
Supporting Collaboration in Introductory Programming Classes
Taught in Hybrid Mode: A Participatory Design Study

Lahari Goswami Pegah Sadat Zeinoddin
lahari.goswami@unil.ch pszeineddin@gmail.com
University of Lausanne University of Lausanne
Lausanne, Switzerland Lausanne, Switzerland

Thibault Estier Mauro Cherubini
thibault.estier@unil.ch mauro.cherubini@unil.ch
University of Lausanne University of Lausanne
Lausanne, Switzerland Lausanne, Switzerland

ABSTRACT
Hybrid learning modalities, where learners can attend a course
in-person or remotely, have gained particular signifcance in
post-pandemic educational settings. In introductory programming
courses, novices’ learning behaviour in the collaborative context
of classrooms difers in hybrid mode from that of a traditional set-
ting. Refections from conducting an introductory programming
course in hybrid mode led us to recognise the need for re-designing
programming tools to support students’ collaborative learning prac-
tices. We conducted a participatory design study with nine students,
directly engaging them in design to understand their interaction
needs in hybrid pedagogical setups to enable efective collaboration
during learning. Our fndings frst highlighted the difculties that
learners face in hybrid modes. The results then revealed learners’
preferences for design functionalities to enable collective notions,
communication, autonomy, and regulation. Based on our fndings,
we discuss design principles and implications to inform the fu-
ture design of collaborative programming environments for hybrid
modes.

CCS CONCEPTS
• Human-centered computing → Participatory design; Col-
laborative and social computing systems and tools; • Social
and professional topics → CS1.

KEYWORDS
collaboration, hybrid classroom, participatory design, programming
environment

ACM Reference Format:
Lahari Goswami, Pegah Sadat Zeinoddin, Thibault Estier, and Mauro Cheru-
bini. 2023. Supporting Collaboration in Introductory Programming Classes
Taught in Hybrid Mode: A Participatory Design Study. In Designing Interac-
tive Systems Conference (DIS ’23), July 10–14, 2023, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 15 pages. https://doi.org/10.1145/3563657.3596042

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

DIS ’23, July 10–14, 2023, Pittsburgh, PA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9893-0/23/07.
https://doi.org/10.1145/3563657.3596042

1 INTRODUCTION
Learning to program is a complex activity [18]. It requires novices
to learn basic programming concepts, develop procedural skills to
perform tasks with these concepts [60], and learn to regulate their
domain-specifc cognitive processes [21]. Introductory program-
ming courses typically introduce beginners to these concepts and
teach them how to master programming skills by solving program-
ming exercises during lectures or labs [58]. Especially in univer-
sities, these courses also leverage the social setting of classrooms
to employ collaborative pedagogical practices to teach program-
ming. One of the most common collaborative learning techniques
implemented in introductory programming classrooms involves
problem-solving through group activities [37]. In these activities,
learners often need to interact collaboratively with their peers,
coordinate to varying degrees and work on code together. Learn-
ing through collaboration in classrooms is contextualised by its
unique social setting involving course activities, curricula, social
interactions, teachers’ actions and learning tasks [51]. In particular,
to successfully solve problems collaboratively, interacting learn-
ers need to create and maintain a shared conceptual space. This
involves socially negotiating their knowledge elements, goals, prob-
lem descriptions and problem solving actions [49]. This also extends
to programming classrooms. As such, for students in programming
classrooms, their learning environment should also enable team
members collaborating on programming problems to co-construct
task understanding through interdependent interactions.

In introductory programming courses, collaborative interactions
on group programming activities and code can occur synchronously
or asynchronously in co-located or remote environments. In ad-
dition, following the pandemic, many introductory programming
courses shifted from traditional face-to-face teaching to hybrid
learning modes. Students can attend a class in person or remotely in
these hybrid-taught classrooms. Therefore, members of group activ-
ities in hybrid classrooms may sometimes be co-located, sometimes
remote, or sometimes partially distributed. [13]. Previous research
in the feld of computer-supported cooperative work (CSCW) has
highlighted the diference between collaborative interactions in
co-located and remote modes [43, 56]. In hybrid formats, Neumayr
et al. showed these interactions vary further from other modes, as
collaboration is not confned to the dichotomies but occurs across
the continuum of space (co-located and remote settings) and time
(synchronous and asynchronous) [42]. This essentially applies to

1248

https://orcid.org/000-0002-8975-5885
https://orcid.org/0009-0008-7828-795X
https://orcid.org/0000-0002-4598-9604
https://orcid.org/0000-0002-1860-6110
https://doi.org/10.1145/3563657.3596042
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3563657.3596042
mailto:mauro.cherubini@unil.ch
mailto:pszeineddin@gmail.com
mailto:thibault.estier@unil.ch
mailto:lahari.goswami@unil.ch
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563657.3596042&domain=pdf&date_stamp=2023-07-10

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Goswami et al.

collaborative learning interactions in group problem-solving activ-
ities in hybrid programming courses. Unlike co-located settings,
in remote and hybrid modes, learners’ primary collaborative in-
teractions on programming tasks take place within programming
environments. Critical to this collaboration and subsequent learn-
ing is the awareness of group members’ actions and intentions
across the shared coding space and the ability to maintain a dis-
course to facilitate this. This necessitates support to be built into
programming workspace tools for coordinating, communicating,
and collaborating in solving group programming activities.

Many collaborative coding environments and services have been
developed to facilitate collaboration in programming workspaces,
especially for remote modes. Some of these environments allow pro-
grammers to work together on the same code in an asynchronous
manner, while others enable synchronous collaboration. These in-
clude environments which are research prototypes [9, 50, 59], and
also commercial products like GitHub 1, Studio Live Share 2

for Microsoft’s Visual Studio, Google’s Colab 3 and, JupyterLab 4.
Various features of these applications provide the ability to edit
code together, share coding environments, track the actions of other
members, have built-in communication channels, and some sup-
port real-time collaboration. Despite these platforms’ availability,
most are aimed towards expert users, and the few designed for
educational purposes for beginners are not widely used in teaching.
Furthermore, the design of existing collaborative coding applica-
tions often does not take into account the specifc collaborative
work processes of novice learners. Only Ying et al. [62] conducted a
study to explore students’ perspectives on the use of commercially
available collaborative coding tools, and concluded that there is a
lack of novice-friendly programming environments. Consequently,
there is a need for programming and teaching environments that pri-
oritize needs and goals of student users. In addition, with the recent
emergence of hybrid learning modes in introductory programming
courses, it is imperative to understand how collaborative learning
interactions unfold in group programming activities and how to
design programming workspaces that foster efective collaboration
in these settings. Although some programming environments for
remote collaboration can be used in hybrid settings, research in the
feld of CSCW, shows that interactions in hybrid collaboration are
more nuanced. Our refections from conducting an introductory
programming course (see Sec. 3) also led us to realise that existing
set of tools available to students were unable to efciently support
interactions in classrooms designed for hybrid learning. Therefore,
we pose the following research question:

RQ. How might we best support students’ interactions in a
hybrid course teaching introductory programming to frst
year students?

With the goal of informing design of programming workspaces for
novices from a user-centered perspective, we take the approach
of Participatory Design. We directly engaged nine students from
a hybrid-taught introductory programming course, in a participa-
tory design workshop session consisting of four activities. Through

1https://github.com/, last accessed May 2023.
2https://visualstudio.microsoft.com/services/live-share/, last accessed May 2023.
3https://colab.research.google.com/, last accessed May 2023.
4https://jupyterlab.readthedocs.io/en/stable/user/rtc.html, last accessed May 2023.

this design workshop, we seek to investigate behaviours and chal-
lenges faced by novice programmers when collaborating in hybrid
modes and gain an understanding of their perspectives on the de-
signs of collaborative programming workspaces to support their
work processes. We qualitatively analysed the challenges partic-
ipants expressed, and the designs they produced, and described
four characteristics students sought in programming platforms.
Particularly, we identifed their preference for shared contextual
resources (e.g., sharing and synchronous editing of code snippets)
within the programming workspace to facilitate their collabora-
tive problem-solving processes. At the same time, novices required
maintaining their personal space within the larger workspace to
self-regulate and adapt to the collaborative activity. Based on our
fndings, we contribute to the design of programming environ-
ments in hybrid-taught programming classrooms by presenting
four design considerations.

2 LITERATURE REVIEW

2.1 Introductory Programming
The development of computational thinking and programming
skills is becoming increasingly relevant and important for students
across a range of disciplines [19]. However, programming is not
easy to learn and requires mastering and applying a wide selection
of knowledge and skills [18, 28, 45]. Introductory programming
courses often expose beginners to programming knowledge and
teach them necessary domain-specifc skills. Students are required
to learn basic programming concepts, code-writing skills [60], and
how to self-regulate their progress while programming [21]. This
complex process poses many challenges for novices who begin
to learn programming in introductory courses. Programming is a
practical subject, and mastering the relevant skills requires regular
practice of programming activities [15]. To teach these skills to
novices, the content of introductory courses typically combines
theory with examples, lab exercises, and assignments, which re-
quire students to solve programming problems, both in groups and
individually [37]. These courses and assignments are typically struc-
tured to refect the concept of deliberate practice that contributes
to gaining expertise in a particular skill [20].

Introductory courses, in universities or Massive Open Online
Courses (MOOCs) orient their content and activity designs in sev-
eral ways to facilitate this practice-based learning. In MOOCs, con-
tent and activities are mostly asynchronous, learner-paced, and
although they incorporate some degree of collaborative pedagogy,
support for learner collaboration is limited [23, 63]. In contrast,
in the formal setup of universities courses and activities are de-
livered synchronously to students, who are usually from similar
pedagogical backgrounds, regardless of whether they are co-located
or remote. It entails simultaneous interactions between peers, teach-
ers and activities. As such courses in university classrooms often
leverage its unique social setting to instil learning through collab-
orative programming pedagogies—like peer assessment [55], pair
programming [44], and project-based collaborative learning [2].
Some courses’ designs also replace traditional lecture formats with
an ‘inverted’ or ‘fipped’ classroom approach, including more in-
class activities such as practice exercises, collaborative problem-
solving, and teamwork. These diferent modes have been shown

1249

https://github.com/
https://visualstudio.microsoft.com/services/live-share/
https://colab.research.google.com/
https://jupyterlab.readthedocs.io/en/stable/user/rtc.html

Supporting Collaboration in Programming Classes Taught in Hybrid Mode DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

to increase student participation [11], foster their sense of com-
munity [33] and better performance [32, 46, 61]. Additionally in
recent times, post the pandemic, introductory programming courses
in universities are also adapting to hybrid modes of learning. A
full review of hybrid learning is beyond the scope of this paper,
as it encompasses a range of pedagogical approaches distributed
across diferent modes [1]. In the context of formal university class-
rooms, hybrid modes of programming learning, allow learners to
attend and follow the activities in a class in person or remotely,
usually requiring them to engage in simultaneous interactions dur-
ing the course time for in-class programming activities. As such,
integrating collaborative teaching strategies into diferent modes
of introductory programming courses requires enabling and foster-
ing efective collaborative learning interactions between students
specifc to their learning context.

2.2 Collaborative Learning And Regulation
The classroom as a learning environment is a social setting, where
learning is contextualised through interrelated activities, curricula,
social interactions, teacher actions and learning tasks [51]. Likewise,
introductory programming courses in classrooms form a social set-
ting for learning. Collaborative learning is a prevalent pedagogical
approach that emphasises interactions between learners in social
settings as the key factor in their learning process [16]. Learning
through collaboration is shaped by how team members construct
shared understanding through interaction with each other, where
the members are engaged in shared goals and problem-solving [49].
In this context, contemporary educational psychology grounds
learning regulation as a social phenomenon. In their theory, Had-
win et al. [26] defnes three modes of social regulation of learning
in collaboration: (i) self-regulation as individual learner’s regula-
tory process in a collaborative context, which is the precursor to
optimal productive collaboration in the context of a group task,
(ii) co-regulation as transitional and fexible stimulation of regu-
lation through interpersonal interactions and exchanges between
learners in a collaborative context, and (iii) socially shared regula-
tion as interdependent processes by which group members, who
work towards a co-constructed or shared outcome regulate their
own and collective activity.

Prior research in programming establishes, self-regulation of
learning as one of the fundamental skills crucial for success in
programming learning [3, 24, 54]. Loksa et al. [36] defnes program-
ming self-regulation as the process in which learners are aware
of their thoughts and actions while evaluating their progress to-
ward writing a program to solve a computational problem. In group
work, shared regulation is created through interactive and inter-
dependent processes where individual reasoning builds on, and
relates to, reasoning shared by other group members. Thus, during
productive collaboration on a group task, self-, co-, and shared reg-
ulation of learning occur simultaneously and reciprocally over time
in physical and social contexts. Therefore in introductory courses,
to program collaboratively, the social learning setting needs to
support interactions between learners, such that their program-
ming self-regulation, as well as other social modes of programming
regulation are equally supported.

2.3 Collaborative Working In Programming
Learning

In introductory programming, collaborative learning facilitates syn-
ergy among peers and develops their critical thinking and program-
ming abilities in classrooms or remote learning environments [37].
Collaborative programming activities in introductory courses re-
quire learners to engage in various degrees of collaboration to solve
or debug programming problems along with their peers, often re-
quiring them to code together on the same problem. For example, in
peer review [55], learners evaluate code written by their peers and
provide feedback, in pair programming [44], pairs of learners work
on the same code on the same computer in a turn-taking manner,
and in project-based collaborative learning [2], learners work on
a programming project in groups over a period of time. In hybrid
modes of learning, these collaborative interactions on code can oc-
cur synchronously with programmers working in real-time or can
be asynchronous. These interactions may also occur in co-located
learning settings or remote contexts.

Many Computer-Supported Cooperative Work (CSCW) re-
searches have established the inherent diference between collabo-
rative paradigms between remote and co-located collaborations and
investigated remote collaborative work and problem solving [43, 56].
To collaborate on problems in hybrid modes, Neumayr et al. [42]
explain that in groups, members may be co-located, partially co-
located, partially remote, or completely remote, and interactions
may also occur synchronously via shared editing or screen shar-
ing for any duration, or asynchronously via forums and comment
sections. As a result, collaborators’ interactions in hybrid mode
span the continuum of space (i.e. remote and co-located formats)
and time (i.e. synchronous and asynchronous modes), especially
in partially distributed groups where at least one group member
is located elsewhere and connected to the rest of the team via
computer-mediated channels [10]. Therefore, collaborative coding
processes for programming problem-solving during group activi-
ties in these hybrid learning modes will be fundamentally diferent
from co-located classroom scenarios.

As noted in the previous section, in order to coordinate efec-
tively on a collaborative learning task, team members need to gain
a shared understanding of the problem, which necessitates collab-
orating learners to know peers’ actions, interaction history and
intentions [25]. When learners work together in a co-located envi-
ronment, coding on the same laptop like in pair programming or on
separate laptops, they can engage in spontaneous communication,
use gestural cues to coordinate, and gain interpersonal awareness of
each other’s context to build a shared understanding while coding
together. However, collaborative work processes between program-
mers in remote and hybrid modes require support for coordination,
communication and awareness through programming workspace
tools. In this context, workspace awareness is a critical factor in
educational collaborative software systems, not only for efective
collaboration, but also to create opportunities for collaborative
learning [25]. It allows collaborating learners to easily perceive
and gain knowledge of the interactions taking place with other
people in the shared workspace. Furthermore, support is required
to sustain learners’ coordination through facilitating collaborative
dialogue and discourse within these shared workspaces.

1250

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Goswami et al.

2.4 Collaborative Coding Environments
Many collaborative coding environments have been designed and
developed to facilitate collaboration in programming workspaces,
especially in a remote context to work synchronously. Most of
these platforms allow learners to work together on the same prob-
lem, with some support for providing awareness of other mem-
bers’ actions. Examples include: Saros [50], an Eclipse plug-in
that displays each coder’s text cursor to communicate its loca-
tion in the source code and provides a follow mode for coders to
synchronise their programming platform viewports during pair
programming and code walkthroughs; COLLECE [9], a groupware
system that supports collaborative editing, compilation and execu-
tion of programs in a synchronously distributed manner with mech-
anisms for communication, coordination and workspace awareness;
RIPPLE [6], a distributed synchronous open-source software tool,
specifcally for educational contexts, that enables two program-
mers to work remotely on the same program at the same time;
CodePilot [59], an Integrated Development Environment (IDE) for
novices which integrates coding, testing, bug reporting, and version
control management into a real-time collaborative system for situ-
ational awareness and impromptu collaboration. Real-time collabo-
ration support for coding with peers is also available in many com-
mercial programming environments like Studio Live Share for
Microsoft’s Visual Studio, Code With Me 5 in JetBrains IDE, and also
in web-based collaborative working environments like CoCalc 6,
Google’s Colab and recently in open-source solution JupyterLab.
Few commercial platforms that support non-real time code col-
laboration include version control systems like Subversion7 and
GitHub.

These programming environments facilitate both synchronous
and asynchronous collaborative interaction between programmers
regardless of their locations. As such these environments have
the potential to support hybrid collaboration in programming. De-
spite the availability of these tools, most are primarily designed
for industrial needs and aimed at expert users. Also, the design of
collaborative programming environments for educational contexts,
especially for beginners, is limited and existing tools are not widely
used. Some of these educational collaborative programming envi-
ronments take into account novices’ collaborative work processes
and design to support that. However they do not include novice end-
users frst-hand perspectives in the design of these environments.
Only a study by Ying et al. [62], investigated students’ perspectives
on using available programming tools for coding collaboratively.
They conducted a large-scale survey with novices and showed that
current available programming tools do not completely support
novices’ needs. The fndings revealed that using version control
systems and live-shared coding platforms were hard for novices
to learn and integrate in their collaborative work processes. Fur-
thermore, with the recent adoption of hybrid modes of learning in
introductory classrooms, it is critical to understand how students’
collaborative problem-solving processes unfold in such settings. As
refected from CSCW literature, interactions in hybrid workspaces
are more nuanced than other learning settings. This establishes a

5https://www.jetbrains.com/code-with-me/, last accessed May 2023.
6https://cocalc.com/, last accessed May 2023
7https://subversion.apache.org/, last accessed May 2023

requirement for novice-friendly programming environments that
foster efective collaborations in these new modes of learning.

3 STUDY CONTEXT
The research question of this study stems from our lessons and
refections on a hybrid-taught introductory programming course
which took place between February and June 2022. The pedagog-
ical goal of this course was to introduce Computer Science (CS)
programming syntax, semantics, the basics of the Python program-
ming language, and the most common programming concepts to
frst-year undergraduate students pursuing a Bachelor of Science
in either Economics or Management. Thus, most of the students
in this course had no background in CS. Given the course was
delivered at a time when the COVID-19 pandemic was coming to
an end, the university where it was conducted adapted to a hybrid
teaching format. As a result, the course was designed so that stu-
dents could attend classes in person or follow remotely via live
streaming. The course used Jupyter Notebook8, which is hosted
on JupyterHub9, as the programming environment to teach and
practice Python programming to the students. This platform al-
lowed the instructors to easily distribute the notebooks and other
pedagogical materials easily to the large number of students en-
rolled in the course. The course had ∼600 students registered, of
which ∼400 typically attended the course in presence, and ∼200
online. To allow students to follow the course, these were given
early access to the course resources, typically a week before each
class. The resources includes the session slides, videos of theoretical
explanations (typically 3 to 5, of ∼10 minutes each), and exercises to
be practised during the class. Classes were scheduled over 4 hours
during the week. Class sessions were devoted to lectures, discussion
of guided examples and hands-on activities. During these activities,
students were encouraged to work collaboratively either with co-
located colleagues or with colleagues attending the course online.
To facilitate interaction between people onsite and people online,
we provided a plugin (Supplementary 1 (Supp. 1))10 for Jupyter
that enabled students to share cells of their active notebook and to
chat with their colleagues. In addition to the plugin, students were
also free to communicate and share code using the medium of their
choice (e.g., WhatsApp, Telegram, Skype). Finally, students were
also encouraged to work on an optional capstone project to further
strengthen their programming solving abilities, on which they had
to collaborate with six to ten classmates of their choice. Collabo-
ration for this group project happened outside of class hours and
students were free to choose modes and frequencies of interaction
with their classmates. At the end of the semester, students were
evaluated with a fnal exam, which consisted of multiple-choice
questions that required them to solve programming problems.

The authors of this study were directly involved in conducting
of this course as either the instructors or teaching assistants. As
a result, the researchers were able to gain frst-hand insights on
how students tried to regulate their learning behaviour within the
context of the course and its setting. Specifcally, throughout the

8https://jupyter.org/, last accessed May 2023.
9https://jupyter.org/hub, last accessed May 2023.
10Details about this intervention with fgures of the plugin, and all other supplementary
materials of our study are available on the Open Science Framework (OSF) repository.
See here: https://doi.org/10.17605/osf.io/985FQ.

1251

https://www.jetbrains.com/code-with-me/
https://cocalc.com/
https://subversion.apache.org/
https://doi.org/10.17605/osf.io/985FQ
https://jupyter.org/
https://jupyter.org/hub
https://doi.org/10.17605/osf.io/985FQ

Supporting Collaboration in Programming Classes Taught in Hybrid Mode DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

semester observations and interviews were conducted to under-
stand how students interacted to complete the diferent pedagogical
activities and how the diferent tools that were available to them
were appropriated to support collaboration. From these activities
we derived the following:

• Little to no interaction between students onsite and students
online was observed.

• While we expected the Jupyter plugin to support both stu-
dents online interacting with students onsite (and onsite
with onsite and online with online), it was seldom used. We
also observed little use of other communication apps during
the classes.

• Successful collaboration happened mostly for co-located stu-
dents who sat together in the classrooms. These students
typically had their laptops open and stared at each other
screens while discussing and working on the exercises.

Refections from conducting the course led to realise that existing
set of tools that was available to students was unable to efciently
support interactions in programming classrooms designed for hy-
brid learning. Particularly, questions arose around whether specifc
features could be added to the tools available to the students or
whether it was a question of the contextual environment (e.g., reg-
ulations of the class, logistic setups) which did not allow successful
interactions between students online and students onsite. Therefore,
to understand how to better support frst-year students’ interac-
tions in hybrid programming courses and classrooms, we conducted
the study described in the following section.

4 METHODOLOGY
We conducted a qualitative user study to gain insights into novice
collaborative behaviours in hybrid programming contexts and un-
cover efective ways to support them. To do so we employed a
participatory design workshop (see Fig. 1) involving nine partici-
pants. The study was conducted with the students from the frst
year programming course, as described in Sec. 3 and was approved
by our institution’s IRB.

4.1 Participants and Recruitment
To recruit participants for the user study, we invited the students
of the same Elementary Programming course in 2022. We wanted
to involve students in the study who had already been exposed to
the specifc context of the course and could therefore provide rele-
vant insights in the design workshop. We invited a total of N=244
students who actively engaged in the course activities during the
classes. Students active engagement was already determined during
the run-time of the course from their activity log on the exercises
provided they attended and engaged in more than 80% of the classes
in the course. The invitations for the participatory design work-
shop were sent out three months after the end of the course, when
the students had already moved on to the next semester of their
programme. This led to a very low response rate to our invitations
with only 13 responses. Out of them, nine participants registered
and attended the design workshop. There were 6 males and 3 fe-
males, with a mean age of M = 20.33 (SD = 1.41). Except for one of
these participants, the Elementary Programming 2022 course (see
Sec. 3) was everyone’s frst introduction to programming. During

the course, all of them have attended at least one class remotely.
Each of the participants received a monetary incentive of 54 USD
for their participation in the study. During the process of the par-
ticipatory design workshop (as explained later in Sec. 4.2.2), the
participants were randomly divided in to groups. We summarise
the participants demographics information across the groups in
Table. 1

Table 1: Summary of participants demographics in each
group during the participatory design workshop

Group Participant Age (in years) Gender
P1 19 m

G1 P2 20 m
P3 21 f
P4 18 f

G2 P5 20 f
P6 23 m
P7 21 m

G3 P8 20 m
P9 21 m

4.2 Participatory Design Workshop
Participatory design (or PD) is a design philosophy that places peo-
ple who might beneft from a given technology at the center of
the design process aiming at designing this technology. By lever-
aging the knowledge and expertise of potential users, it aims at
designing product and services that better meet their needs and
expectations. PD uses an ethnographic lens to comprehensively un-
derstand needs and preferences [31, 34, 52]. Numerous studies have
utilised participatory design methods to shape the development
of learning pedagogies and technologies. Some of these studies fo-
cused on teachers involvement [14, 35, 40, 48], while others focused
on students’ perspectives [5, 27, 47]. Although there are many col-
laborative interventions in programming environments for both
experts and students, their designs often do not directly involve end-
users in the design process. Our study focuses on prioritising the
perspectives of novices in the design of pedagogical interventions.
By adopting a PD approach, we aim to uncover the nuances of their
collaborative interactions, and their needs in hybrid programming
learning environments. Our research protocol and materials used
to facilitate the workshop are available respectively in Supp. 2 and
Supp. 3.

4.2.1 Apparatus. The design workshop took place in a large labo-
ratory room to accommodate all participants, equipped with tables
and chairs for them to sit together as groups (explained later in
Sec. 4.2.2). The entire workshop was conducted in one session by
three researchers – the frst author as the moderator, and the sec-
ond author and a research assistant who welcomed and guided the
participants across the session and took notes. The participants had
access to the Jupyter Notebooks for coding that was available to
them during the course. The examples of these notebooks along
with the Jupyter environment used during the course are available
in Supp. 1.

4.2.2 Procedure. Our design workshop lasted roughly 3 hours. At
the beginning of the participatory design session, all participants

1252

https://doi.org/10.17605/osf.io/985FQ
https://doi.org/10.17605/osf.io/985FQ
https://doi.org/10.17605/osf.io/985FQ

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Goswami et al.

Figure 1: Participatory design workshop session. All participants and researchers faces in has been obfuscated to protect their
privacy.

were asked to consent to the recording of their data by signing a
consent form11. The session articulated fve main steps and asso-
ciated activities, as summarised in Fig. 2. We explain each of the
steps below.
(1) Introduction and Setup. This phase set the stage for the partic-

ipatory design workshop. The participants were greeted and
frst shown a presentation to introduce them to the session’s
goal, explaining the main tasks and what was expected of them.
To provide a collaborative setup for the workshop, we intended
to group the participants in smaller teams. Participants were
randomly assigned into three separate groups, each with three
members. The participants were asked to draw a random chit de-
noting their designated group number from a mixture of chits
with all the group numbers. An overview of the participant
demographics of each group are present in Table. 1. We then
simulated a hybrid setup (see Introduction and Setup section
in Fig. 2) for each group’s participants to work with their re-
spective members on an activity that followed. To do so, one of
the randomly selected participants in each group was allocated
to a remote location setup in a isolated room consisting of a
table and chair, along with their laptops before beginning of
the task. The two other members of the group were physically
co-located in the same space.

(2) Find Issues, Uncover Ideas. After the introduction and set-up, we
presented the participants with the frst activity of the session.
This activity was designed to elicit insights from the partici-
pants about the frustrations they face when trying to program
together in the hybrid setup. In this activity, each group was

11Consent form available in Supp. 3

asked to work together with their respective members to try
to solve a programming problem. The programming problem
was the same for all groups and was made available to them on
paper. Due to the limited duration of the workshop, we opted to
provide a programming problem comprising smaller steps that
could be solved collaboratively in groups instead of assigning a
larger group project. The programming problem required them
to create a text input feld with a validation check that the num-
ber of characters entered did not exceed a certain limit. The
problem was in French and is available in the OSF repository.
Participants were free to use any platform of their choice to code,
collaborate and work on the programming problem. While solv-
ing the problem, each participant, whether co-located or remote,
was instructed to individually take simultaneous notes of the
challenges they faced in order to communicate and collaborate
efectively. The aim of this activity was not to test participants’
problem-solving skills, so we did not obligate them to solve the
given problem. The activity lasted 20 minutes and was followed
by a break of 10 minutes.

(3) Refection on Problem. Following the break, the members of each
group were gathered in the same location to refect together on
the identifed issues during hybrid collaboration. The duration
of this activity was 15 minutes. The participants were asked to
discuss and refect together in their respective groups on each
of the issues they noted down and fnally collectively narrow
them down to a maximum of fve challenges they deemed to be
most important. While there was not a hard limit for identifying
the number of challenges, we were also mindful that the next
activity would expect participants to design solutions for each
issue identifed. Therefore, we wanted to prevent participants

1253

https://doi.org/10.17605/osf.io/985FQ

Supporting Collaboration in Programming Classes Taught in Hybrid Mode DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

INTRODUCTION
AND SETUP

FIND ISSUES,
UNCOVER IDEAS

REFLECTION ON
PROBLEM

BRAINSTORMING
DESIGN EXERCISE

FEEBACK AND
DEBRIEF

10’

Introduction of session

Hybrid setup arrangement

Work on programming problem
in hybrid setup

Note down problems for
collaborating

Together share and
discuss problems noted

Mark top 5 important
issues

Ideate solutions for problems
marked important
Design and sketch at least
2 ideas

Design feedback form

Presentation of ideas

Debrief and feedback

5’ 10’

20 mins 20 mins 15 mins 60 mins 30 mins

WORKSHOP SESSION ROOM

G1’s co-located participants G2’s co-located participants

G3’s co-located participants

ROOM 1

G1’s remote participant

ROOM 2

G2’s remote participant

ROOM 3

G3’s remote participant

REMOTE LOCATED ROOMS

WORKSHOP SESSION ROOM

G1 participants G2 participants

G3 participants

Breaks

Figure 2: Summary and setup of the diferent activities and their duration in the participatory design workshop session.

from becoming mentally fatigued and asked them to select
the top fve issues. The main objective of this activity was to
make participants fnd commonalities in the challenges they
faced individually during the previous activity and identify
the specifc ones they most resonate with. Another break of 5
minutes was given to the participants at the end of the activity.

(4) Brainstorming Design Exercises. This activity was the next to
follow. It required each group to come up with solutions to
the most compelling issues in hybrid collaboration that they
had outlined in their previous task. As their solutions, each
group was expected to sketch and provide at least two fnal
design diagrams or ideas to tackle the problems. We wanted
the subsequent designs from the participants to refect a diver-
sity of concepts; therefore, we urged them to create as many
designs as possible, the minimum being two. We anticipated
that some participants might be unfamiliar with the sketching
activity. Therefore, to guide them, we ofered practical tips on
how to conduct rapid sketching with examples. To stimulate
their brainstorming and engage them in the designing process,
we provided each group with design kits consisting of mark-
ers, pens, pencils, post-it notes and A4 paper. Participants were
also encouraged to discuss, note down any new problem they
discovered at this stage and design potential solutions to miti-
gate those problems. To facilitate this activity, the researchers
would visit each group’s table and ask about the challenges that
participants identifed individually and as a team, as well as
ensure that all members were expressing their points of view
and actively involved. The participants would then prompted to
explain the corresponding solutions they were trying to design
for the identifed process. During this design process, if partici-
pants got stuck, the researchers would guide them to describe
their ideas in text as bullet points and then try to sketch based
on that. During these discussions, the researchers would also

ask questions to further stimulate their ideas and design process
while being careful not to bias their thought process. Through
the sketches from this activity, we wanted to capture partic-
ipants’ perspectives on the supports they envisioned within
coding platforms to optimise their collaborative interactions
during the programming learning process. This activity lasted
60 minutes, which followed a 10 minute break.

(5) Feedback and Debriefng. This was the fnal activity which was
essentially a plenary review session of the designs produced by
the participants. Each group had to briefy present and describe
their identifed problems and solution ideas to the other groups
and researchers. After each presentation, other participants
were invited to give feedback and share their thoughts in order
to gain perspective on the designs produced. The researchers
also participated in these discussions to stimulate the audience
and understand the participants’ point of view. At the end of all
presentations, each group was asked to complete a short design
evaluation questionnaire12 to provide a subjective assessment
of the advantages and disadvantages of the designs produced
by the other groups.

4.3 Data Collection
The workshop session was audio and video recorded and the design
materials created by the participants were collected for analysis.
The video data was only used as a reference to visualise or listen to
parts of the session that were not properly captured by the audio
recording or notes. During the frst session activity, the researchers
observed and took written notes of how the diferent groups at-
tempted to work together in the hybrid setup in order to observe
their choice of collaborative medium, understand collaborative be-
haviours and problems they encountered. The researchers then
collected all the materials the participants produced during the

12The design evaluation questionnaire is available in Supp. 3.

1254

https://doi.org/10.17605/osf.io/985FQ

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Goswami et al.

session’s diferent activities (available in Supp. 4). This included
the following: (i) list of problems that each group had identifed
during the programming problem solving process in the hybrid
setup, (ii) all the design diagrams that the groups had produced as
an output of the session, and (iii) the design evaluation form the
participants had flled in at the end of the session. The audio of the
plenary feedback and discussions on the presented designs at the
end of the session were also recorded, and transcribed by the frst
author to analyse later.

4.4 Data Analysis Method
All data collected from the workshop sessions were qualitatively
analysed, along with the session observation notes, by the frst
author and a research assistant with a background in Human Com-
puter Interaction (HCI). First, the session’s observational data from
the notes taken during the "Find Issues, Uncover Ideas" activity were
analysed by the frst author to identify how the diferent groups
collaborated, what coding platforms they used, how they communi-
cated with their team members, and what patterns of collaborative
behaviour emerged.

Second, in order to comprehend the problems faced by the partic-
ipants while trying to collaboratively program in the hybrid mode,
the frst author along with the research assistant jointly analysed
the problems identifed by all the groups. All problems expressed by
participants in post-it notes during the activities or mentioned dur-
ing the fnal presentation, regardless of the perceived importance
of the problems to the participants — were collated in an afnity
diagram [4] to identify the main patterns of challenges generated.
The researchers also referred to the transcripts of the problems
described by the groups at the end of the session presentation to
use as anecdotal evidence to guide this process.

Next, the researchers employed thematic analysis [7] to analyse
the designs produced by the participants. Both the frst author and
the research assistant identifed all the distinctive features for each
of the design diagram produced by the three groups. Having two
coders to identify the design elements in these diagrams helped
to eliminate bias in interpretation of the elements identifed. An
agreement rate of 94% was obtained between the two coders after
this phase of identifcation. The agreement level was computed fol-
lowing the equation proposed by Miles et al. [39]: agreement level =
no. of agreements / (total no. of agreements + disagreement). A total
of 49 design elements were identifed from all the diagrams, out of
which 8 design elements did not refect any collaborative or learn-
ing related aspect. Therefore, the two coders together coded the
remaining 41 design elements. We employed inductive coding [8]
approach to comprehend and highlight the interaction paradigms
that learners sought in their workspace to navigate their collab-
orative learning processes in a hybrid collaborative setting. The
resulting codes were jointly discussed by the codes and arranged
into relevant themes.

Finally, qualitative feedback from the design evaluation forms
completed by the participants at the end of the design workshop
were used as anecdotal evidence to identify design features sug-
gested by others as useful or not.

5 FINDINGS
Below we present the outcome of the participatory design work-
shop13. We frst describe the observations of collaborative problem
solving behaviour in the workshop. Next, we present the analysis
of the challenges expressed by the participants. Finally, we present
the designs produced by the participants and its analysis. To report
our fndings we refer to each participant by their group number
and participant number as specifed in Table. 1, e.g. G1P1 represents
Group G1’s participant P1.

5.1 Programming Collaboratively In A Hybrid
Setting

Our observations revealed the diferent means by which partic-
ipants attempted to collaborate on programming in the hybrid
setup, and how their work dynamics unfolded. The observations re-
vealed while all groups used Jupyter Notebooks for executing code,
they also used other non-programming platforms to collaboratively
write code and communicate with their respective remote team
members. Participants in each group used WhatsApp with remote
members to communicate about the task at hand. While group G2
did this only using text chat, and the other groups communicated
via audio calls. Two groups, G1 and G3, used Google Docs along-
side Jupyter Notebooks to support their collaborative code-writing
process. While discussing over their WhatsApp calls the remote and
co-located members of these two groups would simultaneously try
to write the code in Google Docs and then test it in their respective
Jupyter Notebooks. In the other group G2, the team members did
not try to code synchronously. Instead, the remote member tried
to do the code individually at their respective locations, while the
co-located members engaged in spontaneous conversations and
tried to solve the problem together. The remote and co-located
members would share their codes and discuss them via a chat on
WhatsApp.

These observations refect that learners seek to co-construct
ideas and solutions with their team members in a hybrid collabora-
tive context when programming in group. However their collective
learning processes often fnd little support within their chosen
programming platform. As a result, they tend to distribute their
transactive learning processes across diferent resources, tools and
media situated outside their coding environment. While this allows
learners to temporarily navigate their collaborative interactions
with other members, they however face a number of obstacles in
their working process.

5.2 Challenges Faced In Hybrid Collaboration
For Programming

(1) Challenges to collaborate on code. From the Refection on
Problem activity, the most common complaint among partici-
pants was the inability to share their code and work together
on it with their team members. All the groups expressed it was
particularly frustrating not being able to synchronously work
on the code and have no real-time knowledge of what the oth-
ers were changing in the code. G3P8, "We could not see ’what

13Details of analysis and fndings are available in Supp. 5.

1255

https://doi.org/10.17605/osf.io/985FQ
https://doi.org/10.17605/osf.io/985FQ

Supporting Collaboration in Programming Classes Taught in Hybrid Mode DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

happens on Jupyter’ when somebody tries the code." Group G1 ex-
pressed that not having the provision to work synchronously on
their code, led them to use Google Docs. In this regard, group
G2 participants also stated that they found it difcult to com-
prehend, coordinate and collaborate as a collective team. G2P6,
"we had difculty interacting as a team together." While group
G2 tried to fnd ways to share code (e. g., through WhatsApp
chat), they also conveyed that having to fgure out means to
coordinate on the code efectively distracted them from focus-
ing on solving the programming problem. G2P5, "We wanted
to share code using WhatsApp and it was difcult because it was
distracting. We had to fgure out how to share code and not be
able to concentrate on the real problem we had to solve." All the
groups resorted to sharing code via Google Docs or WhatsApp;
however, they did not fnd it to be the most efcient method as
these platforms did not preserve the code format. G1P1, "...so
we use Google Docs to code, but we did not have the correct
formatting like Jupyter, and even we can’t execute the code."

(2) Challenges to communicate with team-members. Partic-
ipants in two groups expressed there was a lack of fexibility
in a communication medium for engaging into discourse about
solving the given problem as a team. As observed earlier, all
groups tried to use diferent communication strategies either
via call or text messages on WhatsApp to converse with their
members. However groups G1 and G3 expressed this to be a
limiting experience, as they were not able to share screen with
their teammates. G1P2, "And we also used WhatsApp, but we
discovered bugs. We don’t have enough fexibility to communicate,
for example we can’t share screens with others."

These challenges expressed by participants highlight that when
attempting to solve a programming problem with peers in a hybrid
mode, the lack of a shared workspace inhibits learners’ awareness of
other members’ actions on the shared task. This prevents them from
coordinating efectively on the programming problem. In addition,
fguring out for themselves how to orchestrate these collaborative
interactions distributed across diferent platforms poses further
difculties for their learning process and collaboration.

5.3 Participatory Designs
A total of nine design diagrams were produced by the three groups
at the end of participatory design session. Out of these, group G1
created two, group G2 created four and group G3 created three
diagrams respectively. The coding process in our thematic analysis
yielded 19 unique codes which were arranged into four main themes
which we describe below. To report the various design elements
from the diferent group

(1) Mediating collaborative interactions with peers. The de-
sign elements created by the participants refected how learn-
ers seek to mediate collaborative interactions in hybrid modes
for doing programming together with their peers. The most
prevalent feature that all the groups depicted in their designs
was that of synchronous collaboration in shared coding
workspace. In order to coordinate with co-located and remote
members, participants wanted a shared view of the code editor
with the ability to perform real-time synchronous actions on
it together. This is depicted in the design elements of G1-A,

G2-A, G3-A in Fig. 3. In their design presentations, the groups
also drew parallels between their design elements and Google
Docs and expressed a preference for their coding platform to
have real-time synchronised editing options. This was particu-
larly deemed useful for working on group projects with other
members. G1P3, "For projects, you can activate the real-time syn-
chronisation option for a fle and work together on it." Pertaining
to this feature of shared coding workspace, designs from each
group also refected the necessity for fostering awareness of
activities of collaborators. For example, element G2-A in Fig. 3
shows the cursor position and the associated coder’s name. It
demonstrates visibility (i.e. witness that an action is occurring)
and transparency (i.e. know exactly what action is occurring)
[53] of other collaborators’ action on the shared code. Further-
more, another component of the same design deemed useful
by other participants indicated supporting group awareness
through a shared history feature. G2P4, "(in the platform) you
also could see the history of the previous versions of the code and
who wrote what." Other design elements also refected this re-
quirement for a collective notion of code but did not necessarily
act synchronously on it. Like in G1-C, the design depicted shar-
ing code excerpts with connected peers through a chat medium,
and as explained by G1P1, "... we can share the code and allow
people to come over and copy, modify or execute the shared code."
Design elements from G1 also involved sharing screens to share
code.

(2) Communication with peers. Collaborative interactions with
peers entail learners being able to exchange and negotiate ideas
through mutual discussions, enable awareness of each other’s
actions and provide context and meaning to their individual and
collective learning goals. Therefore, to collaborate productively
and co-construct a shared notion of code, another critical design
element frequented in the participatory designs was fostering
fexible communication strategies between collaborators. Each
group’s design included a conversational component in their
programming workspace (e.g., G1-B, G2-B and G3-B in Fig. 3). A
consistent idea refected in all groups’ design was integrating
communication channel within the programming environ-
ment so that learners do not need to distribute their attention
across diferent platforms elsewhere to communicate. G1P1
specifed, "If there is a system to call each other on the platform,
then we do not need to use WhatsApp or Discord." Although the
modes of conversation across the designs varied, the text-based
chat feature repeated across each group’s designs. Interestingly,
these designs revealed that the text chat-based platforms should
not only serve as a conversation platform but also allow users
to share editable code snippets with their peers and classroom
teaching assistants (element G1-C in Fig. 3). Groups G1 and
G3, along with text chats, also incorporated other conversa-
tional features of audio or video options. Additionally, group
G1 also included a screen-share element for communicating
their work. Furthermore, from the designs, it is also evident
that participants want these communication facilities to enable
both private and group conversations. One of the designs
from Group 3 focused on facilitating this communication across

1256

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Goswami et al.

F

E

GROUP 1

GROUP 2

GROUP 3

G1-B

G1-A

G1-C

G2-C

G3-C

G2-A

G2-B

G2-D

G2-E

G2-F

G3-B

G3-A

Figure 3: This fgure presents examples of participatory design elements produced by the three groups from four of their
diagrams. The full design data from all the nine designs are available in Supp. 4.

1257

https://doi.org/10.17605/osf.io/985FQ

Supporting Collaboration in Programming Classes Taught in Hybrid Mode DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

several groups—-having the option to form or be a part of difer-
ent groups in addition to the one with which they were assigned
to work.

(3) Control levels of access in the workspace. The design el-
ements for collaborating in hybrid modes highlighted that
along with the co-constructing shared notion of their task and
work, participants need autonomous control over shared
workspace access. This is refected in the design by G1, where
they devised the real-time synchronous sharing option to be
managed based on the type of programming activity they are en-
gaged in. As mentioned during their presentation, G2P6, "About
real-time collaboration, we want to be able to choose whether we
want to do our exercise personally, or share work or share screen
together in a project." In addition, the designs revealed a prefer-
ence among the participants for the ability to control access to
the shared workspace. This degree of access varied across the
designs produced by the three groups. As seen, group G1 bound
their sharing and editing option to code excerpts, i.e. code-cells
of Jupyter Notebooks. In contrast, group G3 wanted to share the
whole document with their collaborators to edit concurrently.
Group G2 wanted to be able to share the whole fle as well as
code excerpts. The control over sharing workspace is not only
applicable to its level of access, but also applies to choosing
collaborators with whom it will be shared. All the designs
included component to share their codes or documents with
their friends, specifcally the group 3 emphasised that group-
forming features in programming environments should not be
restrict users to one group, but have the provision to be part of
multiple groups during. G3P9, "it will be nice to create a group of
everybody...have several groups, one for a project, maybe one or
two from the class." Another aspect of the participatory designs
also explicitly highlighted that participants wanted to defne a
personal boundary in the workspace. This was observed in
the designs of both groups 2 and 3. Both the designs included a
feature for personal note-taking or learning supportive space
to support their individual learning processes. G2P4, "We could
also have little personal bubbles, where you could put notes for
your own personal understanding."

(4) Supporting learning regulation. In the context of program-
ming problem solving, along with fostering learners collabo-
rative dynamics, participants sought features to regulate their
learning and problem solving process embedded in their pro-
gramming environment. Two of the design diagrams included
features to provide progress enabling hints to help learners
solve the programming problems. For example, in Fig. 3, for
the element G2-E, participants designed a chat-bot feature to
provide them with hints when they are stuck on an impasse in
the code. G2P4, "We can have a chat-bot, like a programmed as-
sistant who can give us advice when we have an error in the code."
In a similar design G3-C Fig. 3 also wanted progress-enabling
hints every fve minutes with relevant theories related to the
problem for them to progress in their problem-solving process.
This feature of dietetic references to theory of the problem
being solved is also seen in the design element G2-D (Fig. 3).
Furthermore, along with these automated hint features, design
elements also described features to solicit help from experts,

like teaching assistants (TA). The design element of G2-D, de-
picted a feature to chat and share code with a TA when they are
unable to progress in a problem despite using hints. G2P5, "If it
is really difcult, we can connect to a real TA, and share our codes
so that they can help." In addition to these help-seeking features,
participants also described features for eliciting feedback on
whether a problem or the overall exercise had been solved, and
a personal workspace in the environment to support their indi-
vidual learning and understanding (e.g., design element G2-C
in Fig. 3). This feature of personal note taking was specifcally
deemed as very useful during the design evaluation. As one
participant mentioned, "Personal note is a great idea, because I
often use comments on code and on the long term it is very dif-
cult to read the code." It indicates that in order to self-regulate
their programming learning process learners need afordance
to better visualise their learning.

6 DISCUSSION
Our fndings ofer insights into novice learners’ behaviours who
collaborate in hybrid modes, and the supports they envision in
their programming workspace to coordinate, communicate and
work together. In the following, we discuss these fndings, and
provide design considerations for future design of collaborative
programming workspaces in hybrid modes.

6.1 Regulating hybrid collaboration in
programming environments

In the context of a classroom, programming learning and problem-
solving is not isolated activity but is infuenced by the dynamic
interplay between peers, tasks, and contexts. Given a hybrid learn-
ing environment, our fndings suggest that learners engaged in
programming classroom activities and group projects situate their
problem-solving regulation within this hybrid social context. As
learners collaboratively try to solve a programming problem in this
setting, we see that they seek to engage in transactive interactions
with their co-located or remote peers through their programming
workspace. The transactive nature of the interactions is refected
when individual reasoning in a group task builds on and refers to
the reasoning shared by the group [57]. Through these interactions
learners build collective understanding and coordination of the
programming task they are solving. In addition, learners’ preferred
designs of in-situ resources within programming workspaces re-
fect a desire to be supported in their transactive interactions of the
group problem-solving process in hybrid modes. For example, they
want to share codes with their co-located or remote peers in vary-
ing degrees, undertake collaborative action on code, and maintain
discourse about the problem-solving process. From the lens of con-
temporary educational psychology, this suggests that learners want
to engage in socially shared regulation of programming learning
in order to solve the problem they are working on together. In the
theory of social modes of learning regulation during collaboration,
Hadwin et al. [26] defnes socially shared regulation of learning as in-
terdependent processes by which group members working towards
a co-constructed or shared outcome regulate their collective activ-
ity. Informed by individual goals, this regulation involves collective

1258

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Goswami et al.

goal setting, monitoring, and adaptation of learning processes sub-
ject to the social context. As such, programming workspaces for
novices should facilitate this socially shared regulation to unfold in
a hybrid mode.

Furthermore, to work on a task as a group demonstrating socially
shared regulation of learning requires individuals to self-regulate
their processes while also guiding, supporting, and regulating as a
collective social entity [26, 29]. Interestingly, our participatory de-
sign themes also suggest that learners in the hybrid setting sought
to self-regulate and progress in their collaborative programming
problem-solving process. Self-regulation in programming problem-
solving involves planning and evaluating progress towards solving
a computational problem in an iterative way [36]. As such, to solve
programming problems together as a team, individuals in groups
must contribute to collaborative coding by regulating their individ-
ual comprehension of the problem and writing codes. This requires
learners to grasp programming concepts, articulate programming
skills, and be able to debug and solve errors in their coding process,
which can often be challenging for novices. Supporting learners’
programming understanding and facilitating their problem-solving
process becomes critical to their programming regulation. In this
context, integration of coding assistants like OpenAI Codex14 that
use generative Large Language Models (LLM), as demonstrated in a
recent study by Kazemitabaar et al. [30] shows potential to support
novices’ programming learning processes. While these LLM assisted
coding tools in programming environments may play a role in as-
sisting learners’ self-regulation, its role in facilitating programming
collaboration between peers still needs to be explored. Particularly,
it is not clear whether how group interactions with a mix of hu-
man and intelligent coding assistant might socially regulate. In
summary, to facilitate students’ collaborative programming-solving
processes in hybrid classrooms, it is imperative to provide learners
with afordances that enable and sustain their socially shared and
self-regulation of programming learning.

6.2 Design considerations for collaboration in
programming environments

Based on our observations and participatory design workshop
fndings, we see learners prefer features integrated in their pro-
gramming workspaces to collaboratively program in hybrid setting.
Hence, we present a set of design considerations and implications
for the design of programming environments for novices in hybrid-
taught programming classrooms. Although collaboration in hybrid
classrooms may include other types of media, such as online forums
and video-conferencing systems, our design refections specifcally
focus on the programming environment.
(1) Enabling virtual mode of collaborative task interactions.

In programming problem solving, writing code to solve the
task is mechanised within the framework of a programming
environment. Furthermore, in order for students to regulate
collective coding, they also need to be able to code individually,
so learners prefer to have their individual instance of program-
ming environment. As the learners’ behaviour in our observa-
tions of collaborative problem-solving in a hybrid setup shows,

14https://openai.com/blog/openai-codex, last accessed May 2023.

the co-located members, along with the remote members, also
prefer to collaborate on the code via an online programming
environment so that the code is accessible to all, regardless of
their location. This suggests that collaborative interactions on
programming tasks in a hybrid learning environment tend to
unfold and be driven by interactions occurring in a virtual space,
which is embedded in the programming workspace. In contrast
to hybrid collaborations in other workspaces [41] unrelated
to programming education, the collaborative enactment of the
main task for programming is not distributed across physical
and virtual spaces and is rather solely virtual. Programming
tasks are collaboratively solved by remote interactions on the
task, even when individuals are in the same physical location.
It implies that in order to facilitate hybrid collaboration in pro-
gramming, the design of the workspace should include a virtual
component for the programming task and have features created
explicitly for collaboration in this virtual space. Bidirectional
code synchronisation, awareness of diferent collaborators’ con-
tributions and providing a virtual space are supported by ver-
sioning tools such as GitHub in programming environments.
However, as the study by Ying et al. [62] shows, for novice
programmers, the learning curve for using GitHub is steep, and
working with it is a rather complex process, as students are
anxious to ruin the whole project. As such, future programming
environments may design simpler version control systems for
projects or specifc coding activities — taking into account the
goals and needs of novice programmers. It should be noted,
however, that this might not guarantee that inter-personal in-
teractions between co-located members will entirely be virtual;
for example, co-located users may still use gestural references
or verbal communication in person, while their task enactment
could be applied to the shared workspace.

(2) Tools for shared workspace awareness. For collaborative
programming problem-solving in hybrid modes, it necessi-
tates programming environments to act not only as a cogni-
tive tool but also as an agent of inter-personal social interac-
tions between collaborators to build knowledge together. There-
fore, when designing programming environments, collaborators
need to be equipped with means and mechanisms to engage
in transactive interactions. Social tools or features in program-
ming environments for hybrid collaboration identifed in the
participatory designs, include sharing editable snippets of code,
allowing collaborators to access a programming fle or snippet
of code for asynchronous editing, and enabling real-time collab-
orative editing of shared code and fles. In addition, to provide
context and awareness for coordinated actions, participants also
emphasised distinguishing and recording the contributions of
diferent collaborators through shared history, name tags, and
positional references in the code. In particular, this last feature
fosters workspace awareness by supporting deictic references in
the oral/written exchanges of the collaborators15. According to
previous research, these features for workspace awareness are

15A deictic reference is the use of gestures or expressions in language (e.g., this, that,
these) that points to the time, place, or situation in which a speaker is speaking. For
example, two remote collaborators working synchronously on a shared document can
use cursor movements to direct attention to specifc elements in the editor. Here the
cursor (or telepointer) acts as a deictic reference [12].

1259

https://openai.com/blog/openai-codex

Supporting Collaboration in Programming Classes Taught in Hybrid Mode DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

critical in the design of distributed educational groupware [25].
Furthermore, enabling discourse development through conver-
sational channels is crucial to a hybrid collaboration, as they
provide a way to contextualise this deictic awareness. Especially
for remote members, both these deictic references and discus-
sions provide the most thorough presentation of co-located or
other remote members’ contexts.
These social supports in coding environments can be provided
to students leveraging some of the existing solutions in program-
ming integrated development environments (IDEs) for remote
collaboration. For example, extensions for live sharing of coding
sessions, real-time collaboration (RTC) on code are supported
in Studio Live Share for Microsoft’s Visual Studio, Code
With Me in JetBrains IDE. Commercial solutions for Notebook-
based software allowing RTC functionality include CoCalc and
Google’s Colab. Recently open-source solution JuptyterLab
also incorporated RTC capabilities in their Notebooks. In addi-
tion some of these platforms also integrate options for audio,
video and text chat through the same or diferent extensions.
Adopting the use of these programming platforms with only the
necessary social functionalities enabled based on a particular
course’s context, can provide a starting point for facilitating
collaborative problem solving in hybrid taught classrooms.

(3) Persistence of collaborative programming workspace.
While enabling social learning interactions through program-
ming platforms for collaborative problem solving, it is also
critical that the results of these coordinated actions remain per-
sistent, especially in the context of work-in-progress projects
and assignments. As expressed by participants in our design
workshop, they envision a persistent, online, mutually accessi-
ble collaborative editing and coding space for working on group
projects. Students want continuous collaborative access to their
project’s coding fle, where they can code synchronously and
have the ability to code asynchronously, with an awareness of
the contributions of diferent collaborators. Previous research
has also emphasised the importance of persistent information
and tools in designing collaborative workspaces. Dillenbourg
et al.[17] suggest that designing persistent collaborative en-
vironments helps learners to externalise their group working
processes and promotes better understanding of their tasks.
While the available programming IDEs and tools mentioned in
the previous point allow simultaneous code editing, synchro-
nous tracking and real-time collaboration, their shared access
is dependent on the lifetime of the session. When the sharer
terminates a shared session, the results of collaborative changes
are stored locally, but are not propagated to or accessible by
other collaborators’ sessions. Currently, there is very little sup-
port in available programming platforms for simultaneous real-
time and non-real-time collaboration. The design of this aspect
in programming has only been explored in a handful of stud-
ies [22, 38], using real-time collaboration and version control
systems. However, these systems incorporating version con-
trol are often too complex for novice programmers to use. This
necessitates the design of persistent collaborative supports in
programming environments for novices to help them regulate
their programming activities collaboratively.

(4) Flexibility of workspace territory. Our fndings shed light
on the fact that a collaborative programming workspace for
novices in hybrid mode also needs to defne a personal entity
to enable their self-regulation of programming learning along
with socially shared regulation. This fnding mirrors the aspect
of territoriality in hybrid collaboration which unfurls in team
projects including spatial aspects [41]. Writing code and de-
bugging programming problems for novices is often a messy
and iterative process. This process fundamentally administers
students’ regulation of programming learning, and a personal
space for learners to externalise this regulation further enables
this process. Furthermore, in a collaborative environment, these
phases of trial and error can be an overwhelming amount of
information for others, as well as entail privacy demands for
individuals. The commercially available programming tools
are individual-centric systems that allow owners to share an
instance of their environment, giving them the choice to au-
tonomously control their workspace. However these tools do
not incorporate a common programming task enactment space,
while also maintaining an individual workspace. In this respect,
programming environments should design these personal and
group territories within a programming workspace in such a
way that there is the possibility of osmosis between the two
— learning from each workspace territory can foster the other
and vice versa.

7 LIMITATIONS
Our study has some limitations. As the study was conducted after
the completion of the course from which we recruited participants,
the number of participants who responded and participated was
limited. Furthermore, the participation responses to the study in-
vitation were received from students who had access to Jupyter
Notebook plug-in during the course. Finally, the selection of our
sample may ignore those who encounter challenges in hybrid learn-
ing and end up dropping the course.

8 CONCLUSION
Our work aims to inform the design of programming workspaces
for novices to facilitate efective collaboration on programming
problems in hybrid modes of learning. We employed a user-centred
approach and conducted a participatory design study with nine
students from a hybrid-taught introductory programming course.
Our study intended to identify the challenges faced by novices and
gain an understanding of their perspectives on the designs of col-
laborative programming workspaces to support their collaborative
work processes. Our fndings refect that to efectively collaborate
when programming in hybrid environments, learners seek to medi-
ate their interactions with peers to build a shared understanding of
their task, provide context, and maintain this shared understanding
through communication. Furthermore, they prefer to be able to
autonomously control the sharing of their workspace and regulate
their own learning within it. Based on these fndings, we present
a set of design principles for pedagogical tools in hybrid program-
ming learning settings. We hope that this study paves the road to
design of more efective tools for teaching programming.

1260

DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA Goswami et al.

ACKNOWLEDGMENTS
We sincerely thank Sruti Bhattacharjee for her assistance in de-
signing and facilitating the participatory design workshop, as well
as helping in analysing the data. We also thank James Tyler and
Kavous Salehzadeh Niksirat for taking part in the dry run of the par-
ticipatory design workshop and providing helpful feedback. Finally,
we are grateful to the anonymous reviewers for their constructive
and insightful comments.

REFERENCES
[1] Ali Alammary. 2019. Blended learning models for introductory programming

courses: A systematic review. PLOS ONE 14, 9 (Sept. 2019), 1–26. https://doi.
org/10.1371/journal.pone.0221765

[2] Nikolaos Avouris, Stefanos Kaxiras, Odysseas Koufopavlou, Kyriakos Sgarbas,
and Polyxeni Stathopoulou. 2010. Teaching introduction to computing through a
project-based collaborative learning approach. In 2010 14th Panhellenic Conference
on Informatics. IEEE, Tripoli, Greece, 237–241. https://doi.org/10.1109/PCI.2010.
13

[3] Susan Bergin, Ronan Reilly, and Desmond Traynor. 2005. Examining the Role of
Self-Regulated Learning on Introductory Programming Performance. In Proceed-
ings of the First International Workshop on Computing Education Research (Seattle,
WA, USA) (ICER ’05). Association for Computing Machinery, New York, NY, USA,
81–86. https://doi.org/10.1145/1089786.1089794

[4] Hugh Beyer and Karen Holtzblatt. 1999. Contextual design. interactions 6, 1
(1999), 32–42.

[5] Marcel Borowski, Bjarke V. Fog, Carla F. Griggio, James R. Eagan, and Clemens N.
Klokmose. 2022. Between Principle and Pragmatism: Refections on Prototyping
Computational Media with Webstrates. ACM Trans. Comput.-Hum. Interact. 30, 2
(oct 2022). https://doi.org/10.1145/3569895

[6] Kristy Elizabeth Boyer, August A. Dwight, R. Taylor Fondren, Mladen A. Vouk,
and James C. Lester. 2008. A Development Environment for Distributed Synchro-
nous Collaborative Programming. In Proceedings of the 13th Annual Conference
on Innovation and Technology in Computer Science Education (Madrid, Spain)
(ITiCSE ’08). Association for Computing Machinery, New York, NY, USA, 158–162.
https://doi.org/10.1145/1384271.1384315

[7] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa

[8] Virginia Braun and Victoria Clarke. 2020. One size fts all? What counts as quality
practice in (refexive) thematic analysis? Qualitative Research in Psychology 18, 3
(Aug. 2020), 1–25. https://doi.org/10.1080/14780887.2020.1769238

[9] Crescencio Bravo, Rafael Duque, and Jesús Gallardo. 2013. A groupware system to
support collaborative programming: Design and experiences. Journal of Systems
and Software 86, 7 (2013), 1759–1771. https://doi.org/10.1016/j.jss.2012.08.039

[10] Kelly Burke, Kregg Aytes, Laku Chidambaram, and Jefrey Johnson. 1999. A
Study of Partially Distributed Work Groups: The Impact of Media, Location, and
Time on Perceptions and Performance. Small Group Research - SMALL GROUP
RES 30 (08 1999), 453–490. https://doi.org/10.1177/104649649903000404

[11] Jennifer Campbell, Diane Horton, Michelle Craig, and Paul Gries. 2014. Evaluating
an Inverted CS1. In SIGCSE ’14: Proceedings of the 45th ACM technical symposium
on Computer science education (Atlanta, Georgia, USA) (SIGCSE ’14). Association
for Computing Machinery, New York, NY, USA, 307–312. https://doi.org/10.
1145/2538862.2538943

[12] Mauro Cherubini, Marc-Antoine Nüssli, and Pierre Dillenbourg. 2008. Deixis and
Gaze in Collaborative Work at a Distance (over a Shared Map): A Computational
Model to Detect Misunderstandings. In Proceedings of the 2008 Symposium on Eye
Tracking Research & Applications (Savannah, Georgia) (ETRA ’08). Association for
Computing Machinery, New York, NY, USA, 173–180. https://doi.org/10.1145/
1344471.1344515

[13] Arik Cheshin, Yongsuk Kim, D. Bos Nathan, Nan Ning, and Judith S. Olson.
2013. Emergence of difering electronic communication norms within partially
distributed teams. Journal of Personnel Psychology 12 (2013), 7–21. https://doi.
org/10.1027/1866-5888/a000076 Place: Germany Publisher: Hogrefe Publishing.

[14] Merijke Coenraad, Jen Palmer, Donna Eatinger, David Weintrop, and Diana
Franklin. 2022. Using participatory design to integrate stakeholder voices in the
creation of a culturally relevant computing curriculum. International Journal of
Child-Computer Interaction 31 (2022), 100353. https://doi.org/10.1016/j.ijcci.2021.
100353

[15] Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011.
CodeWrite: Supporting Student-Driven Practice of Java. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA)
(SIGCSE ’11). Association for Computing Machinery, New York, NY, USA, 471–476.
https://doi.org/10.1145/1953163.1953299

[16] Pierre Dillenbourg, Sanna Järvelä, and Frank Fischer. 2009. The Evolution
of Research on Computer-Supported Collaborative Learning. In Technology-
Enhanced Learning, Nicolas Balachef, Sten Ludvigsen, Ton de Jong, Ard La-
zonder, and Sally Barnes (Eds.). Springer Netherlands, Dordrecht, 3–19. https:
//doi.org/10.1007/978-1-4020-9827-7_1

[17] Pierre Dillenbourg and David Traum. 2006. Sharing Solutions: Persistence and
Grounding in Multimodal Collaborative Problem Solving. Journal of the Learning
Sciences 15, 1 (2006), 121–151. https://doi.org/10.1207/s15327809jls1501_9

[18] Benedict Du Boulay. 1986. Some difculties of learning to program. Journal of
Educational Computing Research 2, 1 (1986), 57–73.

[19] Leovy Echeverría, Ruth Cobos, Liliana Machuca, and Ivan Claros. 2017. Using col-
laborative learning scenarios to teach programming to non-CS majors. Computer
applications in engineering education 25, 5 (2017), 719–731.

[20] K. Anders Ericsson, Ralf T. Krampe, and Clemens Tesch-Römer. 1993. The role
of deliberate practice in the acquisition of expert performance. Psychological
Review 100 (1993), 363–406. https://doi.org/10.1037/0033-295X.100.3.363 Place:
US Publisher: American Psychological Association.

[21] Katrina Falkner, Rebecca Vivian, and Nickolas J.G. Falkner. 2014. Identifying
Computer Science Self-Regulated Learning Strategies. In Proceedings of the 2014
Conference on Innovation &; Technology in Computer Science Education (Uppsala,
Sweden) (ITiCSE ’14). Association for Computing Machinery, New York, NY, USA,
291–296. https://doi.org/10.1145/2591708.2591715

[22] Hongfei Fan, Chengzheng Sun, and Haifeng Shen. 2012. ATCoPE: Any-Time
Collaborative Programming Environment for Seamless Integration of Real-Time
and Non-Real-Time Teamwork in Software Development. In Proceedings of the
2012 ACM International Conference on Supporting Group Work (Sanibel Island,
Florida, USA) (GROUP ’12). Association for Computing Machinery, New York,
NY, USA, 107–116. https://doi.org/10.1145/2389176.2389194

[23] Dilrukshi Gamage, Indika Perera, and Shantha Fernando. 2020. MOOCs Lack
Interactivity and Collaborativeness: Evaluating MOOC Platforms. International
Journal of Engineering Pedagogy (iJEP) 10, 2 (March 2020), 94–111. https://doi.
org/10.3991/ijep.v10i2.11886 Number: 2.

[24] Thomas D. Grifn, Jennifer Wiley, and Carlos R. Salas. 2013. Supporting Efective
Self-Regulated Learning: The Critical Role of Monitoring. Springer New York, New
York, NY, 19–34. https://doi.org/10.1007/978-1-4419-5546-3_2

[25] Carl Gutwin, Gwen Stark, and Saul Greenberg. 1995. Support for Workspace
Awareness in Educational Groupware. In The First International Conference on
Computer Support for Collaborative Learning (Indiana Univ., Bloomington, Indiana,
USA) (CSCL ’95). L. Erlbaum Associates Inc., USA, 147–156. https://doi.org/10.
3115/222020.222126

[26] Allyson Hadwin, Sanna Järvelä, and Mariel Miller. 2017. Self-Regulation, Co-
Regulation, and Shared Regulation in Collaborative Learning Environments. In
Handbook of Self-Regulation of Learning and Performance (2 ed.), Dale H. Schunk
and Jefrey A. Greene (Eds.). Routledge, New York, 83–106. https://doi.org/10.
4324/9781315697048-6

[27] Rashina Hoda, Annette Henderson, Shiree Lee, Bridget Beh, and Jason Green-
wood. 2014. Aligning technological and pedagogical considerations: Harnessing
touch-technology to enhance opportunities for collaborative gameplay and re-
ciprocal teaching in NZ early education. International Journal of Child-Computer
Interaction 2, 1 (2014), 48–59. https://doi.org/10.1016/j.ijcci.2014.06.001

[28] Tony Jenkins. 2002. On the difculty of learning to program. In Proceedings of the
3rd Annual Conference of the LTSN Centre for Information and Computer Sciences,
Vol. 4. LTSN-ICS, Loughborough, 53–58.

[29] Sanna Järvelä, Paul Kirschner, Ernesto Panadero, Jonna Malmberg, C. Phielix,
Jos Jaspers, Marika Koivuniemi, and Hanna Järvenoja. 2015. Enhancing socially
shared regulation in collaborative learning groups: Designing for CSCL regulation
tools. Educational Technology Research and Development 63 (02 2015), 125–142.
https://doi.org/10.1007/s11423-014-9358-1

[30] Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the Efect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 455, 23 pages. https://doi.org/10.1145/3544548.3580919

[31] Finn Kensing and Andreas Munk-Madsen. 1993. PD: Structure in the Toolbox.
Commun. ACM 36, 6 (jun 1993), 78–85. https://doi.org/10.1145/153571.163278

[32] Patricia Lasserre and Carolyn Szostak. 2011. Efects of Team-Based Learning on
a CS1 Course. In Proceedings of the 16th Annual Joint Conference on Innovation
and Technology in Computer Science Education (Darmstadt, Germany) (ITiCSE
’11). Association for Computing Machinery, New York, NY, USA, 133–137. https:
//doi.org/10.1145/1999747.1999787

[33] Celine Latulipe, N. Bruce Long, and Carlos E. Seminario. 2015. Structuring Flipped
Classes with Lightweight Teams and Gamifcation. In Proceedings of the 46th
ACM Technical Symposium on Computer Science Education (Kansas City, Missouri,
USA) (SIGCSE ’15). Association for Computing Machinery, New York, NY, USA,
392–397. https://doi.org/10.1145/2676723.2677240

[34] Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser. 2017. Ethnography.
In Research Methods in Human Computer Interaction (Second Edition) (second
edition ed.), Jonathan Lazar, Jinjuan Heidi Feng, and Harry Hochheiser (Eds.).

1261

https://doi.org/10.1371/journal.pone.0221765
https://doi.org/10.1371/journal.pone.0221765
https://doi.org/10.1109/PCI.2010.13
https://doi.org/10.1109/PCI.2010.13
https://doi.org/10.1145/1089786.1089794
https://doi.org/10.1145/3569895
https://doi.org/10.1145/1384271.1384315
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1080/14780887.2020.1769238
https://doi.org/10.1016/j.jss.2012.08.039
https://doi.org/10.1177/104649649903000404
https://doi.org/10.1145/2538862.2538943
https://doi.org/10.1145/2538862.2538943
https://doi.org/10.1145/1344471.1344515
https://doi.org/10.1145/1344471.1344515
https://doi.org/10.1027/1866-5888/a000076
https://doi.org/10.1027/1866-5888/a000076
https://doi.org/10.1016/j.ijcci.2021.100353
https://doi.org/10.1016/j.ijcci.2021.100353
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1007/978-1-4020-9827-7_1
https://doi.org/10.1007/978-1-4020-9827-7_1
https://doi.org/10.1207/s15327809jls1501_9
https://doi.org/10.1037/0033-295X.100.3.363
https://doi.org/10.1145/2591708.2591715
https://doi.org/10.1145/2389176.2389194
https://doi.org/10.3991/ijep.v10i2.11886
https://doi.org/10.3991/ijep.v10i2.11886
https://doi.org/10.1007/978-1-4419-5546-3_2
https://doi.org/10.3115/222020.222126
https://doi.org/10.3115/222020.222126
https://doi.org/10.4324/9781315697048-6
https://doi.org/10.4324/9781315697048-6
https://doi.org/10.1016/j.ijcci.2014.06.001
https://doi.org/10.1007/s11423-014-9358-1
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/153571.163278
https://doi.org/10.1145/1999747.1999787
https://doi.org/10.1145/1999747.1999787
https://doi.org/10.1145/2676723.2677240

Supporting Collaboration in Programming Classes Taught in Hybrid Mode DIS ’23, July 10–14, 2023, Pitsburgh, PA, USA

Morgan Kaufmann, Boston, 229–261. https://doi.org/10.1016/B978-0-12-805390-
4.00009-1

[35] Ally Limke, Nicholas Lytle, Maggie Lin, Sana Mahmoud, Marnie Hill, Veronica
Cateté, and Tifany Barnes. 2023. Empowering Students as Leaders of Co-Design
for Block-Based Programming. In Extended Abstracts of the 2023 CHI Conference
on Human Factors in Computing Systems (Hamburg, Germany) (CHI EA ’23).
Association for Computing Machinery, New York, NY, USA, Article 98, 7 pages.
https://doi.org/10.1145/3544549.3585775

[36] Dastyni Loksa and Amy J. Ko. 2016. The Role of Self-Regulation in Programming
Problem Solving Process and Success. In Proceedings of the 2016 ACM Conference
on International Computing Education Research (Melbourne, VIC, Australia) (ICER
’16). Association for Computing Machinery, New York, NY, USA, 83–91. https:
//doi.org/10.1145/2960310.2960334

[37] Andrew Luxton-Reilly, Simon, Ibrahim Albluwi, Brett A. Becker, Michail Gi-
annakos, Amruth N. Kumar, Linda Ott, James Paterson, Michael James Scott,
Judy Sheard, and Claudia Szabo. 2018. Introductory Programming: A Systematic
Literature Review. In Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education (Larnaca, Cyprus)
(ITiCSE 2018 Companion). Association for Computing Machinery, New York, NY,
USA, 55–106. https://doi.org/10.1145/3293881.3295779

[38] Yifan Ma, Batu Qi, Wenhua Xu, Mingjie Wang, Bowen Du, and Hongfei Fan.
2022. Integrating Real-Time and Non-Real-Time Collaborative Programming:
Workfow, Techniques, and Prototypes. Proc. ACM Hum.-Comput. Interact. 7,
GROUP, Article 13 (dec 2022), 19 pages. https://doi.org/10.1145/3567563

[39] Matthew B Miles, A Michael Huberman, and Johnny Saldaña. 2019. Qualitative
data analysis: A methods sourcebook. https://us.sagepub.com/en-us/nam/
qualitative-data-analysis/book246128

[40] Tanya Nazaretsky, Carmel Bar, Michal Walter, and Giora Alexandron. 2022.
Empowering Teachers with AI: Co-Designing a Learning Analytics Tool for
Personalized Instruction in the Science Classroom. In LAK22: 12th Interna-
tional Learning Analytics and Knowledge Conference (Online, USA) (LAK22).
Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3506860.3506861

[41] Thomas Neumayr, Mirjam Augstein, and Bettina Kubicek. 2022. Territoriality in
Hybrid Collaboration. Proc. ACM Hum.-Comput. Interact. 6, CSCW2, Article 332
(nov 2022), 37 pages. https://doi.org/10.1145/3555224

[42] Thomas Neumayr, Hans-Christian Jetter, Mirjam Augstein, Judith Friedl, and
Thomas Luger. 2018. Domino: A Descriptive Framework for Hybrid Collaboration
and Coupling Styles in Partially Distributed Teams. Proc. ACM Hum.-Comput.
Interact. 2, CSCW, Article 128 (nov 2018), 24 pages. https://doi.org/10.1145/
3274397

[43] Meike Osinski and Nikol Rummel. 2019. Towards Successful Knowledge Integra-
tion in Online Collaboration: An Experiment on the Role of Meta-Knowledge.
Proc. ACM Hum.-Comput. Interact. 3, CSCW, Article 31 (nov 2019), 17 pages.
https://doi.org/10.1145/3359133

[44] David Preston. 2005. PAIR Programming as a Model of Collaborative Learning:
A Review of the Research. J. Comput. Sci. Coll. 20, 4 (apr 2005), 39–45.

[45] Yizhou Qian and James Lehman. 2017. Students’ Misconceptions and Other
Difculties in Introductory Programming: A Literature Review. ACM Trans.
Comput. Educ. 18, 1, Article 1 (oct 2017), 24 pages. https://doi.org/10.1145/3077618

[46] Shanon Reckinger and Bryce Hughes. 2020. Strategies for Implementing In-Class,
Active, Programming Assessments: A Multi-Level Model. In Proceedings of the
51st ACM Technical Symposium on Computer Science Education (Portland, OR,
USA) (SIGCSE ’20). Association for Computing Machinery, New York, NY, USA,
454–460. https://doi.org/10.1145/3328778.3366850

[47] Teodoro F. Revano and Manuel B. Garcia. 2021. Designing Human-Centered
Learning Analytics Dashboard for Higher Education Using a Participatory Design
Approach. In 2021 IEEE 13th International Conference on Humanoid, Nanotech-
nology, Information Technology, Communication and Control, Environment, and
Management (HNICEM). IEEE, Manila, Philippines, 1–5. https://doi.org/10.1109/
HNICEM54116.2021.9731917

[48] María Rodríguez-Triana, Alejandra Martínez-Monés, Juan Asensio-Pérez, and
Yannis Dimitriadis. 2012. Towards a Monitoring-Aware Design Process for CSCL
Scripts. In Collaboration and Technology, Vol. 7493. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-33284-5_21

[49] Jeremy Roschelle and Stephanie D. Teasley. 1995. The Construction of Shared
Knowledge in Collaborative Problem Solving. In Computer Supported Collabora-
tive Learning (NATO ASI Series), Claire O’Malley (Ed.). Springer, Berlin, Heidel-
berg, 69–97. https://doi.org/10.1007/978-3-642-85098-1_5

[50] Stephan Salinger, Christopher Oezbek, Karl Beecher, and Julia Schenk. 2010. Saros:
An Eclipse Plug-in for Distributed Party Programming. In Proceedings of the 2010
ICSE Workshop on Cooperative and Human Aspects of Software Engineering (Cape
Town, South Africa) (CHASE ’10). Association for Computing Machinery, New
York, NY, USA, 48–55. https://doi.org/10.1145/1833310.1833319

[51] Gavriel Salomon. 1992. New Challenges for Educational Research: studying the
individual within learning environments. Scandinavian Journal of Educational
Research 36, 3 (1992), 167–182. https://doi.org/10.1080/0031383920360301

[52] Elizabeth B.-N. Sanders and Pieter Jan Stappers. 2008. Co-creation and the
new landscapes of design. CoDesign 4, 1 (2008), 5–18. https://doi.org/10.1080/
15710880701875068

[53] Stacey D. Scott, M. Sheelagh T. Carpendale, and Kori Inkpen. 2004. Territoriality
in Collaborative Tabletop Workspaces. In Proceedings of the 2004 ACM Conference
on Computer Supported Cooperative Work (Chicago, Illinois, USA) (CSCW ’04).
Association for Computing Machinery, New York, NY, USA, 294–303. https:
//doi.org/10.1145/1031607.1031655

[54] Judy Sheard, S. Simon, Margaret Hamilton, and Jan Lönnberg. 2009. Analysis
of Research into the Teaching and Learning of Programming. In Proceedings
of the Fifth International Workshop on Computing Education Research Workshop
(Berkeley, CA, USA) (ICER ’09). Association for Computing Machinery, New York,
NY, USA, 93–104. https://doi.org/10.1145/1584322.1584334

[55] Joanna Smith, Joe Tessler, Elliot Kramer, and Calvin Lin. 2012. Using Peer Review
to Teach Software Testing. In Proceedings of the Ninth Annual International Con-
ference on International Computing Education Research (Auckland, New Zealand)
(ICER ’12). Association for Computing Machinery, New York, NY, USA, 93–98.
https://doi.org/10.1145/2361276.2361295

[56] Angela E.B. Stewart, Hana Vrzakova, Chen Sun, Jade Yonehiro, Cathlyn Adele
Stone, Nicholas D. Duran, Valerie Shute, and Sidney K. D’Mello. 2019. I Say, You
Say, We Say: Using Spoken Language to Model Socio-Cognitive Processes during
Computer-Supported Collaborative Problem Solving. Proc. ACM Hum.-Comput.
Interact. 3, CSCW, Article 194 (nov 2019), 19 pages. https://doi.org/10.1145/
3359296

[57] Stephanie D. Teasley. 1997. Talking About Reasoning: How Important Is the
Peer in Peer Collaboration? In Discourse, Tools and Reasoning: Essays on Situated
Cognition, Lauren B. Resnick, Roger Säljö, Clotilde Pontecorvo, and Barbara
Burge (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 361–384. https:
//doi.org/10.1007/978-3-662-03362-3_16

[58] April Yi Wang, Yan Chen, John Joon Young Chung, Christopher Brooks, and Steve
Oney. 2021. PuzzleMe: Leveraging Peer Assessment for In-Class Programming
Exercises. Proc. ACM Hum.-Comput. Interact. 5, CSCW2, Article 415 (oct 2021),
24 pages. https://doi.org/10.1145/3479559

[59] Jeremy Warner and Philip J. Guo. 2017. CodePilot: Scafolding End-to-End
Collaborative Software Development for Novice Programmers. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (Denver,
Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY,
USA, 1136–1141. https://doi.org/10.1145/3025453.3025876

[60] Benjamin Xie, Dastyni Loksa, Greg L. Nelson, Matthew J. Davidson, Dongsheng
Dong, Harrison Kwik, Alex Hui Tan, Leanne Hwa, Min Li, and Amy J. Ko. 2019.
A theory of instruction for introductory programming skills. Computer Science
Education 29, 2-3 (2019), 205–253. https://doi.org/10.1080/08993408.2019.1565235

[61] Soonja Yeom, Nicole Herbert, and Riseul Ryu. 2022. Project-Based Collaborative
Learning Enhances Students’ Programming Performance. In Proceedings of the
27th ACM Conference on on Innovation and Technology in Computer Science Edu-
cation Vol. 1 (Dublin, Ireland) (ITiCSE ’22). Association for Computing Machinery,
New York, NY, USA, 248–254. https://doi.org/10.1145/3502718.3524779

[62] Kimberly Michelle Ying and Kristy Elizabeth Boyer. 2020. Understanding Stu-
dents’ Needs for Better Collaborative Coding Tools. In Extended Abstracts of the
2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–8.
https://doi.org/10.1145/3334480.3383068

[63] Saijing Zheng, Mary Beth Rosson, Patrick C. Shih, and John M. Carroll. 2015.
Designing MOOCs as Interactive Places for Collaborative Learning. In Proceedings
of the Second (2015) ACM Conference on Learning @ Scale (Vancouver, BC, Canada)
(L@S ’15). Association for Computing Machinery, New York, NY, USA, 343–346.
https://doi.org/10.1145/2724660.2728689

1262

https://doi.org/10.1016/B978-0-12-805390-4.00009-1
https://doi.org/10.1016/B978-0-12-805390-4.00009-1
https://doi.org/10.1145/3544549.3585775
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/2960310.2960334
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3567563
https://us.sagepub.com/en-us/nam/qualitative-data-analysis/book246128
https://us.sagepub.com/en-us/nam/qualitative-data-analysis/book246128
https://doi.org/10.1145/3506860.3506861
https://doi.org/10.1145/3506860.3506861
https://doi.org/10.1145/3555224
https://doi.org/10.1145/3274397
https://doi.org/10.1145/3274397
https://doi.org/10.1145/3359133
https://doi.org/10.1145/3077618
https://doi.org/10.1145/3328778.3366850
https://doi.org/10.1109/HNICEM54116.2021.9731917
https://doi.org/10.1109/HNICEM54116.2021.9731917
https://doi.org/10.1007/978-3-642-33284-5_21
https://doi.org/10.1007/978-3-642-85098-1_5
https://doi.org/10.1145/1833310.1833319
https://doi.org/10.1080/0031383920360301
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1080/15710880701875068
https://doi.org/10.1145/1031607.1031655
https://doi.org/10.1145/1031607.1031655
https://doi.org/10.1145/1584322.1584334
https://doi.org/10.1145/2361276.2361295
https://doi.org/10.1145/3359296
https://doi.org/10.1145/3359296
https://doi.org/10.1007/978-3-662-03362-3_16
https://doi.org/10.1007/978-3-662-03362-3_16
https://doi.org/10.1145/3479559
https://doi.org/10.1145/3025453.3025876
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/3502718.3524779
https://doi.org/10.1145/3334480.3383068
https://doi.org/10.1145/2724660.2728689

	Abstract
	1 Introduction
	2 Literature Review
	2.1 Introductory Programming
	2.2 Collaborative Learning And Regulation
	2.3 Collaborative Working In Programming Learning
	2.4 Collaborative Coding Environments

	3 Study Context
	4 Methodology
	4.1 Participants and Recruitment
	4.2 Participatory Design Workshop
	4.3 Data Collection
	4.4 Data Analysis Method

	5 Findings
	5.1 Programming Collaboratively In A Hybrid Setting
	5.2 Challenges Faced In Hybrid Collaboration For Programming
	5.3 Participatory Designs

	6 Discussion
	6.1 Regulating hybrid collaboration in programming environments
	6.2 Design considerations for collaboration in programming environments

	7 Limitations
	8 Conclusion
	Acknowledgments
	References

