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TH-iSSD: Design and Implementation of a Generic and

Reconfigurable Near-Data Processing Framework

JIWU SHU, KEDONG FANG, YOUMIN CHEN, and SHUO WANG, Tsinghua University

We present the design and implementation of TH-iSSD, a near-data processing framework to address the

data movement problem. TH-iSSD does not pose any restriction to the hardware selection and is highly

reconfigurable—its core components, such as the on-device compute unit (e.g., FPGA, embedded CPUs) and

data collectors (e.g., camera, sensors), can be easily replaced to adapt to different use cases. TH-iSSD achieves

this goal by incorporating highly flexible computation and data paths. In the data path, TH-iSSD adopts an

efficient device-level data switch that exchanges data with both host CPUs and peripheral sensors; it also en-

ables direct accesses between the sensing, computation, and storage hardware components, which completely

eliminates the redundant data movement overhead, and thus delivers both high performance and energy effi-

ciency. In the computation path, TH-iSSD provides an abstraction of filestream for developers, which abstracts

a collection of data along with the related computation task as a file. Since existing applications are famil-

iar with POSIX-like interfaces, they can be ported on top of our platform with minimal code modification.

Moreover, TH-iSSD also introduces mechanisms including pipelined near-data processing and priority-aware

I/O scheduling to make TH-iSSD perform more effectively. We deploy TH-iSSD to accelerate two types of

applications: the content-based information retrieval system and the edge zero-streaming system. Our ex-

perimental results show that TH-iSSD achieves up to 1.6× higher throughput and 36% lower latency than

compute-centric designs.
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1 INTRODUCTION

Recent years have witnessed a surge of deep learning applications, ranging from images/videos
and text/NLP to billion-scale recommendation systems [66]. As the model and dataset sizes of deep
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learning scale up, the memory requirement for training neural networks increases explosively. Re-
searchers are struggling with the limited memory capacity to store the huge amounts of weights
and activations for large networks with tens of billions of parameters. For example, with a large
network such as ResNet-1001 [21], the local batch size for training cannot be larger than two Ima-
geNet samples when we use the latest generation of the NVIDIA GPU (V100, 32 GiB of RAM);
furthermore, the Megatron-LM model [57] has 8.3 billion parameters, which needs more than
250 GiB of DRAM to fit. To sustain the scaling the model and inference/training datasets, cur-
rent DNN systems are incorporating more and more DRAMs into the system. This is quite costly
with respect to both power and cost.

To run large models beyond the memory capacity limits, existing approaches either push part
of the data back to fast external devices (e.g., Solid-State Drives (SSDs)) or embrace distributed
solutions, which incur expensive data movements. In the former case, training data is stored at a low
level (e.g., SSDs) and must be moved upward all the way to the volatile DRAM and CPU registers.
As prior work [36] has pointed out, using external storage devices (e.g., high-end SSDs) is con-
fronted with two critical sources of overhead. First, the current I/O software stack burdens the sys-
tem significantly since the performance bottleneck has migrated from hardware to software when
traditional Hard Disk Drives (HDDs) are replaced by high-speed SSDs. Second, massive data
movement incurs high latency and wastes hardware bandwidth unnecessarily. In the latter case,
distributed training/prediction can be used if multiple compute devices (e.g., GPUs) are available.
On top of such a setting, the model and the training data are distributed across multiple compute
nodes to fully exploit the model/data parallelism. However, this scheme does not reduce memory
consumption anyway; instead, the training/prediction process requires frequent data exchange be-
tween different nodes. As a result, keeping data in DRAM yields a 10,000× reduction in latency,
but distributing the memory through commodity network eliminates 1,000× of such benefit [47].

All preceding approaches adopt the compute-centric architecture, where data has to be moved
from the drive or remote memory to the host, thereby affecting the overall computational efficiency
and power consumption. A promising alternative to mitigate the preceding bottleneck is to move
computation from the host to the drive, which is known as Near-Data Processing (NDP) [8, 9], or
In-Storage Processing (ISP) when the storage media is non-volatile memory. ISP equips the stor-
age with intelligence (i.e., processors) and lets it process the data stored therein firsthand, which
exhibits low-power consumption, low latency, and high throughput. However, despite the poten-
tial of ISP, it has not been well deployed in commercial systems thus far due to two main reasons:
one on the software side and the other on the hardware side. On the software side, existing sys-
tems typically offload only simple functions or operators, like scanning and sorting, to intelligent
disks, leaving non-negligible processing overhead to host CPUs [4, 17, 25, 55, 70]; moreover, some
of them adopt a highly customized solution with self-defined APIs and data layout, which are not
compatible with existing operating systems [10] and applications, preventing them from being
widely deployed in different types of applications without code modification [36]. On the hard-
ware side, prior ISP designs are highly coupled with the hardware characteristics of intelligent
drives, making them only suitable for deployment in a certain scenario. For example, FPGA-based
SmartSSDs are hard to be integrated into an IoT device at an edge environment due to the space
and power constraints.

Ideally, we want a generic framework for NDP that is able to (1) accelerate different types of
deep learning applications with a unified abstraction and (2) support different hardware setups
(e.g., FPGA, ARM processor, or SoCs) that can be deployed in a variety of scenarios. To achieve
these goals, we present TH-iSSD, a full-stack redesigned ISP framework with the primary focus
on ensuring a high level of programmability, efficiency, and flexibility. We make the following
technical contributions:
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• Sensing-storage-computation integrated hardware architecture. Existing solutions mainly fo-
cus on processing data efficiently by moving computation close to the data, where they as-
sume that the data to be processed is already in the drive. However, in real-world deployment,
the data should always be first collected from the data collectors (e.g., sensors, camera, appli-
cations) before they can be processed/analyzed, which already introduces one time of data
transmission over the network. TH-iSSD takes a different approach by integrating the con-
trol logic of data collectors, storage drives, and computation accelerators in one hardware
controller, which minimizes the cost of data movements. TH-iSSD is highly reconfigurable:
the sensing element and accelerators of TH-iSSD can be easily replaced to fulfill the require-
ments of power supply and application logic given a certain deployment case (see Section 4
for details).
• Storage-centric data management for ISP. High-speed flash drives outperform traditional hard

disks in terms of both bandwidth and latency, and offer high internal parallelism by adopt-
ing a multi-channel architecture. But unfortunately, flash exhibits several limitations, such
as imbalanced read-write performance, limited write endurance, and erase-before-write re-
quirements, which often leave the performance of flash drives underutilized. To address
these issues, TH-iSSD introduces both placement-aware ISP and priority-aware I/O schedul-
ing mechanisms to fully utilize the internal parallelism of the drive.
• Flexible programming model via file system extension. Existing ISP programs access data by

either managing the drive as a raw block device without a file system [29, 36] or requiring
careful coordination with the host [13], which requires considerable host code modifica-
tion to leverage the ISP capability. TH-iSSD provides filestream, an easy-to-use and effec-
tive abstraction for users to program the computation logic without considering the data
placement.

We deploy two representative I/O-intensive applications—that is, the Content-Based Informa-

tion Retrieval (CBIR) system and the edge streaming system—on top of our proposed TH-iSSD
framework. Experimental results show that TH-iSSD achieves a performance improvement of up
to 1.6× and reduces latency by 36% compared to traditional compute-centric designs.

2 BACKGROUND AND MOTIVATION

2.1 Flash Memory Systems and Data Movement Overhead

In typical data processing tasks, CPUs need to interact with the storage system frequently to fetch
data and write back the results. Due to the growing disparity of speed between CPU and storage
outside the CPU chip, the storage system plays a crucial role in the performance of applications.
Recently, flash memory based SSDs are considered as a major alternative over hard disks due to
their better power efficiency and higher data accessing rate. However, even fast SSDs still incur
expensive data movement overhead. In this section, we describe the flash memory architecture,
analyze the data movement overhead, and illustrate the key reasons for such inefficiencies.

Flash Memory Architecture. As shown in Figure 1, modern high-speed SSDs are interconnected
to hosts via PCI Express (PCIe) slots or M.2 slots through the NVMe protocol, and NAND flash
memory chips are the primary non-volatile storage media. The host CPU reads or writes data
from or to SSDs by issuing PCIe commands via memory-mapped I/O to the drive, then the drive
fetches the I/O command and performs direct memory access operations to transfer the actual
data. Current-generation NVMe SSDs allow the host CPU to issue dozens of requests in batch,
which are queued within the SSD controller’s command queues, then the controller may schedule
these requests so as to maximize the internal parallelism. Each drive may contain dozens of flash
chips, which are organized into multiple channels. A flash memory chip is a package that further
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Fig. 1. The flash memory architecture.

contains multiple dies. A die is the smallest unit that can execute I/O requests independently. SSDs
support both chip-level and channel-level parallelism, where different channels can be accessed in
parallel and the chips that share a single channel can be multiplexed on that channel.

Flash memory does not allow in-place updates. Instead, every page becomes immutable once
being written and must be erased before it can be written again. The drive erases pages at a block
granularity, which contains between 64 and 512 pages. Each block can only be erased a limited
number of times during its lifetime, and erase operations have much higher latency than that of
page reads and writes. For these reasons, the SSD relies on the Flash Translation Layer (FTL)

in the controller to map physical pages to a logical block address, where applications access the
drive with the logical block address and the drive then applies a wear-leveling algorithm to spread
updates to the whole physical space and garbage collects obsolete pages.

Data Movement Overhead. Typical high-end data center SSDs (16-channel, single-bank SSDs,
which are very common now) can easily reach 6.4-GB/s bandwidth [27, 46]. Recent advances of
3D NAND flash technology achieve even higher bandwidth. However, this huge bandwidth de-
creases dramatically due to the complicated storage software stack and the bandwidth limitation
of PCIe lanes. For example, PCIe Gen3 is adopted as the standard interconnection approach in the
state-of-the-art platform, which is at 1-GB/s bidirectional transmission speed per lane. Four-lane
link is most commonly used in commercial produces (e.g., drives from Intel [1] and Samsung [2]),
implying the 4-GB/s external bandwidth, which can be easily surpassed by the internal bandwidth
of the drive.

On the software side, the I/O stack is a long-lived component in the OS, which is designed for
slow storage devices such as HDDs. Its complicated and layered design is shown to cause signifi-
cant performance overhead for fast NVMe SSDs. First, the interrupt-based processing mode incurs
extremely high latency (60.8 μs [58], which is even higher than the read/write latency of SSDs).
Second, the relevant data must travel through the PCIe bus, multiple buffers in main memory, and
multi-level CPU caches before they can be finally accessed by host CPUs, which causes redun-
dant memory copies—this not only impacts latency but also wastes hardware bandwidth. Another
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factor of the data movement overhead is the energy consumption. For scientific applications exe-
cuted on high-performance servers, 28% to 40% of total energy cost is spent in moving data [26].
Furthermore, moving data off-chip to DRAM or external devices consumes orders of magnitude
higher energy than that of on-chip data movement.

2.2 Near-Data Processing

To address the data movement overhead, recent studies have proposed the concept of NDP, which
covers both Processing in Memory (PIM) and ISP. In this article, we focus primarily on ISP that
can accommodate a large amount of data.

The design philosophy of “moving compute closer to data” is tenable for the following two
reasons: first, as mentioned earlier, modern SSDs are usually manufactured with higher inter-
nal bandwidth than the external interconnection bandwidth; second, modern SSDs usually em-
bed multi-core processors (e.g., ARM cores) as SSD controllers to manage the channel paral-
lelism and internal bandwidth. These processors handle I/O request scheduling, data mapping
through the FTL, wear leveling, and garbage collection. However, the computing capabilities in
the drive are generally ignored, and the drive is treated as a storage-only device, leaving the device
underutilized.

To fully exploit the SSD potential, ISP was recently proposed to fully utilize the internal paral-
lelism and the processing capability of embedded processors [17, 55, 70]. The main idea is to treat
the SSD as an intelligent device and execute application code directly inside the drive. In a data
query system, for instance, the host can send the query to the drive directly instead of executing
the query on the host side. Upon receiving a query, the embedded processors read relevant data
from flash chips to the device buffer and execute the query. Then, only the results are returned
back the host, which is expected to be much smaller than the raw data. As we can see, ISP sig-
nificantly reduces the amount of data that should be exchanged between the host and drive, and
thereby reduces latency and power consumption. Moreover, energy can be further reduced since
ARM processors consume less power (3–4×) than host CPUs [67].

As the ARM processors within the drive are less powerful, many existing works can only offload
I/O-intensive but computationally simple tasks to the drive [28]. However, many modern applica-
tions are both I/O and computation intensive (e.g., information retrieval, deep learning applica-
tions). To this end, recent work incorporates more powerful compute units in the drive directly.
For example, the Samsung SmartSSD computational storage drive is equipped with an onboard
FPGA, which enables offloading more complicated computation tasks within the drive [34].

2.3 Challenges

The idea of ISP has been extensively studied in the past 10 years; however, most of the previous
ISP designs are still hard to deploy in real-world applications for the following reasons:

(1) Performance: Traditional HDDs or SSDs are assumed to serve only host I/O requests; there-
fore, the I/O software stack as well as the storage controller are highly optimized to better
serve host I/Os. In real deployment scenarios of ISP, however, normal host I/Os typically
coexist with in-storage computing I/Os. Considering the unique hardware features of flash
memory (e.g., limited erase cycles, background GC tasks), we argue that ensuring the effi-
ciency of ISP requires careful scheduling among parallel and heterogeneous I/Os to maximize
the internal bandwidth of SSDs and improve user-facing service experiences (i.e., avoiding
latency spikes).

(2) Compatibility: As an alternative hardware component, ISP-enabled SSDs are expected to
be deployed in existing applications with minimal code modifications. This requires us to
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Fig. 2. The difference between TH-iSSD and existing approaches.

provide a unified abstraction of the functionalities inside SSDs so that these functions can
be easily invoked by applications as if they are still using a legacy storage device.

(3) Flexibility: Instead of providing dedicated ISP software design on a customized hardware plat-
form, we want a sensing-storage-computation integrated ISP framework that can be highly
adaptable to various application scenarios, where each individual component can be easily
replaced. For example, in one of our weather applications, the devices are deployed at the
edge without sustainable power supply, which requires that the device itself should be power
efficient and the embedded processor runs a highly optimized weather prediction model.

3 DESIGN

This section gives an overview of TH-iSSD, its unique technical contribution compared to exist-
ing approaches, the storage management that maximize the internal parallelism of SSDs, and the
interface that interacts with upper-layer applications.

3.1 TH-iSSD Overview

Figure 2 summarizes the comparison of our proposed TH-iSSD and existing approaches, includ-
ing the traditional compute-centric architecture (denoted as Non-ISP), where the Data Collec-

tion Unit (DCU) (e.g., sensors, camera), the storage node, and the compute node are externally
interconnected, and the recently proposed ISP architecture that only co-locates the storage and
computation counterparts within the device (denoted as ISP-SC).

In Non-ISP (Figure 2(a)), the newly collected data has to be first stored to the storage device by
host CPUs, then fetched to the main memory for processing before being stored to the device again.
We can observe that the whole process involves frequent data movements and communication be-
tween the three components, which has great impact on the overall performance. ISP-SC shortens
the data path by allowing the device to preprocess data directly. However, host CPUs still need to
be involved when the DCU transmits data to the storage device (see the red line in Figure 2(b)).

Different from preceding approaches, TH-iSSD allows data to move between the DCU, computa-
tion unit, and the storage media directly within the device without an external interconnection (as
shown in Figure 2(c)). The key enabler for TH-iSSD to achieve this is a carefully designed hardware
architecture in the device, which interacts with host CPU, DCU, on-device processing unit, and the
flash chips simultaneously, so all components can communicate directly with minimal overhead
of data movement.

The TH-iSSD Architecture. Figure 3 depicts the overall architecture of our introduced TH-iSSD,
which consists of three key components. The first component is a unified interface that interacts
with both host CPUs and peripheral DCUs. This generic interface relies on the data switch to serial-
ize input data from heterogeneous devices to form a device-friendly layout. The second component

ACM Transactions on Embedded Computing Systems, Vol. 22, No. 6, Article 96. Publication date: November 2023.



Design and Implementation of a Generic and Reconfigurable NDP Framework 96:7

Fig. 3. The TH-iSSD architecture.

is an ISP unit that executes the offloaded operations within the device. It is worth mentioning that
executing host-side code in the device is not as simple as we thought—host CPUs run the code
by accessing data from main memory with byte-addressable load/store instructions, whereas an
in-device ISP unit interacts with flash chips with the page granularity. To address this, TH-iSSD
refurbishes the logic of host-side tasks or operations into their flash-aware counterparts, thus
avoiding the flash storage being a possible bottleneck. The third component is an I/O controller

that schedules host-side normal I/Os and ISP I/Os effectively by introducing priority-aware I/O
scheduling policies.

The Data Consistency. Since the data is originally collected by the data collector and then trans-
ferred to the back-end SSD storage, the data would pass through data collector, host memory, and
the SSD storage. It is critical to guarantee the data consistency among the three parties. To guar-
antee the consistency, TH-iSSD treats the host memory as a temporary buffer that would never be
modified, and thus the data consistency could be ensured by only taking care of the consistency
between the data collector and SSD storage. Since only the data stored in the SSD is non-volatile,
TH-iSSD takes advantage of the log-structured file system to guarantee the data consistency by a
data logging based mechanism.

3.2 ISP-Aware Data Path Management

TH-iSSD faces the following challenges when communicating with host-side applications and pe-
ripheral DCUs. First, TH-iSSD requires a mechanism to allow in-device accelerators or DCUs to
access data in flash chips directly without the involvement of host CPUs; considering that the flash
storage is managed by host CPUs via a file system, in-device direct access should never corrupt the
data layout that the file system organizes. Second, TH-iSSD needs a general approach to serialize
the received data from heterogeneous DCUs (which have varying interconnection protocols) be-
fore storing them to the device. Third, existing host-side applications are executed by accessing
the main memory data; however, this is not the case in the device since ISP tasks need to interact
with flash chips directly, which might become the performance bottleneck.
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Fig. 4. Pipelined ISP.

In-Device Direct Access. To address the first challenge, TH-iSSD achieves in-device direct access
leveraging the mapping information of the host-side file system. This is possible since existing
POSIX file systems provide interfaces such as fibmap or fiemap and applications can use them
to retrieve the locations of real file extents. For instance, when an application needs to offload a
processing task to in-storage processors, then the application provides the device with a stream
of physical addresses so that the embedded processes can read or write data directly without any
software overhead. As mentioned earlier, offloaded tasks often involve accessing a large amount of
data, so the overhead of issuing fibmap/fiemap calls is almost negligible. For DCUs that continue
writing collected data, TH-iSSD requires the application to periodically preallocate enough flash
space via the fallocate call. In this way, the newly collected data by DCUs can be stored in the
reserved space directly without interacting with the host.

Data Switch. To achieve in-device direct access of DCUs, TH-iSSD further requires a data switch
to serialize the inbound streaming data so that they can be stored into the flash chips or prepro-
cessed by in-storage accelerators. In the former case, the data switch batches inbound data in the
device buffer until they reach a flash page-aligned size, then these new pages are forwarded to the
flash chip according to the mapping information provided by host applications. When the data
needs to be preprocessed, the data switch forwards raw data directly to the ISP unit—we can ob-
serve that host CPUs are completely eliminated in this data path, which brings the following two
obvious advantages. First, the newly collected data steam does not need to be serialized anymore
since it is already in a format that the accelerator understands; otherwise, the data should be first
organized into a file and stored in the file system, and is then deserialized into a memory format
before being processed. Second, by eliminating the involvements of host CPUs, TH-iSSD avoids
most redundant data movements and software overheads.

Pipelined ISP. To execute offloaded tasks in the device efficiently, we incorporate a pipelined
approach to exchange data among flash chips, the in-device buffer, and the ISP unit. As shown in
Figure 4, the computation task is split into small pieces, which are executed on multiple Processing

Elements (PEs). Each execution is further divided into multiple stages, namely the read, compute,
and write stages. In the read stage (i.e., ➀), the ISP unit sends a command to the I/O controller to
load the relevant data from flash chips to the device buffer; in the compute stage (i.e., ➁), the ISP
unit exchanges data between the device buffer and its on-chip cache with a buffer management
component, and executes the offloaded computation tasks; once the compute stage finishes, the
ISP unit writes back the output data to the device buffer, which is finally written back to flash
chips or sent to host CPUs (i.e., the write stage of ➂). These stages are executed in a pipeline to
maximize the potential parallelism of the device.
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Fig. 5. The storage scheduling mechanism of TH-iSSD.

3.3 Priority-Aware I/O Scheduling

TH-iSSD receives ISP requests and normal host I/Os simultaneously, which requires a careful
scheduling between these requests. As shown in Figure 5, the I/O controller of TH-iSSD man-
ages a FIFO (first-in, first-out) request queue for each flash die and reorders inbound requests in
a fine-grained approach. ISP I/O requests usually involve reading a large amount of data from the
storage device, which may occupy the storage resources (i.e., hardware bandwidth) for a long time,
causing serious latency spikes. As a result, traditional non-preemptible scheduling mechanisms are
hard to balance well between the bandwidth and latency. To minimize the interference of ISP I/Os
on normal host I/Os, TH-iSSD adopts a priority-based request scheduler to dynamically schedule
the heterogeneous requests, which achieves the best of two worlds—the high bandwidth of ISP
I/Os and low latency of normal host I/Os.

To help with understanding the scheduling policy, we introduce a comprehensive evaluation
model to illustrate the relationship between application’s priority and predicted execution time,
which is defined in Equation (1). In the equation, A represents the priority predefined by the ap-
plication for the request, which is 0 by default, and B is the I/O size in gigabytes. In the case the
application does not define the request priority, normal host I/Os typically own a higher priority
when they contain a smaller amount of data. If the application requires that the ISP task should be
executed as soon as possible, then the related request can also be set to a high priority.

Priority (Req) = A +
1

B
(1)

The request scheduling policy is optimized for reducing the latency of normal host I/Os, which is
achieved via a preemption mechanism for high-priority requests to low-priority requests. Specif-
ically, low-priority requests can be suspended and restored when they are preempted. The key
reason for such a scheduling policy to work effectively is that ISP tasks are mostly I/O-intensive
applications. For example, the amount of data that an ISP task needs to access for a single flash
chip may reach 100 MB or even more. Considering the computational overhead, it usually takes a
few or tens of seconds to execute an ISP task. To reduce the latency of normal host I/Os, TH-iSSD
supports high-priority requests to be inserted into the request queue in a way that the requests in
the queue are organized in a descending order of priority. Moreover, large ISP I/O requests are cut
into multiple smaller pieces. Therefore, normal host I/Os are scheduled to be executed immediately
after a small piece of ISP I/O has been processed, which avoids waiting for the ISP tasks to be com-
pletely executed. As is shown in Figure 5, all NAND flash dies are organized in X channels and Y
luns. Each die has a unique request queue. Every request is divided into small pieces according to
data address so that data of every piece is not distributed across dies. Specially, compute requests
in a request queue are further divided into several smaller parts. There are three requests in flight,
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Table 1. Description of TH-iSSD’s Host-Side Programming Model

Name Description

char* fsopen(const char *path, int flags) Open a filestream and return its data layout.

int fsclose(int fd) Close a filestream.

int fsread(int fd, void *buf, size_t size) Read a filestream processed by the ISP unit.

int fswrite(int fd, void *buf, size_t size)Write a filestream to the device.

int reg_task(void *buf, size_t size) Register a computation task to the device.

int send_params(void *buf, size_t size) Send necessary parameters to the device.

numbered #1, #2, and #3. Request #1 is a 3-GB compute request whose predefined priority is 0,
so its priority is 0.33. Request #2 is a 1-MB write request with 0 as its predefined priority, so its
priority is 1,024. Request #3 is a 2-MB read request that is assigned 2,000 as predefined priority by
applications, so its priority is 2,512. The scheduling process is shown in the following three steps.

(1) When compute request #1 arrives at TH-iSSD, it is divided into different dies. As far as the
request to the die of channel 0 and lun #Y is concerned, it is further divided into three parts,
called P0, P1, and P2. Since the request queue is empty at the beginning, P0 is executed first
and other two parts are waiting to be executed.

(2) Write request #2 arrives at TH-iSSD before P0 of compute request #1 is finished. Because the
priority of write request #2 is 1,024, which is higher than that of compute request #1, write
request #2 is inserted before P1 and P2 of compute request #1.

(3) Read request #3 also arrives at TH-iSSD before P0 of compute request #1 is finished. Because
the priority of read request #3 is 2,512, higher than that of write request #2, read request
#3 is inserted before write request #2 to keep requests in the queue in a descending or-
der of priority. Once P0 of compute request #1 is finished, read request #3 will be executed
immediately.

As for the potential data conflicts among the three parties (data collector, host memory, and SSD
storage), TH-iSSD resolves the problem in two steps. First, TH-iSSD only treats the host memory as
the temporary buffer and no data would be modified by the data collector or host CPU. Therefore,
TH-iSSD only needs to deal with the data conflicts within the ISP engine and the SSDs. Since TH-
iSSD implements a customized full-function FTL for both I/O and computation requests, the data
conflicts, such as read-after-write or write-after-write, are resolved within the FTL.

3.4 Host-Side Programming Model

TH-iSSD should expose a group of APIs to allow developers to easily make use of fast ISP without
any efforts to write their own custom interfaces manually. We therefore introduce filestream, which
is the host-side programming model of TH-iSSD. Filestream is an abstraction with a subset of the
POSIX-like APIs (shown in Table 1) that allow host applications to issue both data path and compu-
tation path operations to the device. By accessing filestream, the underlying data movements or ISP
tasks will be triggered transparently. Since the abstraction of filestream is familiar to existing ap-
plications (which typically use POSIX interfaces to access files), traditional application code can be
easily transferred into the TH-iSSD host code. Similar to existing approaches [12, 19, 54], TH-iSSD
neither implements the full set of POSIX-compatible operations nor provides crash consistency
or other POSIX semantics. This is because the primary reason for introducing the file abstraction
in our article is its familiar programming interfaces; being fully POSIX-compatible will introduce
extra software overhead, which is unnecessary in most cases.
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File Open/Close. Like a normal host-side file system does, the fsopen method creates a file de-
scriptor for the opened file. The only difference is that the related file mapping information is
returned back and kept in the TH-iSSD runtime. TH-iSSD will rely on the mapping information to
help the device execute the offloaded ISP tasks. By invoking the fsclose call, except for destroying
the file descriptor, the data layout of this file is removed as well.

File Read/Write. fsread and fswrite are used to enable the ISP functions inside the device. For
example, by invoking an fsread method, the TH-iSSD runtime first obtains the mapping infor-
mation based on the parameters provided by this call, and these mappings are then sent to the
device using a special command (e.g., by using a reserved command code of the NVMe protocol);
after receiving the command, the ISP unit reads the related data according to the mappings and
preprocesses the data before sending it back to the host. Note that TH-iSSD still uses legacy POSIX
interfaces to read or write a file when the data residing in it does not need to be preprocessed.
reg_task and send_params are used when the offloaded task in the device needs to be renewed.

Like read or write calls, these two methods are also sent to the device using a special command
code.

4 DEPLOYMENT AND EXPERIMENT

In this section, we describe how we apply TH-iSSD in two applications—that is, information re-
trieval systems and streaming systems—and illustrate how TH-iSSD contributes to improving their
performance. At the end of each use case, we report some experimental results to reveal the bene-
fits that TH-iSSD brings.

4.1 Information Retrieval System with TH-iSSD

CBIR systems are used to search for certain data items from a large-scale unstructured data ware-
house. Typical examples include identifying the same person in an image collection, searching
music songs with similar styles, and so on. CBIR typically consists of two major components: fea-
ture extraction and database indexing. Among them, the former extracts the feature vector for each
data item, whereas the latter organizes feature vectors so that similar data items can be queried
effectively. The popularity of high-definition digital cameras and ubiquitous IoT sensors has cre-
ated explosive growth in the quantity of the dataset. As a result, how to search in such collections
to find target data items with both high accuracy and cost efficiency becomes a major challenge.

Traditional solutions that find similar data items by using text-based search are shown to be
neither accurate nor cost-efficient, since they require manually providing tags and the relevance
between tags is hard to quantify. Fortunately, the rise of deep learning eases the problem of feature
extraction by incorporating Deep Convolutional Neural Network (DCNN)-based features [37].
Recent studies have shown that the DCNN provides better representations and thus delivers high
accuracies [38].

However, there is no such thing as a free lunch—the neural networks are highly non-linear,
which cannot preserve geometric properties between feature vectors, preventing us from building
an efficient index for these feature vectors. As a result, one has to scan the entire dataset to re-
trieve data items with high accuracy—this not only wastes computation resources but also incurs
frequent data movement between host CPUs and external storage devices. Mailthody et al. [42]
reveal that in DCNN-based CBIR systems, the storage I/O bandwidth is still the major bottleneck
that occupies 56% to 90% of the total execution time.

To overcome the I/O bottleneck, we propose to push the feature extraction and indexing logic
inside the drive with the TH-iSSD framework. In the following, we will first depict the hardware
platform we choose to deploy TH-iSSD and how we implement the CBIR system on top of this
platform along with several optimizations.
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Fig. 6. Hardware platform of information retrieval system.

Fig. 7. Information retrieval system optimization framework overview.

4.1.1 Hardware Platform Description. The hardware platform used to validate the proposed TH-
iSSD framework is composed of an XC7Z045 FPGA chip, 1 GB of DRAM, two NAND flash modules,
an eight-way NAND interface, and a PCIe Gen2 eight-lane interface and other modules, as shown
in Figure 6. As for the NAND flash chip controller, the interface is implemented on the XC7Z045
FPGA. The smart module is connected to the controller through four-way NAND interfaces, each
carrying two chips, each which contains four dies, and the page size is 16 KB. The DRAM is used
to cache data so as to speed up read and write operations.

The TH-iSSD system is deployed on the FPGA-based platform by integrating both a customized
SSD FTL controller and the feature extraction/indexing engine. As shown in Figure 8, the cus-
tomized SSD FTL is used to manage the data flow between the SSD and host CPU. When a CBIR
request is received by the host, it is sent to the CBIR engine. The engine first fetches the target
images from the SSD to the feature extraction accelerator implemented in the FPGA and then
searches the matched results given by the indexing accelerator. Compared to the traditional ar-
chitecture, the data transfers only occur between the FPGA and the SSD and thus saves the data
communication time and efforts from and to the host CPU.

To facilitate the deployment of the proposed TH-iSSD system to various FPGA platforms, we
propose an automatic hardware flow to accelerate the information retrieval system that is shown in
Figure 7. It consists of two parts: the operator templates generation (upper part) and automatic syn-
thesis framework (lower part). Since the number of primitive operators of Deep Neural Network

(DNN)-based information retrieval system is limited, we propose to manually write the template
for each primitive operator. As for the DNN retrieval algorithms studied in this work, we define
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Fig. 8. Hardware architecture of CBIR deployment on TH-iSSD.

hyperbolic tangent tanh, sigmoid σ , point-wise vector addition, point-wise vector multiplication,
and convolution as primitive operators. The optimization techniques including loop unrolling and
pipelining are all applied to these operators. It is necessary to note that the proposed primitive
operator templates are general enough to implement almost any kind of DNN variant, to the best
of our knowledge.

The automatic synthesis framework is fed with the well-trained inference model provided by
the software flow. Then, a directed acyclic data dependency graph is generated to represent the
computation flow of the DNN. The operators in the graph are scheduled to compose a multi-stage
coarse-grained pipeline so as to maximize the performance under certain resource constraints with
the help of analytical performance and resource models. The scheduling result is then given to the
code generator. The code generator takes the operator scheduling result as input and generates
the final C/C++-based code automatically by integrating the associated primitive operator tem-
plates together. Since the interface of each template is well defined and the tunable parameters
are expressed using C/C++ macros, the code generation is quite efficient. The synthesis backend,
which is an off-the-shelf commercial HLS tool, accepts the C/C++ code as input and outputs the
optimized accelerator implementation on FPGAs.

4.1.2 Experimental Results. Next, we conduct experiments to analyze the performance of TH-
iSSD by comparing against its baseline system.

Experimental Setup. To validate the performance advantage brought by TH-iSSD, we implement
a baseline system that adopts a compute-centric architecture where the host CPU dispatches work-
loads to the FPGA-based accelerator and forwards data between the FPGA and storage devices.
We employ three benchmarks from Natural Language Processing [61], Medical Imaging [50], and
Satellite Remote Sensing scenarios to analyze the proposed system with respect to end-to-end per-
formance (in terms of both throughput and latency) and power consumption in the following. To
show the superiority of the proposed TH-iSSD design, we set the CBIR inference dataset to 350
GB, which is way larger than the host memory capacity.

Throughput. Figure 9 shows the throughput of TH-iSSD under different types of workloads by
varying the batch size. Overall, TH-iSSD delivers good performance and outperforms the baseline
significantly. Specifically, with a batch size of 1, TH-iSSD’s throughput is 1.32×, 1.33×, and 1.66×
higher than that of the baseline for Remote Sensing, Object Detection, and Natural Language Process-

ing, respectively. As the batch size increase further, the performance gap between the two systems
increases as well, where TH-iSSD achieves a speedup of 1.40× on average.

Discussion. The end-to-end performance of the proposed TH-iSSD design is constrained by two
factors: computation ability and the data transfer rate. The FPGA-based hardware acceleration
engine employed in TH-iSSD is quite efficient, and the bottleneck is the SSD access bandwidth. As
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Fig. 9. Throughput of the information retrieval system.

Fig. 10. Latency of the information retrieval system.

for the remote sensing benchmark, when the batch size reaches 8, the throughput and latency no
longer improve due to the saturated data transfer channels between the FPGA and the SSD. The
same performance scaling trend also appears in the rest of the two benchmarks.

Latency. Figure 10 depicts the latency of the compared systems by running the same workloads
as those used in the throughput evaluation discussion. Specifically, latency is measured as the time
for the CBIR system to process a query, including generating the feature vector of the query’s
data, and fetching related data items in the indexing database. We can observe from the figure that
TH-iSSD makes much faster progress in query execution as the batch size increases. On average,
TH-iSSD’s delay is 25.3%, 20.8%, and 21.5% shorter than that of the baseline under different types
of workloads.

4.2 Edge Zero-Streaming System with TH-iSSD

Pervasive cameras and sensors at the edge continuously generate new data, which needs to be
analyzed in time to capture the events in which we are interested. Streaming processing is differ-
ent from CBIR systems in the following aspects: CBIR systems build an indexing database offline
and react to a user’s queries if necessary, which exhibit read-dominated access patterns and are
designed to deliver high throughput and low latency for individual queries. Instead, steaming pro-
cessing systems should analyze the constantly produced new data from data collectors in line rate
(both read- and write-intensive), which necessitate real-time processing capabilities.

Edge streaming systems can be roughly divided into two categories: (1) streaming data on a
shared network back to the data center for analysis (i.e., full streaming) and (2) analyzing data
locally in the device and communicating with the cloud only when queries are requested (i.e.,
zero streaming). In full streaming, transmitting data in real time to the cloud often incurs high
latency and wastes wireless bandwidth unnecessarily. This is because the collected data is often
cold regarding that interesting events are often unforeseeable and rare. In zero streaming, edge
devices eliminate the need to stream data to the cloud; however, the device itself only contains
very limited hardware resources (DRAM capacity, computation power, etc.), which are hard to
process data at capture time.
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Fig. 11. EZS overview.

Fig. 12. Hardware architecture of EZS deployment on TH-iSSD.

As we can see, our proposed TH-iSSD is a good fit for such edge devices, providing an efficient
computation and data path for real-time stream processing. Next, we describe the hardware plat-
form configuration that is suitable to be deployed at the edge and how TH-iSSD can be deployed
in an edge streaming system. As for the Edge Zero-Streaming System (EZS) implementation
(Figure 11), the TH-iSSD system is deployed on the GPU SoC-based platform by integrating both
customized edge storage and the video processing engine. As shown in Figure 12, the customized
edge storage engine is used to manage the data flow between the SSD and the GPU SoC. When the
EZS request is constantly received by the SoC, it is immediately sent to the EZS engine. The engine
first processes the videos through the GPU video processing engine and then stores the results in
the local edge storage system. Compared to the traditional architecture, the data transfers only
occur between the GPU SoC and the SSD and thus save huge amounts of the data communication
time and effort.

4.2.1 Hardware Platform Description. NVIDIA Xavier is the latest SoC in the NVIDIA AGX
Xavier and Drive AGX Pegasus platforms, as shown in Figure 13. Xavier has an eight-core
“Caramel” CPU (based on ARM V8) and an eight-core Volta GPU with 512 CUDA cores, and 16
GB of shared main memory. We define host as the designated term given to the CPU and the sup-
porting architecture that enables memory and instructions to be sent to GPU. Kernels are set up by
the developer and consist of threads, thread-blocks, and grids. Memory is a crucial part of kernel
execution. Prior to execution, data has to be introduced to the GPU in some way. After the kernel
finishes the execution, the data needs to be sent back, or the host needs to be informed depending
on the memory management technique.

The proposed NDP framework for the EZS is shown in Figure 11. The workflow of the EZS is
done in two steps. During the video recording period, the EZS will do its best to build the target
label to acquire long-term video knowledge. The target label is very likely, such as one for every
30 frames per second; recording a large number of object labels, they provide reliable knowledge-
spatial distribution of various objects in the long-term video. During query execution, the EZS
runs a small DNN, such as YOLO, to upload frames locally and continuously upgrade the cloud
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Fig. 13. Hardware platform of the EZS.

intelligent index. As shown in Figure 11, after the cloud receives the query, it first retrieves all
target labels in the query video range from the smart index. The camera runs a lightweight DNN to
determine the priority of the query frame to be uploaded. The operator scores the frames; a higher
score indicates that the frame is more likely to contain any objects of interest. The preceding steps
are repeated until the query is aborted or completed. Throughout the entire query process, the
cloud continuously optimizes the results presented to users.

4.2.2 Experimental Results. We also evaluate the performance of TH-iSSD in a zero-streaming
application with similar workloads. Our experiments are conducted differently from those in the
CBIR system in the following aspects: first, the baseline system still requires the host CPU for
coordination but replaces its accelerator with an embedded GPU (NVDIA Xavier); second, the
streaming application processes workloads to extract indexing information in real time instead of
reacting to the user’s queries.

Throughput. Figure 14 presents a throughput comparison that runs three types of workloads
with varying batch sizes. We can observe that our ISP solution performs better than the baseline
system consistently as we change the workloads and batch sizes, which achieves 1.45× better
throughput over the baseline on average. The experimental results also show a trend similar to
that in Section 4.1, where the performance gap between the two systems increases as the batch
size becomes bigger.

Latency. Figure 15 shows the latency of the compared systems on various workloads. Specifi-
cally, TH-iSSD reduces the end-to-end latency by up to 36.8% compared with the baseline system.
Our solution achieves low latency by allowing data to be flowed between different hardware com-
ponents directly, which eliminates the communication delays incurred by external connections.
Moreover, TH-iSSD does not reply on the host CPU for data forwarding, which further shortens
the data path.

5 RELATED WORKS

5.1 In-Storage Processing

Active Disks. The idea of NDP was proposed as early as the past century. A line of research has
investigated the idea of pushing computation to HDDs. Among them, some works [4, 25, 52] offer
details on the use of active disks for the data center. IDISKS [25] presents an “intelligent” disk to
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Fig. 14. Throughput of the EZS.

Fig. 15. Latency of the EZS.

overcome the I/O bottleneck of a conventional storage system by integrating embedded proces-
sors within the drive with high-speed serial links. ActiveDisk [53] presents an analytical model
and explores the possibility of the speedups in an active storage system for a specific application,
including data mining and multimedia. Riedel [51] predicts the supporting factors for the success
of active disks and the characteristics of applications that are suitable for active disks. The idea of
adopting the concept of NDP in magnetic storage devices, however, has limited cost-effectiveness
due to the magnetic disk latency and relatively small input/output size.

Offloading Individual Operators. ISP has been extensively studied in the past decades, but most
works focus on offloading popular but inherently simple operations, such as sort, join, and query,
into the device [4, 17, 25, 35, 52, 53, 55, 62, 70]. For example, Kim et al. [27] proved through simu-
lations that the use of a dedicated SoC chip can greatly accelerate the scan operation and reduce
energy consumption. Later, they further used a dedicated SoC chip to accelerate the join opera-
tion [28], which improves performance by 5×. Woods et al. [69] designed a hardware accelerator
based on the FPGA to accelerate Group-By and Filter operations. There is also a line of research that
proposes general ISP models that help embedded accelerators execute the offloaded tasks more ef-
ficiently. For instance, Active Flash [62] presents an analytic model to systematically evaluate the
potential for in-SSD computation; Summarizer [29] introduces a set of programming interfaces
to help applications offload tasks to the device, which shares a similar design goal as ours. Bis-
cuit [20] introduces a flow-based programming model, where offloaded tasks are processed in a
way similar to task graphs with data pipes. Tseng et al. [63] propose a new model—Morpheus—and
an SSD prototype based on Morpheus, which allows applications to move deserialization opera-
tions from the host to the storage device, saving CPU and memory for computationally intensive
workloads, reducing power consumption, and saving I/O bandwidth. Although the preceding ap-
proaches achieve impressive performance, host-side CPUs still need to be frequently involved in
either moving data or executing the application logic.

Graph Computing. Graph processing is a sort of computation task that generates small-sized and
random I/Os, which is considered to be I/O intensive and requires frequent accesses to the graph
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in storage when processing large-scale graphs. Consequently, graph processing fits well to the
ISP paradigm. Many prior studies have intensively explored the usage of ISC in graph processing,
which achieved competitive performance and energy efficiency [23, 31–33, 41, 45, 60, 72]. For
example, GraphSSD [45] is a graph semantic aware SSD framework that provides a full system
solution for storing, accessing, and performing graph analytics on SSDs. GraphOne [32] proposes
a new real-time graph analytics framework that takes account of the storage engine and makes
the data logging and archiving quite efficient. The data management mechanism is data centric
and reduces the data movements between host CPUs and the storage. FlashGraph [72] manages
the frequently accessed graph data in DRAM, which avoids the possible I/O bottleneck in graph
processing. MOSAIC [41] assigns concentrated, memory-intensive operations (i.e., vertex-centric
operations on a global graph) to fast host processors (scale-up) and offloads the compute- and I/O-
intensive components (i.e., edge-centric operations on local graphs) to co-processors (scale-out),
and thus achieves both high performance and cost efficiency. To overcome the limited computing
capability problem of existing drives that are typically equipped with low-end processors, many
powerful hardware accelerators (e.g., FPGAs or specialized accelerators) have been built in the
context of ISP in recent years. For example, GraFBoost [23] introduces the sort-reduce accelerator,
which logs random update requests and then uses hardware-accelerated external sorting with
interleaved reduction functions to sequentialize fine-grained random accesses to flash storage.

Intelligent Drives. The idea of embedding machine learning models within the drive (and the de-
vice therefore becomes an intelligent drive) has been proposed in recent years, which is devoted to
reducing the amount of data that should be exchanged between host CPUs and devices. Kang et al.
[24] build an intelligent SSD prototype that supports the Hadoop MapReduce framework based
on a SATA SSD. The intelligent SSD takes advantage of the computing power of an in-device pro-
cessor to accelerate data processing, achieving low power consumption, high parallelism, and low
memory consumption. Choe et al. [16] propose to accelerate the stochastic gradient descent al-
gorithm with a multi-core processor inside the SSD, and parallelize the SGD process utilizing the
multi-channel feature of flash memory. Cognitive SSD [36] is an unstructured data retrieval engine
based on deep learning. It has a flash-accessing accelerator for near-data deep learning, which is
implemented with an FPGA inside the SSD, supporting to perform inference inside storage de-
vices. iSSD [15] integrates stream processors into the flash memory controllers to accelerate linear
regression, k-means, decision tree classification, and naive Bayesian workloads, which is signifi-
cantly better than traditional SSDs in terms of both energy efficiency and performance. However,
all preceding approaches, including graph processing, are restricted to the context of a single sce-
nario, whereas TH-iSSD is designed to be deployed to accelerate different applications.

5.2 Hardware Accelerators

PIM is an emerging hardware architecture that directly uses the physical characteristics of the
memory cell to perform calculations. The basic hardware units of PIM include ReRAM [6, 39, 40, 68]
and PCM [5, 11, 64]. PIM supports vector-matrix multiplication operations, bitwise logic op-
erations, and search operations, which are commonly used in AI or graph computation tasks.
ISAAC [56] uses a ReRAM array as the calculation unit for vector-matrix multiplication and
eDRAM as the storage unit, and pipelines inference calculation to improve the efficiency of neu-
ral network inference. Song et al. [59] copy multiple computing units to reduce bubbles in the
pipeline, thereby improving the efficiency of PIM for neural network training tasks. LerGAN [44]
is a ReRAM-based PIM that eliminates redundant calculations and storage overhead of the GAN
through software and hardware co-design. There has also been a line of research designing ded-
icated accelerators for kNNs [43, 71], CNNs, and DNNs [14]. For instance, DianNao [14] exploits
the locality properties of large layers and customized storage structures to realize both good
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performance and broad application scope in accelerators for machine learning. Later on, this re-
search group further introduced a series of hardware accelerators designed for neural networks
(i.e., DianNao family), with a special emphasis on the impact of memory on accelerator design,
performance, and energy. Google developed TPU [3], a custom ASIC for neural network machine
learning. PIM and dedicated accelerators achieve impressive performance for neural network train-
ing and inference; however, they require a fundamental redesign of both software and hardware,
which is unlikely to be widely deployed in the near future.

Felix et al. [18] utilize ISP in storage servers deploying parallel file systems, which reduces data
movement overhead and greatly improves overall system performance. Vincon et al. [65] propose
a key-value storage system based on ISP, which can directly control the data layout and calculation
execution in the storage hardware, and synchronize the data layout and data format with software
and hardware parsers, so that ISP operations can be executed efficiently without modification
on the host software stack. Park et al. [49] integrate the Hadoop MapReduce framework with
SSD devices with ISP capabilities, and propose an ISP-friendly Hadoop system by implementing
Hadoop Mapper in SSD firmware and offloading Map tasks from the host to the SSD. Kufeldt et al.
[30] propose an NDP-friendly storage device interface and use this interface to offload tasks such
as data recovery and migration from the host processor to the processor in the device for execution,
significantly improving performance.

Andersen et al. [7] propose a low-power cluster architecture—FAWN—for data-intensive work-
loads and build a consistent, replicable, and high-availability key-value storage system FAWN-KV
based on FAWN. FAWN integrates low-power processors with flash storage devices to balance
computing and I/O on the host side, and achieves large-scale and efficient parallel access to data.
Ouyang et al. [48] analyze the unique characteristics of computing tasks in network data analy-
sis, eliminate the interference between normal data processing and SSD internal computing tasks,
design an active SSD, and implement a system prototype. Based on flash memory storage devices,
Jun et al. [22] propose a new system architecture—BlueDBM—for near-data computing, which can
achieve a better performance price ratio in big data analysis scenarios.

6 CONCLUSION

This article presented TH-iSSD, a full-stack redesigned ISP framework to accelerate I/O-intensive
applications. We would like to point out that not all techniques used in TH-iSSD are new. Instead,
our key technical contribution lies in the following two aspects. First, the sensing, computation,
and storage components are highly integrated in TH-iSSD, which incurs minimal data movement
overhead. Second, instead of purely considering how to compute faster in the device like recent
studies, we primarily focus on how to manage data in the device in an ISP-aware manner. We
applied TH-iSSD in two representative applications (i.e., CBIR and streaming systems), and exper-
imental results showed that TH-iSSD achieves significant higher throughput and lower latency
than compute-centric designs.
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