69] recommend
supporting novice programmers:

“Use Signaling to Highlight Important Information.”

This was assigned to the Understanding: Drawing Attention category and descriptor sub-category
as it is concerned with helping the developer identify relevant information. Later, Pane and Myers
also recommend:

“Help detect, diagnose, and recover from errors.”

This was assigned two categories: Understanding: Assist as the recommendation concerns devel-
oper assistance to diagnose problems, and Construction: Error Handling as it deals with recovery
from errors.

To validate our categories, a random 10% sample of the recommendations were assessed by an
independent coder. Using Cohen’s κ (a common measure of interrater reliability [18]), and using
only a single category per recommendation (as Cohen’s κ only deals with single categorizations
per subject), we calculated a κ of 0.74 when mapping the categories, and 0.76 when mapping the
descriptors—indicating substantial agreement [48].

4 FINDINGS

Table 4 outlines the seven recommendation categories and 36 descriptor sub-categories. The seven
categories describe overarching themes and topics about which papers make recommendations.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 60. Pub. date: April 2023.
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Table 4. Codebook Showing Categories and • Descriptors for the Recommendations Identified

Code Description

Assessment The quality and testing of software and APIs.
• Quality Engineering The development, good practice, and management of software and APIs.
• Quality Assurance The methods and tools used to assess and audit software and APIs.

Construction The technical features of software and APIs.
• Abstraction Expressing different components of software and APIs through abstraction.
• Access Validation Complete Mediation—Checking for access.
• Code Any code or data involved in the construction of software and APIs.
• Error Handling How software and APIs deal with errors.
• Economy of Mechanism Ensuring minimalist and simple design of software and APIs.
• Open Design Ensuring that it is clear what the design is.
• Technical Specifics Any element not covered by the other Construction descriptors.
• Durability How software and APIs develop over time, are maintained, and can be deprecated.

Default Secure The different methods and practices to develop security as a fundamental
outcome.

• Bug and Defect Manage-
ment

Processes and practices for the handling of bugs and defects.

• Fail-Safe Default How does software or an API ensure that it will always provide, by default, the
safest option?

• Secure Architecture How software and API architecture is designed with security at its core.
• Compartmentalization Least Common Mechanism—Ensuring that things are not unnecessarily shared.

Documentation Documentation methods and practices.
• Explain How well documentation describes the usage of an API or software.
• Inventory / COTS The development of an inventory to record the different components of an API

and software.
• Telemetry and Reporting Ensuring active collection and recording of data and information.
• Publish and Communicate The use of documentation to distribute or to offer information.
• Standardized Ensuring that documentation provides cohesive standards.
• Exemplars The use of examples (frequently code) to help explain different aspects of software

and APIs.
• Guidance The development of guidance for users or designers.

Organizational Factors How organizations respond to developing software and APIs and interface
with external factors.

• Incident Response The development of practices to respond to emergencies or incidents from soft-
ware and APIs.

• Security Practice How an organization develops knowledge and practice of security.
• Training The delivering of training for organizations and their members.
• Third Party How organizations interface with third parties and third party components.
• Regulatory Any regulatory, legal, or compliance that an organization does.
• Risk Assessment and Met-
rics

Assessing risk and developing metrics to measure it.

Requirements The development of requirements for software and APIs.
• Implement Requirements The implementation and application of requirements.
• Write Requirements The construction, identification, and development of requirements.

Understanding How software and APIs come to be understood and practiced by humans.
• Assist Psychological Acceptability—how an API user or API developer deals with the

load of programming and techniques to assist developers.
• Drawing Attention Highlighting or pointing toward information required for proper or secure use of

software and APIs.
• Misuse The prevention of an API user or API developer misusing software and APIs.
• Relevant Information The provision of information that concerns a particular task or object of study.
• Meaningful Options The provision of options that make sense to API users.
• Sufficient Information The provision of enough information to effectively communicate and provide un-

derstanding.
• Validation of Activity Providing API users and API developers tools that check their activities.

ACM Transactions on Software Engineering and Methodology, Vol. 32, No. 3, Article 60. Pub. date: April 2023.



60:10 N. Patnaik et al.

The descriptor sub-categories offer greater detail within each of the categories. For example, the
Construction category captures recommendations to help structure and build software. Its Code
descriptor sub-category focuses on particular programming details. Bloch, for instance, advises
developers to:

“Return zero-length arrays, not nulls.” [10]

In contrast, the Economy of Mechanism descriptor identifies the simple code construction to avoid
errors—found in Nino et al.’s “be minimal” [63], Grill et al.’s “Do not provide multiple ways to
achieve one thing” [34], OWASP’s “Keep It Simple, Stupid Principle” [67] or Saltzer and Schroeder’s
Economy of Mechanism principle [76]; from which we name the descriptor. We also observe recom-
mendations on how to document code (the Documentation category)—typically focused on clear
explanation, communication, standardization and exemplars. Recommendations also assist API
users’ Understanding by aligning concepts with their mental models and helping them with the
cognitive load of programming (the Assist descriptor); for example, Ko et al. recommend:

“Help programmers recover from interruptions or delays by reminding them of their
previous actions.” [3]

Other topics in the Understanding category include Drawing Attention to Relevant and Sufficient
information, as well as providing Meaningful Options.

Table 5 shows the number of recommendations in each paper type mapped to each category and
sub-category. We find that, over the 883 recommendations, the majority concern the construction
and structure of code (the Construction category, 32%), as well as helping to make the code easier to
comprehend and clear to the developer (the Understanding category, 23%). The remaining recom-
mendations are more or less evenly spread across the five remaining categories (ranging between
7% and 14%).

4.1 RQ1: What Do Current Recommendations Focus on?

Take-away 1:

• API designer and Software engineering papers focus on how to structure code and how to

make it understandable.

• Practically only Security engineering papers make recommendations about

Organizational Factors.

• Security API designer papers do not engage sufficiently with various aspects of

Documentation or Understanding: Validation of Activity, which should be addressed in

future work.

Recommendations, as derived from our literature search and ancestral tracing, tend to favor tech-
nical aspects. We break these down by paper type to see the areas they focus on and how Security
API designer literature compares to other communities. Both API designer and Security API designer
paper types offer more recommendations on API Construction and its Code. The Construction cat-
egory is associated with 57% of API designer and 36% of Security API designer paper types, with
Understanding covering 21% and 24% of the paper types, respectively. As API-related recommenda-
tions are likely to deal with the interface with code, it is reasonable to expect these paper types to
focus more on Construction. Recent work on recommendations for security API usability [31, 70]
suggest that we may be witnessing a move to recommendations around improving code usability
(Understanding), but this is limited by the number of papers in this type (13—see Table 1).

For recommendations in Software engineering guidance, this relationship is reversed. A greater
emphasis is placed on Understanding (54%), with a reduction in a focus on Construction (25%).
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Table 5. Recommendations Mapped to Category and Paper Type

Recommendation Category

Security API

designer
API

designer
Software

engineering

Security

engineering Overall

Total 84 285 207 307 883

Assessment 8 (10%) 20 (7%) 18 (9%) 76 (25%) 122 (14%)

• Quality Engineering 3 (4%) 3 (1%) 4 (2%) 36 (12%) 46 (5%)
• Quality Assurance 5 (6%) 17 (6%) 14 (7%) 40 (13%) 76 (9%)

Construction 30 (36%) 163 (57%) 52 (25%) 35 (11%) 280 (32%)

• Abstraction 1 (1%) 2 (1%) 3 (2%) 0 6 (1%)
• Access Validation 5 (6%) 2 (1%) 1 (1%) 10 (3%) 18 (2%)
• Code 14 (17%) 79 (28%) 11 (5%) 8 (3%) 112 (13%)
• Error Handling 1 (1%) 11 (4%) 1 (1%) 0 13 (2%)
• Economy of Mechanism 5 (6%) 18 (6%) 32 (16%) 5 (2%) 60 (7%)
• Open Design 1 (1%) 1 (<1%) 0 4 (1%) 6 (1%)
• Durability 2 (2%) 18 (6%) 3 (2%) 5 (2%) 28 (3%)
• Other 1 (1%) 32 (11%) 1 (1%) 3 (1%) 37 (4%)

Default Secure 9 (11%) 5 (2%) 8 (4%) 42 (14%) 64 (7%)

• Bug and Defect Management 1 (1%) 0 2 (1%) 6 (2%) 9 (1%)
• Fail-Safe Default 4 (5%) 0 1 (1%) 4 (1%) 9 (1%)
• Secure Architecture 4 (5%) 3 (1%) 5 (2%) 28 (9%) 40 (5%)
• Compartmentalization 0 2 (1%) 0 4 (1%) 6 (1%)

Documentation 14 (17%) 28 (10%) 11 (5%) 40 (13%) 93 (11%)

• Explain 3 (4%) 10 (4%) 8 (4%) 2 (1%) 23 (3%)
• Inventory / COTS 0 2 (1%) 0 4 (1%) 6 (1%)
• Telemetry and Reporting 0 0 0 13 (4%) 13 (2%)
• Publish and Communicate 1 (1%) 1 (<1%) 0 9 (3%) 11 (1%)
• Standardized 1 (1%) 3 (1%) 0 5 (2%) 9 (1%)
• Exemplars 3 (4%) 6 (2%) 0 0 9 (1%)
• Guidance 6 (7%) 6 (2%) 3 (2%) 7 (2%) 22 (3%)

Organizational Factors 3 (4%) 0 0 51 (17%) 54 (6%)

• Incident Response 0 0 0 5 (2%) 5 (1%)
• Security Practice 1 (1%) 0 0 12 (4%) 13 (2%)
• Training 2 (2%) 0 0 13 (4%) 15 (2%)
• Third Party 0 0 0 1 (<1%) 1 (<1%)
• Regulatory 0 0 0 7 (2%) 7 (1%)
• Risk Assessment and Metrics 0 0 0 13 (4%) 13 (2%)

Requirements 0 10 (4%) 6 (3%) 55 (18%) 71 (8%)

• Implement Requirements 0 4 (1%) 0 3 (1%) 7 (1%)
• Write Requirements 0 6 (2%) 6 (3%) 52 (17%) 64 (7%)

Understanding 20 (24%) 59 (21%) 112 (54%) 8 (3%) 199 (23%)

• Assist 6 (7%) 36 (13%) 52 (25%) 2 (1%) 96 (11%)
• Drawing Attention 2 (2%) 1 (<1%) 8 (4%) 0 11 (1%)
• Misuse 2 (2%) 5 (2%) 5 (2%) 0 12 (1%)
• Relevant Information 1 (1%) 2 (1%) 11 (5%) 1 (<1%) 15 (2%)
• Meaningful Options 4 (5%) 11 (4%) 27 (13%) 1 (<1%) 43 (5%)
• Sufficient Information 0 1 (<1%) 3 (2%) 1 (<1%) 5 (1%)
• Validation of Activity 5 (6%) 3 (1%) 6 (3%) 3 (1%) 17 (2%)

Some recommendations were assigned multiple categories. All of the recommendations were assigned to at

least one category. Each percentage represents the percent of recommendations of a given paper type that are

in a given category.
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Unlike other paper types, Security engineering guidance focused less on Construction and Under-
standing (11% and 3%, respectively), and instead offered greater attention to other categories such
as Assessment (25%) and Requirements (18%).

Recommendations categorized under Organizational Factors are almost exclusively derived
from Security engineering papers. These recommendations deal with processes such as Incident
Response, Developer Training, and Risk Assessment. Many of the Security Engineering papers
are corporate literature presented by the security engineering teams at organizations such as Mi-
crosoft [55]. These recommendations are derived from day-to-day experience with practical tasks
such as training developers and writing policy. The ancestry of the recommendations presented
by many of the corporate literature is almost non-existent, because they are based on experience.

The relationship between corporate literature and academic literature is present in Security en-
gineering papers, in Tondel [86] and Assal [6] (Figure 1). Many of the recommendations in this
category come from corporate grey literature (such as Microsoft’s SDL [55], The BSIMM frame-
work [15] and OWASP [68]). For example, Microsoft’s SDL encourages developers to “Establish
a standard incident response process” [55] so that there are mechanisms for dealing with software
defects when they are inevitably discovered (which we capture under the Incident Response de-
scriptor). BSIMM recommends that organizations should “educate executives” [15] so that decision-
makers in an organization are sufficiently knowledgeable about security (Organizational Factors:
Training). Recommendations focused on organizations were almost exclusively limited to Secu-
rity engineering papers; suggesting greater emphasis in the security community on considering
the wider implications for developers and software in organizations and the impact of external
contexts on being secure. The recommendations reflect how organizational factors may affect the
design of security APIs.

When looking at the areas Security API designer papers focus on, we find that, in the Construc-
tion category, there is a greater emphasis on the Code sub-category. This shows that the research
community are strongly focusing on what challenges developers face when working with Secu-
rity APIs, and on the writing of code and implementing the functions of the security APIs. The
applications of this challenge are studied in more depth by Georgiev et al. who provide recommen-
dations to mitigate and resolve the issue for various stakeholders [26]. Georgiev et al. identified
that the SSL certificate validation protocol was broken in many security-critical applications avail-
able to the public. Software and applications such as Amazon’s EC2 Java library, including all
cloud clients, Paypal’s SDK’s that processed financial information, and many more Android appli-
cations and libraries were vulnerable to Man-in-the-Middle attacks. Georgiev et al. confirmed all
Man-in-the-Middle attack-based vulnerabilities empirically [26].

4.2 RQ2: Are We Validating Recommendations?

Take-away 2:

• Today’s Security API designer recommendations build upon those presented in historical

papers. However, across this ancestry, only 22% of the papers are empirically validated,

meaning further work should be conducted to strengthen their foundations.

• Of the Security engineering papers that receive empirical validation or are part of an

ancestor–descendant relationship, over half are through an adaptation of

recommendations.

• Only 3 of the 13 Security API designer paper have been empirically validated.

• In the absence of empirical validation, the four ancestor-descendant relationships can

risk propagating ineffective recommendations.
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Table 6. Codebook Used for Describing Five Different Kinds of Ancestor–Descendant Relationships

Between Papers, Including Empirical Validation

Code Description

Distillation Descendant condenses an Ancestor’s recommendation to further build
upon it by addressing a more specific challenge.

Borrowed Descendant addresses Ancestor’s guidelines at a superficial level either
to review or to run an experiment and analyze their results.

Adaptation Descendant has translated recommendations from an Ancestor, either
through re-wording or forming their own recommendations directly
derived from the Ancestor.

Comparison Descendant contrasts Ancestor recommendation with another set of
recommendations, perhaps written by another Descendant. Or Descen-
dant compares their recommendation to that of their Ancestor.

Empirical Descendant has experimented and evaluated through research an An-
cestor recommendation. Descendant assesses whether the Ancestor’s
recommendations is valid.

To assess the relationships between different recommendations over time, we constructed their
ancestry by separating each recommendation’s inheritance into five distinct ancestor–descendant
relationships (Table 6). Within the ancestor–descendant relationships, we make a distinction be-
tween empirical validation and the four remaining relationships. With empirical validation it is
possible to test recommendation effectiveness through experimentation or systematic observation.
However, this bar is lower for the other ancestor–descendant relationships. These are presented
in Table 6. Below are examples of how each ancestor–descendant relationship and empirical vali-
dation relate to the literature.

Distillation. An evolution occurs from Bloch’s 2001 book Effective Java [10] to his 2006 paper
How to Design a Good API and Why it Matters [11]. The book on Java programming focuses
on usage and is later condensed by the short paper that addresses the design of APIs
through a series of API usability recommendations—with the latter paper used frequently
by Security API designer papers.

Borrowed. Myers and Stylos [58] refer to the ancestry between Grill et al. [34] and Nielsen and
Molich [62]:

“Grill et al. described a method where they had experts use Nielsen’s Heuristic Eval-
uation to identify problems with an API and observed developers learning to use the
same API in the lab. An interesting finding was these two methods revealed mostly
independent sets of problems with that API.” [58]

Adaptation. In 2017 Acar et al. [1] evaluated and compared the usability of five Python-based
cryptographic libraries. To evaluate the usability of these cryptographic libraries, Acar et al.
adapted recommendations from Bloch [11], and from Green and Smith [31].

“We adapt guidelines from these various sources [Bloch [11], Green and Smith [31]] to
evaluate the APIs we examine.” [1]
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Table 7. Rates of Different Kinds of Paper Validation for

Different Categories of Guideline Papers in the Literature
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Distillation 8 7 8 1 24 (37%)
Borrowed 2 7 2 4 15 (23%)
Adaptation 2 9 7 16 34 (52%)
Comparison 7 1 3 4 15 (23%)
Empirical 3 1 8 2 14 (22%)

Overall
22 25 28 27 26

(33%) (39%) (43%) (42%) (40%)

The overall values account for single papers being validated multiple

times.

Comparison. Smith [84] reflects on the work of Saltzer [75] along with the 1975 paper written
with Schroeder [76] by comparing the principles of Saltzer and Schroeder to those of the
then-contemporary recommendations in software security.

“The following are new—or newly stated—principles compared to those described in
1975.” [84]

Empirical. In 2019 Patnaik et al. [70] empirically evaluate the 10 principles designed to improve
usability and security of APIs by Green and Smith [31].

“An empirical validation of Green and Smith’s principles showing when a principle is
not being applied but also identifying issues that Green and Smith’s principles currently
do not capture.” [70]

4.2.1 Validation by Paper Type. Table 7 summarizes the number of papers associated with
empirical validation and the other ancestor–descendant relationships. The various relationships
we identified through mappings are presented in Figure 1; these show the full ancestry of the
recommendations.

Overall, 22% of the papers engage in empirical validation of prior work. 8 (53%) Software engi-
neering and 2 (47%) Security engineering papers are empirically validated, whereas only 3 Security
API designer and 1 API designer papers are empirically validated. Recommendations written more
recently, as part of the software engineering and the computer security community, have devel-
oped upon some form of ancestor–descendant relationship or empirical validation of Software
engineering and Security engineering papers like Nielsen’s usability heuristics [60] and Saltzer
and Schroeder’s principles [76]. Though efforts have been made to empirically validate earlier
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papers [60, 76], contemporary API recommendations are inherited from a large corpus of papers,
where only 22% are empirically validated. This raises the need to further understand and validate
how API recommendations are built. Of the 13 Security API designer papers, only 3 [22, 26, 31]
are empirically validated.

As we create further recommendations, we must consider the role of ancestry, and the validation
of what it recommends, to strengthen the foundations of Security API designer recommendations.
Otherwise, we have no way of establishing if particular recommendations—and efforts invested in
following them—have a material impact on improving the usability of security APIs. We also risk
propagating ineffective recommendations over time. To understand to what extent we are propa-
gating these ineffective recommendations, we need to learn what these ineffective recommenda-
tions are. During this section, we have primarily studied the extent to which empirical validation
has been performed across the literature. However, there are four ancestor-descendant relation-
ship that are commonly seen throughout the ancestries. We encourage researchers to engage with
the literature by adapting, borrowing, comparing, and distilling older recommendations, but if the
recommendations are not empirically validated, the ancestor-descendant relationships may risk
propagating these ineffective recommendations. So before, adapting, borrowing, comparing, or
distilling older recommendations, researchers should consider performing an empirical study to
test the effectiveness of the recommendations.

An argument can be made that if a set of recommendations presented by a paper is the result of
a well-validated long ancestry with many ancestor-descendant relationships along the chain, then
this set of recommendations should be effective. We argue that if the set of recommendations have
been empirically validated then designers can be assured that these recommendations are effec-
tive. However, if the set of recommendations is related to through multiple ancestor-descendant
relationships, one should consider performing an empirical study to ensure that these recommen-
dations are effective and the efforts to implement them for other challenges will not go to waste.

4.2.2 Which Aspects Are We Validating? If certain academic literature is not conducting exten-
sive and in-depth validation of all areas, then which aspects are we validating? Table 8 counts
the different recommendation categories broken down by their ancestor–descendant relationship,
including empirical validation. Only 20% of the total 883 recommendations are empirically val-
idated, and the 179 empirically validated recommendations found are rooted in only 14 papers
(22%) (Tables 7 and 8).

We empirically validate more on Construction (45%) followed by Understanding (27%). For other
ancestral relationships, categories exhibit different rates, but overall these are at the levels we
would expect given their relative frequency across different paper types (Table 8). The software
engineering and security communities should focus on forming more empirical and comparison-
based relationships, as opposed to borrowing and distillation, to best ensure the effectiveness of
the recommendations with thorough, repeatable experimentation (see Table 8).

4.3 RQ3: Where Do Security API Designer Recommendations Come From?

Take-away 3:

• Almost half of the Security API designer papers have a well defined and long ancestry,

dating back to 1974.

• A distinction between the capacity to validate abstract and concrete recommendations

(derived from experiences with particular tools and applications) exists.

• Recommendations derive mainly from standalone ancestries, or are processed through

Gutmann [37] or subsequently through Green and Smith [31].
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Table 8. Counts of Recommendations That Have Been Empirically Validated or Part of

Other Ancestor–Descendant Relationships Across the Seven Broad Category Types
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Total 283 148 722 91 171 1415

Construction 162 (57%) 49 (33%) 284 (40%) 23 (25%) 79 (46%) 597 (42%)

Documentation 25 (9%) 35 (24%) 80 (11%) 9 (10%) 18 (11%) 167 (12%)

Requirements 11 (4%) 8 (5%) 61 (8%) 1 (1%) 3 (2%) 84 (6%)

Understanding 53 (19%) 41 (28%) 106 (15%) 28 (31%) 45 (26%) 273 (19%)

Assessment 17 (26%) 8 (1%) 102 (14%) 24 (16%) 21 (13%) 172 (12%)

Default Secure 15 (5%) 7 (5%) 34 (5%) 5 (6%) 5 (3%) 66 (5%)

Organisational and Regulatory Factors 0 0 55 (8%) 1 (1%) 0 56 (4%)

In the development of Security API designer recommendations, there are two broad forms—
abstract and concrete—that we identified in the ancestries we analyzed.

First, abstract recommendations such as by Green and Smith [31] apply to a number of tools,
applications, and contexts. Second, there are concrete recommendations as identified by the ances-
tries of tools and applications [22, 53]. These tend to be more tightly focused to a particular tool
or application—and therefore offer advice, that as one would expect, focuses more exclusively on
Construction and Requirements. For example:

Abstract Recommendation. “Defaults should be safe and never ambiguous.” [31]
Concrete Recommendation. “Client-side validation must be thoroughly tested for consis-

tency with server-side validation logic. WARDroid can help in identifying potential
inconsistencies.” [53]

From the examples given above, Green and Smith provide a recommendation for designing se-
curity APIs. The recommendation can be applied to tools, API design, and general practice by
developers who are integrating security with their applications. However, Mendoza et al. offer a
concrete recommendation. The recommendation is a policy expressed through WarDroid [53] and
addresses API Construction. Ancestries tell us a complex story between concrete recommendations
that may be easier to validate, but often are standalone, and broader recommendations that require
a wide array of studies (over time) for validation. Furthermore, to devise a method for validating
broader recommendations, one may need to refer back to the ancestry of these recommendations
to understand the reason for their transformation over time.

Concrete recommendations may be easier to validate due to their association with a specific tool.
The tool is presented as a solution that informs the recommendations the study provided. These
recommendations can be empirically validated by validating the use of the tool. Making it easier
to see any direct effects and assess the impact of recommendations.

Abstract recommendations are intentionally broader so that they can be applied to fields of soft-
ware design and security. Studies that propose recommendations based on the insights of earlier
papers that present abstract recommendations should dedicate their efforts to validating the rec-
ommendations through experimentation designed to measure the effectiveness on the usability of
security APIs.

The full chart of ancestor–descendant relationships, including empirical validation between
papers is shown in (Figure 1). This shows instances of empirical validation and the ancestor–
descendant relationships between papers (and the recommendations they provide) across our
corpus.
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We focus on the 13 usable Security API designer papers and discuss how the majority of
the recommendations they provide derive from Saltzer and Schroeder [76], Bloch [10, 11], and
Gamma et al. [25]. This shows that these works have become a strong influence on security API
design recommendations today. We also find instances where recommendations from the 1975
paper of Saltzer and Schroeder are directly referenced by security API design works of 2020.

4.3.1 Saltzer and Schroeder: Once Upon a Time. In 1975, Saltzer and Schroeder presented
eight design principles to help guide the design of protection mechanisms and prevent security
flaws [76]. The design principles were adapted by a revision of material originally published by
Saltzer in 1974 [75].

Saltzer and Schroeder’s work has been thoroughly influential through many relationships by
works very different from each other, addressing fields from security policies [78] from security for
Java applications [28] to cryptographic APIs. Their work has also been empirically validated [82].
This level of influence establishes Salzter and Schroeder’s work as a strong foundation for security
API design recommendations.

Gutmann’s release of the Cryptlib cryptographic API in 1995 acted as a gateway between the
security engineering recommendations published by Saltzer and Schroeder and 7 of our 13 security
API designer papers. Gutmann adapted Saltzer and Schroeder’s design principles when designing
Cryptlib [35].

Gutmann’s Cryptlib advertised a high-level interface aiming to improve usability while main-
taining a strong level of security.

“Cryptlib provides anyone with the ability to add strong security capabilities to an
application in as little as half an hour, without needing to know any of the low-level
details that make the encryption or authentication work.” [35]

Bernstein et al. built on Cryptlib and presented NaCl, an even more abstracted cryptographic API
that compared NaCl to Cryptlib in detail [9]. NaCl, itself, has forks such as Libsodium, which also
has forks including Monocypher. We can see how strongly Gutmann’s adaptation of Saltzer and
Schroeder’s work has influenced the design of cryptographic APIs today.

In 1999, Gutmann carried forward these adaptations when presenting his own set of recom-
mendations to help improve the design of cryptographic security architecture [36]. Gutmann’s
recommendations were also an adaptation of principles used to design NSA’s Security Service API.
In 2002, Gutmann concludes his trilogy, presenting a set of recommendations in the form of lessons
learned from implementing cryptographic software [37]. These recommendations are the oldest
of the security API designer papers. Compared to Saltzer and Schroeder, Gutmann’s recommenda-
tions [37] have not been as widely validated by or related to other works.

The Emergence of Green and Smith’s Principles: In 2016, Green and Smith presented 10 recom-
mendations to help developers create more usable and secure cryptographic APIs [31]. The rec-
ommendations stemmed from the distillation of Gutmann’s work and the adaptation of a series of
API design recommendations defined by Bloch in 2006 [11]. Green and Smith’s work is the ances-
tor, in the ancestor–descendant relationship, to four security API designer papers [1, 56, 64, 87].
Their recommendations are also empirically validated by Patnaik et al. [70], another security API
designer paper.

Patnaik et al. [70] offered an empirical validation in this chain through evaluating the 10 Green
and Smith [31] principles. Through an analysis of over 2,400 Stack Overflow questions and re-
sponses from developers facing challenges using seven cryptographic libraries, they found 16 us-
ability issues that were mapped against the 10 principles of Green and Smith [31]. They analyzed
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the extent to which the 10 principles encompassed the 16 usability issues and also identified addi-
tional issues that were not addressed by Green and Smith’s principles. Based on this, they derived
additional recommendations: four usability smells, which are indicators that an interface may be
difficult to use for its intended users.

In 2018 Mindermann et al. presented recommendations for designing cryptographic libraries by
studying Rust cryptographic APIs [56]. They addressed insecure defaults, authenticated encryp-
tion in low-level libraries, lack of warnings about deprecated/broken features, and the scarcity of
documentation and example code from low-level libraries. They compare their set of recommen-
dations against Green and Smith:

“Compared to Green and Smith’s top ten principles, our recommendations are more
specific but do not conflict with their suggestions.” [56]

Acar et al. [1] adapted Green and Smith to evaluate solutions from 256 Python developers at-
tempting tasks such as symmetric and asymmetric cryptography using one of five different cryp-
tographic APIs.

Oliveira et al. [64] distill the work of Green and Smith as well as Acar et al. as part of an em-
pirical study to understand the developer’s perspective of API blindspots through a series of code
scenarios. Oliveira et al. analyzed the developer’s personal traits, such as; perception of correctness,
familiarity with code, and level of experience.

Votipka et al. adapted Green and Smith to help understand what errors developers tended to
make and why. Votipka et al. analyzed 94 submissions of code attempting security problems, re-
sulting in 182 identified unique security vulnerabilities [87].

Votipka et al.’s recommendations from 2020 is the latest in an ancestral chain dating back to
Saltzer and Schroeder’s design principles of 1975, aimed at protection mechanisms [76]. Authors
like Gutmann and Green and Smith played a pivotal role when tailoring Saltzer and Schroeder’s
design principles toward the security API design recommendations of today [31, 37]. However,
it is interesting to identify a direct and contemporary relationship between Votipka et al. and
Saltzer and Schroeder. Votipka et al. borrowed Saltzer and Schroeder’s principles to highlight design
violations made by developers introducing too much complexity in their code. This shows two
very different forms of evolution; on the one hand, we see security engineering recommendations
from 1975 strongly influential and transforming slowly over time to address challenges in niche
fields such as the design of cryptographic APIs and security API design recommendations, and on
the other hand, Saltzer and Schroeder’s principles are still relevant today and flexible enough to
address the challenges of designing security APIs directly.

4.3.2 Bloch: Know Your Audience. Learning a new language requires knowing the grammar
(how to correctly structure the language), the vocabulary (how to name things you want to talk
about), and the common and effective ways in which to say things (usage). These practices are
also applicable to programming languages. Many have addressed the first two practices [5, 30].
However, Bloch notes that many Java developers do not have a good understanding of usage. In
2001, Bloch dedicated Effective Java to address the practice of usage. The book offers advice on code
structure, and the importance of others’ understanding and code readability to improve ease of use
when making future modifications [10]. Throughout the book, Bloch evaluates and compares his
recommendations to Gamma et al.’s design patterns [25].

“A key feature of this book is that it contains code examples illustrating many design
patterns and idioms. Where appropriate, they are cross-referenced to the standard
reference work in this area [Gamma95].” [10]
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In 2006, Bloch takes a new direction, adapting his recommendations from Effective Java to pro-
vide guidance for designing good APIs. Initially Bloch provides this guidance in the form of a
presentation at Google Inc. Following this, Bloch condenses the essence of the presentation into
39 recommendations [11]. These recommendations were later adapted in 2016 by Green and Smith
to improve the usability of security APIs through design [31].

Bloch’s work is also adapted by Acar et al., who also adapts the works of many, including Green
and Smith [31], Henning et al. [40], and Nielsen [60], to compare the usability of Python-based
cryptographic APIs [1].

“We adapt guidelines from these various sources to evaluate the APIs we examine.” [1]

We thus have an intricate chain of usable Security API designer recommendations—ones that both
inform Green and Smith [10, 11], and those that Green and Smith inform [1, 56, 64, 70, 87]. In
Bloch’s ancestry, we do not find any explicit evidence that Bloch’s recommendations have been
empirically validated as they moved into Green and Smith, though there is some traceability to
Gamma et al.’s design patterns—that are rooted in observations of developers’ problem-solving
practices. Bloch [10] discusses the many architectural advantages of Gamma et al.’s design patterns,
and more specifically Gamma et al.’s factory pattern [25]. This suggests that we need not only
further empirical validation of Green and Smith, and the ancestry this work builds on.

4.3.3 Georgiev: The Most Dangerous Code In The World. Georgiev et al.’s work is in itself an
empirical study, in that Georgiev et al. provide evidence that the SSL certificate validation is bro-
ken in many security-based applications and libraries [26]. Georgiev et al. found that any SSL
connection from cloud clients based on the Amazon’s E2C Java library are vulnerable to man-in-
the-middle attacks and are due to poorly designed APIs of SSL implementations, in turn present-
ing developers with a confusing set of parameters and settings to decipher. Georgiev et al. con-
clude their paper by presenting recommendations for both application developers and SSL library
developers [26].

Georgiev et al.’s recommendations are empirically validated by O’Neill et al. [66], another se-
curity API design paper, who also empirically validate the works of Brubaker et al. [14] and
Fahl et al. [23]. A connection is also seen between Georgiev et al., Brubaker et al. and Fahl et al.,
as the latter two papers compare their work to that of Georgiev et al.

Building on Georgiev et al. work, O’Neill et al. present the Secure Socket API (SSA), a simpli-
fied TLS implementation using existing network applications [66]. O’Neill et al. build upon earlier
work on TrustBase—an effort to improve security and flexibility available to administrators who
select the certificate validation for their applications [65]. SSA presents the administrator with
the choice of standard validation or TrustBase. By selecting TrustBase, administrators have finer-
grained control over validation. O’Neill et al. analyze the design of OpenSSL, providing recom-
mendations to help improve the design. These recommendations generally apply when designing
security APIs.

Meng et al. perform an empirical analysis of StackOverflow posts to understand challenges faced
by developers when using secure coding practices in Java [54]. They identify security vulnerabili-
ties in the suggested code of answers provided through StackOverflow. The findings of the study
suggests more consideration should be given to secure coding assistance and education, bridging
the gap between security theory and coding practices. A comparison is made to Georgiev et al.’s
work [26].

“Compared with prior research, our study has two new contributions. First, our scope
is broader. We report new challenges on secure coding practices [· · · ]. Second, our
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investigation on the online forum provides a new social and community perspective
about secure coding. The unique insights cannot be discovered through analyzing
code.” [54]

Similarly, Meng et al. also compare their work to Egele et al., who developed CryptoLint, a static
program slicing tool designed to check applications from the Google Play marketplace. Egele et al.
find that 88% of these applications that use cryptographic APIs make at least one mistake, such
as failing to provide “security against chosen plaintext attacks (IND-CPA) and cracking resis-
tance” [22]. Egele et al. adapt the work of Bellare et al. [8] and Desnos’ Androguard [21].

“Our tool, called CryptoLint, is based upon the Androguard Android program analysis
framework. [· · · ] We adopt the notation used by Bellare and Rogaway.” [22]

Not only does the work of Bellare et al. and Desnos provide a foundation for Egele et al.’s
analysis, but they directly influence the security criteria used by CryptoLint. Based on the analysis
Egele et al. present, a set of countermeasures against the vulnerabilities were found.

Between these four security API designer papers [22, 26, 54, 66], we can see that a good foun-
dation is forming. In particular, Georgiev et al.’s [26] recommendations have been empirically
validated by O’Neill et al. [66], and compared by Meng et al. [54], Brubaker et al. [14], and
Fahl et al. [23]. The engagement with Georgiev et al. through many ancestor-descendant rela-
tionships and it being an empirical study in itself, cements Georgiev et al.’s work as a strong
foundation upon which future security API recommendations can be built by the research com-
munity. To ensure this, engagement through further empirical studies and ancestor-descendant
relationships should continue.

5 THREATS TO VALIDITY

We identify four main threats to validity.
First, our search terms on Google Scholar, IEEExplore, and ACM DL (see Section 3) may have

overlooked some papers relevant to our study. We believe we have mitigated this threat and are
confident that no relevant work has been overlooked. Our search was extensive using general
search engines and manually checking a subset of key venues. Forward and backward snowballing
was used to ensure cited papers at other venues were not missed. Table 3 lists all venues and
publishers for our 65 papers providing actionable recommendations.

Second, the categorization was conducted inductively. To ensure the categorization was consis-
tent, we did an independent coding and calculated Cohen’s κ [18], demonstrating that our catego-
rization was consistent between coders. However, roughly one-fifth of recommendations have two
categories. Cohen’s κ is not designed for data with multiple categories, so when calculating inter-
rater reliability, we used only the first categorization. This is unlikely to affect the overall analysis
as the κ-value for just the first category is high (0.74)—we would expect a second category to also
be consistent.

Third, search neutrality could be a threat as the authors did not search resources in incognito.
However, we did cross-check our results from our online search through multiple sources. This
included a manual search for relevant papers across key venues. So while there is a small risk that
search neutrality would have an impact, we are confident that our search is extensive and unlikely
to miss any key works in the field.

Fourth, Our SLR studies 65 papers that present 883 actionable recommendations for improving
usability and security. Of these 65 papers, 14 papers have been empirically validated. These 14 pa-
pers present a total of 179 recommendations, accounting for 20% of the 883 recommendations.
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It is difficult to determine specifically which of the 179 recommendations have been empirically
validated, because the papers that perform the empirical studies rarely list out all the recommen-
dations from our 14 papers. There are a few instances where every recommendation is listed out.
For example, Patnaik et al. maps each one of the 10 recommendations presented by Green and
Smith [31] against 16 usability issues faced by software developers when trying to use seven cryp-
tographic libraries [70].

In 2002, Gutmann studies his own design principles from 1999, on which Cryptlib was
designed [36]. As a result of studying his own design principles, Gutmann presented a set of new
recommendations in the form of lessons learnt from the process of designing a cryptographic
library [37].

However, these are two rare examples where every recommendation presented by an earlier
work is listed and empirically studied, one-by-one, by a newer paper. This challenge is also true
for the remaining ancestor-descendant relationships. When tracing the ancestry of a set of recom-
mendations presented by a paper, we often found that a paper would say that they “adapted” or
“compared” the work of an earlier paper. For example, Mindermann et al. compared their recom-
mendations to the work of Green and Smith [31, 56].

“Compared to Green and Smith’s top ten principles, our recommendations are more specific but
do not conflict with their recommendations” [56].

Our SLR has made efforts to specifically address and analyse each of the 883 recommendations
and introduce some clarity to the subject. By codifying and categorising the 883 recommendations,
we present seven categories and 36 sub-categories in Table 4. We also perform an analysis using
this data in Table 5. The information shown through Tables 4 and 5 identifies what challenges the
883 recommendations focus on.

6 DISCUSSION

6.1 The Importance of the Longstanding Principles

What makes the works of Saltzer and Schroeder, Bloch, Nielsen, and Gamma et al. referable is
that not only are they actionable but also that they are flexible enough to transition into different
branches of software engineering and computer security through adaptations [10, 11, 25, 60, 76].
This is no clearer than in Saltzer and Schroeder’s case [76], where they define a set of recommen-
dations to address the design challenges of protecting information, stored on computers, from
unauthorized access. Gutmann facilitated the transition from security engineering to security
API design by using Saltzer and Schroeder’s recommendations to design the Cryptlib crypto-
graphic API [35]. Gutmann’s work is later related to by Green and Smith, from which many other
Security API designer papers grew [31]. This evolution was possible primarily because Saltzer
and Schroeder’s recommendations were actionable. Saltzer and Schroeder’s recommendations are
adapted again in 2020 directly by Votipka et al. [87], proving that not only have their recommenda-
tions stood the test of time but also that they are still relevant for addressing the challenges faced
today by security API designers.

Gamma et al. also play an influential role in the state of today’s security API design recom-
mendations. In 2001, Bloch transitions the design pattern’s of Gamma et al. to address usability
challenges in Java programming [10]. In 2006, Bloch adapts his own work toward designing good
APIs [11]. Green and Smith tailor Bloch’s API design recommendations for security API design-
ers [31]. The wide-spread influence seen through Gamma et al.’s ancestry explains why it referred
to through many ancestor-descendant relationships.

Saltzer and Schroeder permeate several of our categories, but some also come from elsewhere.
The Documentation category likely has its origins in the work of Nielsen and UI usability [60].
Nielsen’s recommendations are adapted by Acar et al. for comparing the usability of Python-based
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cryptographic APIs, where the importance of good documentation is highlighted. Several other
papers have highlighted the importance of usable and high quality documentation [7, 10, 11, 20,
56, 60, 69, 70, 73, 86, 89].

Before going on to advise on how one can ease novice programmers into programming, Pane
and Myers [69] quote their guidance:

“Even though it is better if the system can be used without documentation, it may be
necessary to provide help and documentation. Any such information should be easy
to search, focused on the user’s task, list concrete steps to be carried out, and not be
too large.” [60]

Pane and Myers go on to inspire others and bring usability specifically to developers. 20 years
later Green and Smith describe their 10 principles for creating usable and secure crypto APIs [31].
For example, “Make APIs easy to use, even without documentation” [31]. Yet again, these earlier
usability guidelines have been restated, rediscovered and then returned to.

Eleven recommendations say specifically to use (and occasionally not to use [34]) Gamma et al.’s
Design Patterns and six reference Factory Patterns directly. Four papers related to Gamma et al.’s
work, and a further two validated the patterns empirically. Perhaps the easy-to-recall names of
many of the patterns have helped cement the work—but whilst we identified recommendations
to use design patterns and to document their use, we did not see new versions of the Factory,
Visitor, Observer, or Singleton patterns being restated for Security API designer papers, or other
more specialized fields.

This does not mean, however, that the original Gamma et al. Design Patterns are not connected
to the Security API designer field. The Design Patterns have influenced the recommendations from
the current literature (e.g., Bloch’s), and have become an underlying standard upon which new
recommendations are built. The works that presented these longstanding principles can be consid-
ered as a set of rules that are widely known to the current software engineering, computer security,
and the usable security research communities. Future advances in security API design recommen-
dations can refer to these standards, without hesitation, because these longstanding principles are
tried and tested through developing challenges.

6.2 More Validation Please!

How did Saltzer and Schroeder’s work from 1975 remain relevant over the past 47 years? Why
is a paper from 1994, authored by Nielsen, still influential today? Or why does a series of design
patterns written by Gamma et al. in 1993 become part of an SLR written in 2021? The answer to all
these questions is seen through empirical validation and our ancestor–descendant relationships.
Without the ancestry chain stemming from Saltzer and Schroeder, would Votipka [87] even know
their recommendations existed? It is unlikely, which is probably the case for many other design
recommendation papers from that time. This is why empirical validation is necessary. The purpose
of empirical validation helps set aside poor design recommendations and brings forward recom-
mendations that prove to be effective. Empirical validation provides assurance to designers that
the recommendations they are considering do in fact help design better software.

To understand to what extent ineffective recommendations have been propagated over time,
one would need to identify the ineffective recommendations, which requires empirical studies to
be performed on the set of recommendations presented by the papers discovered through our SLR.
We encourage empirical validation to identify the effectiveness of recommendations and prevent
the propagation of ineffective recommendations. This is a task for the research community as a
whole. We encourage the research community to engage with these works and perform this greater
analysis.
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Whilst we found that many recommendations have not been validated or related to ( 166
883 , 19%),

overall the software engineering and security communities seem to be making strides toward it.
Yet, this seems to be less so with papers that provide both general and security-focused recommen-
dations for developing APIs, at 39% and 33% of papers, respectively (see Table 7).

Our work shows that 22% of all papers are empirically validated. More should be done to directly
engage with the ancestral chains deriving from earlier recommendations rather than validating a
singular set of recommendations to ensure a depth from earlier works to contemporary papers.
When creating new recommendations then, we should be looking at the history of where our
knowledge comes from.

Therefore, we argue that studies should not only focus on validating contemporary papers but
also engage with the earlier and large body of knowledge concerning usability, and its implica-
tions for APIs and security. To engage with earlier papers, one could run a standalone empirical
validation study on the recommendations presented in these, for example. By applying recommen-
dations in practice through experimentation and providing detailed analyses, one can help build
more solid foundations as empirical validation can then be referenced by future studies. Upon
this strong foundation, the recommendations can be transformed to create new recommendations
specific to fields such as Security API designer guidance.

Many recommendations have arguably changed little from those made 25 or even 50 years ago—
yet relatively few of the earlier works are referenced in the ancestral chains we have analyzed.

Modern recommendations are clearly still being inspired by earlier works and to avoid restat-
ing ourselves, as a community, we must take earlier, more established guidance and ensure—the
foundational principles—are validated fully.

We see evidence of a well-referenced and well-validated paper in the making through the work
of Georgiev et al. [26]. A set of recommendations that has been empirically validated and influ-
enced the works of many others, Georgiev et al. has the potential to influence many more in the
field of security API design. To ensure this potential, more validation is needed, their recommen-
dations need to be tested against varying conditions and challenges.

6.3 Things to Consider when Designing a Security API

For researchers and engineers who wants to design a new security API, they can start by looking at
the recommendations that fall under Construction and Understanding (Tables 4 and 5). Furthermore,
they can trace the ancestry of these recommendations and see the types of ancestor-descendant
relationships and empirical validation that have formed these ancestries through Figure 1. If empir-
ical validation has been performed, then they can consider using these recommendations to design
their security API, but if not, perhaps they should consider performing their own empirical study
to validate these recommendations before using them to design a security API. To further improve
the design of their security API, they can look at recommendations from categories that have not
had much attention from Security API literature and start by validating them. For example, of the
84 Security API designer recommendations, 14 (17%) fall under Documentation. But there are other
paper types as well, for example, 40 of the 307 (13%) of Security Engineering paper contribute to
Documentation. An API designer can look at these recommendations and using Figure 1, look for
connections between the literature of these two paper types, or they could see if Security Engineer-
ing recommendations are relevant to their Security API design and form a connection through one
of the ancestor-descendant relationships or through an empirical study performed by them.

When selecting a set of recommendations to follow, researchers and engineers can benefit from
understanding the context under which those recommendations were formed. For example, Bloch
presents a series of recommendations specific to Java. Bloch found that the existing literature at
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Fig. 1. Graph showing links between papers where one paper has built upon the work of another, and key.

These were identified through the paper survey, using Security API designer papers with recommendations

to identify and validate how knowledge has been translated.

the time focused on grammar and vocabulary but found there to be a lack of guidance surrounding
correct usage when programming in Java [10]. Later, in 2006, Bloch adapts this work to address
the challenges of designing a good API [11]. By reading these papers, researchers can not only
see the recommendations presented but also the challenges these recommendations address.
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Reading the papers can help the researcher determine whether the recommendations are relevant
to their specific challenges or not. For researchers who want to evaluate a set of recommendations
before using them, they can refer to the paper to help guide their evaluation.

To help guide the design of security APIs, we suggest works that have been empirically validated
and their recommendations can be readily used, works that require empirical validation before
using their recommendations, and longstanding principles that are still actionable today.

(1) “Ready to use” recommendations [31, 36, 37]. Green and Smith’s recommendations,
to help improve the usability of security APIs, have been empirically validated by Pat-
naik et al. [70]. Green and Smith’s work has also influenced 5 of the 13 Security API designer
papers through the 4 ancestor-descendant relationships [1, 56, 64, 70, 87]. Researchers and
engineers can also follow the works of Gutmann, who documented the process of designing
the architecture of a novel cryptographic library and empirically validated these design prin-
ciples resulting in a series of lessons learnt to conclude the trilogy [35–37]. Gutmann’s work
has also been adapted by Green and Smith and introduced to the field of designing security
APIs.

(2) Security API designer papers in need of validation [1, 13, 53, 54, 64, 66, 70, 87]. These
papers are newer compared to Green and Smith and Gutmann, and so they have not been
empirically validated or formed ancestor-descendant relationships with even newer papers.
One can argue that because these papers present recommendations that have been influ-
enced by a long ancestry dating back to Saltzer and Schroeder that these recommenda-
tions too must be effective. However, we argue that the reason the ancestry became as
long as it did is because the works of Saltzer and Schroeder, Gutmann, and Green and
Smith were empirically validated, resulting in many works citing and forming ancestor-
descendant relationships with these three papers and progressing their recommendations
through time [31, 36, 76]. Therefore, we encourage that before using the recommendations
of the remaining security APIs designer papers, researchers and engineers should empiri-
cally validate these works.

(3) Validating corporate literature [15, 55, 67]. Many of the works categorised as security
engineering papers are published by corporations such as Microsoft [55]. When tracing the
ancestries of our papers, we found that corporate literature presents recommendations not
based on earlier works, but instead based on experience and engaging with practical exer-
cises such as training new developers. Most of the recommendations offered by corporate
literature fall under the Organisational Factors category (Table 4). Organisational Factors may
be an important aspect of designing a security APIs and it encourages researchers to consider
the developers who use security APIs and the training they have and may require. However,
this cannot be known unless the effect of organisational factors on the design of security
APIs is validated.

(4) Revisiting the longstanding principles [10, 11, 25, 37, 60, 76]. Researchers and engineers
can benefit from revisiting these works to applying their recommendations to the designing
challenges of today. Works such as Saltzer and Schroeder [76] have proved to still be relevant
and actionable through Votipka et al. [87].

6.4 Meta-Recommendations

Our categorization of the recommendations are neutral—we do not frame the categories as things
one should or should not do—but rather describe what type of advice the recommendations offer.
The recommendations discovered through our systematic literature review are relevant to different
stakeholders, this includes: the developer, the research community, the company. After analyzing
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many different recommendations, we offer meta-recommendations based on our extensive analysis
of the literature and relevance to the different stakeholders involved.

(1) The Importance of Quality Assurance [6, 7, 10, 11, 15, 55, 63, 68, 79]. Relevance: The
Research Community. Software is not developed in isolation. Have engineers and tools
review code to spot rough edges and ensure best practice is followed.

(2) Software Engineering Matters [11, 20, 25, 43, 63, 75–77]. Relevance: The Company.
Performing quality assurance through code reviews is an important aspect of software en-
gineering but there are many other aspects a developer should consider. One should follow
best practices for software development and ensure code produced is of a high quality. Give
mechanisms for access control and have a plan for how the code will be maintained. Getting
good, minimal, well abstracted, well-structured code will pay dividends in the long run.

(3) Embed Security at Every Stage [15, 49, 76, 80]. Relevance: The Developers. Design se-
curity in from the start by compartmentalizing components, and having sensible defaults.
Have a plan for dealing with bugs and defects.

(4) Show, and Tell [11, 34, 56, 70, 86]. Relevance: The Developers. Documentation matters!
Document how the APIs work. Document how programmers should use them. Provide ex-
emplars. Standardize as much as possible. Make sure the documentation is easy to find and
read.

(5) API Developers are not an Island [15, 55, 68, 80]. Relevance: The Company and The
Research Community. An API might be for programmers to use, but they are often main-
tained and managed within organizations. Executives need training to make good decisions,
and organizations need a plan to develop their security knowledge and practices. API De-
velopers will be influenced by outside forces (be they regulatory, risk-based, or third-party
developers).

(6) Write a Specification [6, 11, 15, 38, 51, 52, 55, 79, 81]. Relevance: The Developers. Break
the functionality of a security feature into smaller units. Write a specification to address the
first unit. Start by gathering requirements, and update those requirements as new threats
are found. Once a unit is implemented move on to the next one.

(7) Remember Programmers are Human [7, 17, 31–34, 42, 46, 47, 57, 60, 61, 69, 85, 89].
Relevance: The Developers and The Research Community. Improve the readability of
code for programmers who have to read it. Draw programmers’ attention to the important
bits; make it easy to spot mistakes, and to check when they have got it right. Usability is not
just for users.

These seven guiding principles summarize our seven categories and bring together much of the
advice for developing secure APIs as well as advice for more general software engineering. The
synthesis of software guidance shows that security is an engineering challenge as so consequently
when analyzing the overall literature, we found that advice for improving the design of security
APIs was often a subset of a broader set of recommendations for improving general engineering.
An example of this can be see through Gutmann while designing the architecture of Cryptlib [36].

Our meta-recommendations show that when designing a security APIs, the literature sees se-
curity as one of many important factors to consider. This is why only one of our seven meta-
recommendations addresses security (Embed Security at Every Stage), while the others address the
design as a whole. For example, Show and Tell focuses on improving documentation, which con-
siders the developer’s need to make sense of the security API and to clearly understand how to
implement its functions. Clarifications through documentation and examples of code implementa-
tions can prevent misconfigurations and potential misuse.
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Our meta-recommendations are not the sum total of all advice, but they cover what we distilled
as a substantial amount with common points that multiple experts and papers have suggested.
Many of the papers that have been cited along our meta-recommendations have not yet been
empirically validated, but they have influenced many works through our ancestor-descendant
relationships. We encourage the research community to engage with these works and perform
empirical studies to test the effectiveness of the recommendations presented. Whilst these are ab-
stract and not actionable by developers, they should guide broad thinking in both academic and
practitioner material. These meta-recommendations are not exhaustive, but provide grounds for
future thinking and development of future recommendations to improve the usability of security
APIs.

We also note that some papers are referenced by many of the principles: References [11, 25, 60,
76], amongst others. Perhaps then there should be an eighth principle:

(8) Build on Longstanding Principles. Relevance: The Developers and the Research Com-
munity. The recommendations presented by the earlier works to address the challenges of
the time are still worth knowing about, because they heavily influence the recommenda-
tions for designing the security APIs of today. While more must be done to validate these
recommendations empirically, the refinement and restatement through the ancestries we
have covered, such as Saltzer and Schroeder, Bloch, and Gamma et al., suggest they are still
helpful and relevant today.

7 CONCLUSION

Our study is the first to systematically analyze the recommendations that inform Security API de-
signer papers, crossing scientific communities working on security, APIs, and software engineer-
ing. Our research questions systematize and learn where recommendations come from, whether
they build on validated work, and whether these bring a strong empirical focus to supporting
developers with creating usable APIs.

From an analysis of 65 papers guiding developers, including 13 specifically targeted at providing
recommendations to developers on how to create usable and secure APIs, and 883 recommenda-
tions found within the papers, we identified seven broad categories of recommendations and 36
descriptor sub-categories. These categories and descriptors provide a system for understanding
the knowledge we have for guiding developers to produce better code, understand environments,
and interface with organizations. The community has made some strides toward validating recom-
mendations, but more must be done within Security API designer literature to improve empirical
validation. As we identified, there are different types of ancestry according to their attention to
abstract and concrete recommendations.

Coverage is important alongside validation rates. Through the ancestry analysis, we identified
the well established ancestral chains between different areas of literature.

If the new Security API designer recommendations stem from well-validated ancestral chains,
then it will be a stronger, more reliable set of Security API designer recommendations as more vali-
dation may have been carried out in the chain. This could result in more than one chain originating
from historic sets of recommendations.

In addition, further developing work in the area ought to address the earlier literature of the
usability field to more appropriately attend to earlier principles and recommendations. This is
because, as we identify in our Meta-Recommendations, many earlier and well-validated papers
address similar contemporary recommendations. Perhaps we do not need to reinvent the wheel so
much as assess and renovate the parts to make them roadworthy for usable Security API designer
recommendations today.
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