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This article presents a critical literature review on the security aspects of field-programmable gate array
(FPGA) devices. FPGA devices present unique challenges to cybersecurity through their reconfigurable nature.
The article also pays special attention to emerging system-on-chip (SoC) FPGA devices that incorporate a hard
processing system (HPS) on the same die as the FPGA logic. While this incorporation reduces the need for
vulnerable external signals, the HPS in SoC FPGA devices adds a level of complexity that is not present for
stand-alone FPGA devices. This added complexity necessarily hands over the task of securing the device to
developers. Even with standard security features in place, the HPS might still have unhindered access to the
FPGA logic. A single software flaw could open up a breach that might allow an attacker to extract the FPGA’s
configuration data. A robust cybersecurity strategy is thus required for developers. As such, this work aims to
provide the groundwork to build a solid threat-based cybersecurity design strategy that is specially adapted
to SoC FPGA devices.
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1 INTRODUCTION

There exist two predominant field-programmable gate array (FPGA) technologies on the mar-
ket today: static random access memory (SRAM)-based and flash-based technologies. Both of
these technologies are featured in Figure 1. SRAM-based FPGA devices require an external non-
volatile memory (NVM) to store their configuration information between power-offs due to the
volatility of SRAM cells. In contrast, flash-based FPGA devices will retain their design indefinitely.

According to a 2019 market study by Gartner, the FPGA market consists of four significant
manufacturers [21]. These are AMD-Xilinx at 51.1% of the market, Intel at 35.8%, Microsemi at 6.6%,
and Lattice at 5.0%. The most prominent FPGA manufacturers, AMD-Xilinx and Intel, produce
SRAM-based FPGA devices. Two other manufacturers, Microsemi and Lattice [80, 100], produce
flash-based FPGA devices. Noting that SRAM-based FPGAs constitute the greatest proportion of
the market today, the rest of this article will focus on this technology.

FPGA devices are particularly interesting to cybersecurity researchers since their hardware
structure is defined mainly by the content of a memory array located within the device. This
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Fig. 1. SRAM and flash FPGA.

memory array, which we refer to as the FPGA’s configuration memory, is loaded with a bit file,
commonly known as the bitstream. The bitstream actively modifies switches and logic blocks, and
interconnects within the device’s configurable logic, also known as its fabric. Of the research works
that deal with FPGA security, many seek to evaluate FPGA vulnerability to cyber attacks that com-
promise their bitstream. The bitstream is somewhat of a blueprint for the fabric of an FPGA. An
attacker who successfully extracts a target’s plaintext bitstream from an FPGA’s configuration
memory can reverse engineer this bitstream to either clone the intellectual property contained
therein or add malicious functionalities back into the target. To protect their devices from attacks
that specifically target the bitstream, FPGA manufacturers began adding complex encryption and
authentication schemes [86, 127]. Although this adds a new layer of complexity for potential at-
tackers, this article shows that multiple researchers have successfully compromised these security
features.

More recently, FPGA manufacturers have begun incorporating elaborate processing systems on
the same die as the FPGA. We commonly refer to these devices as system-on-chip (SoC) FPGA
devices. By limiting the need for external signals, SoC FPGA devices provide an additional layer of
security to communication paths between a processor and the FPGA. Although this improves the
security of the processor-FPGA communication link, the complexity of the chip’s design opens up
these devices to new cybersecurity concerns. In cybersecurity terminology, the complexity of SoC
FPGA devices expands the attack surface.

When discussing cybersecurity, we divide attacks into two general classes: active and passive.
Attacks in both classes seek to break the confidentiality, integrity, and availability of a target of
exploitation (TOE). Active attacks seek to break a TOE by perturbing its normal function. A
classic example of an active attack is a fault injection (FI) attack, where one will intentionally
provoke the TOE to fall within an unintended state in an attempt to get it to leak restricted informa-
tion [13, 68]. However, passive attacks seek to extract information from a TOE without interacting
with its regular operation. Side-channel attacks (SCAs), where one analyzes a TOE’s external
outputs and emissions to extract secret information, are classic examples of passive attacks [135].

By leveraging active and passive attacks, malicious actors can pose various threats to assets
contained within FPGA and SoC FPGA devices. To secure a system against these malicious actors,
system designers need to follow a methodology that thoroughly examines where security measures
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Fig. 2. IDDIL/ATC methodology [114].

(i.e., controls) need to be applied. Muckin and Fitch [114] propose one such methodology—the
IDDIL/ATC methodology defined in Figure 2.

The IDDIL/ATC methodology is divided into two phases: discovery and implementation. In an
attempt to keep the scope of this work general, we will primarily focus on the discovery phase
and the activities contained therein. The system of choice will be a generic SoC FPGA with no
specific design or operating environment. However, since basic security features such as encryp-
tion, authentication, and debug port disable are available on most recent SoC FPGA devices, these
are assumed to be implemented. The final result will yield a generic threat model that outlines
the attack surface, potential attack vectors, and threat actors of typical SoC FPGA devices. Since
in-system execution of SoC FPGA devices is design dependent and will vary from one application
to the next, we provide a review of applicable controls, functions, and interfaces without fully
decomposing the system.

This article is organized as follows. Section 2 begins by discussing past works tackling the sub-
ject of FPGA cybersecurity. Next, FPGA and SoC FPGA assets and their attack surface are described
in Section 3. We then describe techniques to identify threats in Section 4 and analyze multiple at-
tack vectors that apply to FPGA and SoC FPGA devices in Section 5. Section 6 looks at security
measures and controls one can implement in FPGA and SoC devices. Finally, Section 7 identifies
future FPGA research and developments.

2 RELATED WORKS AND CONTRIBUTIONS
Several works have tackled the subject of FPGA cybersecurity in an approach that nears what this

article seeks to achieve. Table 1 summarizes these works from the past 10 years.
Our work makes the following contributions:

e Provides a cybersecurity strategy designed to help developers identify those threats that
apply to their systems and thus aid in applying appropriate countermeasures and controls.

e Provides a critical analysis of identified attack vectors and rates them according to their
attack potential [147].

e Provides a threat model specially adapted to SoC FPGA devices and highlights the particu-
larities of these devices and their applicable attack vectors.

3 GENERIC ATTACK SURFACE AND ITS ASSETS
3.1 Assets

The first step of the IDDIL/ATC methodology is to identify those assets we wish to protect. Re-
garding FPGA devices, the primary asset of interest is the bitstream. Extending this principle to
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Table 1. Related Works

Paper Year Relevant Contributions
Provides a comparison of the various controls available on prominent
FPGA devices at that time. The Altera (Intel), Microsemi, and

Druyer et al. [36] 2015 | AMD-Xilinx devices are compared based on information obtained via
various manufacturer white papers, datasheets, and other scientific
papers.
Provides a review of the security aspects of FPGA systems as they
Trimberger and McNeil [162] | 2017 relate to software logic. Investigates how software security can be

impacted by an FPGA design.
Provides a security review of the ARM TrustZone used within the
Benhani et al. [19] 2017 AMD-Xilinx Zyng-7000 SoC FPGA. Hardware attacks and
countermeasures directly related to SoC FPGA devices are presented.
Provides a review of SCAs and covert channels that specifically apply

to FPGA devices.

Provides a review of FPGA-based systems while placing the emphasis
Zhang and Qu [174] 2019 | on their supply chain. Known security issues and their corresponding
defences are elaborated.

Mirzargar and Stojilovi¢ [102] | 2019

Provides a review of security issues and countermeasures that apply to

Duncan et al. [39] 2019 the bitstreams of FPGA devices. A threat model for the life cycle of
FPGA bitstreams is built.

Provides a review of threats affecting FPGA devices within data

Matas et al. [97] 2020 centers and provides practical examples of attack and defense

mechanisms and tools.

Provides a review of the security aspects surrounding the use of FPGA

Turan and Verbauwhede [163] | 2020 devices in cloud computing, supplying security assumptions and
shortcomings.
Presents a survey on the security aspects of FPGA devices in cloud
Jin et al. [66] 2020 | applications. Builds a threat model based on possible threats to cloud
FPGA users.

Provides a survey on the use of machine learning in implementing

H L. 202 . .
uang et al. [50] 020 controls against hardware Trojan attacks.
Provides a literature review on security issues related to FPGA devices.
Duan et al. [37] 2021 Covers side-channel, FI, and covert channel attacks and their
mitigations in FPGA and SoC FPGA applications.
Martinez-Rodriguez et al. [94] | 2021 Provides a review of remote SCAs and their countermeasures.
Provides a review of the challenges and security requirements for
. 134 . L
Dessouky etal. [34] 2021 multi-tenancy FPGA-based cloud applications.
Rosero-Montalvo [138] 2021 Provides a review of the security weaknesses in both software and
hardware FPGA development.
Sunkavilli et al. [149] 2021 Provides a survey on threats from FPGA electronic design automation

tools.

Presents a survey on FPGA-based physically unclonable functions
Anandakumar et al. [11] 2021 (PUFs) along with a detailed performance evaluation. Reports on
known attacks and countermeasures related to PUFs.
Provides a threat model for CPUs, FPGAs, and GPUs, and examines
side-channel, RowHammer, and FI attacks.

Provides a survey of hardware vulnerability analysis methods that
Pan and Mishra [125] 2022 | make use of machine learning techniques. The effectiveness of existing
approaches and discussed, as well as open problems in the domain.

Mahmoud et al. [92] 2022

SoC FPGA devices, we also include any files required to boot the processing system. These may
consist of firmware, bootloaders, baremetal applications, and operating systems (OS). For both
FPGA and SoC FPGA devices, we may also include decryption keys and any other form of data
stored within these devices.
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Fig. 3. SoC FPGA layout: AMD-Xilinx Zynq-7000 (a) and Intel Stratix 10 (b).
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3.2 Attack Surface

The IDDIL/ATC methodology’s next step is defining the attack surface. The attack surface repre-
sents any components or elements that provide access to assets. A concrete example of how one
might represent the attack surface is provided by taking up two competing SoC FPGA devices:
the Intel Stratix 10 and the AMD-Xilinx Zynq-7000. This article’s conclusions do not reflect on
a particular manufacturer but instead attempt to identify vulnerabilities common to all FPGA or
SoC devices. Furthermore, we should note here that during the writing of this article, Intel and
AMD-Xilinx were producing the newer and more advanced Intel Agilex and AMD-Xilinx Ultra-
scale SoC FPGA, respectively. These SoC FPGA devices were not considered and could present
various improvements not accounted for here.

3.2.1 Device Decomposition. When attempting to define the attack surface of a device, a dia-
gram identifying the layout of critical sub-components is useful. Figures 3(a) and 3(b) show such
diagrams for the Zynq-7000 and the Stratix 10 SoC FPGA devices, respectively. These layout dia-
grams note the various interactions and interconnect between individual sub-components.

Figure 3 highlights the function of the sub-components of each device as either a memory device
or controller, playing a significant role in the boot process, part of the debug infrastructure, a bus,
I/O, or bus controller, as containing important configuration registers, or as related to the security
of the SoC FPGA.

The first distinctive difference between the two showcased SoC FPGA devices is their booting
sequence. The Zynq-7000’s initial boot sequence is wholly managed within the hard processing
system (HPS), whereas the Stratix 10 features a dedicated microcontroller unit within the secure
device manager (SDM) to serve this purpose. A second distinctive difference is the pathways
that lead up to each FPGA’s configuration memory. In the case of the Zynqg-7000, the configura-
tion memory may be reached either by the application processing unit going through the device
controller or directly via the JTAG interface. These paths lead through the FPGA configuration
module, a state machine that manages FPGA configurations. Turning our attention to the Stratix
10, we find that all external interactions with the configuration memory are managed directly via
the SDM.

Both the Zynq-7000 and the Stratix 10 feature ARM cores within their HPS. These cores have
standard ARM infrastructure, including on-chip memory, access to NVM, ethernet interfaces,
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synchronous dynamic random access memory (SDRAM), and their debug access port. Fur-
thermore, both the SoC FPGA devices incorporate the ARM TrustZone technology [7, 62]. The
ARM TrustZone technology allows resources within the FPGA fabric to be divided into two worlds:
secure and non-secure. This feature is important for isolating safety-critical components and
functions.

3.22 Data Flow Diagrams. Next, data flow diagrams can help outline the life cycle of assets.
Figure 4 shows a data flow diagram from the development stage of SoC FPGA assets to the execu-
tion of an OS.

In drawing the data flow diagram, we assumed three basic security features were in place. First,
we assumed assets were encrypted after development. The Intel Stratix 10 and the AMD-Xilinx
Zynq-7000 use the advanced encryption standard (AES)-256 for this purpose. The Stratix 10
uses AES counter mode, whereas the Zynq-7000 uses the AES cypher block chaining mode. In
both cases, we can store the secret keys for both devices within eFuses or battery-backed ran-
dom access memory (BBRAM) [86, 129]. Second, we assumed authentication was in place for
all assets before execution. Both the Intel Stratix 10 and the AMD-Xilinx Zynq-7000 allow for au-
thentication. The Stratix-10 authenticates with an elliptic curve digital signature algorithm
(ECDSA) via a secure hash algorithm (SHA)-256 or SHA-384 hash of the ECDSA public key
stored within either eFuses or BBRAM [55]. The Zyng-7000, however, allows for Rivest, Shamir,
and Adleman RSA authentication via a SHA-256 hash of the RSA-2048 public key and a subsequent
secondary authentication via keyed-hash message authentication code (HMAC) [128]. HMAC
is a message authentication code using a cryptographic hash function and a secret key. This secret
HMAC key is stored within the encrypted boot files. The SHA-256 hash of the public key used for
RSA authentication is stored within HPS eFuses. The final basic security feature involves debug-
ging port disabling. The Stratix 10 and the Zynq-7000 allow developers to permanently disable the
Joint Test Action Group (JTAG) interface used for programming and debugging via eFuse.

The following paragraphs will highlight each stage identified in Figure 4:

(a) In the development stage, developers and any third-party IP integrated within the design
have access to assets. Once deployed, assets are placed within a memory space accessible
directly via an NVM interface or remotely via an ethernet link.

(b) In this example, the first-stage bootloader (FSBL) is selected to be the first external par-
tition loaded by the bootROM. Within the Zynq-7000, the bootROM executes on the appli-
cation processing unit inside the HPS and will guide the boot process until the FSBL takes
control. The bootROM is thus responsible for loading, decrypting, and authenticating the
FSBL within the Zyng-7000. Within the Stratix 10, the bootROM executes inside the SDM
and will hand over control to the SDM firmware after loading, decrypting, and authenticat-
ing the latter. The SDM firmware is then responsible for performing the same process for
the FSBL.

(c) For either device, the bitstream is loaded either by the FSBL or second-stage bootloader
(SSBL). Of noteworthiness, with the Stratix 10, one can also configure the SDM firmware
to load the bitstream within the FPGA’s configuration memory before the FSBL [61]. We
note in this stage that the SSBL and the OS are placed within the SDRAM for execution.
The SDRAM is necessary since, in both the Zynq-7000 and Stratix 10, the on-chip memory
is limited to 256 kB of memory, whereas SSBLs and OS are usually in the orders of several
megabytes.

(d) The SSBL is a more robust bootloader than the FSBL and will feature drivers required for
setting up the OS environment. The SSBL that typically loads Linux on ARM-based systems
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Fig. 4. Data flow diagram: Development (a), FSBL (b), Bitstream (c), U-Boot (d), and OS (e).

such as the Zyng-7000 and the Stratix 10 goes by U-Boot. For the Zynq-7000 and the Stratix
10, the FSBL is responsible for the decryption and authentication of the SSBL.

(e) Just like the FSBL was responsible for the decryption and authentication of the SSBL, the
SSBL is responsible for completing the same process for the OS. Finally, the OS is placed
within the SDRAM for execution.

The attack surface of common SoC FPGA assets has now been identified for its asset’s life cy-
cle from development to integration. The next logical step would be to define the attack surface
during in-system execution. However, a valuable aspect of SoC FPGA devices is their ability to
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be adapted to many interfaces and protocols based on their application. For example, within the
HPS domain, the Zyng-7000 and the Stratix 10 feature dozens of HPS memory controllers, system
modules, and interface peripherals ready to be implemented within any design. Furthermore, de-
velopers can implement countless interfaces within the FPGA domain, ranging from a customized
ethernet interface to a simple universal asynchronous receiver transmitter controller. Understand-
ing this, a data flow diagram for in-system execution will be design dependent and include all
active interfaces within a said design.

4 IDENTIFYING AND ASSESSING THREATS

An essential step of a solid cybersecurity strategy is identifying threats to a given system. Knowl-
edge of these threats will ensure that we can optimize resources allocated to applying controls to
tackle those threats that pose the greater risk. This step needs to look at both applicable attacks
and known vulnerabilities. Although these two notions are interrelated, the approach taken in
identifying and assessing each is different.

4.1 Attack Vectors

Identifying attack vectors necessitates in-depth knowledge of tools, techniques, and methodologies
that attackers can employ. Since cybersecurity researchers are consistently working at identifying
such approaches on various devices, a great starting point is to perform a thorough literature
review of their works. In this respect, Section 5 reviews the literature to capture attacks relevant
to FPGA and SoC FPGA devices.

To help identify those attack vectors that pose a greater risk to a given application, a qualitative
method to rate attack vectors based on attack potential [147] is proposed. Attack potential makes
use of several criteria to rate attack vectors. These criteria include time constraints, the level of
expertise and the knowledge of the TOE required, the level of access to the TOE or the window
of opportunity, and finally the complexity of the equipment necessary to complete the attack.
Table 2 presents these criteria and provides the weight distribution for the attack’s identification
and exploitation stages.

The identification stage is the stage of an attack where the effort required to create an attack
and demonstrate its application to a particular TOE is compiled. The identification stage includes
any action necessary to build and set up test equipment. In the exploitation stage of the attack,
we apply the attack demonstrated in the identification stage while considering any difficulties
encountered in expanding the attack to retrieve valuable results.

4.2 Vulnerabilities

Identifying known vulnerabilities could take a similar approach to that of attack vectors; however,
vulnerability databases such as the National Institute of Standards and Technology (NIST)
Vulnerability Database [120] provide comprehensive lists of known vulnerabilities. Furthermore,
the Mitre organization [106] catalogues common vulnerabilities and exposures (CVE), includ-
ing those found within the NIST Vulnerability Database. For example, using the Zyng-7000 and
the Stratix 10, Table 3 lists applicable CVEs that we can find.

The vulnerability score given in Table 3 is provided through Common Vulnerability Scor-
ing System (CVSS) version 3.1 [43] from FIRST.Org Inc. (FIRST). The CVSS allows for a base,
temporal, and environmental metric to be considered in the calculated score. The base metric
designates those characteristics that do not change with time or across environments. Tempo-
ral metrics, however, touch on characteristics that may change with time but remains constant
across environments. These characteristics could include the existence of tools to exploit the
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Table 2. Attack Potential Criteria and Weight Distribution for the Identification
and Exploitation Stages [147]

H Factors Identification (ID)  Exploitation (EXP) H
Time
<1 week 2 4
<1 month 3 6
>1 month 5 8
>4 months 6 10
Not practical * *
Expertise
Layman 0 0
Proficient 2 2
Expert 5 4
Multiple expert 7 6
Knowledge of TOE
Public 0 0
Restricted 2 2
Sensitive 4 3
Critical 6 5
Very critical 9 *
Not practical * *
Access to TOE
<10 samples 0 0
<30 samples 1 2
<100 samples 2 4
>100 samples 3 6
Not practical * *
Equipment
None 0 0
Standard 1 2
Specialized 3 4
Bespoke 5 6
Multiple bespoke 7 8

Table 3. Publicly Disclosed Vulnerabilities of the Stratix 10 and Zynq-7000

H CVE Number ‘ Device ‘ Vulnerability ‘ Vulnerability Score H
CVE-2020-8737 [104] | Stratix 10 | Improper buffer restriction 6.8 medium
CVE-2020-12312 [103] | Stratix 10 | Improper buffer restriction 6.8 medium
CVE-2021-27208 [105] | Zyng-7000 Classic buffer overflow 6.8 medium
CVE-2021-44850 [107] | Zyng-7000 Classic buffer overflow 6.8 medium
CVE-2022-23822 [108] | Zyng-7000 | Incorrect authorization 6.8 medium

vulnerability or the development of patches to fix it. Last, environmental metrics consider fac-
tors from the organizational infrastructure to adjust the overall CVSS score. These factors could
include controls put in place or the effect a loss of confidentiality, integrity, or availability would
have on the organization.
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The CVSS scores in Table 3 feature the numerical values assigned to each respective CVE by
NIST [120]. In all vulnerabilities featured, NIST only considers the base score. The omission of the
other metrics makes sense for the application-specific environmental factors. However, regarding
temporal metrics, the manufacturer fixes provided for CVE-2020-8737, CVE-2020-12312 [59], and
CVE-2022-23822 [10], and the detailed exploitation summary available for CVE-2021-27208 and
CVE-2021-44850 [137], would impact the calculated score. Last, all calculated scores are the same
since, in all circumstances, the impact on the device’s confidentiality, integrity, and availability is
high. At the same time, the attack itself is purely exploitable via a physical attack. Vulnerabilities
will generally earn a higher CVSS score when an attacker can achieve an exploit over a network.

5 LITERATURE REVIEW OF FPGA ATTACK VECTORS

In this section, we review the multiple attack vectors that can affect FPGA and SoC FPGA devices.
We begin each discussion on a given attack vector by first providing a brief background on the
attack vector, followed by a literature review of researchers who have applied these techniques
directly to FPGA devices.

Moving forward, we recall the primary asset of FPGA devices, the bitstream, to realize that all of
the attack vectors have something in common: whichever way an attacker successfully extracts a
plaintext bitstream from the FPGA, the need to reverse engineer this bitstream remains. Therefore,
as a starting point, we review bitstream reverse engineering tools and techniques found in the
literature.

5.1 Bitstream Reverse Engineering

FPGA manufacturers facilitate the design process for their respective platforms with the help of
electronic design automation (EDA) tools such as Vivado (AMD-Xilinx) [9], Quartus Prime
(Intel) [60], Libero (Microsemi) [79], and Lattice Diamon (Lattice Semiconductor) [5].

All of these EDAs more or less follow a similar design flow. Developers start with register-
transfer level (RTL) code. EDAs will synthesize this into a gate-level implementation or netlist
and create a target-specific floorplan large enough to accommodate the design. From there, the
EDA will place logic cells within this layout and route everything together. At the end of the
process, the EDA’s output will be a stream of bits destined to fill the FPGA’s configuration memory
and thus configure its logic cells and routing resources.

If one wishes to reverse engineer a bitstream from the bitstream back to the RTL code, one
first must know the relationship between the bits contained within the bitstream and the gate-
level implementation they represent. This relationship is manufacturer dependent and will vary
between FPGA families and series. In this survey, we found that most of the work done on the
subject thus far has been focused on AMD-Xilinx, Lattice Semiconductor, and Microsemi bit-
streams [20, 30, 65, 71, 121, 130, 152, 175, 179]. As far as Intel is concerned, to the best of our
knowledge, there have been no significant reverse engineering efforts on their FPGA bitstream.
Given that it is a predominant FPGA manufacturer on the market today, one would expect similar
advances to those seen on AMD-Xilinx FPGAs. However, we believe that since Intel, unlike AMD-
Xilinx, provides very little information about the layout of their devices, researchers have so far
focused elsewhere.

5.1.1  AMD-Xilinx. With AMD-Xilinx being one of the pioneers in the FPGA domain, we find
that early research works aimed at reverse engineering bitstreams began here. In the early days,
these were mainly focused on understanding the FPGA’s internal structure to implement partial
reconfiguration [40, 50, 82, 148, 173]. One of the first publications to analyze a bitstream from
a cybersecurity perspective was presented by Ziener et al. [179], who sought to find a way of
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identifying unlicensed proprietary cores within an FPGA from its bitstream. This work looked at
the Virtex-II platform, whose user guide [6], much like previous AMD-Xilinx platforms, revealed
a fair level of valuable details into the Virtex-II's logic cell structure and bitstream. This work
successfully identified which packets within the bitstream represented lookup table content and
used this content to identify specific unlicensed cores with high certainty.

Following these early attempts, Note and Rannaud [121] introduced the first publication to
present a coherent algorithm to reverse engineer the bitstream back into its netlist. They made use
of the now replaced AMD-Xilinx tool, ncd2xdl, which would translate the netlist circuit description
file into a clear-text representation of the netlist, an AMD-Xilinx design language (XDL) file. The
XDL file provided detailed information on the FPGA’s internal state to identify configurable logic
blocks and programmable interconnect points. With knowledge of the configurable logic blocks
and programmable interconnect points present in a particular design from the XDL file and by the
recurring structure of the FPGA, Note and Rannaud could relate an active site within the XDL file
to its corresponding site within the bitstream. Using this established relationship, they created a
program that automated the process of associating a particular portion of a bitstream to its corre-
sponding XDL format. The next step performed by Note and Rannaud remains the basis of even
the most recent bitstream reverse engineering tools: the creation of a database that holds a collec-
tion of associations between the location of bits within the bitstream and its corresponding netlist
information. Using this database, one could step backward and retrieve critical portions of a plain-
text bitstream in its XDL format. Although Note and Rannaud’s work proved to be a significant
advancement for the reverse engineering of the AMD-Xilinx bitstream, a considerable amount of
information was still missing. With the intent of tackling this deficiency, Benz et al. [20] looked
at AMD-Xilinx’s netlist circit description report file (XDLRC). AMD-Xilinx uses the XDLRC file
to describe the structure and resources of its various FPGA platforms. This improvement allowed
Benz et al. to fully retrieve the FPGA architecture from the bitstream.

At the time of writing, a collaborative project by the name of F4APGA is attempting to create a
universal open-source computer-aided design platform for FPGA development [116]. The project
currently targets FPGA devices from two manufacturers: Lattice Semiconductor and AMD-Xilinx.
However, the project aims at creating a platform to develop a much wider variety of FPGA ar-
chitectures. Within FAPGA, at its lowest level, the logic hardware is described in a generic FPGA
assembly (FASM) format devised for the project. F4APGA then has sub-projects to handle the tran-
sition from FASM to bitstreams from various FPGA manufacturers. These sub-projects gather the
results from multiple individual bitstream generation runs to create device-specific databases. For
AMD-Xilinx devices, this FAPGA sub-project goes by the name Project X-Ray [152]. Project X-Ray
has successfully mapped out Artix-7 devices and is working on the remainder of AMD-Xilinx 7-
series FPGAs. These same databases created for FAPGA bitstream generation can also convert a
bitstream into the FASM format. From the FASM format, one can derive which features are enabled
by the target bitstream [153].

5.1.2  Lattice Semiconductor and Microsemi. Bitstreams for devices from Lattice Semiconductor
and Microsemi have also been reverse engineered recently. For Lattice Semiconductor, project
Trellis [130] and project IceStorm [30] have successfully reverse engineered the bitstreams of the
ECP5 and iCE40 devices, respectively. In the case of Microsemi, its ProASIC3, IGLOO2, and FUSION
devices were successfully reverse engineered in 2021 by Kim et al. [71].

5.1.3 Deep Learning for Bitstream Reverse Engineering. Recently, Chen and Liu [27] showed
how to recover function blocks from bitstreams using deep learning. They achieved this through
a deep learning based object detection algorithm by first transforming the bitstreams of FPGA
designs into images suitable for deep learning processing.
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5.2 Side-Channel Attacks

SCAs represent one of the literature’s first and most prevalent forms of physical attacks. They
are passive attacks that seek to exploit weaknesses in the physical implementation of electronic
devices. In an SCA, one analyzes changes in power supply [48, 109-111, 140, 166, 171, 172, 177],
thermal signature [133], electromagnetic (EM) emanations [16, 63, 112, 170], photonic emana-
tions [157], and timing [115] to extract secret information from a TOE. In the context of FPGA
devices, attackers primarily use SCA against cryptographic engines to retrieve their secret keys;
however, some use cases have demonstrated how side-channel emissions can also be used to re-
cover input images and parameters from convolutional neural networks (CNN’s) and binarized
neural networks implemented within FPGA devices [166, 170].

In practice, SCAs normally begin with a series of measurements taken over the channel of choice.
Since variation in a given channel due to a device’s cryptographic operations is minimal, one nor-
mally takes the average of many of these measurements to reduce the effects of noise. Once a
sufficiently large number of measurements are captured, an attacker can use several methods to
recover the secret key. These methods include simple power analysis [73], differential power anal-
ysis [72, 74], template attacks [26], correlation power analysis (CPA) [23], and mutual informa-
tion analysis [44].

5.2.1 SCAs on Cryptographic Algorithms. Turning our attention to practical examples of SCAs
on FPGA devices, we find that one of the first such attack on an FPGA was attempted by Moradi
et al. [109] in 2011. In this attack, they broke the AMD-Xilinx Virtex—II DES encryption by analyz-
ing its power supply through differential power analysis techniques. Moradi et al. also performed
similar attacks on AES encryption using CPA [110, 111] in 2012 and in 2013. In their 2013 attack,
Moradi et al. targeted the Altera (Intel) Stratix Il FPGA via its power supply. Using a digital oscil-
loscope and a custom programmer based on an ATmega256, they successfully retrieved the full
AES-128 key in less than 3 hours.

As for other SCA mediums, Moradi and Schneider [112] also successfully mounted EM-based
SCAs on AMD-Xilinx FPGA devices. Using a process similar to their previous CPA attack but
replacing power readings with EM readings, they broke the AES-256 bitstream encryption of the
5, 6, and 7 series AMD-Xilinx FPGA devices. Comparing their attacks using EM and power side
channels, they found that the positional accuracy due to the EM probe drove up the required
number of traces. This trend was more significant as technology shrunk from 65 nm with the
5 series to 28 nm with the 7 series. Nevertheless, the non-intrusive approach to EM-based SCA
remained a distinct advantage since it only requires one to place the EM probe close to the TOE.
A related work by Iyer and Yilmaz [63] in 2019 proposes an adaptive acquisition protocol to help
identify the optimal EM capture configuration. The protocol, tested on the AMD-Xilinx Artix-7
FPGA, was found to reduce the required acquisition time by a factor of close to 35.

Finally, recent SCA methods have turned to Al for significant improvements in the number of
measurements required. This approach was presented by Ramezanpour et al. [134] in 2020, where
they successfully extracted the key from an AES algorithm implemented within the fabric of an
Artix-7 FPGA with less than 3,700 measurements. Their approach used unsupervised learning to
extract the information required for the leakage model, thus allowing the attack to occur without
any prior knowledge of the device. In another approach, Wang and Dubrova [164] demonstrate
how deep learning using a single neural network classifier can recover the key from an AES algo-
rithm implemented within an Artix-7. Their results showed they could recover the secret key with
less than 430 measurements.

5.2.2 SCAs in Cloud Computing. Although all previously stated attacks require physical access
to the TOE, the emerging trend of integrating FPGA devices within cloud computing instances is
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raising new opportunities for attackers. Particularly, placing multiple tenants on a single device to
share reconfigurable resources raises concerns over the leakage of sensitive information between
isolated portions of the reconfigurable fabric through their power distribution network. With these
applications in mind, recent works have shown that SCA techniques can be applied remotely [48,
133, 140, 177]. For instance, Gravellier et al. [48] made use of an AMD-Xilinx Zyng-7000 to show
that they could infer the encryption key of both an AES instance running on a CPU and from a
hardware implementation of the algorithm based in the fabric. Such capabilities could easily result
in loss of confidentiality for unsuspecting cloud users.

5.2.3  SCAs on Neural Networks. Turning to other applications of SCAs, we find Wei et al. [166],
who performed a power SCA to recover the pixel value of a CNN’s input image. Their attack on the
AMD-Xilinx Spartan-6 FPGA successfully recovered an image being processed in a classification
task. In addition, Yu et al. [170] performed an EM-based SCA to retrieve the weight values of
a binarized neural network. Using the AMD-Xilinx Zyng-7000 SoC FPGA, they showed that they
could accurately recover the underlying model characteristics and develop a substitute model from
these values.

5.2.4  SCAs on Physically Unclonable Functions. Yu et al. [171] in 2020 demonstrated how SCAs
could further be used to classify the sequence of 1’s and 0’s from an FPGA’s physically unclon-
able function (PUF). Using an AMD-Xilinx Artix-7 FPGA as their target, they combined voltage-
based SCA with deep learning to show that they could overcome PUF-based key provisioning and
remote attestation measures.

5.25 SCAs on True Random Number Generators. Another application of SCAs comes with true
random number generators (TRNGs). The aim of SCAs applied to TRNGs is usually to deter-
mine the frequency of TRNGs implemented with ring oscillators (ROs). Knowledge of this fre-
quency can then be used to mount other attacks, such as FI attacks on the TRNG’s output. One
such approach using an EM-based SCA was presented by Bayon et al. [16] in 2013. Their attack
revealed they could deduce the RO TRNG’s frequency with high accuracy. Building on the work
of Bayon et al., Yu et al. [172] in 2021 combined voltage-based SCA, deep learning, and a bitstream
modification attack to extract the TRNG’s output. Demonstrated on an AMD-Xilinx Artix-7 FPGA
device, their attack resulted in a near-perfect accuracy.

5.3 FI Attacks

FI attacks are active attacks that seek to modify the behavior of the TOE. Ways of performing
FIs include manipulating the TOE’s temperature, supply voltages, or clock signals, or injecting
external EM pulses, white light, laser, X-ray, or ion beams into the TOE [13, 68].

In experimental implementations of FI attacks, faults injected into a TOE cause transistors to
switch abnormally. These abnormal transitions will lead to instruction skips or corrupted data
values. The literature divides these fault attacks into three general sub-classes: algorithm modifi-
cation, differential fault analysis (DFA), and safe error [181]. Fault attacks that fall into the first
sub-class, algorithm modification, will seek to skip or modify a critical instruction to circumvent
a security measure. The second sub-class, DFA, is likely one of the most prevalent fault attacks.
DFA seeks to inject faults in encryption and authentication mechanisms to retrieve their secret
keys. The final sub-class, safe error, has a broader definition than its previous two sub-classes and
features any fault attack that changes the expected behavior of a TOE.

Depending on the FI technique used, one can obtain differing results. Characteristics that define
FI techniques include control over fault location and control over fault timing [68]. Both features
will range from precise control to loose control to no control at all. For instance, injecting faults by
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Table 4. Defining Characteristics and Equipment Requirement of Relevant FI Techniques
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varying the device’s supply voltage will offer no control over the fault’s physical location, whereas
injecting faults via laser will allow precise positional control. Table 4 summarizes the defining
characteristics of each relevant FI technique.

5.3.1 FI Characterization Studies. Among the works conducted on FI, some researchers have
sought to characterize the behavior of a given target due to FIs. Such characterizations were con-
ducted for electromagnetic fault injections (EMFIs) by Zussa et al. [180] in 2014, again for
EMFIs by Paquette et al. [126] in 2021, for voltage FI by O’Flynn [122] in 2016, and for laser FI by
Selmke et al. [143] again in 2016.

5.3.2  FlAttacks on Cryptographic Algorithms. Other researchers have sought to execute specific
attacks on FPGA devices. Most of these attacks demonstrated in the literature have sought to show
the vulnerability of AES implementations on cryptographic modules within the FPGA [2, 22, 24,
33, 98, 124, 132, 143, 168, 181, 182]. For instance, in 2016, Selmke et al. [143] performed a laser
FI on an AES core implemented within the AMD-Xilinx Spartan-6 FPGA device. Although the
implementation featured a redundancy circuit, they could inject the same fault twice with a two-
laser setup and thus induce exploitable faults into the circuit.

5.3.3  FI Attacks on SoC FPGA Devices. In 2016, Timmers and Spruyt [161] demonstrated an
attack highly relevant to the discussion on SoC FPGA. Although this attack focuses explicitly on
an ARM CPU, it also introduces the SoC FPGA attack vector. Their attack demonstrated that they
could use a voltage fault attack to skip instructions processed by the ARM CPU on the Zyng-
7000. Such capabilities raise important concerns for bitstream security. Suppose an attacker can
gain control of the CPUs by skipping the authentication check. Access to the FPCA configuration
module might be possible via the device controller module even though security features such as
encryption and debug port disabling are in place.

5.3.4 Fl Attacks in Cloud Computing. Researchers have also shown that they can launch FI
attacks from hardware Trojans inserted within the fabric or from neighboring circuits in multi-
tenant cloud computing platforms. This example was presented by Gnad et al. [47] in 2017, where
they showed that an RO could be used as a form of voltage-based FI mechanism. They found that
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the spontaneous current draws exerted by frequently activating the ROs would affect the device’s
normal operation. In their experiments, Gnad et al. validated the effects of such voltage-based FIs
on the AMD-Xilinx Virtex 7, Kintext 7, and Zynq 7020 FPGA devices. In all three FPGA devices,
the Fl-induced errors ranged from complete system resets to minor malfunctions. Expanding on
the works of Gnad et al., Krautter et al. [78] in 2018 formalized the hardware Trojan voltage-based
FI attack as the FPGAhammer. Using FPGAhammer, they carried out a DFA on an AES implemen-
tation within the Intel Cyclone V SoC FPGA. Their attempt showed they could successfully inject
timing faults via the RO-induced voltage drops. Their results showed that using approximately
35% to 45% of FPGA LUTs, they could recover 90% of the secret AES key.

Another remote FI technique was introduced by Alam et al. [4] in 2019. In their attacks, Alam
et al. showed that dual-port RAMs in FPGA devices would allow for concurrent writes, which can
result in memory collisions when opposing values are written to the same address simultaneously.
These collisions cause transient shorts that can be exploited to increase the temperature of the
FPGA. These temperature increases can induce timing violations and thus bit-flips in the FPGA
device’s configuration memory.

5.3.5 FI Attacks on PUFs. In 2015, Tajik et al. [156] demonstrated laser FIs on PUFs. In their
experiment, the laser FIs were used to bypass specific countermeasures placed on PUFs to secure
them against machine learning based attacks. In a second attack, they also showed how they could
stop the ROs in a RO PUF, thus reducing the entropy of the numbers generated.

5.3.6  FI Attacks on TRNGs. Other researchers, such as Bayon et al. [17] in 2012 and Martin
et al. [95] in 2015, have evaluated the impact of FIs on TRNGs implemented within FPGA devices.
One of the latest such attacks was demonstrated by Madau et al. [90] in 2018. Using EMFI, they
demonstrated how an EM pulse could affect the output of a TRNG implemented within an AMD-
Xilinx Spartan-6 FPGA.

5.3.7 FI Attacks on Neural Networks. FI attacks are also possible on neural networks imple-
mented within FPGA devices [83, 88, 178]. The most recent of these attacks, by Luo et al. [88] in
2021, used an AMD-Xilinx Zynq-7000 SoC FPGA to demonstrate how power glitching triggered
through a specialized oscillating circuit was able to inject faults into a DNN on a neighboring
portion of the fabric.

5.4 Probing Attacks

In a probing attack, an attacker attempts to monitor a die’s internal signals directly. Several probing
techniques exist to accomplish this. These are mainly divided between electrical and optical prob-
ing techniques [165]. Electrical probing techniques are those techniques that require direct contact
with electrical paths within the die. However, optical probing techniques will either analyze pho-
ton emissions from transistors during switching activity or analyze light reflected on switching
transistors after an external light source illuminates them. Probing attacks are, for the most part,
invasive attacks; however, some non-invasive probing attacks can be found in the literature [157].

5.4.1 Electrical Probing. Electrical probing attacks are typically invasive, requiring attackers
to physically decompose their target layer by layer to reverse engineer the electrical pathways
within the chip [158]. This reverse engineering step will generally require the use of an optical
microscope or a more expensive scanning electron microscope [145]. Once the target pathways
are identified, we can use tools such as a focused ion beam system or a laser cutter to etch a hole
and deposit the conducting material required for electrical probing.

Although FPGA and SoC FPGA devices are not immune to electrical probing attacks, examples
of electrical probing attacks on FPGA are not prevalent in the literature. To provide a practical
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example, however, we consider an attack demonstrated by Skorobogatov [146] in 2017. As his
TOE, Skorobogatov targeted an 8-bit smartcard CPU core built with a 0.35-pm complementary
metal-oxide-semiconductor process with three metal layers. Using a similar approach to what is
described earlier, he extracted the entire memory space of the device successfully.

5.4.2 Optical Probing. Optical probing can be somewhat less invasive than electrical probing.
In optical probing, one can also take advantage of the backside of the chip to access critical signals
hidden deep within the chip. This approach is efficient on flip-chip packages, where the backside
is readily accessible. In most cases, however, some chip decapsulation is still necessary to ensure
the light can penetrate the target area.

As an example of optical probing on FPGA devices, we find Tajik et al. [157], who in 2017
successfully mounted an entirely non-invasive attack on the AMD-Xilinx Kintex-7 FPGA. This
particular chip is available as a flip-chip package and thus provides direct access to the silicon
substrate from its backside. Building on the previous work of Lorhke et al. [84] in 2016, without
any modification to the device under test, by using a light source with a wavelength invisible
to silicone, they could see through the Kintex’s die. They were able to find and precisely map
each bit of the bitstream as they exited the decryption engine. Using an internal clock of 33 MHz,
they estimated a total acquisition time of 43 minutes for the whole bitstream. Furthermore, they
estimated that the lab work required to complete the attack ranges from a few hours to a few days.
As a further example of an optical probing attack, in 2018, using the same techniques as Tajik
et al., Lohrke et al. [85] showed how optical probing could extract the full 256-bit AES key directly
from the Zynq Ultrascale’s BBRAM.

One of the latest optical probing attempts on FPGA was demonstrated by Krachenfels et al. [76]
in 2019. They showed that it is possible to perform an attack similar to those presented by Tajik
et al. and Lohrke et al. with a lower-cost laser FI setup. However, here, they noted a longer acqui-
sition time.

Although the optical probing attack demonstrated by Tajik et al. exposes the vulnerability of
flip-chip packages, we should note that most probing attacks will require some decapsulation effort
in addition to the lengthy reverse engineering process. Furthermore, although Skorobogatov could
quickly identify the data bus lines on the top metal layer, most secure chips will likely keep critical
pathways deep within the sub-layers.

5.5 Hardware Trojans

During the attack surface identifications stage of the IDDIL/ATC methodology, we have seen how
source code remains vulnerable to hardware Trojans while in their development stage. A seemingly
unimposing piece of code inserted at this stage could translate into a significant vulnerability once
deployed. Moreover, developers should take disproportionate measures to prevent their insertion.

5.5.1 Hardware Trojan Implementations. Looking at the literature, we find several works
demonstrating potential hardware Trojan implementations. Among these implementations, we
find one proposed by Chakraborty et al. [25] in 2013, where ROs are inserted into a design to re-
duce the device’s lifetime; Ahmed et al. [3] in 2021 presented a Trojan that leaks out a target’s AES
key as it is being processed within an FPGA; and Ye et al. [169] in 2018 introduced a Trojan that
can control the image classification process of a CNN implemented within an FPGA.

Other works, including Swierczynski et al. in 2015 [151] and in 2018 [150], and Ngo et al. [117]
and Moraitis and Dubrova [113] in 2020, have investigated how adversaries could directly ma-
nipulate the bitstreams of cryptographic implementations in an effort to weaken them and thus
make key recovery possible. Their results for differing cryptographic algorithms show that direct

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 2, Article 20. Pub. date: March 2023.



A Survey on FPGA Cybersecurity Design Strategies 20:17

bitstream manipulation can weaken cryptographic implementations without any reverse engineer-
ing requirement.

Some researchers have examined how Trojans could impact the ARM TrustZone technology
found within many SoC FPGA devices [18, 49]. For instance, Benhani et al. [19] used the AMD-
Xilinx Zynq-7000 SoC FPGA device to show that malicious modifications to the FPGA design could
jeopardize isolation and segmentation put in place via TrustZone.

5.5.2  Hardware Trojan Insertions. Several points along the bitstream development chain have
been identified as vulnerable to Trojan insertion techniques in the literature. Among the proposed
approaches, we find Zhang et al. [176], who suggested in 2019 that one could insert Trojans through
a malicious FPGA design suite. Another approach proposed by Ahmed et al. [3] in 2021 introduced
a Trojan during the place-and-route step of bitstream generation. In their respective techniques,
they could bypass all design check rules, thus ensuring that their Trojan remained undetected until
their activation in the FPGA fabric.

5.6 Covert Channels

Covert channels show much resemblance to the previously discussed SCAs and are distinguished
from them by whether one provoked the leakage of information or not. In an SCA, attackers exploit
information that is accidentally leaked from the device, whereas in a covert channel, information
is deliberately transferred from one device to another.

5.6.1 Thermal-Based Covert Channels. We find an example of a covert channel demonstrated
on an FPGA device by Iakymchuk et al. [57] in 2011. They showed how two electrically isolated
circuits on a single FPGA could communicate via a thermal-based covert channel. They established
their covert channel with the use of specially designed ROs. They used a set of 20 ROs within
the transmitter circuit to generate heat. A counter connected to a single RO within the receiver
would detect any changes in the RO’s frequency induced by variations in the die’s temperature.
Takymchuk et al. showed how they could use this setup to transfer the secret key from an AES
implementation to an unsecured portion of the FPGA at a rate of 0.5 bits per second. At this
transmission rate, an error rate of 5% to 13% was observed. Other similar thermal-based covert
channels have also been presented by Masti et al. [96] in 2015, by Bartolini et al. [15] in 2016, and
by Tian and Szefer [159] in 2019.

5.6.2 Voltage-Based Covert Channels. In 2018, Nguyen [118] published a thesis where he in-
troduced a voltage-based covert channel. This covert channel showed many similarities to the
previously introduced thermal covert channels; however, whereas previous covert channels hid
information in timing variations, he hid information in the voltage’s amplitude. In 2019, improv-
ing on the work of Nguyen, Gnad et al. [46] presented a second voltage-based covert channel that
introduced modulation into the system. They showed that by using less than 3% or 5% of the sur-
face area of the AMD-Xilinx Kintex-7, they could transfer up to 8 Mbits per second via this covert
channel while maintaining an error rate of 0.003%.

5.7 SoC FPGA Devices and Logical Attack Vectors

The complexity introduced by processing systems, peripheral interfaces, and even overengineered
security features provides attackers with an extensive range of potential attack vectors. These
attack vectors become increasingly relevant as heterogeneous systems are integrated to form SoC
devices and network connectivity for embedded systems increases. Among the subjects already
discussed, we mentioned how FI attacks on the processing system of a Zyng-7000 could impact
the security of the fabric; however, this is just one of many such attacks targeting SoC FPGA
devices and other logical attack vectors.
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Table 5. Attack Potential Comparison of Attack Classes (ID, EXP)
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5.7.1 Buffer Overflow Attacks. We also presented several vulnerabilities of the Zyng-7000
and Stratix 10 in Section 4.2 [103-105, 107, 108]. From two of these vulnerabilities, CVE-2021-
27208 [105] and CVE-2021-44850 [107], a severe exploit is possible on the Zyng-7000. Using these
specific vulnerabilities, Schretlen [137], demonstrates specific exploits that can result in arbitrary
code execution on the CPU.

5.7.2  Auto-Decryption Oracle. Another logical attack was demonstrated on an AMD-Xilinx 7-
series FPGA by Ender [42] in 2020. Ender introduced several weaknesses of AMD-Xilinx 7-series
FPGA, which, when put together, can allow for a previously encrypted bitstream to be read out 32
bits at a time in its plaintext form.

5.7.3 Breaking Secure Boot. A more elaborate scheme by Jacob et al. [64] in 2017 showed that
a hardware Trojan inserted into the bitstream of a Zynq-7000 FPGA could perform data modifica-
tions within the system’s external SDRAM. In their proof of concept attack, Jacob et al. decoyed a
Trojan within a hardware module that resembled a cryptographic accelerator. They used this hard-
ware Trojan to exploit a vulnerability in the secure boot process of the AMD-Xilinx Zyng-7000 that
necessarily forced the device to execute a malicious kernel. After loading the U-Boot into SDRAM,
they demonstrated that they could instruct the device to load a non-encrypted malicious kernel
by modifying a few lines of this U-Boot’s image. Furthermore, the device required no partition
authentication before executing this malicious kernel.

5.8 Summary of Attack Vector Analysis

To conclude the review of FPGA attack vectors, we present a comparison of all previously discussed
attacks. Table 5 shows the computation of all five factors of attack potential. SoC FPGA devices and
logical attack vectors have been excluded from this comparison, as they tend to apply to specific
circumstances and for particular devices. Instead, we created Table 6 to specify applicable targets
and configurations that are prerequisites to the attack potential.

In assigning the score shown in Table 5 for bitstream reverse engineering, since a great deal of
the work goes into the identification stage of the attack, we attributed more time, experience, and
knowledge here. Once the relationship between the bits and the RTL code is known for a given
device, exploiting a given bitstream is trivial. Furthermore, this attack will almost always apply as
a subsequent stage to one of the other attack vectors. Thus, one should compound the rating for
bitstream reverse engineering with the vector used to extract the bitstream.
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Table 6. Attack Potential Comparison of Target-Specific Attacks (ID, EXP)

Factor Schretlen, 2022 [137] | Ender et al., 2020 [42] Jacob et al., 2017 [64]
Target Zyng-7000 SoC FPGA | AMD-Xilinx 7-Series FPGA | Zyng-7000 SoC FPGA
Configuration All Configurations All Configurations U-Boot and Linux Kernel
Time 5,4 2,4 3,4
Experience 7,2 7,2 5,2
Knowledge 6,0 0,0 4,3
Access 0,0 0,0 0,0
Equipment 1,2 1,2 1,2
I Total \ 27 \ 18 \ 24 |

Turning our attention to the score given to Trojan insertion, both for generic hardware Trojans
in Table 5 and for the attack by Jacob et al. shown in Table 6, this score reflects a device where the
bitstream has been encrypted. In such cases, the difficulty of the attack is primarily represented
in the attempt to exploit the window of opportunity, which must be well guarded and restricted.
This window is represented by the knowledge factor, where Common Criteria Methodology [147]
defines a rating of 4 as sensitive information limited by strict need-to-know and specific contracts.
In this respect, the insertion of a Trojan along the development chain would require a sensitive
level of access. However, if the bitstream is unencrypted, the process is relatively simple.

When it comes to the attacks demonstrated by Schretlen [137] and the other by Ender [42],
they represent complex attacks that require an in-depth understanding of the FPGA and SoC
FPGA device. However, the main difference between the two attacks is that whereas Ender pri-
marily connected the dots between manufacturer documentation and various known vulnerabil-
ities, Schretlen extracted the sensitive and proprietary bootROM from the device and identified
key vulnerabilities therein. Hence, this attack’s identification phase gets an unusually high knowl-
edge factor rating. Finally, we find that this attack represents a relatively low attack potential for
the exploitation stage since the critical information is now public and a “plug-and-play” payload
exists [137].

6 APPLYING CONTROLS

So far, we have introduced the attack surface of SoC FPGA devices, presented tools to identify and
assess threats from various attacks and vulnerabilities, and then provided a thorough review of
attack vectors that apply to FPGA and SoC FPGA devices. During this review of attack vectors,
we used the tools introduced to assess the attack classes reviewed. With this information, the next
logical step of the IDDIL/ATC methodology defined in Figure 2 is to use this assessment, along
with the metrics assigned to known vulnerabilities and identify what controls need to be put in
place.

The essential function of a control is to remove, counter, or mitigate a threat. Therefore, when
seeking to apply a control, we need to identify which attack vector or vulnerability poses a more
significant threat to the system. Thus, to identify (i.e., select) the proper controls, the previously
identified threats should first be categorized. A model such as the STRIDE-LM model proposed by
Muckin and Fitch [114] and depicted in Table 7 can be used for this step.

We can sort the threats using the STRIDE-LM model and ensure controls are applied optimally.
Controls that fit into these categories will vary; some are manufacturer provided and can be applied
by system designers, whereas researchers proposed others that might need to be implemented by
FPGA manufacturers. Sections 6.1 and 6.2 provide a review of such controls as presented by FPGA
manufacturers and the literature, respectively.
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Table 7. Threat Categorization, Security Properties, and Controls [114]

TRIDE-
§ IIJ{N}) Threat Property Definition Controls
S Spoofing Authentication Impersonating spmeone or Authentlcgtlon
something mechanism
Integrity/access Crypto Hash,
T Tampering gty Modifying data or code watermarking,
control
PUF
. o Claiming to have not .
R Repudiation | Non-repudiation performed a specific function Logging
Information Exposing information or data Encrvotion
I . Confidentiality | to unauthorized individuals or netyphion,
disclosure isolation
roles
Denial of S .
D . Availability Deny or degrade service Redundancy
service
E Elevation of | Authorization/ Gain capabilities without Isolation and
privilege least privilege proper authorization authentication
Expand influence .
. . Segmentation
Lateral Segmentation/ post-compromise; often
LM .. . and boundary
movement least privilege dependent on elevation of
. enforcement
privilege

6.1 Manufacturer-Provided Controls

For many identified threats, manufacturer-provided security features will provide a reasonable
level of protection. Comparing these features on Intel and AMD-Xilinx devices, we find multiple
similarities [86, 127].

Intel and AMD-Xilinx’s most crucial security feature implemented within FPGA devices is the
AES encryption [119] used to encrypt their bitstreams and boot order files. Most FPGA attacks
have focused on this particular security feature. Once one obtains the bitstream’s plaintext format,
the only obstacle between an attacker and a victim’s sensitive design is the bitstream’s complexity
or security through obscurity. Although FPGA manufacturers go to great lengths to keep their
bitstream structure secret, multiple sources have shown that mapping the bitstream to a netlist or
even RTL code is not an impossible feat.

A secondary security feature implemented by both Intel and AMD-Xilinx is authentication. Au-
thentication prevents an attacker from uploading malicious bitstream (or malicious partitions in
the case of SoC FPGA devices). Manufacturers tend to use HMAC, RSA, ECDSA, or some combi-
nation of the three [14].

Last, FPGA manufacturers usually provide a set of eFuses on their devices to permanently alter
certain functionalities. One can disable standard functionalities, including JTAG [58] access and
bitstream readback. JTAG is helpful during the design and debugging of the system; however, it
becomes a convenient point of entry for attackers once fielded. If a designer wishes to maintain
post-deployment debug capabilities, he can disable its most intrusive function: its ability to read
back a programmed bitstream. On the Stratix 10, Intel indicates that this feature is permanently
disabled [62].

6.2 Security Measures from the Literature

In some applications, manufacturer-provided controls might not provide a solution that ade-
quately responds to a given threat. For instance, emerging applications in cloud computing and
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multi-tenant environments might pose threats that were not fully accounted for, or researchers
might have uncovered new vulnerabilities in specific devices. We can turn to the literature in such
cases, where multiple researchers have recommended innovative tools and techniques to help ap-
ply controls.

6.2.1 Bitstream Reverse Engineering. When it comes to securing bitstreams against reverse en-
gineering, the first line of defense should be bitstream encryption. As such, efforts to improve
cryptographic implementations within FPGA devices should be the main priority; however, in
cases where bitstream encryption is not practical or where the device of interest has known vul-
nerabilities that affect its cryptographic implementation, one should seek techniques for bitstream
obfuscations.

Hoque et al. [54] proposed one such bitstream obfuscation method in 2019. Their method uses
unused LUTs to obfuscate critical and non-critical areas of the FPGA design to render their func-
tions and structural properties indiscernible. Furthermore, Hoque et al. also implement redun-
dancies to prevent attackers from attempting to uncover the system’s functionalities via targeted,
rule-based, and random tampering.

6.2.2 Side-Channel Attacks. The logical way to secure devices against SCAs is to reduce side-
channel leakage. This reduction will generally take on two different forms: hiding and masking.

Hiding seeks to normalize channel information that attackers could use to recover secret in-
formation. For instance, in the case of timing attacks where execution time or other temporal
references are used to extract secret information, controls will usually seek to remove the depen-
dence on time by making all operations equally long [115]. When it comes to voltage-based SCA,
Le Masle et al. [81] propose a countermeasure that monitors power consumption to keep the latter
constant.

However, masking seeks to obscure intermediate values by injecting randomness via TRNGs
to remove the dependence of side-channel leakage on the secret information we wish to pro-
tect [29, 38]. Although this method has been mainly applied to protect secret keys in cryptographic
implementations, a recent work by Dubey et al. [38] in 2020 demonstrates how one can use mask-
ing to protect weight distribution in neural networks.

A uniquely FPGA-related countermeasure to SCA involves using partial reconfiguration to ran-
domize lookup tables within the FPGA fabric. This approach was presented by Sasdrich et al. [139]
in 2015, where they updated a new random S-Box configuration for every encryption sequence.
Furthermore, noting the impact of placement and routing on side-channel leakage, other preven-
tive countermeasures pay special attention to the placement of critical modules and the length of
wires being routed [87, 89, 141].

Last, we also find other researchers who have focused on the development of tools and frame-
works to evaluate side-channel emissions [41, 45, 67, 69, 70, 123].

6.2.3 Fl Attacks. Moving on to FI attacks, the most common approach to secure against
these attacks involves passive solutions such as redundancies and active solutions such as glitch
detectors.

Redundancy is a clear way to prevent faults and can be implemented in several ways. First, a
popular approach employs triple modular redundancy designs. These solutions have been stud-
ied extensively and implemented in most recent FPGA devices to secure sensitive pathways such
as debug access circuits [8]. Another approach involves redundant algorithms, especially in cryp-
tographic implementations [35, 93]. Similar to what was described for SCA, we also find applica-
tions for partial reconfiguration as countermeasures for FI attacks. This approach was presented by
Mentens et al. [99] in 2008, where the location of the cryptographic engine is randomized to hinder
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FI attacks. Regarding SoC FPGA, software redundancies should also be implemented for critical
security functions such as authentication [161]. Bypassing a single check is hard, but bypassing
two checks is much less likely.

Active controls seek to detect the effects of FIs within the FPGA. Such solutions were proposed
by He et al. in 2016 [51, 52], and in 2017 [53]. He et al. proposed high-frequency RO watchdogs
to detect laser FIs within the FPGA fabric. Similarly, Shen et al. [144] in 2019 used a delay sensing
circuit within the FPGA for detection. Upon detection, they tried several response mechanisms
that sought to delay the rising edge of the system’s clock. In this manner, they would mitigate the
transient’s effect on the system. Other approaches that specifically attempt to identify and locate
malicious tenants in multi-tenant application were proposed by Provelengios et al. [131] in 2019
and Mirzargar et al. [101] in 2020.

6.2.4  Probing Attacks. Where physical access is possible, an attacker with sufficient means will,
in most cases, be able to extract information directly from a device via electrical or optical prob-
ing attacks. The best we can do is make it as hard as possible for an attacker to extract valuable
information; a few ways of doing this exist.

Tajik et al. [155] propose a countermeasures to their optical probing attack. The countermea-
sure proposed is a PUF-based security monitor. PUFs rely on the physical characteristics of a given
device to generate a unique signature or fingerprint. Tajik et al. propose using an RO PUF whose
defining physical characteristics are known. Their experiments showed that attempts at optically
probing the internal circuit would impact characteristics of the PUF in a way that could be suc-
cessfully detected with high probability.

6.2.5 Hardware Trojans. Securing a device against hardware Trojans is mostly about know-
ing and understanding what composes your design. The best and only foolproof way of securing
against hardware Trojans is to control the entire development chain. From this controlled devel-
opment chain, one can then put authentication and integrity controls in place using secret keys,
watermarks, or PUFs to ensure no changes are made to the design. However, this quickly becomes
impractical as complexity increases, and there is a need to implement higher levels of abstraction
through third-party building blocks. Hence, requirements for Trojan detection become apparent.

Most Trojan detection techniques found in the literature have focused on validating the authen-
ticity of a given design based on defining characteristics. For instance, the work of S6ll et al. [154]
in 2014 used EM emissions to detect discrepancies between a legitimate design and its FPGA im-
plementation. Similarly, more recent works, such as that of Danesh et al. [32] in 2021, have taken
an approach akin to what is used in software security by stepping back into a design through the
bitstream reverse engineering. After decomposing their designs, they can use various techniques
to identify hidden malicious circuits. Another work of interest by Chithra et al. [28] in 2020 used
machine learning to detect Trojans. They showed that they could detect Trojans based on tem-
perature and voltage values obtained from different standard benchmarks of the AES encryption
algorithm.

Furthermore, Krachenfels et al. [76] in 2021 proposed using laser-assisted optical probing to
awaken dormant Trojans within an FPGA fabric. This technique could help uncover Trojans that
have successfully bypassed the EDA’s design check rules.

Other security measures against Trojans include isolation and segmentation to limit the im-
pact of malicious hardware within the FPGA fabric. Taking the attack by Jacob et al. described in
Section 5.7.3 as an example, if the HPS had configured ARM’s TrustZone prior to programming
the FPGA, then this attack would not have been possible. However, as described in Section 5.5,
TrustZone is not infallible. As such, some researchers have begun looking at new techniques
for trusted execution environments better adapted to FPGA devices [12, 136, 167]. For instance,
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Ren et al. [136] proposed a scheme that uses remote attestation to validate hardware accelerators
programmed within FPGA devices. They showed how their scheme could validate accelerators
deployed on remote cloud infrastructures.

7 FUTURE FPGA RESEARCH AND DEVELOPMENT

Cybersecurity is a continually evolving field of research. New vulnerabilities arise as new systems
are developed, and new unknown attack vectors are formed as new techniques are integrated.
Consequently, identifying, prioritizing, and mitigating cybersecurity threats requires a thorough
methodology to ensure systems are designed securely. This need is especially true regarding FPGA
and SoC devices in the Internet of Things and operational technology, where these devices must be
designed to operate independently for extended periods. In such circumstances, physical security
and expedient security updates are not necessarily applicable. Furthermore, although traditional
cybersecurity is well established in information systems, these methodologies do not necessarily
translate very well to embedded systems.

Keeping to the particularities of FPGA and SoC FPGA devices, this article has reviewed method-
ologies and techniques for secure embedded system design. First, we showed how knowledge of
the attack surface could be leveraged to provide the necessary input to subsequent phases of the
cybersecurity analysis. Second, we performed a detailed literature review of applicable attacks
and vulnerabilities. Third, we used attack potential and the CVSS score to assess their threat. Fi-
nally, we showed how controls could be selected to respond to identified threats by leveraging the
STRIDE-LM model. Throughout this review, we have drawn from works focused on traditional
cybersecurity and extended their approach to the world of embedded systems. Although our ap-
proach provides a basis from which to build, it is up to the scientific community, developers, and
manufacturers to take up and improve on this work.

Speaking on improvements, since our primary focus has been on reviewing the works of past
cybersecurity researchers, drafting a cybersecurity methodology, and gathering and testing the
necessary tools, we have but touched the surface of what needs to be accomplished to define the
cybersecurity approach fully. In the future, we note several areas of research and development that
can help augment cybersecurity in FPGA and SoC FPGA devices:

o Cybersecurity assessments: Ideally, the assessments featured in Table 5 would be broken down
to specific devices, targeting specific assets. As such, there is a need for further research to
test and evaluate these attack vectors as they apply to specific devices. Manufacturers should
accomplish this via rigorous penetration-testing experiments to help designers choose the
right device for their application. A more productive approach, however, would be for man-
ufacturers to deliver open designs that cybersecurity researchers can scrutinize, evaluate,
and improve. Many leaps in cybersecurity are made by curious individuals who will stop at
nothing to find a loophole in a system. These exposures allow users and developers to adapt
their systems and ensure their sensitive information remains safe.

o Applied AI: Table 5 shows that hardware Trojans and covert channels share one of the weak-
est attack potentials. Although an apparent safeguard for Trojans is to control the entire
development chain, this can quickly become impractical. Therefore, we must ensure that
we can detect malicious circuits inserted inconspicuously within our FPGA designs. Under-
standing that our FPGA designs will only increase in complexity, this detection could greatly
benefit from applied Al techniques to facilitate detection. Prospectively, Al techniques for
controls that apply to other attack techniques also need to be researched.

e [solation and segmentation: Multiple attacks described in Section 5 occurred due to lateral
movement or elevation of privilege. A notable example is the use case of FPGA devices in
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cloud computing, where power distribution networks are used to perform side-channel and
FI attacks and to establish covert channels. Furthermore, when it comes to complex systems
such as SoC FPGA devices, their large attack surface gives rise to multiple entry points for
attackers, who can then freely access the sensitive designs within the device’s configuration
memory. To augment security, manufacturers need to privilege practices of isolation and
segmentation in their devices.

8 CONCLUSION

This literature review has provided an up-to-date outlook on cybersecurity issues affecting FPGA
and SoC FPGA devices and introduced a strategy to help developers effectively apply controls to
their systems.

Based primarily on the IDDIL/ATC methodology presented by Muchin and Fitch [114], our strat-
egy sought to define a generic threat model that SoC FPGA developers could adapt for specific
architectures and operational environments. Having studied the architectures of the AMD-Xilinx
Zynq-7000 and Intel Stratix 10, we observed multiple similarities between these two competing
devices. However, what implementation differences there are can drastically affect how we apply
controls. This factor becomes increasingly important when we transition from FPGA to SoC FPGA
devices. One cannot overlook the added complexity of the HPS and the level of access it grants.

In tackling potential attack vectors, we meticulously reviewed the work of researchers who
have demonstrated both active and passive attacks that can break the confidentiality, integrity,
and availability of FPGA and SoC FPGA devices. Although manufacturers provide passive secu-
rity measures that one can easily apply to their FPGA and SoC FPGA devices, these do not translate
into foolproof systems. Physical security and active security measures will play a significant role
in protecting the device from malicious actors. Developers must carefully study known cybersecu-
rity issues and validate how they apply to their attack surface. From here, developers should use
controls based on the threat posed by identified attack vectors and threat actors.
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