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ABSTRACT
Group recommender systems (GRS) are a specific case of recom-
mender systems (RS), where recommendations are constructed to
a group of users rather than an individual. GRS has diverse ap-
plication areas including trip planning, recommending movies to
watch together, or music in shared environments. However, due
to the lack of large datasets with group decision-making feedback
information, or even the group definitions, GRS approaches are
often evaluated offline w.r.t. individual user feedback and artificially
generated groups. These synthetic groups are usually constructed
w.r.t. pre-defined group size and inter-user similarity metric. While
numerous variants of synthetic group generation procedures were
utilized so far, its impact on the evaluation results was not suffi-
ciently discussed. In this paper, we address this research gap by
investigating the impact of various synthetic group generation pro-
cedures, namely the usage of different user similarity metrics and
the effect of group sizes. We consider them in the context of “outlier
vs. majority” groups, where a group of similar users is extendedwith
one or more diverse ones. Experimental results indicate a strong
impact of the selected similarity metric on both the typical charac-
teristics of selected outliers as well as the performance of individual
GRS algorithms. Moreover, we show that certain algorithms better
adapt to larger groups than others.
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1 INTRODUCTION
Group recommender systems (GRS) are a sub-domain of recom-
mender systems (RS) that focus on serving recommendations to
groups of users instead of individual users. Although the wide-
spread of GRS in production environments is presently limited,
there are numerous promising application areas where activities
(and thus, recommendations) are typically conducted in groups.
Some examples are traveling, dining, attending various cultural
events, or being exposed to some background music in shared envi-
ronments. Nevertheless, the focus on groups instead of individuals
adds one more layer of complexity to the recommendation process.
Although there are some proposed end-to-end solutions [16, 24],
typical GRS approaches are applied as post-processing on top of
the preferences of individual group members. One of the common
requirements on GRS functionality is to maintain some degree of
fairness among the group members, i.e., to ensure that all group
members are reasonably satisfied with the provided recommenda-
tions.

What makes this task more challenging (both conceptually and
in terms of implementation) is the heterogeneity of the group’s
composition. This could come in many different flavors—the group
may consist of divergent users having opposite preferences [12],
there may be several homogeneous subgroups that are different
from each other [20], various dominance or trust relations may
affect group dynamics [4, 5, 21] and so on. In such an environment,
it is not only difficult to provide reasonable algorithmic solutions,
but even to properly define the target metric(s) to optimize.

As an example, consider a group of 10 users whom we aim
to recommend a list of 10 items. Nine group members are highly
similar, and the same set of recommendations can satisfy them to an
equal degree. However, the last group member is an outlier whose
preferences diverge from the rest of the group, and none of the
previously mentioned items are satisfactory. Should the fair system
aim to a) satisfy each user to the same degree, i.e., dedicate half of the
recommending slots to the outlier user, b) dedicate a proportional
fraction of the recommending slots to the outlier user, or c) discard
his/her preferences for the sake of themajority.While the resolution
of this conceptual problem is out of scope of this paper, it may still
be interesting to highlight what concept of fairness is closest to
individual GRS algorithms.

Another obstacle lies in the lack of sufficiently large datasets that
would describe the groups’ decision processes, or at least the groups’
composition. Even though there are some datasets containing group
decisions [6, 7], they are of limited size and, consequently, do not
offer much variability in the groups’ composition. To overcome
this shortage, researchers often resort to the usage of datasets with
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individual user preferences1, on top of which the synthetic groups
are generated. A typical groups generation procedure is based on
some notion of user-user similarity and constructs a set of groups
of some prescribed properties. Some examples of such prescriptions
are: generate groups ofmutually similar [12, 13], mutually divergent
[12, 23] or random [12] users of certain sizes, groups with two or
more divergent subgroups [20] etc. As for the similarity metric,
different approaches utilized, e.g., users’ rating vectors [12, 17], or
more complex interaction graphs [20], their trained embeddings
[13], or their content-based features [15].

Note that the usability of synthetic groups stands and falls with
the ability of the generating procedure to provide an unbiased sam-
ple of the (latent) distribution of real-world groups for the GRS
use-case at hand. Nonetheless, as the distributions of real-world
groups are unknown for the vast majority of GRS tasks, different
group generation procedures are mostly utilized ad hoc, without
much discussion on their appropriateness. We believe this is a seri-
ous threat affecting the credibility of reported results throughout
the GRS research domain.

Unfortunately, to the best of our knowledge, the source data
needed to arbitrate the appropriateness of individual group genera-
tion procedures is currently missing, and we are not aware of any
study aiming to analyze this phenomenon. Instead, in this paper, we
merely aim on evaluating the level of impact that the groups gener-
ation procedures have on the groups’ properties and the results of
different GRS techniques. In particular, we focus on groups with
one majority subgroup and one or more outlier members. For such
a prescription, we test various types of user-user similarity metrics
as well as various sizes of groups. In the subsequent analysis, we
aim to answer the following research questions:

• RQ1: Does the choice of similarity metric affects some prop-
erties of generated groups, or their respective majority and
outlier sub-groups?

• RQ2: Does the particular choice of a similarity metric or group
size affect the performance of GRS algorithms? Does this change
if considered from the majority or outlier points of view?

2 RELATEDWORK
A lot of research has been done in terms of designing new GRS
algorithms. The early GRS algorithm proposals focused on the per-
item aggregation scores (i.e., not considering the context of other
recommended items). Some of the well-known examples are Least
Misery, Borda Count, Average,Multiplicative etc. [18]. More recently,
GRS-related research shifted towards the problem of list-level algo-
rithmic fairness w.r.t. individual group members (i.e., considering
the impact of the whole list of recommendations, not just single
items). Let us mention some examples. GreedyLM [23] is a greedy
algorithm that attempts to achieve fairness by iteratively selecting
items that maximize the linear combination of overall group sat-
isfaction and the satisfaction of the least satisfied group member
(w.r.t. the so-far constructed list). GFAR [12] algorithm aims to di-
rectly optimize a rank-sensitive fairness objective (i.e., maximizing
the probability of all users to find at least one relevant hit in the list
of recommendations). EPFuzzDA [17] aims to achieve a results-level

1Usually based on some individual recommendation scenario, such as MovieLens [9].

proportionality w.r.t. weights assigned to each user via a modified
mandates allocation algorithm.

There are several existing works that performed evaluations on
synthetically generated groups. In [12], authors considered similar,
divergent, and random groups of sizes between 2 and 8. Inspired
by [2, 10], they use the Pearson correlation coefficient to measure
similarity between the user’s ratings and build groups incrementally
by seeking userswhose similarity is above/below a certain threshold
for similar/divergent groups. In random groups, all users have a
uniform probability of being selected. The same approach was
also used in [3]. In [23], similar, diverse, and random groups were
also constructed, but cosine similarity was utilized, and missing
ratings were substituted by its estimation w.r.t. BPR MF [22]. In
contrast, [13, 14] utilize similarity metrics based on content-based
embedding vectors and user demographics, respectively. However,
a discussion on the appropriateness of the group generation process,
or in particular the utilized similarity metrics, is sketchy or missing
completely in the related papers.

3 SYNTHETIC GROUP CONSTRUCTION
Let us now describe the considered group generation procedures.
We largely base the protocol on [3], with a few extensions. In
particular, 200 similar groups were generated for each of the group
sizes |𝐺 | ∈ {4, 8, 32, 100}. The procedure was incremental, starting
with𝐺 = {𝑢} for some random 𝑢. Then, a partially generated group
𝐺 was extended with a random user 𝑢 ∈ 𝑈𝑐 , where 𝑈𝑐 is a set of
all users whose mean similarity towards members of 𝐺 is above

a certain threshold: 𝑈𝑐
def
= {𝑢 ∈ U |

∑
𝑢𝑔 ∈𝐺 𝑠𝑖𝑚 (𝑢,𝑢𝑔 )

|𝐺 | ≥ 𝑡𝑟𝑒𝑠ℎ𝑠𝑖𝑚}.
The 𝑠𝑖𝑚 is the actual inter-user similarity metric (see the list below),
and 𝑡ℎ𝑟𝑒𝑠ℎ𝑠𝑖𝑚 is the similarity threshold. For each 𝑠𝑖𝑚 metric, we
set the threshold to 99𝑡ℎ − 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 of values in the respective
similarity matrices. This should ensure that only really similar users
are selected, irrespective of ranges of different 𝑠𝑖𝑚 metrics.

We further alter generated similar groups to also contain an
outlier sub-group. In particular, we removed the first 𝑛𝐺,𝑜𝑢𝑡𝑙𝑖𝑒𝑟𝑠

def
=

⌈|𝐺 |/10⌉ members of each similarity group and replaced them with
different users as follows. The first replacement, 𝑜1, was selected
as the user with minimal mean similarity towards the remaining
group members. The remaining outliers were selected as users with
the highest similarity towards 𝑜1. This effectively constructs two
sub-groups within each group: majority and outliers.

The similarity metrics that were used come from two categories—
data-based metrics calculated on the raw ratings data, and feature-
based metrics calculated on the learned user embeddings of the
underlying RS. Overall, the following variants were considered:

• data-based: Pearson correlation coefficient (PCC) among
users, calculated either on full or training part of interaction
matrix (denoted as PCC_full and PCC_train respectively).

• feature-based: L2 and Cosine similarity calculated on the
learned user features from either Biased Matrix Factoriza-
tion [25] (L2_biasMF, and COS_biasMF ) or Implicit Matrix
Factorization [11] (L2_implMF, and COS_implMF ). The L2-
based similarities were calculated by transforming the L2
distance as 1

1+𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐿2 .
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Figure 1: The PCC matrices for 𝑠𝑖𝑚(𝑜𝑢𝑡𝑙𝑖𝑒𝑟,𝑚𝑎𝑗𝑜𝑟𝑖𝑡𝑦)
for groups constructed via PCC_full, L2_biasMF, and
COS_implMF.

4 EVALUATION AND RESULTS
Similarly to the groups generation procedure, the evaluation proto-
col was largely based on [3]. In particular, we utilized MovieLens1M
dataset [9]2, coupled evaluation approach [19] with 80:20 stratified
train-test split, and Biased MF [25] as a source of user’s individ-
ual preferences.3 Subsequently, for each group, we generated a
list 𝐿 of top-10 recommendations using the following GRS algo-
rithms: Multiplicative (MUL), Additive (ADD), Least misery (LMS),
Borda count (BDC), and Most pleasure (MPL) [18] as representa-
tives of item-wise aggregators and Fairness (FAI, [18]), EPFuzzDA
[17], GFAR [12], and GreedyLM [23] as representatives of list-wise
approaches. We considered a simple proxy for user satisfaction:
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@top-10 def

=
| {𝑖, 𝑖∈𝑇𝑒𝑠𝑡𝑢∩𝐿} |

|𝐿 | , where 𝑇𝑒𝑠𝑡𝑢 represent test
set items with known feedback from user 𝑢 and 𝐿 is the list of
top-10 recommended items for the group.

4.1 Results
Starting with RQ1, we evaluated to what extent individual similar-
ity metrics correspond to each other, while assessing group mem-
bers’ similarity. In particular, we considered groups constructed via
different similarity metrics4 and then re-evaluate the similarity of
all outlier-majority pairs w.r.t. all similarity metrics. Figure 1 depicts
Pearson’s correlations between similarity estimations of all pairs of
metrics. Notably, when groups are generated w.r.t. PCC_full, only
PCC_train produces a highly correlated view on the group mem-
ber’s similarity. Similarly, for groups based on COS_implMF, only
L2_biasMF produced a correlated view, while for groups based on
L2_biasMF, none of the other metrics is sufficiently correlated with
the original one. Overall, PCC_full and PCC_train exhibited highly
similar results throughout all group definitions. Apart from that,
only moderate correlations were observed, which further differs
based on the groups’ generation procedure. Notably, many pairs of
similarity metrics produced results with correlations close to zero.
This indicates a severe problem, i.e., while using one perspective
to define similar or diverse users, this does not hold if another
perspective is applied.

We dug a bit deeper into the topic and analyzed the histograms
of mean similarities of outliers towards majority group members.
Figure 2 depicts variants, where PCC_full and L2_biasMF serve both

2With the same pre-processing as used in [3].
3We used Lenskit [8] implementation of Biased MF and trained the model with a
feature size = 30, regularization = 0.1, and 20 iterations.
4For the sake of space, we only report on PCC_full, L2_biasMF, and COS_implMF
groups. Nonetheless, other results were analogical.
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Figure 2: Histogram of similarities for pairs of outlier-
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L2_biasMF are depicted.
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Figure 3: Histogram of Test set sizes for the members of
outlier and majority sub-groups. Results are separated w.r.t.
source metrics.

as source metrics (i.e., the metric based on which the groups were
generated) and target metrics (i.e., metrics whose histograms are
depicted)5. Note that in order to ensure inter-metric comparability,
similarity matrices were normalized using the empirical cumulative
distribution function. An interesting observation is that for groups
generated w.r.t. PCC_full metric (the most common approach in the
literature), outliers are actually often considered as highly similar
to the majority members w.r.t. L2_biasMF6. Combined with the
fact that BiasMF is often used as a source of single-user relevance
estimations in the downstream GRS, this threatens the integrity
of GRS performance evaluation. The fact that outliers have highly
similar embedding vectors to the majority group members implies
a highly similar list of estimated preferences (i.e., there is no distinc-
tion between outlier and majority users from the RS’s perspective).
This makes the group recommendation task much simpler than
intended, and unrealistically positive results may be expected from
a decoupled evaluation scenario [19], but also from a coupled one
if a popularity bias [1] is present.

Finally, we focused on whether the outliers vs. majority mem-
bers differ in some of their general features. Indeed, we observed
major discrepancies in terms of the rating profile sizes for majority
vs. outlier sub-groups (see Figure 3). For instance, COS_implMF
constructs groups where outliers have extremely small test sets as
compared to the majority sub-group. A similar discrepancy was
also observed for L2_biasMF, although not as extreme. On the other
hand, L2_implMF often assigns users with extremely small test
sets during majority group construction, while for outliers, users

5Other combinations of source and target metrics are available from supplementary
materials.
6Similar results were also obtained for other feature-based metrics.
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Figure 4: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 for outlier and majority point of view, for various configurations. Rows correspond to similarity metrics
and columns to different group sizes (4, 8, 32, 100). EPFuzzDA is denoted as EPFDA and GreedyLM as GLM due to space constraints.

with very large profiles are often selected. Obviously, having sub-
groups with differently-sized user profiles may affect their relative
comparisons, because it is much easier to satisfy users with larger
profiles (considering metrics such as 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@top-k). From this
perspective, PCC_full, PCC_train, and also COS_biasMF derive more
suitable distributions of outlier and majority group members.

Focusing on RQ2, we assessed the performance of GRS algo-
rithms (w.r.t. 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@top-10) from the perspective of both outlier
and majority sub-groups. Figure 4 depicts the comparison between
the mean performance of outlier and majority sub-groups as well
as overall results.

Notably, for groups generated w.r.t. L2_implMF, and partially
also PCC_full, PCC_train, and COS_biasMF, many GRS variants
exhibited higher performance on outliers than on majority sub-
group. On the other end of the spectrum, for COS_implMF the
performance of all GRS is close to zero for outlier sub-groups. As
for L2_implMF and COS_implMF, this is clearly an artifact of the test
set sizes. We believe the cause is the same also for the other cases.

Despite the differences being much more subtle, the mean test set
size for majority sub-group members was smaller than those of the
outliers sub-group. For L2_implMF and COS_biasMF groups, we
can highlight the performance of MPL, GFAR and FAI algorithms,
which were able to provide satisfactory results (to some extent) also
for the disadvantaged sub-groups (i.e., outliers for COS_implMF
and majority for L2_implMF ). Overall, we can see a clear impact
of the test set sizes on the performance across all evaluated GRS,
similarity metrics, and group sizes. We would like to dedicate one
direction of our future work to provide a more robust analysis of
this phenomenon and to propose appropriate measures to counter
this bias in GRS evaluation.

In terms of group size, the general trend is that the performance
decreases with increasing group sizes. This is not surprising, but we
also found several exceptions, e.g. the performance of FAI algorithm
on PCC_full-based groups. Overall, MPL, FAI, and GFAR algorithms
exhibited the highest stability of their performance w.r.t. both sub-
groups across different group sizes. Considering, e.g., PCC_full, the
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performance of the aforementioned algorithms is on par or inferior
to other variants for |𝐺 | = 4. However, while it remains fairly stable
also for |𝐺 | ∈ {8, 32, 100}, the performance of other algorithms
drops significantly. This holds for both outlier and majority sub-
groups. These observations may indicate a potential concern with
GRS evaluation. Relying solely on small group sizes for evaluation
may result in biased outcomes, where certain algorithms are deemed
superior or equivalent to others without adequately considering
their scalability issues.

We also focused on the discrepancies in the outlier-wise and over-
all performance of individual GRS. While the results corresponded
in most cases, there were some notable exceptions. Let us mention
e.g. L2_biasMF with |𝐺 | = 8, where the overall performance of
MPL and GFAR was similar to FAI, but FAI achieved significantly
better performance on outliers. A similar effect can be seen when
comparing MPL with GFAR for COS_implMF and |𝐺 | ∈ {32, 100}.
In contrast, despite the overall performance of FAI was highest for
PCC_full and PCC_train on |𝐺 | = 4, it was considerably outper-
formed outlier-wise by several GRS. This corresponds with the fact
that FAI maps each user to an equal volume of recommendation
slots, rather than aiming to provide an equal outcome for all users
(as most of the other GRS). Nonetheless, we did not observe suffi-
ciently stable trends w.r.t. outlier vs. overall performance to make
some definite conclusions on this matter.

5 CONCLUSION
In general, our findings indicate that the GRS evaluation process
may be substantially affected by the synthetic groups’ generation
procedure, namely by the choice of the similarity metric and con-
sidered group sizes. We found that individual similarity metrics
mostly do not correlate with each other and may produce groups
with highly different statistics (e.g., varying profile sizes of group
members). This may, in turn, impact the performance of individual
GRS but also the relative comparison of considered sub-groups (e.g.,
outlier and majority sub-groups in our case). Overall, by this work,
we would like to stress the importance of verifying the properties
of generated synthetic groups (and their respective sub-groups)
and highlight possible impacts this may have on the off-line GRS
evaluation.

5.1 Limitations and future work
This paper is subject to several limitations. Firstly, the experimental
design only encompasses a single type of outlier group and employs
a simplistic formula to determine the number of outliers per group.
Additionally, a fixed group construction approach was utilized. Sec-
ondly, although six similarity metrics were compared, there are
numerous other options that require exploration and assessment.
It should be noted that the aim of this paper was not to identify the
best similarity metric but rather to highlight the potential conse-
quences of choosing some specific metric. We plan to address these
limitations in our future work and expand current experiments
on additional datasets, using additional evaluation protocols and
metrics and also incorporating various debiasing techniques.
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