skip to main content
10.1145/3562939.3565621acmconferencesArticle/Chapter ViewAbstractPublication PagesvrstConference Proceedingsconference-collections
research-article

Effect of Stereo Deficiencies on Virtual Distal Pointing

Published:29 November 2022Publication History

ABSTRACT

Previous work has shown that the mismatch between disparity and optical focus cues, i.e., the vergence and accommodation conflict (VAC), affects virtual hand selection in immersive systems. To investigate if the VAC also affects distal pointing with ray casting, we ran a user study with an ISO 9241:411 multidirectional selection task where participants selected 3D targets with three different VAC conditions, no VAC, i.e., targets placed roughly at 75 cm, which matches the focal plane of the VR headset, constant VAC, i.e., at 400 cm from the user, and varying VAC, where the depth distance of targets changed between 75 cm and 400 cm. According to our results, the varying VAC condition requires the most time and decreases the throughput performance of the participants. It also takes longer for users to select targets in the constant VAC condition than without the VAC. Our results show that in distal pointing placing objects at different depth planes has detrimental effect on the user performance.

References

  1. Marc Baloup, Thomas Pietrzak, and Géry Casiez. 2019. RayCursor: A 3D Pointing Facilitation Technique Based on Raycasting. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300331Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Mayra Donaji Barrera Machuca and Wolfgang Stuerzlinger. 2018. Do Stereo Display Deficiencies Affect 3D Pointing?. In Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI EA ’18). Association for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3170427.3188540Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Mayra Donaji Barrera Machuca and Wolfgang Stuerzlinger. 2019. The Effect of Stereo Display Deficiencies on Virtual Hand Pointing. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3290605.3300437Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Anil Ufuk Batmaz, Mayra Donaji Barrera Machuca, Junwei Sun, and Wolfgang Stuerzlinger. 2022. The Effect of the Vergence-Accommodation Conflict on Virtual Hand Pointing in Immersive Displays. In CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 633, 15 pages.Google ScholarGoogle Scholar
  5. Anil Ufuk Batmaz, Mayra Donaji Barrera Machuca, Duc Minh Pham, and Wolfgang Stuerzlinger. 2019. Do Head-Mounted Display Stereo Deficiencies Affect 3D Pointing Tasks in AR and VR?. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 585–592. https://doi.org/10.1109/VR.2019.8797975Google ScholarGoogle ScholarCross RefCross Ref
  6. Anil Ufuk Batmaz and Wolfgang Stuerzlinger. 2021. The Effect of Pitch in Auditory Error Feedback for Fitts’ Tasks in Virtual Reality Training Systems. In Conference on Virtual Reality and 3D User Interfaces(VR ’21). 85–94. https://doi.org/10.1109/VR50410.2021.00029Google ScholarGoogle ScholarCross RefCross Ref
  7. Doug Bowman, Chadwick Wingrave, Joshua Campbell, and Vinh Q Ly. 2001. Using pinch gloves (tm) for both natural and abstract interaction techniques in virtual environments.Google ScholarGoogle Scholar
  8. Doug A. Bowman and Larry F. Hodges. 1997. An Evaluation of Techniques for Grabbing and Manipulating Remote Objects in Immersive Virtual Environments. In Proceedings of the 1997 Symposium on Interactive 3D Graphics (Providence, Rhode Island, USA) (I3D ’97). Association for Computing Machinery, New York, NY, USA, 35–ff.https://doi.org/10.1145/253284.253301Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. Yuan Chen, Junwei Sun, Qiang Xu, Edward Lank, Pourang Irani, and Wei Li. 2021. Global Scene Filtering, Exploration, and Pointing in Occluded Virtual Space. In Human-Computer Interaction – INTERACT 2021 - 18th IFIP TC 13 International Conference, Proceedings(Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)), Carmelo Ardito, Rosa Lanzilotti, Alessio Malizia, Alessio Malizia, Helen Petrie, Antonio Piccinno, Giuseppe Desolda, and Kori Inkpen (Eds.). Springer Science and Business Media Deutschland GmbH, Germany, 156–176. https://doi.org/10.1007/978-3-030-85607-6_11Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. J. Clement. 2022. Virtual reality (VR) gaming revenue worldwide from 2017 to 2024.Google ScholarGoogle Scholar
  11. François Daniel and Zoï Kapoula. 2019. Induced vergence-accommodation conflict reduces cognitive performance in the Stroop test. Scientific Reports 9, 1 (2019), 1–13. https://doi.org/10.1038/s41598-018-37778-yGoogle ScholarGoogle ScholarCross RefCross Ref
  12. Pham Duc-Minh and Wolfgang Stuerzlinger. 2019. Is the Pen Mightier than the Controller? A Comparison of Input Devices for Selection in Virtual and Augmented Reality. In 25th Symposium on Virtual Reality Software and Technology(VRST ’19). ACM, Article 35, 11 pages. https://doi.org/10.1145/3359996.3364264Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Frank H. Durgin, Dennis R. Proffitt, Thomas J. Olson, and Karen S. Reinke. 1995. Comparing depth from motion with depth from binocular disparity.Journal of Experimental Psychology: Human Perception and Performance 21, 3(1995), 679–699. https://doi.org/10.1037/0096-1523.21.3.679Google ScholarGoogle ScholarCross RefCross Ref
  14. G. N. Dutton, A. Saaed, B. Fahad, R. Fraser, G. McDaid, J. McDade, A. Mackintosh, T. Rane, and K. Spowart. 2004. Association of binocular lower visual field impairment, impaired simultaneous perception, disordered visually guided motion and inaccurate saccades in children with cerebral visual dysfunction a retrospective observational study. Eye 18, 1 (jan 2004), 27–34. https://doi.org/10.1038/sj.eye.6700541Google ScholarGoogle ScholarCross RefCross Ref
  15. Paul M Fitts. 1954. The information capacity of the human motor system in controlling the amplitude of movement.Journal of experimental psychology 47, 6 (1954), 381.Google ScholarGoogle Scholar
  16. Tetsuya Fukushima, Masahito Torii, Kazuhiko Ukai, James S. Wolffsohn, and Bernard Gilmartin. 2009. The relationship between CA/C ratio and individual differences in dynamic accommodative responses while viewing stereoscopic images. Journal of Vision 9, 13 (12 2009), 21–21. https://doi.org/10.1167/9.13.21 arXiv:https://arvojournals.org/arvo/content_public/journal/jov/933531/jov-9-13-21.pdfGoogle ScholarGoogle ScholarCross RefCross Ref
  17. Joseph L. Gabbard, Divya Gupta Mehra, and J. Edward Swan. 2019. Effects of AR Display Context Switching and Focal Distance Switching on Human Performance. IEEE Transactions on Visualization and Computer Graphics 25, 6(2019), 2228–2241. https://doi.org/10.1109/TVCG.2018.2832633Google ScholarGoogle ScholarCross RefCross Ref
  18. Evan D. Graham and Christine L. MacKenzie. 1996. Physical versus virtual pointing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’96). ACM Press, New York, New York, USA, 292–299. https://doi.org/10.1145/238386.238532Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Tovi Grossman and Ravin Balakrishnan. 2005. The bubble cursor: enhancing target acquisition by dynamic resizing of the cursor’s activation area. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM, 281–290.Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. Joseph F Hair Jr, William C Black, Barry J Babin, and Rolph E. Anderson. 2014. Multivariate data analysis. Pearson Education Limited.Google ScholarGoogle Scholar
  21. David M. Hoffman, Ahna R. Girshick, Kurt Akeley, and Martin S. Banks. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. Journal of Vision 8, 3 (mar 2008), 33.1–30. https://doi.org/10.1167/8.3.33Google ScholarGoogle ScholarCross RefCross Ref
  22. Hyungki Hong and Seok Hyon Kang. 2015. Measurement of the lens accommodation in viewing stereoscopic displays. Journal of the Society for Information Display 23, 1 (jan 2015), 19–26. https://doi.org/10.1002/jsid.303Google ScholarGoogle ScholarCross RefCross Ref
  23. Anke Huckauf, Mario H. Urbina, Irina Böckelmann, Lutz Schega, Rüdiger Mecke, Jens Grubert, Fabian Doil, and Johannes Tümler. 2010. Perceptual issues in optical-see-through displays. Proceedings - APGV 2010: Symposium on Applied Perception in Graphics and Visualization 1, 212 (2010), 41–48. https://doi.org/10.1145/1836248.1836255Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. J. Iskander, Mohammed Hossny, and S. Nahavandi. 2019. Using biomechanics to investigate the effect of VR on eye vergence system. Applied Ergonomics 81, August 2018 (2019), 102883. https://doi.org/10.1016/j.apergo.2019.102883Google ScholarGoogle ScholarCross RefCross Ref
  25. ISO. 2015. ISO 9241-400:2015 Ergonomics of human-system interaction - Part 411: Evaluation methods for the design of physical input devices.Google ScholarGoogle Scholar
  26. Izabelle Janzen, Vasanth K. Rajendran, and Kellogg S. Booth. 2016. Modeling the Impact of Depth on Pointing Performance. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California, USA) (CHI ’16). ACM, New York, NY, USA, 188–199. https://doi.org/10.1145/2858036.2858244Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Nicholas Katzakis, Kiyoshi Kiyokawa, and Haruo Takemura. 2013. Plane-Casting: 3D Cursor Control With A SmartPhone. In Proceedings of the 11th Asia Pacific Conference on Computer Human Interaction (Bangalore, India) (APCHI ’13). Association for Computing Machinery, New York, NY, USA, 199–200. https://doi.org/10.1145/2525194.2525275Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. N. Katzakis, R. J. Teather, K. Kiyokawa, and H. Takemura. 2015. INSPECT: Extending plane-casting for 6-DOF control. In 2015 IEEE Symposium on 3D User Interfaces (3DUI). IEEE Computer Society, Los Alamitos, CA, USA, 165–166. https://doi.org/10.1109/3DUI.2015.7131752Google ScholarGoogle ScholarCross RefCross Ref
  29. Joohwan Kim, David Kane, and Martin S. Banks. 2014. The rate of change of vergence-accommodation conflict affects visual discomfort. Vision Research 105(2014), 159–165. https://doi.org/10.1016/j.visres.2014.10.021 arxiv:NIHMS150003Google ScholarGoogle ScholarCross RefCross Ref
  30. Regis Kopper, Doug A Bowman, Mara G Silva, and Ryan P McMahan. 2010. A human motor behavior model for distal pointing tasks. International journal of human-computer studies 68, 10 (2010), 603–615.Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Gregory Kramida. 2016. Resolving the vergence-accommodation conflict in head-mounted displays. IEEE Transactions on Visualization and Computer Graphics 22, 7(2016), 1912–1931. https://doi.org/10.1109/TVCG.2015.2473855 arxiv:arXiv:1011.1669v3Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. Chiuhsiang J. Lin and Bereket H. Woldegiorgis. 2017. Egocentric distance perception and performance of direct pointing in stereoscopic displays. Applied Ergonomics 64(2017), 66 – 74. https://doi.org/10.1016/j.apergo.2017.05.007Google ScholarGoogle ScholarCross RefCross Ref
  33. I Scott MacKenzie. 2013. Human-computer interaction: An empirical research perspective. Morgan Kaufmann.Google ScholarGoogle Scholar
  34. I. Scott MacKenzie and Poika Isokoski. 2008. Fitts’ Throughput and the Speed-Accuracy Tradeoff. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Florence, Italy) (CHI ’08). Association for Computing Machinery, New York, NY, USA, 1633–1636. https://doi.org/10.1145/1357054.1357308Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. I Scott MacKenzie and Aleks Oniszczak. 1998. A comparison of three selection techniques for touchpads. In Proceedings of the SIGCHI conference on Human factors in computing systems. ACM Press/Addison-Wesley Publishing Co., 336–343.Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. Paul Mallery and Darren George. 2003. SPSS for Windows step by step: a simple guide and reference. Pearson.Google ScholarGoogle Scholar
  37. Meta. 2022. Oculus Quest 2.Google ScholarGoogle Scholar
  38. Moaaz Hudhud Mughrabi, Aunnoy K Mutasim, Wolfgang Stuerzlinger, and Anil Ufuk Batmaz. 2022. My Eyes Hurt: Effects of Jitter in 3D Gaze Tracking. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). 310–315. https://doi.org/10.1109/VRW55335.2022.00070Google ScholarGoogle ScholarCross RefCross Ref
  39. Pimax. 2019. Pimax.Google ScholarGoogle Scholar
  40. R. William Soukoreff and I. Scott MacKenzie. 2004. Towards a Standard for Pointing Device Evaluation, Perspectives on 27 Years of Fitts’ Law Research in HCI. Int. J. Hum.-Comput. Stud. 61, 6 (Dec. 2004), 751–789.Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Helmut Strasser and Karl-Werner Müller. 1999. Favorable movements of the hand-arm system in the horizontal plane assessed by electromyographic investigations and subjective rating. International Journal of Industrial Ergonomics 23, 4(1999), 339–347. https://doi.org/10.1016/S0169-8141(98)00050-XGoogle ScholarGoogle ScholarCross RefCross Ref
  42. Junwei Sun, Wolfgang Stuerzlinger, and Dmitri Shuralyov. 2016. SHIFT-Sliding and DEPTH-POP for 3D Positioning. In Proceedings of the 2016 Symposium on Spatial User Interaction (Tokyo, Japan) (SUI ’16). Association for Computing Machinery, New York, NY, USA, 69–78. https://doi.org/10.1145/2983310.2985748Google ScholarGoogle ScholarDigital LibraryDigital Library
  43. Robert J Teather, Andriy Pavlovych, Wolfgang Stuerzlinger, and I Scott MacKenzie. 2009. Effects of tracking technology, latency, and spatial jitter on object movement. In 3D User Interfaces, 2009. 3DUI 2009. IEEE Symposium on. IEEE, 43–50.Google ScholarGoogle Scholar
  44. R. J. Teather and W. Stuerzlinger. 2011. Pointing at 3D targets in a stereo head-tracked virtual environment. In 2011 IEEE Symposium on 3D User Interfaces (3DUI). 87–94.Google ScholarGoogle Scholar
  45. Robert J Teather and Wolfgang Stuerzlinger. 2014. Visual aids in 3D point selection experiments. In Proceedings of the 2nd ACM symposium on Spatial user interaction. ACM, 127–136.Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Varjo. 2021. VR-3.Google ScholarGoogle Scholar
  47. Cyril Vienne, Laurent Sorin, Laurent Blondé, Quan Huynh-Thu, and Pascal Mamassian. 2014. Effect of the accommodation-vergence conflict on vergence eye movements. Vision Research 100(2014), 124–133. https://doi.org/10.1016/j.visres.2014.04.017Google ScholarGoogle ScholarCross RefCross Ref
  48. Jacob O. Wobbrock, Leah Findlater, Darren Gergle, and James J. Higgins. 2011. The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only ANOVA Procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Vancouver, BC, Canada) (CHI ’11). ACM, New York, NY, USA, 143–146. https://doi.org/10.1145/1978942.1978963Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Effect of Stereo Deficiencies on Virtual Distal Pointing

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in
    • Published in

      cover image ACM Conferences
      VRST '22: Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology
      November 2022
      466 pages
      ISBN:9781450398893
      DOI:10.1145/3562939

      Copyright © 2022 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 29 November 2022

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed limited

      Acceptance Rates

      Overall Acceptance Rate66of254submissions,26%

      Upcoming Conference

      VRST '24

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format .

    View HTML Format