
202

GraphQL: A Systematic Mapping Study

ANTONIO QUIÑA-MERA, FICA Faculty, eCIER Research Group, Universidad Técnica del Norte,

Ecuador and SCORE Lab, Universidad de Sevilla, Spain

PABLO FERNANDEZ, JOSÉ MARÍA GARCÍA, and ANTONIO RUIZ-CORTÉS, SCORE Lab,

I3US Institute, Universidad de Sevilla, Spain

GraphQL is a query language and execution engine for web application programming interfaces (APIs) pro-

posed as an alternative to improve data access problems and versioning of representational state transfer APIs.

In this article, we thoroughly study the GraphQL field, first describing the GraphQL paradigm and its con-

ceptual framework, and then conducting a systematic mapping study of 84 primary studies selected from an

original set of 3,185. Our work analyzes trends or knowledge gaps about GraphQL by general classification of

the studies and specific classification of this research topic. The study’s main conclusions show that GraphQL

adoption is growing in the community as a strong alternative to implement APIs. However, we identified the

need to strengthen the amount and rigor of empirical evidence collection in applied industry and govern-

ment studies. In addition, we revealed the opportunity for specific studies on most GraphQL components,

especially the consumption of GraphQL API services.

CCS Concepts: • Applied computing→ Service-oriented architectures; • Software and its engineering

→ Software as a service orchestration system; API languages; • Computer systems organization→
Cloud computing; • Information systems→ RESTful web services;

Additional Key Words and Phrases: GraphQL, API, microservices, systematic mapping study

ACM Reference format:

Antonio Quiña-Mera, Pablo Fernandez, José María García, and Antonio Ruiz-Cortés. 2023. GraphQL: A Sys-

tematic Mapping Study. ACM Comput. Surv. 55, 10, Article 202 (February 2023), 35 pages.

https://doi.org/10.1145/3561818

1 INTRODUCTION

Today, Software-as-a-Service (SaaS) has received significant attention as one of the three main
service models of cloud computing (i.e., Platform-as-a-Service or (PaaS) and Infrastructure-

as-a-Service or (IaaS) [33, 54]). SaaS utilizes the internet to deliver applications to its users, which
are managed by a provider. Therefore, selecting the best SaaS provider among those available is

This work is partially supported by the Universidad Técnica del Norte (UTN), Ecuador and Grants No. RTI2018-

101204-B-C21, No. RTI2018-101204-B-C22, No. PID2021-126227NB-C21, and No. PID2021-126227NB-C22, funded by

MCIN/AEI/10.13039/501100011033/ and “ERDF a way of making Europe,” and Grants No. PYC20 RE 084-US, No. P18-FR-

2895, No. US-1264651, and No. US-1381595, funded by Junta de Andalucia/ERDF, UE.

Authors’ addresses: A. Quiña-Mera (corresponding author), FICA Faculty, eCIER Research Group, Universidad Técnica del

Norte, Av. 17 de Julio 5-21, Ecuador, Imbabura, Ibarra, 100105 and SCORE Lab, Universidad de Sevilla, Av. Reina Mercedes

s/n, 41012, Sevilla, Spain; email: aquina@utn.edu.ec; P. Fernandez, J. M. García, and A. Ruiz-Cortés, SCORE Lab, I3US

Institute, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012, Sevilla, Spain; emails: {pablofm, josemgarcia, aruiz}@us.es.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).

0360-0300/2023/02-ART202

https://doi.org/10.1145/3561818

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.

https://orcid.org/0000-0003-2516-9016
https://orcid.org/0000-0002-8763-0819
https://orcid.org/0000-0002-0303-2740
https://orcid.org/0000-0001-9827-1834
https://doi.org/10.1145/3561818
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3561818
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3561818&domain=pdf&date_stamp=2023-02-02


202:2 A. Quiña-Mera et al.

Fig. 1. Example of over-fetching and under-fetching in REST API vs. GraphQL API [44].

a critical challenge [46]. This challenge falls on software architects who must build reliable and
efficient SaaS that overcome the significant technical and functional problems of cloud applications,
such as multi-tenancy, redundancy, recovery, or scalability [54]. To overcome these challenges, the
microservices architecture represents a clear trend both in academia and industry [29], where large
companies worldwide have evolved their applications towards this architectural style [8].

Specifically, the Microservices Architecture (MSA) is composed of small applications
(microservices) with a single responsibility (functional, non-functional, or cross-functional
requirements) that can be independently deployed, scaled, and tested [2, 53]. Microservices can be
developed and modified independently using different programming languages and product stacks,
thus supporting agility [2, 23]. Its main advantages are maintainability, reusability, scalability, avail-
ability, and automated deployment [29]. Microservices communicate through lightweight mecha-
nisms, typically using the Representational State Transfer (REST) architectural style to build
application programming interfaces (APIs) named REST APIs. Software organizations have
rapidly adopted REST APIs in the development of their applications after its creation in 2000 [56].

REST is the most widely used paradigm in microservices development [61]. However, despite
its popularity, it presents some data access issues, such as: (i) query complexity (i.e., REST requires
multiple HTTP requests to obtain multiple resources); (ii) over-fetching (i.e., a REST request re-
turns more data than an application needs); and (iii) under-fetching (i.e., a particular endpoint
does not give enough information, so additional requests must be made to obtain the required
information), which is also known in the literature as the n+1 request problem [34, 55]. To illus-
trate the over-fetching and under-fetching problems found in REST microservices, we consider
a scenario of consuming a REST API and a GraphQL API of blogs [44]. In this scenario, a client
application needs to query post titles of a specific user and the names of the last three followers
of that user, see Figure 1.

On the one hand, Figure 1(a) shows the request and response to the REST API. REST usu-
ally collects the data by accessing various resources (aka endpoints). For the proposed scenario,
it is necessary to query data at three endpoints: /users/<id> to get the user’s data, second,
/users/<id>/posts for the user’s posts, and the third endpoint /users/<id>/followers, which

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:3

returns a list of followers per user. On the other hand, Figure 1(b) shows the request and response
to the GraphQL API. Using this paradigm, the user can send only one query asking for the specific
data it needs, then the server responds only with the requested data [44, 55]. The under-fetching
in REST surfaces when the request needs to access three endpoints to get the data requirements
it needs, while GraphQL needs only one access to get the required data. In turn, over-fetching in
REST occurs when each endpoint access gets more data than it needs, while GraphQL only gets
the requested data.

In the past decade, some query languages such as SPARQL,1 Cypher,2 Gremlin,3 and GraphQL
have emerged as alternatives for API data access [50]. In this study, we focus on GraphQL, because
there is a growing interest in the industry since it has proven to be an alternative to solve the
problems found in traditional REST technology [50, 55]. GraphQL started in 2012 as an internally
developed specification on Facebook. In 2015, they decided to share GraphQL with a broader com-
munity [28], releasing both an open source specification and a reference implementation through
the graphql.org4 community [12]. Since then, the community has grown, as well as the adoption in
the production environment by hundreds of organizations of all sizes, such as Atlassian, GitHub,
Netflix, The New York Times, and Twitter, among others [28, 36]. In this work, we evidence an
average annual growth of 16.67% between 2015 and 2020 in the number of studies published in
scientific literature databases related to software engineering. In the same sense, we show an aver-
age annual growth of 13.61% in the search trend of the term “graphql,” reported in Google Trends
(see Section 3.1). Despite the growing interest in GraphQL, there is no global vision that helps
new researchers know the principal existing research proposals, the studies’ scope, trends in the
research approach over time, or existing gaps in scientific evidence.

This work’s objective is twofold: first, to introduce the novel GraphQL paradigm through illus-
tration, exemplification, and conceptualization of its components. Then, to conduct a systematic

mapping study (SMS) of GraphQL to establish an overview of the subject through a publication
classification scheme and structure the scientific community’s field of interest. The rest of the arti-
cle is structured as follows. In Section 2, we establish the GraphQL paradigm. Next, Section 3 shows
how we conducted the SMS. Then, in Section 4, we present the results obtained from the SMS. Af-
terwards, we analyze and discuss the main findings of our study. Finally, Section 6 summarizes the
conclusions of the study.

2 GRAPHQL PARADIGM

2.1 GraphQL Foundations

Its formal specification defines GraphQL as a query language and execution engine to describe
the capabilities and requirements of data models for client-server applications [52]. To implement
GraphQL application servers (GraphQL APIs), it is not necessary to use a specific program-
ming language or persistence mechanism. Instead, GraphQL encodes in a uniform language the
model capabilities of a type system based on five design principles: hierarchical, product-centric,
strong-typing, client-specified queries, and introspective [12, 52].

In the following, we present the GraphQL paradigm, illustrating the conceptual and functional
structure of the GraphQL formal specification5 (June 2018 release). We begin to structure the
paradigm by showing the interaction between the high-level components of GraphQL (language

1See https://www.w3.org/TR/rdf-sparql-query.
2See https://neo4j.com/developer/cypher.
3See https://tinkerpop.apache.org/gremlin.html.
4See http://graphql.org.
5See https://graphql.github.io/graphql-spec.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.

https://www.w3.org/TR/rdf-sparql-query
https://neo4j.com/developer/cypher
https://tinkerpop.apache.org/gremlin.html
http://graphql.org
https://graphql.github.io/graphql-spec


202:4 A. Quiña-Mera et al.

Fig. 2. Principal components interaction of the GraphQL paradigm.

and its grammar, type system, introspection, and execution and validation engines). Figure 2
shows that the interaction starts in (1) the development-time tools that use the GraphQL language,
its grammar, and Interface Description Language (IDL) to define and generate the type
system or type system extensions of the GraphQL Service. (2) The generation of the service
(GraphQL API) is complemented by generating type system Resolvers using some programming
language. Then the service generated from the customer tools is consumed. (3) A document
with executable operation definitions (query, mutation, subscription) or fragments is created
to send an execution request to the GraphQL service. Before sending the request, the client
tools provide a syntax validation using the GraphQL service’s introspection (represented with
the “INT” bubble in the “Client tools” section). The GraphQL service receives the request and
validates that the document contains only executable definitions for execution. Running the
GraphQL service obtains the requested data from the Type System and Resolvers. (4) The
GraphQL service execution sends the result as a response document (usually in JSON format) to
the client tools. The response document also includes error messages if there are errors during
execution.

Once explained how the four high-level components work and interact, in the next Section 2.2,
we complete their structure and technical description of 17 specific components of the GraphQL
paradigm.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:5

Fig. 3. GraphQL document definition.

Fig. 4. GraphQL type system definition.

2.2 Operational Semantics

2.2.1 GraphQL Language. The GraphQL language provides a comprehensive syntax to create
documents that can contain either the type system definitions of GraphQL services or the actual
queries clients execute on them. Thus, a GraphQL document can contain different definition in-
stances (type system, type system extension, or executable) [52]. Figure 3 shows each type of
definition’s main components; they will be detailed and exemplified in the following.

Besides, GraphQL language includes an IDL used to describe the type system of a GraphQL
service used by the tools to provide utilities such as client code generation or service bootstrapping
[52].

Type System Definition. Defines the data capabilities of the Type System of a GraphQL server,
as well as the input types of the query variables. A GraphQL Document containing a TypeSys-
temDefinition must not be executed by GraphQL execution services. We illustrate the conceptual
structure and the interaction of the components of the type system definition in Figure 4. The main
components are described in the following.

Schema conforms the collective-type system capabilities of a GraphQL service. Their defini-
tion is in terms of types and directives, as well as the root operation types for each kind of
operation: query, mutation, and subscription.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:6 A. Quiña-Mera et al.

Fig. 5. GraphQL type system example.

Types are the fundamental unit of the GraphQL schema. Concrete types can be defined based
on six named types and two wrapping types. The “named types” are:

• Scalars: represent a primitive value, like string, integer, float, Boolean, or a unique
identifier (ID).
• Enums: describe the set of possible values.
• Objects: define a set of fields where each field is also of a type in the system. Fields are con-

ceptually functions that return values and occasionally accept arguments that alter their
behavior; these arguments are usually mapped directly to a function within a GraphQL
server implementation. Therefore, response trees are composed of leaves of type Scalars
and Enums, and intermediate levels are of type Objects, thus allowing arbitrary type hier-
archies to be defined.
• Input objects: defines a set of input fields; it can be scalars, enums, or other input objects.

In turn, among “named types” there are two abstract types that must first resolve to a relevant
“named type” object:

• Interfaces: define a list of fields.
• Unions: define a list of possible types.

Finally, we refer to wrapping types as those that effectively wrap or contain a “named type”:

• List: a GraphQL schema may describe that a field represents a list of other types; for this
reason, the list type wraps another type.
• Non-null: wraps another type and denotes that the resulting value will never be null.

Directives provide a way to describe alternate runtime execution and type validation behavior
in a GraphQL document. Directives can be used to describe additional information for types,
fields, fragments, and operations.

Next, we complement the conceptualization of the GraphQL paradigm specification with illus-
trations and examples of its components. For this purpose, we implement a Star Wars API GraphQL
service that shows the movies’ basic structure and characters.

Figure 5 shows some examples containing the essential components of a type system definition
[51]: (a) defines the GraphQL service schema with the available operations (query and mutation);
(b) defines the query types (humans, droid), which receive scalar type arguments and return a list
of type objects; (c) defines the mutation (createHuman), which receives an input type argument
and returns an object type; (d) define the enum type (Episode), which specifies a set of values; (e)
defines the type object (Character) that contains a set of fields. The symbol (!) in the appearsIn field

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:7

Fig. 6. Extend type system example.

Fig. 7. GraphQL executable definition.

means that it does not accept null values; (f) defines the type Interface (Character) that contains
additional fields to the type object Character; (g) defines the implementation (Human) of the
interface (Character) that contains the fields of the interface and an additional field (totalCredits);
(h) defines the implementation (Droid) of the interface (Character) that contains the fields of the
interface and additional field (primaryFunction); (i) defines the input object (HumanInput) that
contains a set of fields used in the createHuman mutation; and (j) defines SearchResult as a union
type used to search for data in Human or Droid types.

Type System Extension. Represents a GraphQL type system that extends from an original type
system. This construct can be used, for example, by a local service to represent data that a GraphQL
client only accesses locally, or by a GraphQL service that is itself an extension of another GraphQL
service. Figure 6 shows an example of an Object type extension that represents a Character type
that has been extended from the original type (see Figure 5), which also adds a local data field.

Executable Definition. Executable documents are defined by operations or fragments [52].
Figure 7 shows the relationship and conceptual structure of their components. In the following,
we describe the components of executable definitions.

Operations are the main elements of executable definitions and can be (i) queries, which are
read-only and fetch data, (ii) mutations that first write and then fetch data, or (iii) subscrip-
tions, which are long-running requests that fetch data in response to events from the source.

Variables are introduced to maximize the reusability of GraphQL queries parameterized with
variables, avoiding costly string building in clients at runtime.

Input Values can be scalar values, enumeration values, lists, or input objects.
Directives are used in a similar way as in the Type System components.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:8 A. Quiña-Mera et al.

Fig. 8. GraphQL executable definition examples.

Arguments alter the behavior of fields that occasionally accept them. Function arguments are
often mapped within a GraphQL server implementation.

Selection Sets are primarily composed of fields. Their purpose is to restrict requests to select
only the needed subset of information, avoiding over-fetching and under-fetching data.

Fields describe the discrete information available and can represent complex data or relation-
ships with other data; they are also considered conceptual functions that return values.

Fragments are the basic unit of composition in GraphQL that allows reusing of commonly
repeated selections of fields.

Figure 8 shows examples of the most used operations (queries and mutations) of the executable
definition [51] concerning the type system defined in Figure 5, namely: (a) defines the operation
(NewHumans) that executes the mutation (createHuman). It also shows three ways to execute
the type of query (humans); (b) executes the query but without defining the name of the request;
(c) defines the request (queryOneHuman) that executes the query “humans” that receives
parameter “id” with the value of one, which means that the query will return the record that has
that identifier; and (d) defines the request (queryWithFragment) that executes the query using
the fragment (FragmentTwoFields) that refers to a set of specific fields of the implementation
(Human). Client tools are responsible for sending these definitions to the GraphQL service, which
will execute the requests.

2.2.2 Responses. A GraphQL operation response is a map commonly in JSON format, contain-
ing three entries: data, errors, and/or extensions. Data contains the result of the execution of the
requested operation. Errors appear when the execution has found an error. The extension is re-
served for implementers to extend the protocol without content restrictions [43, 51, 52]. Figure 9
shows the response to requests for execution of the mutation and query operations carried out in
Figure 8.

2.2.3 Introspection. A GraphQL server supports the introspection of its schema by querying
the type system using the same GraphQL language [52]. Figure 10 shows (a) the introspection
query to the type system (Figure 5) and (b) the query’s answer.

2.2.4 Validation. GraphQL verifies if a request is syntactically correct and ensures that it is
unambiguous and mistake-free in a given GraphQL schema. The validation is performed before
execution. However, a GraphQL service may execute a request without explicitly validating it if
that exact same request is known to have been validated before. GraphQL execution will only

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:9

Fig. 9. GraphQL response example.

Fig. 10. GraphQL introspection example.

consider the executable definitions of Operations and Fragment. Type system definitions and ex-
tensions are not executable and therefore are not considered during execution [52].

2.2.5 Execution. GraphQL generates a response to a request via its execution facility in the
context of the universe of data available in a schema provided by the appropriate GraphQL service.
Only requests that pass validation rules are actually executed; if it has validation errors, then
they will be reported in the list of “errors” within the response, and the request will fail without
execution [52]. It is worth mentioning that there are cases of requests that pass the validation but
during the execution present data errors; in those cases, the execution returns the data result but
also returns the description of the error occurred.

Each field of each type is backed by a function called the resolver , which the GraphQL server
developer has to provide. When a field is executed, the corresponding resolver is called to produce
the response value [43, 52].

3 RESEARCH METHOD

In software engineering, two techniques are clearly distinguished for carrying out studies of the
literature that serve to structure knowledge systematically and reproducible, namely, systematic
mapping studies and systematic literature review [26].

On the one hand, a SMS is a method for constructing a classification scheme for topics studied in
a field of interest. By counting the number of publications for categories within a scheme, the cov-
erage and maturity of the research field can be determined. The results are presented on graphical
maps showing the number of publications in different categories. Mapping studies generally cover
a more extensive range of publications as the analysis focuses on summaries and key terms [40].

On the other hand, a Systematic literature review (SLR) is a means of identifying, analyzing,
and interpreting reported evidence related to a set of specific research questions in an unbiased
and (to some extent) repeatable manner. Unlike mapping studies, systematic reviews generally
cover a smaller and more specific range of publications, while the analysis focuses on the details
of published contributions [25].

3.1 Need for a Systematic Mapping Study

We approached the need for this study from the point of view of the scientific and industrial
community. On the one hand, concerning the scientific community, we searched for SLRs or SMSs

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:10 A. Quiña-Mera et al.

Fig. 11. Publication trend by year.

Fig. 12. GraphQL’s search trend.

studies on GraphQL in the most used scientific literature databases related to software engineering:
ACM Digital Library,6 SpringerLink,7 IEEE Xplore Library,8 Scopus,9 Google Scholar,10 and DBLP11

[9, 25, 26], where we verified that there is no study of this type in the scientific literature. Then,
we verified the GraphQL study trend by conducting a survey on the frequency of research in
bibliographic databases from 2015 (GraphQL release to the community) to 2021 (last full year).
Wherein, Figure 11 shows the trend of publications by year, tabulating the number of publications
related to GraphQL, which are normalized in the figure by using the yearly percentage distribution
of total publications about GraphQl during the 2015–2021 period in a given database (%T.). We
evidenced an average growth of 66% by calculating the percentage variation [31] by year.

On the other hand, regarding the industrial community, Figure 12 sums up the trend of search
interest for the term “graphql” using the Google Trends tool,12 where the search interest is scaled
on a range from 0 to 100 based on the proportion of searches for the topic [20]. Although the last
two years show a slight decrease, the overall average of the yearly percentage variation calculation
[31] increases 98%.

6See https://dl.acm.org.
7See https://link.springer.com.
8See https://ieeexplore.ieee.org.
9See https://www.scopus.com/.
10See https://scholar.google.com.
11See https://dblp.org.
12See https://trends.google.com.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.

https://dl.acm.org
https://link.springer.com
https://ieeexplore.ieee.org
https://www.scopus.com/
https://scholar.google.com
https://dblp.org
https://trends.google.com


GraphQL: A Systematic Mapping Study 202:11

Fig. 13. SMS process definition.

In summary, we found that the scientific and industrial communities have shown increasing
interest in GraphQL, but to the best of our knowledge, there are still no literature reviews to
provide an overview of the study of GraphQL. As a result, we found the need to conduct an SMS
to establish an inventory of classified primary studies (i.e., studies that obtain empirical evidence
on a topic of interest [19]) to provide an overview that allows researchers to discover gaps and
trends about the study of GraphQL.

3.2 SMS Process Definition

The process for conducting SMS (summarized in Figure 13) was established based on the guidelines
proposed by Petersen in 2008 [40], Petersen 2015 [42], and Kuhrmann 2017 [26], which consists of
the following phases:

3.3 Phase 1: Planning the Mapping

This section plans the process for conducting the mapping and will serve as a guide for executing
or reproducing this work:

Identification of need and scope: The systematic mapping study aims to provide an overview
of the scientific community’s production and find knowledge gaps around the GraphQL paradigm.
The SMS will perform a topic-specific classification about GraphQL and a topic-independent clas-
sification to identify the trend, evolution, empirical evidence maturity, and types of research pub-
lications based on the facets of Petersen et al. [1, 40, 42].

To define the research questions that guide the SMS, we use Kipling’s 5W+1H model [24] to
abbreviate the questions: Who, Why, What, Where, When, and How. This model is used to know
the most important aspects of a story (commonly used in journalism) [14, 24]. Applying the model,
we formulated the following research questions (RQ):

RQ1: Who are the authors and institutions researching about GraphQL? The purpose
is to identify which authors and institutions are researching this topic to encourage
collaboration.

RQ2: Where were the research papers published? We will define publication venues to
identify the acceptance and impact of research on the GraphQL paradigm.

RQ3: What is the empirical evidence maturity of the publications on the GraphQL?

We will establish what research methods authors use to gather empirical evidence and what
types of research were used to verify the maturity of the research topic.

RQ4: When were the research papers published? This question attempts to show the
trend and evolution over time of research on the GraphQL paradigm.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:12 A. Quiña-Mera et al.

Fig. 14. Process followed to identify the primary study dataset.

RQ5: Why was the GraphQL paradigm studied? This question aims to discover why and
in what contexts the scientific community studied the GraphQL paradigm.

RQ6: How was GraphQL introduced to the scientific community? We will classify the
type of contributions and the domain of their implementation. We will also identify the
components of GraphQL that are most and least used in the research, thus establishing a
vision for future research.

RQ7: What are the frontiers of the research on GraphQL? This question abstracts the
main findings presented in the studies and the open questions posed as future work.

3.4 Phase 2: Study Identification

This section details how we identified the primary study dataset for mapping; see Figure 14.
Search Strategies: We chose two strategies, the first being an automatic search in the databases

and then supplemented with manual searching to add relevant studies that did not appear in the
first search. The steps we established for the search are: (1) Conduct the search for primary studies
using a search string in the databases chosen for the study; then apply the first study filter using

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:13

the databases’ automatic filters. After that, using bibliographic reference management tools (e.g.,
Zotero and Mendeley), we merge the studies into a homogeneous structure. We finalized this step
by removing duplicate studies. (2) Filter the studies by applying inclusion and exclusion criteria.
(3) To improve the quality of the primary study dataset, we initially piloted the snowballing search
strategy [58] but found no new publications that met the inclusion criteria of the study filtering.
Therefore, we followed the recommendations of Wohlin [58] to use the manual search strategy to
add relevant studies to the dataset. (4) Finally, evaluate the search.

Conducting search: To establish the search string, we use the interactive improvement ap-
proach by identifying keywords from known papers. We decided to establish the search string
with the word “graphql” to cover everything reported in the scientific community since 2015,
when GraphQL was released to the community, until June 30, 2021. We identified that the ap-
propriate scientific population to consult for primary studies is the scientific literature databases
commonly used in software engineering: ACM Digital Library, Springer Link, IEEE Xplore Library,
Scopus, DBLP, and Google Scholar [9, 25, 26, 42]. We began conducting the automatic search in
the databases and obtained a total of 3,185 studies. After that, we searched again and applied the
databases’ automatic filters (see TI, TA, EO, NC, and NA in Figure 14), obtaining 254 studies. Then,
we removed duplicate studies obtaining an initial dataset of 135 studies.

Filtering Studies: In this step, we define and apply the inclusion and exclusion criteria on the
study’s initial dataset to establish the relevance of the research topic [27, 42].

Inclusion criteria:

• Publications in English that have been peer reviewed in journals, conferences, or workshops.
• Gray Literature (evidence not controlled by commercial publishers) can include academic

papers, including theses and dissertations [38], such as Bachelor’s, Master’s, and Ph.D.
theses.
• Publications from 2015 to 2021.
• Publications that focus on the use of the GraphQL paradigm in the title and the abstract.
• Publications that contain a reasonable context, objectives, and research method.

Exclusion criteria:

• Books or book chapters (BOO).
• Videos, posters, or demonstrations (VID).
• Non-peer-reviewed publications (NPREV).
• Non-English publications (NENG).
• Publications that refer to GraphQL proposed by Huahai He and Ambuj Singh in 2008

(homonyms name (HOM)). It is a graph query language that allows flexible manipulation
of graph structures. In addition, they introduce the notion of formal languages for graphs
(useful for the definition of graph queries as well as database graphs) [22].
• Publications that solely reference GraphQL as an external citation (OREF) and they do

not use or extend the paradigm (Section 2.1).
• Publications not available (AVA) through our institutions’ subscriptions or in open

repositories.

After applying the inclusion and exclusion criteria, we obtained a dataset of 80 studies
Manual search: We complemented the search strategy with the manual search method; we

found four studies in the results of the automatic searches before applying the automatic filters in
the databases; this resulted in a dataset of 84 primary studies.

Evaluation of the search: Petersen [42] and Kitchenham [25] recommend maintaining a low
stringency in evaluating the quality of primary studies, because SMSs aim to provide an overview

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:14 A. Quiña-Mera et al.

Table 1. GGS Conference Rating

Class Ratings Description

1 A++, A+ top notch conferences
2 A, A− very high-quality events
3 B, B− events of good quality
— Work in progress (WIP) work in progress

of the research topic area. For this reason, we decided not to exclude any primary studies in this
section, resulting in a dataset of 84 primary studies for mapping.

3.5 Phase 3: Data Extraction and Classification

In this phase, we extracted data from the primary studies to conduct a general classification that
does not depend on the researched topic (topic-independent classification) and another specific
classification about the GraphQL paradigm (topic-specific classification) [42].

Topic-independent classification scheme: The following describes the fields of data extrac-
tion based on the facets, venue, research type, research method, and study focus proposed in Petersen
et al. [42]:

Title: title of the publication, specifying the study, use, or extension of the GraphQL paradigm.
Abstract: summary of the publication, specifying the study, use, or extension of the GraphQL

paradigm; do not use the term GraphQL only to reference an external citation.
Authors: principal author (first author) and co-authors of the publication.
Authors’ affiliation: first affiliation of the publication’s authors.
Countries: country of authors’ affiliation.
Year: year of the publication.
Venue: name of publication venue.
Venue types: peer-reviewed venues such as journals, conferences, and workshops [42]. In

addition, we added gray literature such as academic articles, theses, and dissertations to
reduce possible publication bias and provide a more balanced view of the evidence [38].

Venue rate: impact factor of the venue types measured with Scimago Journal & Country

Rank (SJR),13 Journal Citation Reports (JCR),14 and GII-GRIN-SCIE (GGS) Conference
Rating.15 SJR calculates the Scimago Journal Rank impact factor of journals and countries
based on information from the Scopus database (Elsevier B.V.) [48], measures the weighted
citations of a journal according to the scientific area and the relevance of the citing journals
[49]. Journal subdisciplines are ranked into four quartiles (Q1 to Q4) using the SJR Citation
Index [11]. JCR is an ISI Web of Knowledge product that provides a rich array of citation
metrics such as the Journal Impact Factor (JIF) [5]. A journal’s quartile ranking (Q1 to
Q4) is determined by comparing a journal to others in its JCR category based on JIF [6].
GGS is an initiative that provides a unified rating of computer science conferences [37]; see
Table 1.

Publication types: for peer-reviewed types of venues are journal articles, conference papers,
and workshop papers [42]. For grey literature, according to the Finnish Ministry of Education
thesis classification:16 Bachelor’s, Master’s, and Ph.D. theses

13https://www.scimagojr.com/.
14https://jcr.clarivate.com/.
15http://gii-grin-scie-rating.scie.es/.
16https://aaltodoc2.org.aalto.fi/doc_public/ohjeet/publicationclassification2010.pdf.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.

https://www.scimagojr.com/
https://jcr.clarivate.com/
http://gii-grin-scie-rating.scie.es/
https://aaltodoc2.org.aalto.fi/doc_public/ohjeet/publicationclassification2010.pdf


GraphQL: A Systematic Mapping Study 202:15

Table 2. Research-type Classification

Research
type

Conditions

U
se

d
in

p
ra

ct
ic

e

N
ov

el
so

lu
ti

on

E
m

p
ir

ic
al

ev
al

u
at

io
n

C
on

ce
p
tu

al
fr

am
ew

or
k

O
p
in

io
n

ab
ou

t
so

m
et

h
in

g

A
u
th

or
s’

ex
p
er

ie
n

ce

Evaluation research T • T • F •
Validation research F • T • F •
Solution proposal • T F • F •
Philosophical papers F F F T F F
Experience papers T F F • F T
Opinion papers F F F F T F

Legend applies condition: T = True, F = False, and • = irrelevant or not applicable.

Research type: We base it on the classification of research types proposed by Wieringa [57]
and complement it with the decision table to disambiguate the classification of studies by
checking a series of conditions proposed by Petersen et al. [42]; see Table 2. Next, we show
and order the research types according to the maturity exposed by the studies [57, 59]:

Evaluation research, empirically evaluates the investigation of a problem or application
of a technique in engineering practice. Validation research, develops a novel solution and
is empirically evaluated in a laboratory setting (i.e., not used in practice). Solution proposal,
this study proposes a solution to a research problem, and the benefits are discussed but not
evaluated. Philosophical papers, structures an area in the form of taxonomy or conceptual
framework, hence provides a new way of looking at existing things. Experience papers, in-
cludes the author’s experience of what and how something happened in practice. Opinion
papers, these studies contain the author’s opinion on a particular issue without relying on
related research papers and methodologies.

Research methods: Petersen et al. [42] identify that the types of “evaluation research” and
“validation research” need empirical evaluation by using different research methods fre-
quently applied in software engineering [10, 21, 57, 60]; in this sense, we analyze and use the
following subset of research methods proposed by Reference [42]: Survey, identify the char-
acteristics of a broad population of individuals. It is most closely associated with the use of
questionnaires for data collection [10]. Case study, investigate a single entity or phenomenon
in its real-life context within a specific time-space [60]. Controlled experiment, investigates
a testable hypothesis where one or more independent variables are manipulated to measure
their effect on one or more dependent variables [10]. Simulation, is a powerful technique
to handle the complexity of the model (hundreds of dynamic variables and causal linkages).
The use of simulation enables managers to assess quickly and safely the implications of an
intended policy before it is implemented [30]. Prototyping, is an approach based on an evolu-
tionary view of software development and an impact on the development process. It involves
producing early working versions (prototypes) of the feature application system and experi-
menting with them [4]. Mathematical analysis, covers the basic techniques to identify a set of
reasoning rules in a precise (and therefore mathematical) way in the system under study [3].

Study setting: This is the context in which the study was conducted, whether in academia,
industry, or government [7]. In this sense, we established the following semantics “Aca-
demic”: studies performed in synthetic environments that do not implement solutions

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:16 A. Quiña-Mera et al.

for public use; “Industry” and “Government”: studies conducted in industry/government
practice environments or they expose solutions for public service.

Finding: The study’s findings are usually in the results or conclusions study sections.
Challenge: Challenges posed by the authors are usually in the discussion, conclusions, or

future work sections of the study.

Topic-specific classification scheme: The following describes the data extraction fields for the
specific classification of the GraphQL paradigm:

Knowledge area: Software engineering knowledge areas based on the Guide to the Software
Engineering Body of Knowledge SWEBOK version 3.0 of the IEEE Computer Society [3]
are: Requirements, Design, Construction, Testing, Maintenance, Configuration Management,
Engineering Management, Engineering Process, Engineering Models and Methods, Quality,
Engineering Professional Practice, Engineering Economics, Computing Foundations, Math-
ematical Foundations, and Engineering Foundations.

Contribution domain: This is the domain of the GraphQL service used in the study’s techni-
cal contribution. We identify the Provider and Client domains. The Provider domain is any
contribution implemented in the “GraphQL service” see Figure 2, and the Client domain is
the contributions consuming the GraphQL service, see “Client tools” in Figure 2.

Contribution type: This is a high-level classification of GraphQL technical contributions. We
define the following semantics to identify and classify contribution types: Implementation,
refers to studies that use the GraphQL paradigm to implement software. Analysis, refers to
studies that contribute a comparative analysis or theoretical review to identify ways to apply
the GraphQL paradigm. Integration, refers to studies that present the integration of GraphQL
with other technologies to design or build integrated solutions. Extension, refers to studies
that propose a new component or functionality in the GraphQL paradigm. Applications, refer
to studies that propose solution approaches applying the GraphQL paradigm but without its
implementation.

GraphQL Components: Based on Section 2, we established the classification by “Service”
with its components: Execution, Introspection, Resolvers, Type System, Validation. “Type
System Definition” with its components: Directives, Enums, Input Object, Interfaces, Ob-
jects, Scalars, Schemas, Unions. “Execution Definition” with its components: Fragments, Mu-
tations, Query, and Subscription.

Public API: This is the actual public API used in the publication, e.g., as a use case or support-
ing system.

Consequently, we established the structure for data collection in this study based on the research
questions presented; for each question, as shown in Table 3, we define a set of fields derived from
the topic-independent classification, topic-specific classification, and minimum data structures rec-
ommended by Kuhrmann et al. [26] and Petersen et al. [42].

3.6 Validity Evaluation

In conducting the SMS, we tried to be as methodological as possible; therefore, we evaluated
the validity based on the guidelines of References [41, 42], using the following considerations:
Descriptive validity is the description with precision and objectivity. We minimize this threat
by introducing decision criteria forms for general categorization and classification based on the
Petersen guide [42] (see Section 3.5). We also introduced topic-specific classification criteria based
on the GraphQL paradigm components exposed in this article (see Section 2). Theoretical validity
determine the ability to capture what we intend to capture [42]. To minimize this threat, in the

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:17

Table 3. Data Extraction Structure

No. Field Cardinality Description RQ

1 No. 1 Publication number
2 Title 1 Publication title
3 Abstract 1 Summary of the publication
4 Authors 1...n Authors of publication RQ1
5 Authors affiliation 1...n Authors’ institution of affiliation RQ1
6 Countries 1...n Country of the authors’ institutions RQ1
7 Venue 1 Publication venue name RQ2
8 Venue type 1 Classification of venues RQ2
9 Publication type 1 Types of publication in venues RQ2
10 Venue acronym 1 Acronym for the publication venue name RQ2
11 Venue rate 1 Venue rate RQ2
12 Research type 1 Research type classification RQ3
13 Research method 1 Classification of research methods RQ3
14 Year 1 Year of publication RQ4
15 Study setting 1 Context in which the study is applied RQ5
16 Knowledge area 1 SWEBOK Knowledge areas RQ5
17 Contribution domain 1 Domain in which the contribution is made RQ6
18 Contribution type 1 Contribution type of the publication RQ6
19 Contribution 1...n Technical contribution of the publication RQ6
20 GraphQL Components 1...n GraphQL components in the publication RQ6
21 Public API 1...n Public APIs used in the publication RQ6
22 Finding 1...n The study’s findings RQ7
23 Challenge 1...n Challenges posed by the authors RQ7

Study Identification, we established the search string only with the word “graphql” to obtain an
adequate sample concerning the target population. We also chose two strategies for the search: We
started with the database search; we complemented it with the manual search strategy, where we
found four studies that we added to the initial study dataset. We tried to minimize the risk of bias
in data extraction and classification when the first researcher performed an individual mapping
followed by a second researcher’s review. Differences found were validated by a joint reading of
the full text of the publication and then discussed to a consensus based on the established rules
for classification in Section 3.5. Generalizability, according to Petersen and Gencel [41], should
be considered internal generalization (within a population) and external generalization (between
different populations). Internal validity ensures that a researcher’s experimental design closely
follows the cause-and-effect principle; therefore, in this study, we followed most of the method-
ological recommendations exposed by Petersen’s guide [42]. However, the existence of manual
classifications in the process exposes us to introduce some study selection errors. Therefore, we
considered a wide range of papers (including the gray literature) and introduced methods of
decision criteria in the classifications to minimize this impact. External validity measures the
applicability of the study results to other situations, groups, or events (generalizability). We tried
to minimize this threat by using the Petersen et al. guide [42], which is very popular for conduct-
ing SMSs in software engineering. Besides, we conducted the specific classification of GraphQL
components using the GraphQL paradigm based on the official site of the formal GraphQL
specification. Interpretive validity is when the conclusions are drawn reasonably, given the data.
We minimize the threat of bias in interpreting the conclusions by exposing the results described

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:18 A. Quiña-Mera et al.

Fig. 15. Authors by continent and country.

by the first author, then reviewed separately by the three co-authors, and then discussed together
in consensus meetings to unify revisions and interpretations. Repeatability requires detailed
information on the research process. In this study, we report in detail the SMS process, expose
the work files in digital repositories, and explain the measures taken to reduce possible threats to
validity.

4 RESULTS

In this section, we answer the RQ established in Section 3.3 using the results of the data extraction
process from the primary studies conducted in Section 3.5. The list of the primary studies is avail-
able in the supplementary material of the article [45], where the 84 studies are coded from study
“S01” to study “S84.”

4.1 RQ1: Who Are the Authors and Institutions Researching About GraphQL?

In this question, we discovered the most active researchers and institutions that researched the
GraphQL paradigm. On the one hand, we show the authors’ information who used the GraphQL
paradigm in their publications. We considered the publication’s first author as the principal author
and the other authors as co-authors, obtaining 298 authorships in the publications (84 main author-
ships and 214 co-authorships) corresponding to 270 researchers. Figure 15 shows a summary of
authors by country and continent; we observe that authors affiliated with European institutions
lead the number of contributions with 60.74%; however, the United States is the country with the
most authors, followed by Germany, which highlights the number of authorships of the principal
authors. Table 4 shows the authors with the highest number of publications.

On the other hand, we show the institutions of the authors’ affiliation. Figure 16 shows the
institutions with two or more publications; the others are grouped in “Others.” There are 86 in-
stitutions from 33 countries, where the Linkoping University of Sweden contributed the highest
number of publications, followed by the Aalto University of Finland, IBM Research of United States,
and RWTH Aachen University of Germany.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:19

Table 4. Top Authors by Publications

Author
Publications as

principal author
Publications as

co-author
Total

publications

Hartig Olaf 3 3 6
Wittern Erik 2 1 3
Cha Lan 1 2 3
Taelman Ruben 2 — 2
Brito Gleison 2 — 2

Fig. 16. Publications by affiliation.

4.2 RQ2: Where Were the Research Papers Published?

This question identifies the venues, venue types, publication types where GraphQL studies were
published, and their impact. In this sense, we started by identifying and ordering the following
venue types according to the rigor of the review of publications; it is worth mentioning that we
considered the gray literature to verify the interest of academia in the study of GraphQL. The pub-
lication types found at the venue are bachelor’s and master’s theses, workshop papers, conference
papers, and journal papers. However, in conferences and workshops, we identified two ways of
publishing their studies; the first is to publish the studies in the proceedings of the venues, and the
second way is to publish the proceedings in a journal volume so that the impact of the journal cat-
alogs the impact of their studies. Therefore, we subdivide conference and workshop papers whose
proceedings are published in a journal: conference paper (journal) and workshop paper (journal).

Figure 17 shows the publications by publication type and venue type. We observed that most
publications (46.07%) are in conferences, and peer-reviewed publications are 69.05%, and the aca-
demic review is 30.95%.

The following shows the publications’ impact was measured by: GGS, SJR, and JCR. In this
section, we clarify that the impact of the gray literature is not measurable; therefore, the analysis
of papers from workshops, conferences, and journals. Table 5 shows the workshop papers and their
impact measured in GGS and SJR. The Workshop on (Constraint) Logic Programming (WLP),
published in the journal Electronic Proceedings in Theoretical Computer Science, is highlighted
with an SJR:0.33.

Table 6 shows the conference paper impact measured with GGS and SJR. According to the SJR
metrics, on the one hand, the conferences that index their proceedings directly in Scopus have
an SJR index but no quartile; in this segment, the leading conference is SANER (SJR: 0.29). On

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:20 A. Quiña-Mera et al.

Fig. 17. Publications by venue type and publication type.

Table 5. Workshop Papers and Their Impact

Publication
Type

GGS
Class

SJR
Quartile

SJR
Year

SJR
Publication

Number
Publications

Workshop paper — — — — 3 S06, S08, S39

Workshop paper
(journal)

WIP — 2019 0.18 3 S01, S02, S26
— — 2020 0.18 1 S62
— — 2019 0.33 1 S17

Table 6. Conference Papers and Their Impact

Publication
Type

GGS
Class

SJR
Quartile

SJR
Year

SJR
Publication

Number
Publications

Conference
paper

Class 1 — — — 3 S28, S32, S47
Class 3 — — — 3 S25, S40, S57

WIP — — — 6 S11, S15, S38, S63, S76, S78
— — 2020 0.29 1 S24

— — — — 11
S33, S35, S41, S55, S56, S64,
S67, S68, S71, S81, S83

Conference
paper (journal)

Class 2 Q2 2019 0.43 3 S07, S12, S30
Class 3 Q2 2019 0.43 2 S13, S21

WIP Q3 2020 0.25 1 S73
WIP Q3 2019 0.18 1 S69

— Q2 2019 0.43 1 S48
— Q3 2019 0.19 2 S19, S37
— Q4 2020 0.16 1 S61
— — 2019 0.20 2 S09, S18
— — 2019 0.34 1 S31
— — — — 1 S66

the other hand, conferences that publish their proceedings in volumes of journals indexed in Sco-
pus generally have SJR and quartile indexes. In this segment, the leading conferences are CAISE,
ICSOC, ICWE, and MEDI, published in the journal “Lecture Notes in Computer Science,” which
has quartile 2 (Q2) and SJR: 0.43. According to the GGS metrics, 19 of the 39 conference papers
(48.72%) were ranked. In this segment, the top conferences at level 1 are WWW (Class 1: A++) and
ESEC/FSE (Class 1: A+).

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:21

Table 7. Journal Papers and Their Impact

Journal Name ISSN
JCR-SJR

Year
Quartile

-JIF (JCR)
Quartile

-SJR
Publications

Journal of Molecular Biology 0022-2836 2020 Q1-5.47 Q1-3.19 S79
Journal of Cheminformatics 1758-2946 2019 Q1-5.32 Q1-1.43 S05
IT Professional 1520-9202 2019 Q1-3.70 Q1-0.63 S14
Molecules 1420-3049 2020 Q1-4.41 Q1-0.78 S84
PLoS ONE 1932-6203 2020 Q2-3.24 Q1-0.99 S16
Electronics 2079-9292 2019 Q2-2.41 Q2-0.30 S58
BMC Medical Informatics and

Decision Making
1472-6947 2019 Q3-2.31 Q1-0.91 S20

Software and Systems Modeling 1619-1366 2020 Q3-1.91 Q2-0.42 S60
Software Engineering and

Knowledge Engineering
0218-1940 2019 Q4-0.89 Q3-0.25 S42

Journal of Object Technology 1660-1769 2019 — Q3-0.24 S46
Theoretical And Applied Science 2308-4944 — — — S75

Table 8. Publications by Research Type and Research Method

Research type Research method Publications

Evaluation research

Case Study S03, S05, S12, S18, S34, S54, S55, S70, S74, S83
Experiments S63, S78, S81
Prototyping S20

Survey S32

Validation research

Experiments
S09, S13, S14, S28, S29, S37, S38, S41, S42, S43,
S44, S47, S56, S58, S62, S65, S77, S80

Prototyping S07, S11, S27, S31, S35, S46, S48, S59
Survey S01, S10, S24, S30, S40

Case Study S16, S33, S39, S60
Mathematical Analysis S02, S08

Solution proposal — S21, S25, S45, S57, S69, S72, S73

Experience paper — S15, S52, S64, S67, S76, S79, S82, S84

Opinion paper
— S19, S22, S23, S26, S36, S49, S50, S51, S53, S61,

S66, S68, S71, S75

Table 7 shows the journal articles’ impact measured with JIF of JCR and SJR metrics. The highest
quartile 1 (Q1) journals are Journal of Molecular Biology (JIF: 5.47, SJR: 3.19), Journal of Chemin-
formatics (JIF: 5.32, SJR: 1.43), and IT Professional (JIF: 3.70, SJR: 0.63).

4.3 RQ3: What Is the Empirical Evidence Maturity of the Publications on the

GraphQL?

This question identifies the maturity of the empirical evidence of the studies by classifying the
publications’ rigor; therefore, we classified the publications by the research type according to the
criteria indicated in Table 2 and identified the research methods (see Section 3.5) used to support
their GraphQL paradigm findings. Table 8 shows the publications by research type and methods.

Figure 18 shows, on the one hand, that most of the publications have a strong empirical focus,
since they are classified as “evaluation” or “validation” research (61.91%). On the other hand, the

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:22 A. Quiña-Mera et al.

Fig. 18. Publications by research type.

Fig. 19. Publications by research methods in validation and evaluation research types.

remaining publications showed studies without empirical evaluation (i.e., they did not apply the
research methods described in Section 3.5), classified as solution proposals, experience papers, and
opinion papers. It is worth mentioning that there were no publications of the philosophical paper.

Figure 19 shows the research methods used in “evaluation” or “validation” research; where it is
noticeable that the case study is the most commonly used research method in software engineering
practice (i.e., evaluation research). In contrast, the most commonly used methods were experiments
and prototypes in validation research.

4.4 RQ4: When Were the Research Papers Published?

This question shows the evolution of GraphQL publications from 2015 to June 30, 2021. We consider
the studies since 2015, because that is the year GraphQL was launched to the community.

Figure 20 shows the number of studies by type of research and year of publication. Again, we
observe that the growth of publications is constant over time, with 2019 being the year with the
highest growth (17.86%) compared to 2018. Note that publications of research types that present
empirical evidence also increased over the years (“validation” and “evaluation” research types).
Thus, although GraphQL is a young research topic and maintains a growing trend, the scien-
tific community should generate more studies with empirical evidence to improve and mature
the knowledge base about GraphQL.

4.5 RQ5: Why Was the GraphQL Paradigm Studied?

With this question, we try to determine why researchers conduct studies on GraphQL; in this
sense, we assume Petersen’s recommendations [42] to answer the question with the following
metrics: study setting, application domain, and software engineering knowledge areas based on
the SWEBOK.

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:23

Fig. 20. Publications by research type and year.

Fig. 21. Publications by study setting and application domain.

Figure 21 shows the publications by study environment and application domain. Most publi-
cations (71.43%) were in the academic context and the rest in the industrial context; we did not
find applied studies in the governmental context. We also calculated that the predominant applica-
tion domains were development (52.38%) and computing (21.43%); this indicates that the academic
world began to study the technical components of the GraphQL paradigm before applying them
to other disciplines or sciences.

Figure 22 and Table 9 show the classification of publications by software engineering (SE)

knowledge areas based on SWEBOK (see Section 3.5) used in their studies. Note that the knowledge
area “construction” is the most applied (55.95%), followed by far by “computing foundations.” These
results of the knowledge areas match and are complemented by the results of the application
domains, ratifying the interest of researchers in the study and technical application of the GraphQL
paradigm.

4.6 RQ6: How Was GraphQL Paradigm Introduced to the Scientific Community?

We answer this question by identifying specific classifications of the use and application of the
GraphQL paradigm based on Sections 2 and 3.5. In the data extraction and classification phase, we
identify the following categories: contribution domain, contribution type, GraphQL components,
and public APIs used in the studies. One of the GraphQL expert authors conducted the classifica-
tion of studies twice to minimize human errors.

Contribution domain: Establishes the application domain of the technical contribution of the
GraphQL service in publications; based on Section 2.1. During the classification of the studies,

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:24 A. Quiña-Mera et al.

Table 9. Publications by SE Knowledge Areas

Swebok areas Publications

Construction

S03, S05, S12, S13, S14, S15, S20, S22, S24, S25, S27, S34, S35, S36,
S41, S43, S44, S45, S49, S51, S52, S53, S54, S55, S56, S57, S58, S59,
S61, S62, S64, S65, S66, S67, S68, S69, S70, S71, S72, S73, S77, S78,
S80, S81, S82, S83, S84

Computing foundations S01, S06, S17, S26, S28, S29, S30, S31, S32, S37, S40, S42, S75
Design S04, S07, S09, S11, S18, S19, S21, S23, S38
Models and methods S16, S46, S47, S48, S60, S76, S79
Testing S10, S39, S50, S63
Mathematical foundations S02, S08, S33
Process S74

Table 10. Publications by Contribution Domains

Contribution
domain

Publications

Provider

S01, S02, S03, S07, S08, S09, S10, S12, S13, S14, S15, S17, S20, S21, S23, S25, S28,
S29, S32, S33, S34, S37, S38, S39, S40, S41, S42, S43, S44, S46, S48, S49, S50, S53,
S55, S59, S47, S60, S61, S62, S63, S65, S66, S67, S68, S69, S70, S71, S72, S75, S78,
S79, S80, S81, S04, S05, S11, S18, S19, S22, S24, S27, S30, S31, S36, S45, S51,

S52, S54, S57, S58, S16, S64, S73, S74, S76, S77, S82, S83, S84

Client
S04, S05, S11, S16, S18, S19, S22, S24, S27, S30, S31, S36, S45, S51, S52, S54,

S57, S58, S64, S73, S74, S76, S77, S82, S83, S84, S06, S26, S35, S56

Note: Publications marked in bold contribute to both provider and client domains.

Fig. 22. Publications by SE Knowledge areas.

we identified the provider and client domains, where 54 publications make contributions in the
provider domain, 26 publications in both domains, and 4 publications in the client domain. Table 10
shows the classification of publications by contribution domain. Figure 23 shows (a) the number
and percentages of contributions of publications in the domains and their combination; (b) the
percentages of contributions grouped by domain.

Contribution type: This is a high-level classification of GraphQL technical contributions in
publications. Similar to the previous segment, we found publications that provided multiple contri-
bution types; thus, we classified 127 technical contributions from 84 publications. Table 11 shows

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:25

Fig. 23. Publications by contribution domains.

Table 11. Contribution Types in Publications

Contribution
type

Contribution Publications

Implementation

GraphQL Implementation

S05, S15, S23, S35, S36, S38, S51, S52, S54, S57,
S60, S64, S68, S69, S70, S72, S79, S81, S82, S83,
S84, S03, S07, S09, S16, S17, S20, S27, S39,

S44, S45, S49, S50, S55, S62, S63, S65, S66,

S67, S76, S77, S78, S80

Implement a Tool S10, S32, S62

Migration to GraphQL S12, S18, S22, S24, S74

Wrapper S13, S24, S34, S59, S71

Analysis

Comparison

S01, S04, S26, S29, S30, S37, S40, S43, S56, S75,
S03, S09, S12, S17, S18, S22, S24, S31, S34,

S44, S45, S46, S49, S50, S55, S58, S65, S66,

S67, S71, S74, S76, S77, S78, S80

Analysis S10, S47

Evaluation S14, S41, S13, S32, S59

Theoretical Review S06, S53, S61, S62, S80

Applications

Architectural Design S11, S19, S58

Generate GraphQL S21, S42, S48, S25, S31, S63

Proposal for using GraphQL S73, S39, S46

Proposal using GraphQL S20, S27

Transforming GraphQL S08, S59

Extension
Design Framework S07

Profile for model S16

Theoretical Framework S02, S28, S33, S47

Integration Generate GraphQL S25, S31

Note: Publications marked in bold provide two or more contribution types.

the classification of publications by contribution type and technical contribution, and Figure 24
shows that the most frequent contribution types were implementation and analysis.

Contributions: These are the specific technical contributions using the GraphQL paradigm in
the publications. Figure 24 shows that most of the contributions are of the “Implementation” and
“Analysis” types; therefore, we will now analyze these two contributions.

On the one hand, type “Implementation” contributions present solutions such as tool im-
plementations, wrappers, migrations, and especially (43 of 56 contributions) GraphQL API

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:26 A. Quiña-Mera et al.

Fig. 24. Contribution types in publications.

Fig. 25. Type “Implementation” contributions in publications.

Table 12. GraphQL Comparisons

Comparisons Publications

Between REST and GraphQL
S03, S04, S09, S12, S17, S18, S22, S24, S29, S31, S34,S37, S43, S45,
S49, S50, S55, S56, S58, S66, S67, S74, S75, S76, S77, S78, S80

GraphQL APIs schemes S01, S30

Other comparisons S26, S40, S44, S46, S65, S71

implementations; where 35 publications perform implementations in the provider domain, 20
publications in both domains, and 1 publication in the client domain. Figure 25 shows (a) the
number and percentages of implementations in the domains and their combination; (b) the
percentages of implementations grouped by domain.

On the other hand, the contributions of the “Analysis” type presented works such as theoretical
reviews, analyses, and the most notable (35 of 47 contributions) comparisons of GraphQL with
other technologies. Table 12 shows the different comparisons with GraphQL in the studies, where
most of the comparisons are between GraphQL and REST. In this sense, we note that the main
reported findings mention that GraphQL is more efficient than REST, because it reduced the time
and size of responses in the implemented APIs.

GraphQL Components: In this section, we map the GraphQL components mentioned, used,
and exemplified in the publications to understand how the scientific community studied the
GraphQL paradigm. The semantics of the classifications we established for the components
are: (i) components mentioned, which refers to components mentioned in the publications but
not necessarily used; and (ii) components exemplified, which refers to components that were
exemplified but not necessarily used in the publications; (iii) components used, which identifies
components used as part of the GraphQL technical contribution in the publications. Figure 26

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:27

Fig. 26. GraphQL components in publications.

shows the specific mapping of GraphQL components, their frequencies, and percentage over the
total number of publications.

On the one hand, the most mentioned, exemplified, and used components in the publications
are queries, schemas, objects, scalars, and mutations, confirming that these components are funda-
mental to building GraphQL APIs. On the other hand, the least studied components are directives,
validation, and subscriptions, revealing research gaps in these components. The lack of studies on
subscriptions caught our attention, because it is a primary function of the GraphQL service.

Public API used: We identified the trend of using public APIs in the publications; in this sense,
we found 15 public GraphQL or REST APIs used in 15 publications (17.86%) of the SMS. The public
GraphQL APIs are GitHub in studies [S24, S28, S30, S32, S47, S56, S73], Apollo Demo and Smalltalk
GraphQL Demo in study [S39], and Yelp in studies [S39, S47]. The REST APIs used are GitHub in
studies [S01, S40, S56]; APIs.guru in studies [S01, S13, S32]; arXiv in study [S24]; Kentico Cloud’s
Delivery in study [S22]; IBM Watson Language Translator in study [S13]; JAX-RS, jBPM, and KIE
in study [S45]; Libraries.io in study [S01]; Toggl and Toggl Report in study [S51]; and Spotify in
study [S35]. We note that GitHub’s REST API and GraphQL API are the most widely used, followed
by APIs.guru; they have become popular in the scientific community as a source of information
for empirical studies.

4.7 RQ7: What Are the Frontiers of the Research on GraphQL?

In this question, we discuss the most relevant findings and open questions that the primary stud-
ies expose in their results, discussion, conclusions, and future work segments to summarize the
state of the art of GraphQL research in four blocks: (i) Advantages, where we describe the studied
benefits and recommended applicability of using GraphQL; (ii) Disadvantages, where we expose
the shortcomings that prevent the application of GraphQL in specific situations; (iii) Limitations,

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:28 A. Quiña-Mera et al.

Table 13. GraphQL Advantages, Disadvantages, and Limitations Identified in Primary Studies

Context Dimensions Publications

Advantages

Comparison
with REST
and SOAP

Performance
S03, S09, S12, S18, S22, S29, S31, S34, S37,
S43, S45, S50, S55, S66, S67, S75, S76, S78

Response size S09, S18, S29, S31, S34, S50, S66, S77, S78
Dynamic query S03, S04, S18, S22, S24, S55, S75, S76
Overload S18, S67, S75

SE Process
Versioning S03, S22, S24
Interoperability S04, S22, S56
Schemes S24

Disadvantages
Comparison
with REST
and SOAP

Performance S34, S77, S78, S80

Limitations
Data
management

Schemes S10, S24, S75
Security S22, S75
Cache S04, S24
Mutations S75

SE Process Interoperability S04, S75

that lists the identified areas where GraphQL does not provide adequate functionality compared
to other alternatives; and (iv) Challenges, where we discuss the main open questions that reveal
several areas of future work. Table 13 shows the classification of publications by the advantages,
disadvantages, and limitations of GraphQL and their main studied dimensions.

Advantages of GraphQL. Most publications have compared GraphQL to the industry standard
REST paradigm, and also to SOAP in practical use cases. In the “performance” dimension, we
abstracted the response time, efficiency, throughput, over-fetching, and under-fetching criteria
exposed in the publications. The findings report that GraphQL is faster than REST by 0.02 times
for simple, one endpoint queries [S12], 16 times in complex queries (four endpoints with 1,000
records) [S34], and up to 187 times for complex queries (over five endpoints) [S67]. Regarding
SOAP, study [S37] reports that GraphQL improves the “response time” up to 2.49 times on queries
with 1,500 concurrent users and 5.03 times the “throughput” on queries with 50 concurrent users.
The dimension “response size” of GraphQL queries shows that they are smaller than REST, between
0.21 times for simple queries [S50] up to 38 times [S34] on complex queries (5 endpoints), while
study [S77] reports that GraphQL reduces up to 3.9 times compared to SOAP on queries of 3 nested
tables with 100 records. On the “dynamic query” dimension, studies report that GraphQL offers
better flexibility when obtaining specific fields from queries and that queries can be dynamically
composed by the client and interpreted by the server. The studies classified under the “overload”
dimension indicate that the number of query requests is reduced between 17 [S18] and 1,002 [S67]
REST requests to 1 request in GraphQL with 1,000 records.

In the context of the SE Process, the “versioning” dimension shows that GraphQL eliminates the
need for increasing version numbers in APIs [S24], which increases maintainability [S03], and ease
of versioning compared to REST APIs [S22]. In the “interoperability” dimension analyzed, studies
show that GraphQL increases the reusability of operations [S04], frontend developers need less co-
ordination with the backend [S22], and have better syntax for reading code and less effort to specify
parameters with support in tools such as GraphiQL [S56] concluding, for example, that a novice
developer spent 63% of his time in REST and 37% in GraphQL to perform query tasks. GraphQL’s
“schema” dimension shows that it is strongly typed and can be validated before execution, which
also facilitates the combination of several APIs into one [S24].

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:29

Disadvantages of GraphQL. Studies that focus on the comparison with REST and SOAP
paradigms show that in the “performance” dimension GraphQL is from 0.36 times [S34] to 2.5
times slower than REST on simple queries from an endpoint with a sample of 100,000 requests
[S80]. They also show that GraphQL is slower than SOAP in similar settings, especially with sim-
ple queries made with 100 records [S77].

GraphQL Limitations. Five publications have mentioned more clearly the inherent limitations
of GraphQL in Data management: “schemes” do not support private fields and are therefore visible
to client applications [S24]; large schemes suggest a degree of complexity in their comprehensi-
bility for implementing complex queries, and there is the probability of object name collisions
[S75]; in study [S10] showed that 39.73% of schemes have at least one cycle in a sample of 2094
APIs, which could affect the effectiveness and efficiency of data handling. “Security” should be
managed to avoid excessive data queries or request overloads leading to a denial of service [S22,
S75]. “Cache” handling does not follow the HTTP specification, instead using a single endpoint
[S24], which is corrected by implementing a cache management library, but data invalidation must
be managed [S04]. Concerning “mutations,” GraphQL does not support polymorphism (does not
inherit input objects), fields may or may not be updated when receiving a null value, and there
is a difference between input and output data formats [S75]. With respect to the SE Process, the
interoperability between co-existing REST and GraphQL endpoints in turn limits maintainability
and separation of concerns [S04, S75].

GraphQL Challenges. With respect to the comparison with REST and SOAP area, the studies
identify the need to conduct extensive studies of the quality characteristics in dynamic, parallel
queries [S02, S43] in different networks, programming languages, query languages, and databases
[S29, S34, S77, S78, S80] but subject to a scale and data complexity according to the industrial
context, to establish the appropriate conditions for the use of these architectures. Focusing on data
management, we highlight the following key challenges: promote studies of hybrid architectures
between REST and GraphQL [S12, S13] to reuse existing REST APIs or as a transition from REST
to GraphQL; analyze in-depth mutation and subscription operations, which have not yet been
thoroughly studied [S03]; and analyze existing caching and security practices [S17] to realize the
impact of their applicability, identify the best existing techniques or establish new proposals. As
technical challenges related to the SE process, studies propose to build code generative tools for
advanced elements such as paging or nested queries [S13], analyze how practitioners use GraphQL
in real systems [S56], and analyze the impact of transitioning architectures such as REST or SOAP
[S74], with the aim of improving the software development process. There are also additional
challenges on the applicability of GraphQL in cutting-edge areas, such as devising a standardized
approach and the semantics of GraphQL in the context of knowledge graphs [S06] or its application
in IoT use cases [S14].

5 ANALYSIS AND DISCUSSION

In this section, we analyze and discuss the different relationships between the results obtained
in the SMS. Before starting, we clarify that the general classification results of the publications
(topic-independent classification) are in RQ1, RQ2, RQ3, RQ4, RQ5, and the specific classification
about the GraphQL paradigm (topic-specific classification) in RQ6 and RQ7.

In RQ1 (Section 4.1), we observe that institutions from Europe are leaders in the study about
GraphQL and have the majority (60.74%) of publications, followed with a significant distance by
the other continents. However, we note that there is not yet any scientific community specialized
in this topic, although we highlight the contributions of Linkoping University.

In RQ2 (Section 4.2), we identified that 46.43% of the publications are conference papers, fol-
lowed by gray literature, journal articles, and workshops. Figure 27 shows the relationship of RQ2,

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:30 A. Quiña-Mera et al.

Fig. 27. Publications by study setting, research type, and venue type.

RQ3, and RQ5 results to analyze the research types contributed by the venues; we conclude that
including the gray literature in the SMS was a correct decision, because 53.84% of its production
provided evaluation and validation research. Although GraphQL is a young topic, we highlight
publications in top-level conferences such as WWW (Class 1: A++) and ESEC/FSE (Class 1: A+)
and Quartile 1 journals such as Molecular Biology, Cheminformatics, and IT Professional.

In RQ3 (Section 4.3), we identified that most of the publications are of validation or evaluation
research type (61.91%), presenting a certain degree of maturity in empirical evaluation in their
studies; however, only 17.86% of these studies were conducted in SE industry practice (evalua-
tion research). Moreover, we analyzed the venue types concerning “validation” and “evaluation”
research. Note that the grey literature shows 16.66% of studies with empirical evaluations even
applied in the SE industry settings; this indicates that universities contribute to relevant academic
studies in the GraphQL study (see Figure 27). In this sense, we discuss if it is possible to improve the
maturity of empirical evidence of GraphQL studies. We find that future research can improve this
maturity if researchers use the methods described in Section 3.5 and apply them in the industry
or government setting (i.e., SE practice).

In RQ4 (Section 4.4), we find a growth of studies in quantity and quality. Figure 28 shows the
relationship of the results of RQ2, RQ3, and RQ4; we observe that from 2019 appear works from
journals that generally have more rigor for publication, as well as the quality of the empirical evi-
dence exposed in “validation” and “evaluation” research. These results corroborate the motivation
for conducting the present SMS.

In RQ5 (Section 4.5), on the one hand, we first analyzed the study setting concerning the re-
search type. We observed that most of the publications are of validation research type in academia
(see Figure 27); this suggests that researchers did their studies in synthetic contexts without ap-
plying them in SE practice (i.e., industry or government). In this sense, we found that another key
point to improve the quality of GraphQL research is to apply the studies in industry and govern-
ment settings. On the other hand, we note that the publications conducted their study in 7 of the
15 SWEBOK knowledge areas (see Figure 22), opening a research opportunity in the rest of the
knowledge areas described in Section 3.5.

In RQ6 (Section 4.6), we answer how the scientific community studied the GraphQL paradigm
through the following classification metrics: technical contributions, their types and domains,
GraphQL components, and public APIs used in publications. Figure 29 shows the relationship
between RQ3 and RQ6.

First, Figure 23 shows that the researchers turned to study the domain provided by the GraphQL
service (72.73%); we think this is normal behavior, because the GraphQL service must first be

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:31

Fig. 28. Publications by research type, year, and venue type.

Fig. 29. Publications by contribution type, venue type, and research method.

implemented before its consumption; in this sense, we identify a study opportunity on usability,
ease of learning, and consumption performance of the GraphQL service. Second, the studies’ most
frequent contribution types are implementation and GraphQL analysis (see Figure 29), published
with similar frequency in conference papers and gray literature; in this sense, we note that imple-
mentations can improve their quality by validating or evaluating their studies using the research
methods described in Section 3.5. Third, in the “analysis” contribution type, the comparisons
between REST and GraphQL are highlighted (see Table 12), clearly showing that the community
studied GraphQL as an alternative to REST for implementing web APIs. Fourth, we mapped the
components of the GraphQL paradigm that were mentioned, used, and exemplified in the publi-
cations. In a general way, we observed that the most studied components are queries, schemas,
objects, and scalar types; we conclude that this behavior is because they are fundamental and nec-
essary components to implement GraphQL APIs (see Figure 26). In this sense, we asked if there are
components that should be studied more. This question surprised us, because most components
are not treated in detail, including essential components such as mutations and subscriptions,

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



202:32 A. Quiña-Mera et al.

evidencing another gap in studies. Finally, we identified that the GitHub public API is the most
used in the publications, identifying a tendency to implement public REST APIs and support
GraphQL APIs.

Finally, in RQ7 (Section 4.7), we analyze the main findings of the publications and classify
them to understand the frontiers in GraphQL research. Many studies highlight the advantages
of GraphQL compared to REST (and SOAP) in features and quality metrics such as throughput,
response size, dynamic query, and overload. We find that the right conditions for using REST are
when APIs perform static queries with little data; in contrast, GraphQL excels when performing
dynamic queries with big datasets. As a possible roadmap for future work to overcome the limita-
tions and challenges reported in GraphQL, we propose:

(i) Strengthen the baseline conditions for using REST and GraphQL to build efficient applications
by increasing studies of experimental design complexity and data quantity scale (similar to
those used in industrial environments). Also, adding different features such as quality charac-
teristics (e.g., usability, functional adequacy), GraphQL operations (mutations and subscrip-
tions), network conditions (e.g., bandwidth, concurrency), programming languages (backend,
frontend), query languages (e.g., falcor, SPARQL), databases (relational and non-relational),
and applied on various platforms such as mobile and IoT.

(ii) Establish a baseline of existing best practices and encourage proposals for the management of
caching, security in GraphQL APIs, and control of the inherent problems of GraphQL schemes
and mutations reported in Section 4.7.

(iii) Establish proposals that promote the governance of the software engineering process in de-
veloping GraphQL APIs and hybrid architectures between REST and GraphQL, such as code
generation tools for advanced GraphQL components (e.g., pagination and nested queries),
testing GraphQL APIs [32], or the management of GraphQL API service level agreements
[35, 39].

(iv) Non-Functional aspects such as limitations or pricing represent a key element for API prac-
titioners [13, 16] and are widely used in the RESTful API market [15]; in contrast, this study
shows a lack of approaches that address those concerns for GraphQL, which prevents the con-
solidation of an open market of GraphQL-based services as it has been proposed in similar
contexts [17, 18, 47].

6 CONCLUSIONS

GraphQL is a novel approach to APIs development that is gaining traction and interest from both
researchers and practitioners. To offer a global perspective on this field, in this work, we first
introduce a conceptual framework to describe the so-called GraphQL paradigm from its formal
specification, illustrating and exemplifying its components to serve as the basis to acquire a deep
understanding of the GraphQL paradigm and relate the different elements studied. Then, as the
main focus of our work, we conducted a SMS of the literature to show an overview of the research
and identify trends and gaps in the GraphQL field. The SMS answered seven research questions
and classified the studies into general and specific areas about GraphQL. In particular, our study
focused on finding out who, where, when, what, and why GraphQL was researched, as well as con-
textualizing the specific areas of research with respect to the GraphQL paradigm we introduced.
The results of our study confirm that in spite of its growing acceptance as an alternative for API de-
velopment, there is not a widely established scientific community around GraphQL. Even though
there is a trend of publishing in high-quality venues, there are still shortcomings in current studies,
especially in terms of the maturity of empirical evidences, validation in realistic use cases, and the
evaluation of additional quality characteristics and underused features of GraphQL. Furthermore,

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.



GraphQL: A Systematic Mapping Study 202:33

we also detected research opportunities in other areas related to best practices and proposals for
the development and governance of GraphQL-based systems, including aspects like security, test-
ing, and service level agreements, among others. In summary, even though the field is young and
needs to mature in some aspects, this study will help researchers get an overview of the topics
investigated and directions for future GraphQL research.

VERIFIABILITY

For verifiability purposes, we published the following Supplementary Materials in Reference [45]:
(1) Study identification process dataset, (2) SMS primary study dataset, and (3) SMS primary study
mapping dataset.

REFERENCES

[1] H. Arksey and L. O’Malley. 2005. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol.:

Theory Pract. 8, 1 (2005), 19–32. https://doi.org/10.1080/1364557032000119616

[2] S. Baškarada, V. Nguyen, and A. Koronios. 2018. Architecting microservices: Practical opportunities and challenges.

J. Comput. Info. Syst. 60, 5 (2018), 1–9. https://doi.org/10.1080/08874417.2018.1520056

[3] P. Bourque and R. E. Fairley. 2014. SWEBOK v.3—Guide to the Software Engineering—Body of Knowledge. (3rd ed.). IEEE,

346 pages. https://doi.org/10.1234/12345678

[4] R. Budde, K. Kautz, K. Kuhlenkamp, and H. Züllighoven. 1992. Prototyping An Approach to Evolutionary System Devel-

opment. Springer-Verlag, Berlin. XII, 205 pages. https://doi.org/10.1007/978-3-642-76820-0

[5] Clarivate. 2021. Journal Citation Reports: Reference Guide. Retrieved from https://clarivate.com/webofsciencegroup/

wp-content/uploads/sites/2/2021/06/JCR_2021_Reference_Guide.pdf.

[6] Clarivate. 2021. Quartiles in JCR on the InCites Platform. Retrieved from https://help.incites.clarivate.com/

incitesLiveJCR/9053-TRS.

[7] N. Condori-Fernandez, M. Daneva, K. Sikkel, R. Wieringa, O. Dieste, and O. Pastor. 2009. A systematic mapping study

on empirical evaluation of software requirements specifications techniques. In Proceedings of the 3rd International

Symposium on Empirical Software Engineering and Measurement (ESEM’09) 1 (2009), 502–505. https://doi.org/10.1109/

ESEM.2009.5314232

[8] P. Di Francesco, P. Lago, and I. Malavolta. 2019. Architecting with microservices: A systematic mapping study. J. Syst.

Softw. 150 (2019), 77–97. https://doi.org/10.1016/j.jss.2019.01.001

[9] T. Dyba, T. Dingsoyr, and G. Hanssen. 2007. Applying systematic reviews to diverse study types: An experience report.

In Proceedings of the (ESEM’07). IEEE, 225–234. https://doi.org/10.1109/ESEM.2007.59

[10] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. 2008. Selecting empirical methods for software engineering

research. Guide Adv. Empir. Softw. Eng. 1 (2008), 285–311. https://doi.org/10.1007/978-1-84800-044-5_11

[11] Elsevier. 2017. FAQs—Journal Metrics—Scopus.com. Retrieved from https://journalmetrics.scopus.com/index.php/

Faqs.

[12] Inc. Facebook. 2016. GraphQL | A query language for your API. Retrieved from https://graphql.org/.

[13] R. Fresno-Aranda, P. Fernández, A. Durán, and A. Ruiz-Cortés. 2022. Semi-automated capacity analysis of limitation-

aware microservices architectures. In Proceedings of the 19th International Conference on the Economics of Grids, Clouds,

Systems, and Services (GECON’22). Springer, In press.

[14] A. Galindo, D. Benavides, P. Trinidad, A. Gutiérrez-Fernández, and A. Ruiz-Cortés. 2019. Automated analysis of feature

models: Quo vadis? Computing 101, 5 (2019), 387–433. https://doi.org/10.1007/s00607-018-0646-1

[15] A. Gamez-Diaz, P. Fernandez, and A. Ruiz-Cortes. 2017. An analysis of RESTful APIs offerings in the industry. In

Proceedings of the International Conference on Service-Oriented Computing. Springer, Cham, Germany, 589–604. https:

//doi.org/10.1109/SCC.2016.17

[16] A. Gamez-Diaz, P. Fernandez, A. Ruiz-Cortés, P. J. Molina, N. Kolekar, P. Bhogill, M. Mohaan, and F. Méndez. 2019. The

role of limitations and SLAs in the API industry. In Proceedings of the 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. ACM, New York, NY, 1006–1014.

https://doi.org/10.1145/3338906.3340445

[17] J. M. García, O. Martin-Diaz, P. Fernandez, C. Müller, and A. Ruiz-Cortes. 2021. A flexible billing life cycle for cloud

services using augmented customer agreements. IEEE Access 9 (2021), 44374–44389. https://doi.org/10.1109/ACCESS.

2021.3066443

[18] J. M. García, O. Martin-Diaz, P. Fernandez, A. Ruiz-Cortes, and M. Toro. 2017. Automated analysis of cloud offerings for

optimal service provisioning. In Proceedings of the International Conference on Service-Oriented Computing. Springer,

Cham, Germany, 331–339. https://doi.org/10.1007/978-3-319-69035-3_23

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.

https://doi.org/10.1080/1364557032000119616
https://doi.org/10.1080/08874417.2018.1520056
https://doi.org/10.1234/12345678
https://doi.org/10.1007/978-3-642-76820-0
https://clarivate.com/webofsciencegroup/wp-content/uploads/sites/2/2021/06/JCR_2021_Reference_Guide.pdf
https://help.incites.clarivate.com/incitesLiveJCR/9053-TRS
https://doi.org/10.1109/ESEM.2009.5314232
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1109/ESEM.2007.59
https://doi.org/10.1007/978-1-84800-044-5_11
https://journalmetrics.scopus.com/index.php/Faqs
https://graphql.org/
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1109/SCC.2016.17
https://doi.org/10.1145/3338906.3340445
https://doi.org/10.1109/ACCESS.2021.3066443
https://doi.org/10.1007/978-3-319-69035-3_23


202:34 A. Quiña-Mera et al.

[19] M. Genero, A. Cruz-Lemus, and M. Piattini. 2014. Métodos de Investigación en ingeniería del Software. Ra-Ma, Bogota.

[20] Google. 2021. FAQ about Trends. Retrieved from https://support.google.com/trends/answer/4365533?hl=en&ref_

topic=6248052.

[21] C. Guevara-Vega, B. Bernardez, A. Duran, A. Quina-Mera, M. Cruz, and A. Ruiz-Cortes. 2021. Empirical strategies in

software engineering research: A literature survey. In Proceedings of the 2nd International Conference on Information

Systems and Software Technologies (ICI2ST’21). IEEE, New York, NY, 120–127. https://doi.org/10.1109/ICI2ST51859.2021.

00025

[22] H. He and A. K. Singh. 2008. Graphs-at-a-time: Query language and access methods for graph databases. In Proceedings

of the ACM SIGMOD International Conference on Management of Data (SIGMOD’08). ACM, 405–417. https://doi.org/

10.1145/1376616.1376660

[23] T. Hunter II. 2017. Advanced Microservices: A Hands-on Approach to Microservice Infrastructure and Tooling. Apress,

193 pages. https://doi.org/10.1007/978-1-4842-2887-6

[24] R. Kipling. 1902. Just So Stories. MacMillan, London.

[25] B. Kitchenham and P. Brereton. 2013. A systematic review of systematic review process research in software engi-

neering. Info. Softw. Technol. 55, 12 (2013), 2049–2075. https://doi.org/10.1016/j.infsof.2013.07.010

[26] M. Kuhrmann, D. M. Fernández, and M. Daneva. 2017. On the pragmatic design of literature studies in software

engineering: An experience-based guideline. Empir. Softw. Eng. 22, 6 (2017), 2852–2891. https://doi.org/10.1007/s10664-

016-9492-y

[27] M. A. Laguna and Y. Crespo. 2013. A systematic mapping study on software product line evolution: From legacy

system reengineering to product line refactoring. Sci. Comput. Program. 78, 8 (2013), 1010–1034. https://doi.org/10.

1016/j.scico.2012.05.003

[28] B. Lee. 2018. Introducing the GraphQL Foundation—Lee Byron—Medium. Retrieved from https://medium.com/@leeb/

introducing-the-graphql-foundation-3235d8186d6d.

[29] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan. 2019. A dataflow-driven approach to identifying

microservices from monolithic applications. J. Syst. Softw. 157 (2019), 16. https://doi.org/10.1016/j.jss.2019.07.008

[30] C. Y. Lin, T. Abdel-Hamid, and J. S. Sherif. 1997. Software-engineering process simulation model (SEPS). J. Syst. Softw.

38, 3 (1997), 263–277. https://doi.org/10.1016/S0164-1212(96)00156-2

[31] L. Maloney. 2020. How to Calculate Percent Variation. Retrieved from https://sciencing.com/calculate-percent-

variation-7538781.html.

[32] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. 2022. Online testing of RESTful APIs: Promises and challenges. In

Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE’22). ACM, In press.

[33] Peter M. Mell and Timothy Grance. 2011. The NIST Definition of Cloud Computing. Technical Report. National Institute

of Standards and Technology, Gaithersburg.

[34] S. Mukhiya, F. Rabbi, V. Pun, A. Rutle, and Y. Lamo. 2019. A graphql approach to healthcare information exchange

with hl7 fhir. In Proceedings of the 9th International Conference on Current and Future Trends of Information and Com-

munication Technologies in Healthcare (ICTH’19), Vol. 160. Elsevier B.V., Coimbra, 338–345. https://doi.org/10.1016/j.

procs.2019.11.082

[35] C. Müller, A. M. Gutierrez, O. Martin-Diaz, M. Resinas, P. Fernandez, and A. Ruiz-Cortes. 2014. Towards a formal

specification of slas with compensations. In Proceedings of the OTM Confederated International Conferences. Springer,

Berlin, 295–312. https://doi.org/10.1007/978-3-662-45563-0_17

[36] O. Emily and The Linux Foundation. 2018. The Linux Foundation Announces Intent to Form New Foundation to

Support GraphQL—The Linux Foundation. Retrieved from https://www.linuxfoundation.org/press-release/intent_to_

form_graphql.

[37] Group of Italian Professors of Computer Engineering, Group of Italian Professors of Computer Science, and Spanish

Computer-Science Society. 2018. The GII-GRIN-SCIE (GGS) Conference Rating. Retrieved from http://scie.lcc.uma.es/.

[38] A. Paez. 2017. Grey literature: An important resource in systematic reviews. J. Evid.-based Med. 10, May (2017), 1–8.

https://doi.org/10.1111/jebm.12265

[39] J. A. Parejo, P. Fernandez, A. Ruiz-Cortes, and J. M. García. 2008. Slaws: Towards a conceptual architecture for

sla enforcement. In Proceedings of the IEEE Congress on Services. IEEE, 322–328. https://doi.org/10.1109/SERVICES-

1.2008.80

[40] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. 2008. Systematic mapping studies in software engineering. In

Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering (EASE’08). BCS

Learning and Development, 11. https://doi.org/10.14236/ewic/ease2008.8

[41] K. Petersen and C. Gencel. 2013. Worldviews, research methods, and their relationship to validity in empirical software

engineering research. In Proceedings of the Joint Conference of the 23rd International Workshop on Software Measure-

ment and the 8th International Conference on Software Process and Product Measurement (IWSM-MENSURA’13). IEEE,

81–89. https://doi.org/10.1109/IWSM-Mensura.2013.22

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.

https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052
https://doi.org/10.1109/ICI2ST51859.2021.00025
https://doi.org/10.1145/1376616.1376660
https://doi.org/10.1007/978-1-4842-2887-6
https://doi.org/10.1016/j.infsof.2013.07.010
https://doi.org/10.1007/s10664-016-9492-y
https://doi.org/10.1016/j.scico.2012.05.003
https://medium.com/@leeb/introducing-the-graphql-foundation-3235d8186d6d
https://doi.org/10.1016/j.jss.2019.07.008
https://doi.org/10.1016/S0164-1212(96)00156-2
https://sciencing.com/calculate-percent-variation-7538781.html
https://doi.org/10.1016/j.procs.2019.11.082
https://doi.org/10.1007/978-3-662-45563-0_17
https://www.linuxfoundation.org/press-release/intent_to_form_graphql
http://scie.lcc.uma.es/
https://doi.org/10.1111/jebm.12265
https://doi.org/10.1109/SERVICES-1.2008.80
https://doi.org/10.14236/ewic/ease2008.8
https://doi.org/10.1109/IWSM-Mensura.2013.22


GraphQL: A Systematic Mapping Study 202:35

[42] K. Petersen, S. Vakkalanka, and L. Kuzniarz. 2015. Guidelines for conducting systematic mapping studies in software

engineering: An update. Info. Softw. Technol. 64 (2015), 1–18. https://doi.org/10.1016/j.infsof.2015.03.007

[43] Prisma. 2017. Execution | GraphQL. Retrieved from https://graphql.org/learn/execution/.

[44] Prisma. 2017. GraphQL vs REST—A comparison. Retrieved from https://www.howtographql.com/basics/1-graphql-is-

the-better-rest/.

[45] A. Quiña-Mera, P. Fernandez, J. M. García, and A. Ruiz-Cortés. 2021. GraphQL: A Systematic Mapping Study—

Supplemental Material. Retrieved from https://zenodo.org/record/6036802#.YyMq-3bMKUk. https://doi.org/10.5281/

zenodo.5155990

[46] M. Raza, F. Khadeer, O. Khadeer, and M. Zhao. 2019. A comparative analysis of machine learning models for quality

pillar assessment of SaaS services by multi-class text classification of users’ reviews. Future Gen. Comput. Syst. 101

(2019), 341–371. https://doi.org/10.1016/j.future.2019.06.022

[47] M. Resinas, P. Fernandez, and R. Corchuelo. 2010. Automatic service agreement negotiators in open commerce envi-

ronments. Int. J. Electr. Comm. 14, 3 (2010), 93–128. https://doi.org/10.2753/JEC1086-4415140305

[48] SCImago. 2012. SJR—About Us. Retrieved from https://www.scimagojr.com/aboutus.php.

[49] SCImago. 2019. SJR—Help. Retrieved from https://www.scimagojr.com/help.php.

[50] P. Seifer, J. Härtel, M. Leinberger, R. Lämmel, and S. Staab. 2019. Empirical study on the usage of graph query languages

in open source Java projects. In Proceedings of the 12th ACM SIGPLAN International Conference on Software Language

Engineering (SLE’19). ACM, 152–166. https://doi.org/10.1145/3357766.3359541

[51] Facebook Open Source. 2015. Schemas and Types | GraphQL. Retrieved from https://graphql.org/learn/schema/.

[52] The GraphQL Foundation. 2018. GraphQL. Retrieved from https://graphql.github.io/graphql-spec/June2018/.

[53] J. Thönes. 2015. Microservices. IEEE Software 32 (2015), 4. https://doi.org/10.1109/MS.2015.11

[54] W. T. Tsai, X. Y. Bai, and Y. Huang. 2014. Software-as-a-service (SaaS): Perspectives and challenges. Sci. China Info.

Sci. 57, 5 (2014), 1–15. https://doi.org/10.1007/s11432-013-5050-z

[55] M. Vogel, S. Weber, and C. Zirpins. 2018. Experiences on migrating RESTful web services to GraphQL. In Proceedings

of the International Conference on Service-Oriented Computing (ICSOC’17). Springer Verlag, 283–295. https://doi.org/

10.1007/978-3-319-91764-1_23

[56] S. Wang, I. Keivanloo, and Y. Zou. 2014. How do developers react to RESTful API evolution? Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 8831 (2014),

245–259. https://doi.org/10.1007/978-3-662-45391-9_17

[57] R. Wieringa, N. Maiden, N. Mead, and C. Rolland. 2006. Requirements engineering paper classification and evaluation

criteria: A proposal and a discussion. Require. Eng. 11, 1 (2006), 102–107. https://doi.org/10.1007/s00766-005-0021-6

[58] C. Wohlin. 2014. Guidelines for snowballing in systematic literature studies and a replication in software engineering.

In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering. ACM, London,

10. https://doi.org/10.1145/2601248.2601268

[59] C. Wohlin, P. Runeson, P. A. da Mota Silveira Neto, E. Engström, I. do Carmo Machado, and E. S. de Almeida. 2013.

On the reliability of mapping studies in software engineering. J. Syst. Softw. 86, 10 (2013), 2594–2610. https://doi.org/

10.1016/j.jss.2013.04.076

[60] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. 2012. Experimentation in Software Engineering

(1st ed.). Springer-Verlag, Berlin. XXIV, 236 pages. https://doi.org/10.1007/978-3-642-29044-2

[61] O. Zimmermann. 2017. Microservices tenets: Agile approach to service development and deployment. Comput. Sci.

Res. Dev. 32, 3–4 (2017), 301–310. https://doi.org/10.1007/s00450-016-0337-0

Received 3 August 2021; revised 19 August 2022; accepted 23 August 2022

ACM Computing Surveys, Vol. 55, No. 10, Article 202. Publication date: February 2023.

https://doi.org/10.1016/j.infsof.2015.03.007
https://graphql.org/learn/execution/
https://www.howtographql.com/basics/1-graphql-is-the-better-rest/
https://zenodo.org/record/6036802#.YyMq-3bMKUk
https://doi.org/10.5281/zenodo.5155990
https://doi.org/10.1016/j.future.2019.06.022
https://doi.org/10.2753/JEC1086-4415140305
https://www.scimagojr.com/aboutus.php
https://www.scimagojr.com/help.php
https://doi.org/10.1145/3357766.3359541
https://graphql.org/learn/schema/
https://graphql.github.io/graphql-spec/June2018/
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.1007/s11432-013-5050-z
https://doi.org/10.1007/978-3-319-91764-1_23
https://doi.org/10.1007/978-3-662-45391-9_17
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1016/j.jss.2013.04.076
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/s00450-016-0337-0

