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Abstract
Complex controls are increasingly common in power systems. Re-
inforcement learning (RL) has emerged as a strong candidate for
implementing various controllers. One common use of RL in this
context is for prosumer pricing aggregations, where prosumers
consist of buildings with both solar generation and energy stor-
age. Specifically, supply and demand data serve as the observa-
tion space for many microgrid controllers acting based on a pol-
icy passed from a central RL agent. Each controller outputs an ac-
tion space consisting of hourly “buy” and “sell” prices for energy
throughout the day; in turn, each prosumer can choose whether
to transact with the RL agent or the utility. The RL agent, who is
learning online, is rewarded through its ability to generate a profit.

We ask: what happens when some of the microgrid controllers
are compromised by a malicious entity? We demonstrate a novel
attack in RL and a simple defense against the attack. Our attack
perturbs each trajectory to reverse the direction of the estimated
gradient. We demonstrate that if data from a small fraction of mi-
crogrid controllers is adversarially perturbed, the learning of the
RL agent can be significantly slowed. With larger perturbations,
the RL aggregator can be manipulated to learn a catastrophic pric-
ing policy that causes the RL agent to operate at a loss. Other envi-
ronmental characteristics are worsened too: prosumers face higher
energy costs, use their batteries less, and suffer from higher peak
demand when the pricing aggregator is adversarially poisoned.

We address this vulnerability with a “defense” module; i.e., a
“robustification” of RL algorithms against this attack. Our defense
identifies the trajectories with the largest influence on the gradient
and removes them from the training data. It is computationally
light and reasonable to include in any RL algorithm.
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1 Introduction
Artificial Intelligence (AI) heralds great benefits to power system
operation. In the future, AI-based controls could manage the use
of passive appliances [3, 17], orchestrate demand response [2], and
optimize power flow throughout networks [4, 5]. In the context of
energy grids, local grid networks (i.e., microgrids) enable refined
control at the cost of increased complexity, necessitating adoption
of complex controls at scale.

At the same time, energy grids are known to be lucrative targets
for cyberattacks (e.g., [8]). Our work investigates the robustness of
an AI-based microgrid controller to malicious actors. We present a
novel attack that enables a few compromised microgrid controllers
to adversely affect the behavior of connected controllers by poison-
ing the data on which it is trained. This expands on a recent explo-
sion of interest in adversarial attacks [9, 11]. We pair this finding
with a gradient-based defense that eliminates the threat of this at-
tack.

More concretely, we examine a setting in which a network of
microgrid controllers collect supply and demand data that are con-
tinually aggregated by a central agent. The agent uses online rein-
forcement learning (RL) to optimize its profits. In our attack, a few
microgrid controllers are compromised by a malicious adversary.
The adversary applies a perturbation to the collected data, severely
impacting the provider and the entire network of controllers. The
provider is made to operate at a loss, and all prosumers are made
to pay higher energy costs, use their batteries less, and increase
peak demand.

Our work is set against a backdrop of developments in energy
grid control that hold both promise and peril: RL-based controllers
allow for sophisticated control in unprecedented granularity. Yet,
we must be careful to minimize risk enabled by the opaque na-
ture of deep learning. Our attack stands out in its subtlety and its
scope. Other forms of large-scale interference such as blackouts
and line disruptions are, by definition, easily detectable and local.
Yet our attack causes harm by interfering with the agent’s learn-
ing, and may not be detected until significant financial damage has
been incurred. Furthermore, by interfering with the central agent’s
learning, our methods can damage systems that are physically dis-
connected from the energy grid under attack.
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2 Background: RL for prosumer energy pricing
RL has been applied to a number of demand response situations
in prosumer microgrids; most work centers on agents that directly
schedule resources [14, 15] or control appliances [10, 18]. Recent
works have used an RL controller as a price setter in a market: RL
has been used to estimate dynamic prices in a multi agent environ-
ment of demand response assets in [7], as well as [1].

Demand response, an incentivemechanism geared towardsmov-
ing consumption, is a no-material solution to variable wind and
solar generation and is thus seen as an important technique in
the energy transition. It has been demonstrated that learning lo-
cal price controls is an effective demand response mechanism due
to its generalizability and optimal local battery resource utilization
[12, 13].

The literature on adversarial attacks for RL in demand response
focuses on responding to prices [16] rather than setting them. To
our knowledge, there are no works on adversarial attacks on dy-
namic price setting for demand response.

3 Techniques
3.1 Threat model
In our setting, 𝑁 controllers continuously collect data to be ag-
gregated by a centralized agent. Learning takes place over multi-
ple iterations; in each iteration, each controller collects a trajec-
tory 𝜏 B (𝑜𝑖 , 𝑎𝑖 , 𝑟𝑖 )𝑖 collected according to the agent policy 𝜋𝜃 .
The agent’s policy 𝜋𝜃 is described by a neural network. Nodes are
required to feed observations through 𝜋𝜃 so as to collect policy-
specified actions (pricing schemes), so we assume that the network
parameters 𝜃 and architecture are shared with the controllers.

The attacker’s power is determined by a fraction of corrupted
controllers 𝜀 ∈ (0, 1), and a perturbation bound 𝜌 > 0, as follows:
An attacker controls 𝜀 · 𝑁 of controllers. The attacker perturbs the
trajectories collected by each compromised controller, causing it to
report back a trajectory 𝜏 instead of the collected trajectory 𝜏 . Cru-
cially, these perturbations are of small norm, that is, ∥𝜏 − 𝜏 ∥∞ ≤ 𝜌 ,
for some perturbation bound 𝜌 > 0. Note that our attacker adheres
to the suggested policy 𝜋𝜃 , but lies about the result to the agent.

We remark that in our setting, the attacker may only perturb
the actions of each trajectory. Observations and rewards remain
unperturbed, because such perturbations would be expensive or
easily noticed.This is in contrast to previous work in RL poisoning
in which only rewards are poisoned [11].

3.2 The attack
At a high level, our attack aims to perturb each trajectory to re-
verse the direction of the estimated gradient ∇𝜃 𝑓 (𝜏𝑝 ). Let 𝜃 be the
parameters of the agent’s policy, 𝜏𝑃 be the unperturbed set of com-
promised trajectories (the trajectories collected by compromised
controllers), 𝜏𝑃 be the set of perturbed adversarial trajectories (re-
ported back to the agent), and 𝜏𝐻 be the set of honest trajectories
(unaffected by the adversary). Our adversary minimizes the cor-
relation of the gradient post-perturbation with the honest one by

solving the following constrained optimization problem:
min
𝜏𝑃

⟨∇𝜃 𝑓𝜃 (𝜏𝑃 ) ,∇𝜃 (𝑓𝜃 (𝜏𝑃 ) + 𝑓𝜃 (𝜏𝐻 ))⟩ (1)

such that | |𝜏𝑃 − 𝜏𝑃 | |∞ ≤ 𝜌.

Since compromised controllers report 𝜏𝑃 instead of 𝜏𝑃 , the agent
will take gradient steps according to ∇𝜃 (𝑓𝜃 (𝜏𝑃 ) + 𝑓𝜃 (𝜏𝐻 )). There-
fore, choosing 𝜏𝑃 to minimize Equation (1) should maximally mis-
lead the gradient towards a sub-optimal policy. Equation (1) is
optimized by the adversary using the Fast Gradient Sign Method
(FGSM) [6]. Interestingly, we find that our adversaries can obtain
nearly identical results by solving Equation (1) without the 𝜏𝐻
term, meaning that the adversary does not require any informa-
tion about the honest (uncompromised) controllers.

The targeted attack. With a small tweak to our optimization ob-
jective, we can attempt to force the RL agent to learn a policy based
on an arbitrary reward function of our choosing that may or may
not be related to the RL agent’s reward. Let 𝜏 ′ := (𝑜𝑖 , 𝑎𝑖 , 𝑟𝑖 )𝑖 , the set
of all collected trajectories with rewards relabeled with arbitrary
reward 𝑟 . Then we formulate our new constrained optimization
problem as:

max
𝜏𝑃

〈
∇𝜃 𝑓𝜃 (𝜏𝑃 ) ,∇𝜃 𝑓𝜃

(
𝜏 ′
)〉

(2)

such that | |𝜏𝑃 − 𝜏𝑃 | |∞ ≤ 𝜌.

By maximizing the correlation between ∇𝜃 𝑓𝜃 (𝜏𝑃 ) and ∇𝜃 𝑓𝜃 (𝜏 ′),
we can maximally mislead the gradient towards a policy that max-
imizes the adversary’s reward function instead of the true reward.

3.3 The defense
We propose a defense to protect an online deep RL agent from
the attack described in Section 3.2. Our defense works by identi-
fying and removing the trajectories which have the largest influ-
ence on the gradient from the training data. Intuitively, this de-
fense works because honest trajectories are not expected to have
out-sized gradients. Note that the poisoned trajectories are not
easily identifiable at first glance;1 while the adversarial perturba-
tions significantly influence the gradient estimate, the perturba-
tions themselves are small. More formally, if the RL agent sus-
pects that some fraction 𝜀 of the microgrids are adversarially con-
trolled, then, when estimating the gradient ∇𝜃 𝑓 (𝜃 ), it ignores the
𝜀-fraction of trajectories 𝜏 with largest | |∇𝜃 𝑓𝜃 (𝜏) | |2 in each train-
ing batch.

4 Experimental setup
4.1 The Price-Setting Microgrid Problem
Consider a setting of 100 microgrids. One RL agent sets the pol-
icy parameters 𝜃 of all 100 microgrid controllers, which transacts
locally within each microgrid. Each microgrid consists of 7 pro-
sumer office buildings. Every prosumer has a battery, solar panel
array, and baseline energy consumption; each wants to minimize
their energy cost. Prosumers see both grid-set hourly energy buy
and sell prices and localmicrogrid controller-set hourly energy buy
1Although one could imagine building a separate classifier to detect poisoned trajec-
tories, this (1) requires more infrastructure and engineering than our simple defense,
and (2) is still vulnerable if the adversary learns the classifier’s parameters and in-
cludes ”fooling the classifier” in the optimization objective.
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Figure 1: A. A description of the microgrid environment. In this figure, the brain is the RL agent, the black dot is the microgrid
controller, and the adversary attacks the 𝑎𝑡 that is sent back to the RL agent. B. Effect of the adversary on the agent’s learning.
Note that 𝜀 = 1% corresponds to only one adversarial microgrid. C. Effect of our defense in the presence of an adversary. D.
Characterization of prosumer costs in the baseline and adversarial scenarios. The prosumer consistently pays more in energy
when the adversary interferes.

and sell prices. Prosumers choose to transact with either the grid
or the RL aggregator at each hour. Prosumers also decide when to
discharge their battery according to both their demand and the en-
ergy prices. The microgrid controller accepts all transactions the
prosumers request of it. It does not produce or store energy, but
sells energy it has bought from prosumers producing energy in
a timestep to prosumers demanding energy in the same timestep.
The aggregator balances the net load by purchasing from or sell-
ing to the energy utility under which they sit, usually at a loss. As
the manager of the RL-aggregator, you see the grid’s buy and sell
prices, and wish to learn an automatic pricing strategy such that
you consistently turn a profit. See Figure 1.A for a graphical de-
piction of the environment. For a more precise description of the
convex optimizations governing prosumer battery behavior and
the reward function training the RL-aggregator, see [1].

For testing the viability of a targeted attack, we define an auxil-
iary adversary objective as the maximization of peak power over
the step period.

4.2 Adversarial microgrid poisoning “in the
wild”

We briefly present a hypothetical scenario as an example the ad-
versary in action.

Suppose that Eastern Gas & Electric (EG&E) is piloting a dy-
namic, local pricing program. To do this, EG&E instantiates an RL
agent to train across a sample of building clusters (i.e. microgrids
grouped locally). Unfortunately, there is an attacker who wishes
to disrupt the functioning of EG&E, and they intercept the outflow
of data from one of the local microgrid controllers. In one attack
strategy, the attacker wishes to minimize the extent to which the

outgoing prices are perturbed so as to escape detection. In another
attack strategy, the attacker considers high perturbations in order
to maximally disrupt profitability.

5 Results
Next, we present experimental results demonstrating the gradient-
reversing adversary’s harmful potential, as well as the efficacy of
the filtering defense.

All of our experiments used the MicrogridLearn environment
[1] consisting of 100 microgrids of 7 buildings each. The RL agent
is an Actor-Critic agent which updates every week over the course
of one year.

The attack. Figure 1.B shows our attacker can significantly hin-
der the RL agent’s learning by co-opting a single microgrid con-
troller. The maximal difference between successive actions taken
by the true policy is around 6, so the strongest attack in the single-
trajectory setting requires a relatively high perturbation budget
𝜌 = 10. However in Figure 1.C, our attack utilizes a smaller pertur-
bation budget of 𝜌 = 3with ten (𝜀 = 10%) compromised controllers
to achieve significant damage.

The defense. We find that our defense recovers the original per-
formance of the RL agent. In particular, the defense does not no-
ticeably affect training time, even when 𝜀 = 10% of trajectories are
removed. See Figure 1.C.

Characterizations of environmental response. We investigated sev-
eral ways in which the environment responded to adversarial at-
tack beyond the sheer profit: individual prosumer energy costs (the
sum of the building’s energy expenditures with the adversary and
without), battery utilization (the number of times batteries were
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Figure 2: Characterization of a targeted attack by the adver-
sary on a metric other than aggregator profit. Here we show
that the adversary is able to manipulate RL agent’s policy
such that peak power consistently exceeds 120% of the grid’s
capacity, raising risk of transformer blowout.

charged and discharged, and the total capacities) and peak power
draw. Under all measures, the environment performed worse with
an adversary, even those not directly targeted: the prosumers paid
on averagemore for the energy, the battery was used less when the
microgrid controller was adversarially perturbed, and there was
more peak demand. We present the prosumer prices in Figure 1.D
and omit the rest due to space constraints.

Targeted attack directions. Whenwe chose an adversarial reward
of increasing peak power demanded by prosumers on the micro-
grid, we demonstrated thatwith increasing adversarial strengthwe
were able to consistently exceed 120% of grid capacity. Exceeding
thresholds of power consumption on the grid drastically increases
risk of transformer power constraint violation. We plot the results
in Figure 2.

6 Future Work
Thegoal of ourwork is to call attention to the threatsmade possible
by adoption of RL in energy grid pricing. Towards this end, we
focused on a narrow yet concrete setting, leaving much room for
future work.

• Our proposed defense requires the RL agent to drop asmany
trajectories as could potentially be compromised. More so-
phisticated defenses could likely result in less dropped data
and more robust learning.

• It would be interesting to explore our attack in more envi-
ronments. Additionally, one could investigate the efficacy
of attacks under smaller settings of 𝜌 and 𝜀.
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