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Convolutional neural networks (CNNs) have shown promising results and have outperformed classical

machine learning techniques in tasks such as image classification and object recognition. Their human-brain

like structure enabled them to learn sophisticated features while passing images through their layers. How-

ever, their lack of explainability led to the demand for interpretations to justify their predictions. Research

on Explainable AI or XAI has gained momentum to provide knowledge and insights into neural networks.

This study summarizes the literature to gain more understanding of explainability in CNNs (i.e., Explainable

Convolutional Neural Networks). We classify models that made efforts to improve the CNNs interpretation.

We present and discuss taxonomies for XAI models that modify CNN architecture, simplify CNN represen-

tations, analyze feature relevance, and visualize interpretations. We review various metrics used to evaluate

XAI interpretations. In addition, we discuss the applications and tasks of XAI models. This focused and exten-

sive survey develops a perspective on this area by addressing suggestions for overcoming XAI interpretation

challenges, like models’ generalization, unifying evaluation criteria, building robust models, and providing

interpretations with semantic descriptions. Our taxonomy can be a reference to motivate future research in

interpreting neural networks.
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ologies → Artificial intelligence; Machine learning; Computer vision;
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1 INTRODUCTION

Convolutional neural networks have a complicated architecture described as black-box. There is a
lack of transparency in their internal mechanism. Therefore, it is hard for humans to understand
the reason behind making a certain decision [1–3]. The absence of human interaction can impact
trust in applications like autonomous cars [4]. For instance, it is crucial to explain to passengers
when a vehicle suddenly changes lanes or reduces speed. In addition, providing explanations in
convolutional neural networks can help AI experts know when a model succeeds or fails. Moreover,
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Fig. 1. Tree classification explanations [7].

regulators can use these explanations to detect unfaithful AI systems like biased decisions against
gender, race, or age.

Therefore, explainable AI or XAI was presented to improve the explainability and inter-
pretability in convolutional neural networks [5]. We refer to such works as Explainable Convo-
lutional Neural Networks. Building explainable neural networks can provide valuable insights to
end-users. Since human skills prefer visual data, explaining CNNs can be less complex than other
models [5]. Meanwhile, some issues related to XAI models were addressed in the literature, like the
need to identify the level of explanations provided in CNNs and the feasibility of embedding mod-
els like decision trees and linear regression in neural networks [6]. Additionally, providing various
levels of explanations to stakeholders is critical [2, 5]. For example, providing technical details for
end-users can be overwhelming. Whereas providing abstract explanations can make the model
less transparent and impact the end-user trust. To demonstrate different levels of explanations,
we analyze the explanations in the image and tabular classification tasks. In image classification,
XAI models generate class activation maps to explain CNNs and interpret their decisions. These
activation maps are useful for developers and end-users. Let us review the study that increased
agricultural sustainability by identifying plants in Taipei, Taiwan [7]. In this study, the authors
classified a dataset of 2,332 images with 14 tree species. Most of the tree images were captured
with buildings in the background, as shown in the left column of Figure 1.

Therefore, despite having an accuracy of 74% on the InceptionV3 network, XAI activation maps
successfully uncovered the bias in the CNN decision and showed that the CNN was looking at
the building, not the tree itself, as shown in the middle column of Figure 1. These activation maps
are useful for the developer to mitigate the bias in training data by adding tree images without
buildings in the background. The right column represents the unbiased activation maps after fixing
the training data. We can notice that the CNN in the right column focused on the tree, not the
building in the background. After mitigating the bias in training data, the activation map explains
the CNN decision to the end-user. In addition, some efforts were made to add a higher level of
explanation to the activation maps by providing semantics that helped the end-user identify some
object parts [8].
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Fig. 2. Explanation levels for loan approval [9].

In tabular classification, textual feedback is provided to the end-user to explain the decision
made by the classifier. Let us study a classifier that takes a loan application and decides if the
loan is approved or rejected [9]. Providing the bank client with simple feedback (i.e., approved
or rejected) can impact the trust in the system since the client has the right to know the reason
behind this decision [10]. Therefore, XAI models like SHAP [11] can provide counterfactual ex-
planations that justify the classifier’s decision. The XAI model identifies the important features
which contributed to this decision. After that, it calculates the minimum change required to flip
the classifier’s decision [10]. In Figure 2, we can notice that the first row provides simple feedback.
The second row is a higher-level explanation generated by the XAI model. This explanation shows
the decision in addition to the feature margins that can flip the decision. For instance, if the bank
approves the loan application, the classifier shows features that could lead to rejection. In contrast,
if the bank rejects the loan application, the classifier shows features that could lead to acceptance
in the future. Therefore, these explanations help the client avoid certain issues that can cause re-
jection (e.g., Net fraction revolving burden of 55, Net fraction install burden of 93, Percent trades
with a balance of 68). In contrast, explanations help the client fix some issues that can cause future
approval (e.g., M since oldest trade open of 161, Num satisfactory trades of 36, Net fraction install
burden of 38). The last row shows bar charts with feature increments/decrements required to flip
the classifier’s decision. This explanation level is overwhelming for the bank client as the plots
are hard to interpret. Another issue is the lack of collaboration between software engineering and
human-computer interaction (HCI) to build neural networks that provide explanations like
contrastive, selective, conversational, and counterfactual explanations [1, 5, 6].

Current XAI models are still in their infancy stage. Therefore, they are not adopted widely in
real-life applications. However, XAI experiments proved to have promising results in areas like
self-driving cars, marketing, and bias detection [1, 6, 12]. For instance, autonomous vehicles can
provide explanations along with their decisions. Voice or textual feedback can explain the reason
for changing the vehicle’s direction. In bias detection, the XAI model can identify the image pixels
the CNN was looking to predict the class. For example, it was shown that the network trained to
classify wolves and husky dogs relied on snow in the background, not on the features of a wolf or
a dog. Most of the wolves’ images in training data had snow in the background, which caused a
bias and led to misclassifying a husky dog with a snowy background as a wolf [13]. Furthermore,
XAI models were used in 3D action recognition, visual question answering, image classification,
and image captioning [14, 15].
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XAI models in convolutional neural networks can fall under an umbrella of two categories, in-
terpreting the CNN decision and interpreting the CNN architecture. For decision interpretation,
XAI models apply forward or backward passes to highlight significant parts in the input image,
which leads to the predicted class. However, in the architecture interpretation, XAI models ac-
cess the network layers and analyze their behavior. Moreover, XAI models in the two categories
adopt various approaches to interpreting CNNs. This survey will discuss methods like architecture
modification, CNN simplification, feature relevance, and visualization. We conducted this survey
to summarize XAI models applied to convolutional neural networks. Previous surveys focused on
reviewing XAI taxonomy, evaluation metrics, and application areas. However, they lacked a de-
tailed analysis of XAI in convolutional neural networks. Therefore, we believe that this is the first
specialized survey that studies XAI in CNNs. To address this knowledge gap, we proposed this
survey with the following contributions:

(1) We conducted a structured search method and significant terms analysis to study the trend
of XAI publications over the past years.

(2) We introduced a novel hierarchical taxonomy for XAI models that interpreted convolu-
tional neural networks.

(3) We identified the structure, scope, and dependence for each XAI model we reviewed.
(4) We highlighted the correlations among XAI models in CNNs by building a Sankey chart

that maps XAI taxonomy with structure, scope, and dependence.
(5) We discussed challenges that face XAI models in convolutional neural networks. In addi-

tion, we proposed some future directions to improve XAI models and address the research
gaps.

Paper Organization: The remaining of the paper is organized as follows. Section 2 discusses
our structured search method. Section 3 describes the XAI background. The XAI taxonomy for
convolutional neural networks is presented in Section 4. Section 5 discusses the XAI evaluation
metrics in convolutional neural networks. Section 6 discusses the application areas of XAI in con-
volutional neural networks. Section 7 discusses gaps and limitations in the existing XAI models
and presents some future directions. Conclusions and closing remarks are drawn in Section 8.

2 RELATED EFFORTS

2.1 Search Query

The primary goal of this survey is to study XAI models in convolutional neural networks. There-
fore, we investigate areas like XAI taxonomy, evaluation metrics, applications, and existing re-
search gaps. We started by identifying the keywords for our search. We used combinations of
three terms, “explainable”, “interpretable”, and “convolutional neural networks”. The search was
conducted on Google Scholar and Scopus databases to explore relevant publishers, conferences,
and journals. The search query was built with combinations of the three terms since previous
studies used different terminologies to describe XAI.

2.2 Selection Criteria

In our search process, we excluded papers with the following criteria:

(1) Papers that are not in the English language
(2) XAI Papers not related to convolutional neural networks
(3) Papers implementing XAI models on a specific domain
(4) Papers that lack a full text or are not accessible
(5) Short papers
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Fig. 3. XAI publications trend in the last two decades.

For the inclusion, we had the following criteria:

(1) Relevant full papers
(2) Relevant in progress papers (arXiv)

In the search process, an initial screening was applied as a first filter to exclude non-relevant
papers. After that, another screening was done by reading sections like abstract, methodology, and
conclusion. The search was conducted in February 2021 and returned 56 relevant publications.

2.3 XAI Publications Trend in Past Few Years

To highlight the growing attention to explainable AI, we analyzed the publications in the past
few years. In this analysis, we used the Web of Science academic database as a source of our
analysis. To cover all possible terms of XAI, we used various keywords in the search engine. The
five keywords we searched for were “XAI”, “Explainable AI”, “Interpretable AI”, “Explainable ML”,
and “Interpretable ML”. After that, we analyzed the search query results.

We summarized the number of publications in the last 20 years (i.e., 2000 to 2021). Figure 3
shows the trend of XAI publications over the last two decades. We can observe the hike in XAI
publications from 2018 to 2020. Therefore, it is evident that explainability and interpretability
in Artificial Intelligence are attracting more researchers. Hence, there is a need for transpar-
ent AI systems that deliver faithful decisions, preserve users’ privacy, and promote our com-
munity. Moreover, we highlighted the significant terms in relevant publications. We exported
the abstracts from 2018 to 2021 using the Web of Science academic database. In addition, we
identified the following key terms, “XAI CNN”, “XAI deep learning”, “XAI convolutional neu-
ral network”, “explainable CNN”, “explainable deep learning”, “explainable convolutional neural
network”, “interpretable CNN”, “interpretable deep learning”, and “interpretable convolutional
neural network”. After that, we used the exported text file to build a word cloud that visual-
izes frequent terms in the abstracts, as shown in Figure 4. We can notice some interesting terms
in this figure. For instance, the “image” term was highly recurrent in the abstracts. We believe
that it is due to the images being the type of data CNNs use to make predictions. Another
interesting term is “classification”, which represents the image classification task. We believe this
recurrence is because most interpretable CNN models were evaluated based on image and text
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Fig. 4. Word Cloud for relevant terms in papers abstracts.

classification more than other applications. Another interesting recurrent term is “feature”. We
believe that this term represents the feature maps in CNNs. Apparently, XAI models relied on
CNN features to interpret their prediction. The term “human” highlights the demand for CNN
interpretations that involve humans in the loop. The terms “technique”, “system”, “algorithm”,
“model”, and “approach” describes synonyms for the prototype that interprets CNNs.

3 XAI BACKGROUND

In this section, we discuss various XAI terms and definitions. Also, we review taxonomies adopted
in previous studies.

3.1 XAI Concepts and Terminology

AI systems can be explainable by nature (intrinsic) or by adding supplementary XAI models (post-
hoc) [12]. Explainability was defined as the interface that provides explanations to humans. How-
ever, interpretability was defined as the cognition of these explanations [5]. Therefore, XAI models
should provide explanations that are interpretable and perceivable [16]. Moreover, XAI explana-
tions are hard to generalize due to different domains and stakeholders (e.g., end-users, AI experts).
Therefore, people of various disciplines like computer scientists, HCI, and social scientists need to
collaborate to generate explanations with proper levels [1, 3, 5, 17]. AI experts can receive tech-
nical explanations for the model. Meanwhile, end-users can receive explanations for the decision
made by the model.

Despite the increasing acceptance of AI systems, users still lack the human awareness of un-
derstanding their nature [16]. For instance, some users linked AI systems to robots and did not
consider recommendation systems as AI. This knowledge gap should motivate XAI models to
provide human-friendly explanations [12]. These explanations can be contrastive, conversational,
selective, and counterfactual [1]. Moreover, XAI explanations should comply with AI principles
described in the European General Data Protection Regulation (GDPR) [1, 5]. The purpose of
these principles is to provide XAI explanations that preserve AI systems’ faithfulness by detecting
biased decisions. Additionally, XAI explanations should protect the privacy of AI systems besides
improving their performance.
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3.2 XAI Models Categorization

Previous studies categorized XAI models using various criteria. They relied on factors like scope,
structure, dependence, and dataset. For structure, XAI models could be a part of the network (i.e.,
intrinsic) or could be attached to explain the network (i.e., post-hoc) [12, 18]. For example, intrinsic
XAI models could embed autoencoders in convolutional neural networks to interpret them [19, 20].
For the scope, the XAI model could access the data to provide explanations (i.e., local) or analyze the
network behavior (i.e., global) [1, 6, 12]. Local models accessed individual instances while global
models studied the network architecture as a black box. For the dependence criteria, some XAI
models were designed to work with specific AI systems (i.e., model-specific), while other models
could generalize across several networks (i.e., model-agnostic) [6, 12]. For the dataset, XAI models
could explain different data types, such as images, text, and tabular data [5]. For instance, XAI
models produced saliency maps to explain image data. Meanwhile, they used other approaches
like feature importance and visual plots to explain correlations among tabular data features.

Other studies categorized AI systems based on the existence of XAI models [3]. For instance,
the black-box criteria indicated that the model was not transparent such as neural networks. The
grey-box criteria meant that the XAI model was attached to the AI system. The white-box criteria
indicated that the AI system was transparent, like linear regression and decision trees. Further-
more, some studies categorized XAI models based on the AI system deepness [5]. For instance,
shallow XAI models existed in interpretable AI systems like linear and logistic regression. Rule-
Fit [21] interpreted regression tasks by building new decision rules and ranking them based on
their importance. In contrast, other XAI models interpreted regression tasks by calculating each
feature’s contribution to the class prediction [22, 23]. These models could explore the relation-
ship between features and the average prediction by plotting their significance value (positive vs.
negative). Semi-shallow XAI models were used with Random Forest (RF) and Support Vector

Machine (SVM) [5]. The models in this area adopted approaches like architecture simplification
and feature relevance. For instance, Hyper-rectangle Rule Extraction (HRE) applied clustering
to generate prototypes for class samples [24]. They interpreted SVM by constructing hyperrectan-
gle rules. For the deep XAI models, multiple models were proposed to interpret neural networks.
In the upcoming sections, we review XAI models applied to convolutional neural networks.

4 XAI TAXONOMY IN CNNS

Convolutional neural networks (CNNs) are achieving significant advancements in the field of
computer vision. CNNs can perform tasks like image classification, object detection, face recogni-
tion, and semantic segmentation [25]. They have an architecture that mimics the human brain. By
forward passing through hundreds of convolutional layers and pooling layers, they can incremen-
tally learn high-level features of an object [26]. In the end, fully connected layers map features with
output class scores. Despite these achievements, the sophisticated structure of CNNs limited the
ability to explore their internal representation and understand the reasons behind their decisions.
Therefore, there is an increasing demand for CNNs explainability in computer vision areas like
autonomous vehicles. In this survey, we analyze the latest research in explaining and interpreting
CNNs. We taxonomize the literature in this area and discuss each category. After that, we discuss
adopted qualitative and quantitative evaluation metrics and describe the applications of explain-
able CNNs. Finally, we identify the research gaps and propose some future directions. Previous
studies related to explaining CNNs can be categorized as decision models and architecture models
[5]. Decision models interpreted the CNN by applying backpropagation and mapping the predicted
class with corresponding pixels in the input image. These models could identify the parts of an
image that mostly contributed to the network decision. Meanwhile, architecture models explored
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the network and analyzed the mechanism of layers and neurons. Decision models can be further
divided into two subcategories, feature relevance, and visual explanation. Moreover, architecture
models can be further divided into two subcategories, architecture modification, and architecture
simplification. This survey considers the four subcategories as a taxonomy to categorize CNN
explainable models in convolutional neural networks.

4.1 Architecture Modification

Explainable models in this category modify the CNNs architecture to improve their inter-
pretability. This modification can replace some CNN parts like layers and loss functions or add
new components to the CNN network like attention layers, autoencoders, and deconvolutional
layers.

Various types of attention mechanisms were incorporated into CNNs architecture. Global-and-

local attention (GALA) was integrated with neural networks like ResNet-50 to produce attention
activity maps [27]. GALA could identify the important parts and features in the object by learn-
ing local saliency and global context. ClickMe.ai tool proved that interpretable visual features in
GALA were like human features. In this tool, participants could interact with an image recogni-
tion task before and after applying GALA. ClickMe maps showed that the classification error in
GALA was less than in state-of-art neural networks. The selection of network layers that need to
use GALA could be challenging. There is a need for systematic analysis to identify the optimal
layers and features to be selected. Moreover, GALA performed qualitative analysis and adopted
a human-in-the-loop approach. However, there was a lack of quantitative analysis for attention
activity maps like object localization. Attention mechanisms like DomainNet [28] considered two
levels to enhance classification, object-level and part-level. The model aimed to find object parts
to extract features. The object-level prediction followed top-down attention, while part-level pre-
diction followed bottom-up attention. The model produced object-level predictions by converting
a pre-trained CNN to FilterNet, a network that selected patches and then passed them to train
another CNN called DomainNet. For part-level predictions, a part-based network was adopted.
The DomainNet model did not use various layers in CNN to detect object parts. Therefore, dif-
ferent layers filters should be included to build a robust part-level prediction. Residual attention
network [29] stacked attention modules inside networks like Inception and ResNeXt to produce
attention-aware features. Each attention module (i.e., residual unit) consisted of a mask branch and
trunk branch. The mask branch improved the trunk branch by applying top-down and bottom-up
feedforward to weight output features. The trunk branch applied feature processing. The model
proved that classification accuracy improved by adding more stacks of attention modules. Despite
the accuracy improvement, there was a lack of complexity analysis to measure the cost of adding
more residual attention stacks to the CNN.

Unlike previous attention mechanisms, Loss-based attention [30] did not add attention layers to
CNN. It used the same CNN parameters to identify parts of the image that explain the CNN deci-
sion. The model connected with the CNN loss function by sharing parameters with fully connected
layers. Moreover, it dropped the max-pooling layer to maintain spatial relationships among differ-
ent patches. Furthermore, a new version of loss-function attention was proposed by replacing fully
connected layers with two capsule layers. Experiments proved that loss-attention outperformed
state-of-art networks in terms of classification accuracy, object localization, and saliency maps
quality. A drawback of this method is that it could not locate multiple objects from the same class.
Besides attention mechanisms in image classification, D-Attn [31] used text reviews to learn the
features of users and items and predict their ratings. The model trained two CNNs, a user network,
and an item network. Attention layers were added before convolutional layers in these networks.
This dual architecture generated local attention maps for user preferences and item properties, and
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global attention maps for the semantic of the entire user review. D-Attn improved the prediction
accuracy and visualized words with high attention scores. A promising approach is to apply D-
Attn to LSTM for long-range text reviews. Some studies replaced components of CNN architecture
to improve their interpretability.

ALL-CNN [32] replaced max-pooling layers with increased stride convolutional layers. The size
of the stride was set to 2 × 2 to reduce the network dimensionality. The authors argued that max-
pooling could reduce overfitting and regularize the CNN, but it did not provide the desired result
on small datasets. Moreover, they proved that using max-pooling layers was not essential for train-
ing large CNNs. The model used deconvolutional layers and guided backpropagation to generate
saliency maps. However, choosing to drop or keep max-pooling layers is challenging as it depends
on several factors, such as domain area, dataset, and network architecture. NIN [33] replaced con-
volutional layers and linear filters with a micro neural network. They argued that the level of
spatial invariance in convolutional layers is low. The micro convolutional layers (i.e., mlpconv

layers) had multiple fully connected layers with non-linear activation functions. NIN used the
same approach of the convolutional layers window sliding. Therefore, each “mlpconv” layer used
this approach to generate its feature map. After that, the averaged feature map was passed to the
average pooling layer, and the output vector was sent to a SoftMax function. Their experiments
proved that NIN had less accuracy than state-of-art networks, but its saliency maps were more
interpretable. The experiments focused on classification accuracy and did not highlight the inter-
pretability aspect. In addition, saliency maps were not evaluated in terms of class discrimination
and object localization. CSG [34] replaced CNN filters with class-specific filters to avoid the over-
lapping of filters and classes. The model built a class-specific gate by assigning each filter in the
last convolutional layer with one or more classes. They argued that transforming filters into a
class-specific form could improve the interpretability of CNN decisions. They modified ResNet
architecture to a CSG network and proved that it improved the classification accuracy, object lo-
calization, and saliency maps quality. Unlike previous models that focused on image classification,
CSG evaluated the network robustness against adversarial examples. The classification drop for
CSG was less than state-of-art networks. CSG model was evaluated on one type of CNNs (i.e.,
ResNet). Therefore, it is not evident if the model can be generalized across other types of CNNs.
Attribute Estimation [35] added fully connected layers to CNN intermediate layers. The purpose
was to apply attributes estimation to improve the interpretability of CNN. The task of generated
attributes was to connect visual features with class information. Attribute Estimation improved
the classification accuracy of the Inception-V3 network. However, adding extra layers and gener-
ating multiple attributes can impact the complexity of the neural network. Reducing the number
of attributes should be carefully considered.

A different approach was to modify the CNN loss function to improve interpretability. Inter-
pretable CNN [36] added the loss of feature map to all filters in the last convolutional layer. The
purpose was to enforce each filter to encode distinct object parts. Therefore, this model did not
require any annotations for object parts. Interpretable CNN outperformed state-of-art networks in
terms of object localization and location instability. However, the single-class classification accu-
racy was lower than state-of-art networks. Therefore, there was a trade-off between accuracy and
explainability in this model. Dynamic-K Activation [37] modified stochastic gradient descent

(SGD) to interpret CNN. The model adopted a capsule NN EM routing approach and proposed
an alternate optimization function called adaptive activation thresholding. The ResNet network
was modified and trained using Dynamic-K Activation. Dynamic-K had a comparable classifica-
tion accuracy and outperformed traditional ResNet in terms of interpretability and saliency maps
quality. However, the Dynamic-K Activation model was evaluated on one network (i.e., ResNet).
Therefore, it is not evident if the model can be generalized across other types of CNNs.
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SAD/FAD [38] proposed spatial activation diversity loss functions to make CNN more discrimi-
native. Two loss functions, spatial activation diversity (SAD) and feature activation diversity

(FAD) were applied to two different CNNs to recognize faces. SAD loss function enhanced struc-
tured feature responses, while the FAD loss function made responses insensitive to occlusions.
Visualizing the average location of the filter on the face image proved the high consistency of re-
sponses over various face poses. In this model, CASIA-Net and ResNet-50 were trained as branches
of a Siamese network. By using combinations of networks as branches, the model can prove if it
can generalize across other types of CNNs. FBI [39] proposed the forward-backward interaction
activation loss function as a regularization function. This loss function helped CNNs to be more
interpretable. Unlike traditional CNNs that performed only a forward pass, the FBI trained CNN
by making forward pass, computing pass, and backward pass. In each pass, the sum of layer-wise
differences between neuron activations was calculated. Qualitative experiments proved that the
FBI enabled CNN to learn significant regions of the image. For quantitative experiments, the FBI
had higher confidence and lower confusion than state-of-art networks. Moreover, the network
computation for performing three passes could be significant. Therefore, conducting a complexity
analysis for the FBI model can prove its effectiveness and generalization.

Another approach was to dissect the image to extract object parts semantics. AOG [40] pro-
posed a graphical model using And-Or graphs to rearrange convolutional layers representations
semantically. This model opened the black-box by adding four layers to the CNN, semantic part,
part template, latent pattern, and CNN unit. The model was evaluated on two variations, three-
shots AOG (i.e., three annotations), and AOG with more annotations. Experiment metrics included
part detection, center prediction, localization accuracy, and prediction accuracy. AOG model out-
performed state-of-art networks. The AOG model required a subset of annotated object parts.
Selecting images and object parts to annotate can be challenging and time-consuming since it re-
quires domain knowledge. Moreover, it is useful to conduct a complexity analysis for the AOG
model since adding four layers to the CNN can increase its computation. ProtoPNet [41] proposed
a prototypical part network to dissect the image and find prototypical parts before making the final
classification. The model added a prototype layer between the convolutional layers and the fully
connected layers. CNN learned the image prototypes during the training. In the end, each class
was associated with a set of prototypes. The ProtoPNet classification accuracy was comparable
with state-of-art networks. Moreover, class activation maps of ProtoPNet were finer with higher
quality. However, a drawback of this model was the high number of generated prototypes. There-
fore, ProtoPShare [42] was proposed to reduce the number of prototypes generated by ProtoPNet
[41]. ProtoPShare applied a merge-pruning approach to share prototypes between classes. It had
two stages, initial CNN training, and prototype pruning. In the pruning stage, prototypes with the
same semantics were merged. Thus, this model succeeded in pruning up to 30% of generated pro-
totypes without impacting CNN accuracy. The experiments proved that using a data-dependent
similarity measure was more consistent than a data-independent measure (i.e., inverse Euclidean
norm). A different approach for interpreting CNNs was to integrate their architecture with other
machine learning models.

For example, the Explainer model added autoencoders to interpret intermediate layers of pre-
trained CNNs [19]. The encoder received feature maps in intermediate layers and decomposed
them into several object parts. After that, the decoder inverted decomposed feature maps into re-
constructed feature maps. The model used a filter loss to enforce the representation of object parts
through interpretable filters. Experiments showed that feature maps of the Explainer model were
more interpretable than state-of-art networks. Moreover, the localization instability of the model
was lower than other CNNs. However, the classification accuracy of this model was lower than
traditional CNNs. Adding an autoencoder to intermediate layers of CNN could impact the network
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computation. There is a need for complexity analysis to study the Explainer model computation.
XCNN [20] was another model that employed autoencoders in CNNs. An autoencoder was used
to find regions of interest (ROI) in an image. The XCNN model had two components: an autoen-
coder and a CNN classifier. The autoencoder generated interpretable heatmaps that were passed
to a CNN classifier. XCNN heatmaps were evaluated qualitatively using class discrimination and
quantitatively using object localization. Methods like LRP and Guided-Backpropagation proved
the high quality of XCNN heatmaps. However, the classification accuracy of XCNN was less than
state-of-art networks. Also, there is a need to measure the complexity of the XCNN model.

The Adaptive Deconvolutional model (Adaptive DeConv) [43] was proposed to decom-
pose an image into feature maps and reconstruct the input image again. This model integrated
deconvolutional layers with max-pooling layers. After that, it was combined with a CNN classi-
fier for object recognition. Images were reconstructed in CNN intermediate or high layers. The
Adaptive DeConv model outperformed state-of-art networks and improved the object recognition
accuracy. However, identifying useful layers (i.e., intermediate vs. high) in reconstructing an image
could be challenging. There was a lack of comparison between selecting intermediate features and
high-level features. Additionally, machine learning algorithms were combined with CNNs, like in
the Deep Fuzzy Classifier (FCM) [44]. The FCM model incorporated fuzzy logic to classify data
points. A fuzzy classifier was added after the last convolutional layer. This classifier applied fuzzy
clustering and Rocchio’s algorithm on the feature map to extract class representatives. The FCM
model could visualize the saliency of each pixel w.r.t the predicted class. FCM saliency maps were
more interpretable than traditional CNNs. However, the FCM classification accuracy was less than
state-of-art networks.

Table 1 shows a review of models which interpret CNNs by modifying their architecture. We
can notice that the models in this category were intrinsic, model-agnostic, and local. They were
intrinsic since they modified CNNs architecture in training and compared the modified CNN with
the traditional CNN. They were model-agnostic since they could generalize across various archi-
tectures of CNNs and were local as they required access to the dataset.

4.2 Architecture Simplification

Explainable models in this category rely on the rule extraction approach to generate human in-
terpretable rules. Another approach is to apply network distillation and compression by pruning
redundant features. Previous studies interpreted CNNs by creating hybrid models and incorpo-
rating linear models in their architecture. For example, decision trees were attached to high-level
features to decompose them into semantic object parts [45]. Decision trees quantified the con-
tribution of each filter to the CNN output score. After that, each filter was connected with a
semantic object part label. However, this model required the manual labeling of object parts in
each filter to calculate their contribution. This labeling could be challenging in medical imaging
applications where objects and parts are tissues and cells. Moreover, the model ignored features
that could be activated in some scenarios. Moreover, linear classifiers were combined with each
intermediate layer in CNNs like Deep KNN [46]. This hybrid model used the training data to
measure the non-conformity of a prediction on a test input. This measurement guaranteed that
intermediate layers in training were consistent with the CNN prediction. K-NN classifier was at-
tached to each layer to detect training data points that were like the test image. After that, learned
training data points were compared to CNN output in the test time to provide interpretability.
Their experiments proved that the Deep KNN model provided more insights and was more robust
than other traditional CNNs. However, adding a KNN classifier to each layer can impact the net-
work computation. Therefore, there is a need for complexity analysis to prove that training CNN
with attached KNN classifiers is feasible. Another approach was to maintain the linear models’
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Table 1. An Overview of Models which Interpreted CNNs by Modifying their Architecture

Model Methodology
Intri
nsic

Post-
hoc

Model-
Agnostic

Model-
Specific Global Local

GALA [27] Embedded attention layers in CNNs to generate attention
activity maps.

� x � x x �

DomainNet
[28]

Transformed pre-trained CNN to DomainNet and apply
two attention levels for extracting object parts and features.

� x � x x �

Residual
Attention [29]

Stacked attention modules and integrate with CNNs to
generate attention-aware features.

� x � x x �

D-Attn [31] Added attention layer before convolutional layer to learn
local/global attentions for user reviews.

� x � x x �

ALL-CNN [32] Replaced max-pooling layer with convolutional layer and
increased stride to reduce dimensionality.

� x � x x �

NIN [33] Replaced convolutional layers and linear filters with a
micro network to enhance spatial invariance.

� x � x x �

Interpretable
CNN [36]

Added a loss of feature map to enforce each filter to encode
distinct object parts.

� x � x x �

AOG [40] Added a graphical model to CNN to detect the semantic
hierarchy of object representations.

� x � x x �

CNN
Explainer [19]

Added an autoencoder for each feature map to decompose
object parts in the image and reconstruct feature maps.

� x � x x �

Dynamic-K
Activation
[37]

Replaced stochastic gradient descent with adaptive
activation thresholding to interpret the CNN.

� x � x x �

XCNN [20] Added Autoencoder before the CNN classifier to generate
interpretable heatmaps.

� x � x x �

Adaptive
DeConv [43]

Combined a network of deconvolutional layers and
max-pooling layers with CNN to decompose the image
into feature maps, then reconstruct it.

� x � x x �

CSG [34] Combined class-specific gate with filters in CNN to assign
each filter to one or more classes.

� x � x x �

SAD/FAD [38] Added SAD and FAD loss functions to CNNs to improve
their discrimination in face recognition.

� x � x x �

ProtoPNet
[41]

Added prototype layer after last convolutional layer to
assign object parts to various prototypes.

� x � x x �

FBI [39] Added new loss function to regularize CNN and improve
its interpretability. It trained the CNN using three passes to
learn important regions.

� x � x x �

Attribute
Estimation
[35]

Added fully connected layers to CNN intermediate layers
for generating attributes that enable interpretability of
CNN.

� x � x x �

FCM [44] Added a fuzzy classifier layer after the last convolutional
layer. The classifier applies clustering and Rocchio’s
algorithm to classify data points.

� x � x x �

ProtoPShare
[42]

Shared prototypes between classes to reduce the number of
prototypes generated by ProtoPNet.

� x � x x �

Loss Attention
[30]

Removed max-pooling layer in CNN and added loss-based
attention to identifying which parts of the image explain
the CNN decision.

� x � x x �

properties in CNN architecture. Self-Explaining Neural Networks (SENN) [47] applied a
bottom-up mechanism to interpret CNNs. The model consisted of three components, a concept
encoder, an input-dependent parametrizer, and an aggregation function. The input was trans-
formed into a set of representative features, and relevant scores were calculated. After that, these
scores were used to make the prediction. The experiments proved that the SENN model was robust,
faithful, and intelligent. However, there was no evaluation for the SENN class discrimination, and
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it lacked the classification accuracy comparison with state-of-art networks. Another hybrid ap-
proach was embedding clustering in CNNs to improve their interpretation. CNN-INTE [48] used
meta-learning to generate meta-level test data. This model selected layers in CNN and applied
clustering on two levels: base learning and meta-learning.

In base learning, the network was trained on original training data, while in meta-learning, the
network was trained on predictions of base learning along with the true class of training data.
Moreover, the overlap in the clustering plots indicated if the class was wrongly classified. How-
ever, finding the optimal clustering algorithm for generating meta-level data requires further anal-
ysis. Also, initializing clustering parameters could be challenging since it relies on the domain and
the dataset context. Furthermore, different approaches were proposed to simplify the structure
of CNNs and improve their interpretability. Examples of these approaches were network prun-
ing, compression, and dissection. For the network pruning, extracting subnetworks was applied
to detect semantics in CNN layers [49]. Pre-trained CNNs were pruned to produce subnetworks
that connected CNN prediction with data features to improve interpretability. The subnetworks
extraction was applied on two levels, sample, and class. The sample-specific subnetworks ensured
that individual predictions were consistent with the CNN. The class-specific subnetworks mea-
sured the CNN prediction on a single class. Meanwhile, the sample-specific subnetwork applied
hierarchical clustering to reflect input patterns. The class-specific subnetworks produced saliency
maps to interpret the prediction. Applying hierarchical clustering can be computational. There-
fore, other clustering algorithms can be considered, like K-means. Moreover, selecting the number
of clusters can be challenging when interpreting deep CNNs and large datasets.

For the CNN network compression, the CAR model [50] was proposed to make CNN smaller and
more interpretable. The CAR model compressed pre-trained CNNs by pruning filters with insignif-
icant contributions to the CNN prediction. Similar visual filters in each layer were grouped into
subsets like shape-based and color-based filters and were ranked based on their CAR importance
index. After that, visual filters with low CAR index (i.e., redundant) were identified and pruned.
This pruning process improved the prediction accuracy for pre-trained networks like AlexNet.
Experiments showed that the CAR network outperformed state-of-art networks, improving
classification accuracy by 16%–25%. Furthermore, CARc index was proposed to enhance the in-
terpretability of pre-trained networks. CARc index highlighted the importance of each filter w.r.t
the class label c. Visualizing layer 5 filters of AlexNet proved that filters with highest CARc index
frequently appear in predicted classes (e.g., smooth curvature filter appears in top classes such
as a steep bridge or soup bowl). The CAR model had a greedy approach by pruning all filters in
CNN. A promising approach is to build a selective compression model that prunes filters based on
a given criterion. Moreover, CNN network dissection was used to extract intermediate layers se-
mantics [51]. The model used the Broden dataset that has a ground truth set of visual concepts. The
model collected CNN intermediate layers responses to these visual concepts. After that, CNN lay-
ers were quantified by applying binary segmentation against visual concepts. This model required
no training as the dissection was applied after training (i.e., post-hoc). Their experiments proved
that deeper networks had better interpretability, and factors like dropout and batch normalization
could affect CNN interpretability. However, this model heavily relied on the visual concepts of
the Broden dataset. Therefore, the poor quality of visual concepts can impact the level of inter-
pretability. An interesting simplification approach is LIME [52]. This model is general in terms of
architecture and tasks. It was applied to tasks like text and image classification. It simplified CNN
by generating feature analysis visualization. For text classification, LIME visualized each feature’s
positive and negative contributions to improve CNN interpretability. In image classification, the
model highlighted pixels that contributed to class prediction. A promising approach is to utilize
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Table 2. An Overview of Models which Interpreted CNNs by Simplifying their Architecture

Model Methodology
Intri
nsic

Post-
hoc

Model-
Agnostic

Model-
Specific Global Local

Decision Trees
[45]

Decomposed high-level features into object parts by
using a decision tree to calculate filters numerical
contribution.

x � � x x �

SENN [47] Interpreted CNN during training by transforming
input to a set of interpretable features and combining
transformed features with their relevant scores to
make a prediction.

� x � x x �

Deep KNN [46] Combined KNN classifier with each layer to measure
non-conformality of a prediction in the training stage.

� x � x x �

CNN-INTE [48] Applied clustering on hidden layers to generate
meta-level test data and learn classifier results.

x � � x � x

Subnetwork
Extraction [49]

Extracted semantic information for CNN layers by
pruning unimportant channels. Subnetworks are
extracted on sample and class levels.

x � � x x �

CAR [50] Pruned all filters with the insignificant contribution in
a greedy way to make CNN smaller and more
interpretable.

� x � x � x

Network
Dissection [51]

Extracted semantics of intermediate layers by relying
on Broden dataset visual concepts.

x � � x x �

LIME [52] Provided positive/negative contributions of features in
text classification to improve interpretation.
Highlighted pixels with significant contribution to
class prediction in image classification to improve
interpretation.

x � � x x �

parallel processing platforms to deploy LIME in real-time applications. Table 2 shows a detailed
review of models that interpreted CNNs by simplifying their architecture.

4.3 Feature Relevance

Models in this category rely on ranking the importance of features against the CNN prediction.
Their feature space analysis improves interpretation by identifying significant features. Previous
studies searched for features in CNN layers and grouped them using techniques like clustering
and similarity measures. For example, the EBANO model [53] clustered hyper columns selected
from high-level layers using K-means. Each clustered group of pixels identified an interpretable
feature. After that, interpretable features were used to perturb the input image passed to a pre-
trained CNN. The network classified the perturbed image and provided useful transparency details.
IR and IRP indices were used to evaluate the EBANO model. The IR index calculated the proba-
bility of the class in the original image w.r.t the perturbed image. In comparison, the IRP index
calculated the influence of each feature on the set of classes. However, initializing the value of k

in the k-means algorithm can be challenging for medical images and large datasets. In addition,
other clustering algorithms can be applied as an alternate. Another similar approach was to use
k-nearest observation for measuring the similarity of stored features [54]. This model trained a
CNN to detect features in the first pooling layer and store them in a database. After that, the test
image features were extracted using the same CNN and compared with the features database. The
similarity was measured using k-nearest observation with cosine and Euclidean distance. Exper-
iments proved that cosine with k = 3 achieved the highest classification accuracy for the model.
A drawback of this model was the features extraction in low levels (i.e., first pooling layer), and
the ignorance of high-level features with more semantics. Moreover, features were stored in the
database without being ranked, which levels their contribution. DGN-AM model [55] synthesized
images to identify features learned by neurons. The model used a deep neural network (DNN)

ACM Computing Surveys, Vol. 55, No. 10, Article 206. Publication date: February 2023.



Explainable Convolutional Neural Networks 206:15

to generate images similar to the real image. After that, it applied backpropagation using the gen-
erated image to search for the neuron with maximum activations. The experiments proved that
the DNN network could generalize across different types of datasets. Moreover, DGN-AM proved
to enhance the CNN ability to learn features on the neuron level. However, searching for neurons
with maximum action can be challenging because of the computation and the similarity in deep
space. In addition, DGN-AM could only visualize features properly if the images were canonical.

Other studies visualized pixels’ contribution to the CNN prediction. The LRP model [56] decom-
posed the output on the feature and pixel levels. It applied layer-wise backpropagation and Taylor-
type decomposition to redistribute each neuron’s contribution and calculate the features/pixels
relevance scores. The generated heatmaps corresponded to the pixel’s contribution w.r.t the pre-
dicted class. LRP was evaluated qualitatively by visualizing the saliency maps. However, there
was a lack of quantitative evaluation, like object localization and faithfulness. Integrated gradi-
ents model [57] argued that LRP broke the implementation invariance by using discrete gradients
and backpropagation. Therefore, integrated gradients proved to satisfy CNN sensitivity to capture
relevant features and implementation invariance. The model was generalized by identifying path
models. The integrated gradients model was used in multiple applications like object recognition,
diabetic retinopathy detection, and question classification. The saliency maps were clearer than
other gradient models. However, there was a lack of quantitative evaluation, like localization and
faithfulness.

The DeepLIFT model [58] was proposed to decompose CNN prediction w.r.t the input image
by backpropagating the features’ contribution. The model argued that LRP suffered from gradi-
ents saturation issue since it applied elementwise product between gradients and input. Moreover,
the model argued that the Integrated gradients model was highly computational when extracting
high-quality integrals. Therefore, DeepLIFT relied on domain knowledge to select the reference
input. The experiments proved that DeepLIFT outperformed gradient and Integrated gradients
models in terms of saliency maps quality. However, DeepLIFT saliency maps were not evaluated
in terms of object localization and faithfulness. A different approach was to attach a feedback CNN
to the original CNN to reconstruct features in a hierarchical mode [59]. The feature extraction

and reconstruction CNN (FER-CNN) built a response field reconstruction by finding the activ-
ity of a neuron w.r.t other neurons. Then, it applied feature interpolation by clustering features
at a layer and storing clusters in the response field. The FER-CNN had two networks, an encoder
for extracting features (i.e., original CNN), and a decoder for reconstructing features (i.e., feedback
CNN). The results proved that its saliency maps outperformed LRP in their quality. Moreover,
FER-CNN outperformed other neural networks in classification accuracy. However, initializing
hyperparameters for encoder and decoder CNNs could be challenging. Furthermore, it is hard to
choose the combination of CNNs architectures in terms of layers and networks. Table 3 shows a
detailed review of models which interpreted CNNs by applying feature relevance.

4.4 Visual Explanation

Models in this category interpret CNNs by generating saliency maps or class activation maps.

4.4.1 Saliency Maps. Explainable models in this category generate heatmaps (i.e., saliency
maps) to interpret the CNN prediction. They learn features contributions to the prediction w.r.t
each pixel in the image. A saliency maps model [60] was proposed to rank the input image pix-
els by relying on their influence on the gradients’ score. This gradient-based model calculated
gradient scores w.r.t the input image by applying backpropagation. The saliency maps were visu-
ally evaluated for various classes. However, saliency maps’ quality and color segmentation lacked
the quantitative evaluation of the object localization. Moreover, saliency maps were noisy as it
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Table 3. An Overview of Models which Interpreted CNNs by Applying Feature Relevance

Model Methodology
Intri
nsic

Post-
hoc

Model-
Agnostic

Model-
Specific Global Local

EBANO [53] Clustered hyper columns in high-level layers to
identify interpretable features in the image.

x � � x x �

Feature
Similarity [54]

Extracted similar features from the training database
by applying cosine and Euclidean distance measures.

� x � x x �

DGN-AM [55] Synthesized image similar to the input image and
applied backpropagation on it to search for neurons
with maximum activations.

� x � x x �

Integrated
Gradients [57]

Combined gradients implementation invariance with
sensitivity to identify important features w.r.t the
input pixels.

x � � x x �

FER-CNN [59] Attached a feedback CNN to the original CNN to
reconstruct features in a hierarchical approach.

x � � x x �

LRP [56] Decomposed CNN output prediction into feature/pixel
relevance scores by applying layer-wise
backpropagation and Taylor-type decomposition.

x � � x x �

DeepLIFT [58] Decomposed CNN output prediction w.r.t the input by
backpropagating through each feature in the input
and choosing an input reference.

x � � x x �

was challenging to localize captured objects. The deconvolutional network model (Deconv) [61]
adopted a top-down approach to synthesize the image based on the reconstructed feature maps
of a specific layer. This generative model consisted of three layers of feature maps. The first layer
learned Gabor-style filters, the second layer learned V2-like elements, and the third layer learned
high-diverse features.

4.4.2 Class Activation Maps. The Class Activation Map (CAM) [62] was proposed to interpret
CNN prediction by generating activation maps (i.e., heatmaps). The CAM model modified the CNN
architecture by adding a global average pooling layer (GAP) instead of the fully connected layer.
The GAP layer calculated the average contribution of each feature map in the last convolutional
layer. After that, it weighted the sum of vectorized averages to generate the final activation map. In
the end, the CAM model overlayed the activation map on the input image to identify the areas of
interest the CNN used to make its prediction. The CAM drawback was the architecture modifica-
tion which impacted the prediction accuracy. Therefore, the Grad-CAM model [63] was proposed
to overcome the drawbacks of CAM. The model maintained the fully connected layer and calcu-
lated the gradients of a predicted class in the last convolutional layer. The model proved to be more
general since it did not change the CNN architecture. The Grad-CAM model captured features that
positively influenced the class prediction since negative features were irrelevant to the class. The
qualitative and quantitative experiments proved that Grad-CAM outperformed other gradient-
based models. A drawback of the Grad-CAM model was the inability to capture multiple objects
of the same class. Afterward, different modifications and extensions to the Grad-CAM model were
proposed to enhance object capturing and class discrimination. The Grad-CAM++ [64] model
was presented as a pixel-wise gradient-based approach. The model calculated gradient weights
of pixels instead of features. Similar to Grad-CAM, this model calculated gradients in the last
convolutional layer with respect to the image provided as input. The qualitative and quantitative
experiments proved that Grad-CAM++ performed better than Grad-CAM in terms of faithfulness,
human trust, and object localization. Furthermore, to improve object capturing and localization,
the Smooth Grad-CAM++ model [65] was proposed. This model combined SMOOTHGRAD [66]
and Grad-CAM. The model used Gaussian noise to add noise to the input image. After that, it
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took the noised images and calculated their average gradients to generate the activation map.
Unlike previous gradient-based models, the Smooth Grad-CAM++ could generate saliency maps
for selected feature maps or neurons in any CNN layer. Saliency maps were produced for various
layers and neurons. However, no quantitative evaluation like faithfulness and object localization
was conducted. Another proposed variation of Grad-CAM was Augmented Grad-CAM [67]. This
model adopted the image augmentation approach to generate different versions of the image
provided as input. Each image was rotated and translated with a slight angle. The Augmented
Grad-CAM proved that each augmented image carried some useful spatial information. Therefore,
every augmented image generated a unique activation map. In the end, the augmented activation
maps were combined in order to produce the final activation map. The experiments proved that
Augmented Grad-CAM outperformed Grad-CAM in weakly object localization. However, the gen-
eration of activation maps for every augmented image could be highly computational. Therefore,
there is a need for complexity analysis to address the feasibility of the Augmented Grad-CAM
model.

Another gradient-based model was U-CAM [68]. This model was proposed to utilize uncer-
tainty loss to improve the quality of saliency maps. The model was applied in visual question

answering (VQA) to reduce model and data uncertainty. An attention network was added to the
LSTM for calculating uncertainty loss and combining it with the cross-entropy loss. After that,
gradients were calculated w.r.t the loss functions and corresponding features. The gradients were
used to produce the class activation map. U-CAM outperformed other gradient-based models in
ablation analysis (i.e., uncertainty reduction) and saliency map quality. Moreover, U-CAM im-
proved the VQA network accuracy for all datasets. However, the model was not compared with
other gradient-based models in applications like image classification. Also, the U-CAM model
saliency maps were not evaluated in terms of localization and faithfulness.

In addition, Eigen-CAM [69] is a class activation map model that relies on extracted features
rather than a classification network. It did not apply gradients propagation and visualized principal
components of learned features. Eigen-CAM visualizations outperformed Grad-CAM in capturing
multiple objects in the same image. Moreover, the class activation maps could localize objects even
when the CNN misclassified the prediction. In weakly supervised localization, Eigen-CAM had a
lower IoU error rate than Grad-CAM and backpropagation models. The model proved to be more
robust against perturbed images produced by the DeepFool algorithm. However, the model was
not evaluated in terms of faithfulness and human trust. Due to the lack of semantic descriptions
in gradient-based models, the IBD model [8] was proposed to generate labeled heatmaps with
corresponding probabilities that rank them from highest to lowest. This model incorporated se-
mantic description in class activation maps using interpretable basis decomposition. The model
generated heatmaps along with labels and rankings. This post-hoc model decomposed predicted
class vectors into interpretable vectors. After that, it associated each activation map (i.e., basis
vector) with labels and rankings. The labels were extracted from the Broden dataset, which has a
set of object parts visual clues. The qualitative experiments on IBD proved that it could provide
useful insights into CNN prediction. Moreover, the human study showed that IBD visualizations
were more reasonable than Grad-CAM visualizations. A drawback of IBD is label extraction; find-
ing appropriate labels in medical images is challenging. Also, the class activation maps were not
quantitively evaluated.

4.4.3 Masking Visualizations. Unlike previous gradient models, the Score-CAM model [70]
adopted a masking approach. This model argued that using gradients could have some limitations
like gradients saturation and false confidence. The saturation issue could produce noisy saliency
maps, while the false confidence was related to the fact that high weights of gradients did not
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necessarily reflect the contribution to the class prediction. Therefore, Score-CAM relied on the
increase of confidence metric and forward passing approach to generate class activation maps.
After that, activation maps were upsampled to fit the input image size. Then, each activation
map was multiplied with the input image to generate masked images, which were passed to
CNN to calculate the scores. After that, calculated scores were linearly combined with their
relevant activation maps to generate the final activation map. The qualitative and quantitative
experimentation showed that Score-CAM performed better than Grad-CAM when compared
for class discrimination, faithfulness, and object localization. We have proposed a method called
Augmented Score-CAM [71], built on top of the existing Score-CAM [70]. Augmented Score-CAM
adopted the image augmentation approach by producing augmented class activation maps and
merging them into one activation map.

A similar masking approach to Score-CAM [70] was Mask [72]. This perturbation model in-
terpreted CNN prediction by identifying significant input regions. Mask considered explanations
as meta-predictors and predicted the behavior of CNN toward certain inputs. The model applied
three techniques, replacing the input region with a fixed value, adding noise to the input image,
and blurring portions of the input image. The quantitative experiments proved that Mask outper-
formed CAM, Grad-CAM, and Occlusion in terms of robustness, localization error, and pointing
game. Moreover, the model could capture small areas that significantly impacted the CNN pre-
diction. However, Mask lacked the evaluation of human trust and faithfulness. Also, there was no
comparative analysis for various masking techniques.

4.4.4 Intrinsic Visualizations. The visualization models discussed earlier were post-hoc that at-
tached an auxiliary part to interpret the CNN. However, some models interpreted CNNs by mod-
ifying their architecture. The Teacher-Student model [73] used Autoencoders to explain the im-
portant regions in a classified image. The model had two networks, one for encoding input image
representations, and one for reconstructing an image with the same input image size. The model
used the reconstructed image to visualize important parts of the classified image by using a bi-
nary threshold. The experiments proved that the model visualizations could identify plant disease
symptoms. Moreover, this model outperformed Grad-CAM and LRP models in terms of visual-
izations’ sharpness and perturbation curve metrics. However, the computation cost of the model
was high since it applied two networks for reconstructing and visualizing important parts in plant
disease classification. Furthermore, the HPnet model [74] used hierarchical prototypes for inter-
preting the CNN image classification. The model attached prototype layers to each parent node in
the CNN; these layers were used in training to generate a set of prototypes. After that, the gen-
erated prototypes were distributed over classes in the fully connected layer. HPnet saliency maps
could classify objects like forklifts by capturing important prototypes like wheels. However, HPnet
classification accuracy was less than VGG16 for fine-grained and coarse-grained metrics.

Besides image classification, some visualization models interpreted CNNs in other applications.
For example, the Equalizer model [75] identified bias in image captioning applications. The model
used two methods to mitigate gender-biased descriptions for images, appearance confusion loss
and confidence loss. The appearance confusion loss forced CNN to predict when the gender fea-
tures were absent. In contrast, the confidence loss forced CNN to predict gender when its features
were evident. The gender features were the ground truth for the two methods and were applied to
each image. The experiments proved that the Equalizer model outperformed state-of-art networks
in terms of classification error rate, gender ratio error, and pointing game metrics. However, an-
notating each image’s ground truth could be challenging for image captioning in areas like race
and age bias. It is hard to find useful features that distinguish each group in these areas. Other
models visualized heatmaps for VQA answers to justify their outcome [76]. They applied guided
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backpropagation, a modified saliency map that removes gradients with a negative contribution to
the VQA prediction. Heatmaps could justify the answers of the VQA model. However, it was not
evident if the VQA heatmaps were efficient in terms of object localization and faithfulness.

An interesting approach to visualizing the internal representations of CNNs was CNNV [77].
This model built acyclic directed graphs (DAG) to explain CNNs. It proposed a DAG interactive
visualization to uncover the CNN internal layers. CNN layers and neurons were clustered to sim-
plify the visualization for deep networks. This visualization could help provide features learned by
neurons, explain features’ evolution through layers, and debug CNN when having an issue dur-
ing the training. The CNNV was evaluated by building a customized network (Base-CNN) with
four convolutional layers and two fully connected layers. CNNV provided useful visualizations
for low-level and high-level features in various layers. However, it was hard to generalize the
model to other CNNs since it could be challenging to visualize each layer and neuron for deep
networks. Moreover, the DAG visualization is specific for machine learning experts with a good
background in the architecture of CNNs. Finally, the model applied multiple clustering algorithms
like K-means, MeanShift, and hierarchical clustering. Initializing the optimal parameters for these
algorithms requires collaboration with domain experts. Table 4 shows a detailed review of models
which interpreted CNNs by visualization.

4.5 Taxonomy Correlations Analysis

To analyze the trend of XAI in convolutional neural networks, we visualized the flow among var-
ious categories. We analyzed our taxonomy in Section 4 w.r.t the XAI categories like the scope
(global vs. local), structure (intrinsic vs. post-hoc), and dependence (model-agnostic vs. model spe-
cific). Our taxonomy had the following categories: architecture modification, visualization, sim-
plification, and feature relevance. We believe correlations between taxonomies can provide useful
insights into the research direction of interpreting convolutional neural networks. In Figure 5,
the nodes on the left represent our taxonomy, and the nodes on the right represent the XAI cate-
gories. The thickness of the link between two nodes represents the number of models. A thicker
link means more models exist in these two nodes. In terms of architecture modification, we can
notice that XAI models were distributed equally between intrinsic, local, and model-agnostic cat-
egories. This means that XAI models that interpreted CNNs by modifying their architecture had
to access the dataset (i.e., local) and generalize across various CNNs (i.e., model-agnostic). More-
over, all models in this criterion were intrinsic since they had to modify the CNN architecture to
improve its interpretation. In the simplification, the models were distributed in terms of structure
(i.e., intrinsic vs. post-hoc). However, most simplification models were local and interpreted CNNs
by accessing the dataset except CNN-INTE [48] and CAR [50] models. These two models ignored
the dataset and applied clustering and pruning to produce simpler CNNs. Moreover, simplification
models could generalize across various CNNs (i.e., model-agnostic). In the feature relevance, most
models were post-hoc and relied on features’ importance to interpret CNNs without changing
their architecture.

Moreover, models in this criterion accessed the dataset (i.e., local) and generalized across various
CNNs (i.e., model-agnostic). In the visualization, most XAI models were post-hoc except for two
models: Teacher-Student [73] and HPnet [74]. Therefore, visualization models assume the network
is trained and tend to interpret CNNs by adding auxiliary parts. Moreover, visualization models
were local since they accessed the dataset. Most visualization models could generalize across CNNs
except the CNNV model [77], which heavily relied on a customized CNN architecture to build the
acyclic directed graph. Overall, XAI models that interpreted CNNs used to be local since they
accessed the dataset (i.e., input image). Additionally, these models could generalize across CNNs
with various layers, neurons, and hyperparameters.
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Table 4. An Overview of Models which Interpreted CNNs by Visualization

Model Methodology
Intri
nsic

Post-
hoc

Model-
Agnostic

Model-
Specific Global Local

Saliency Maps
[60]

Ranked the input image pixels by calculating
gradients’ score w.r.t the output class.

x � � x x �

Deconv [61] Reconstructed input from feature maps of a
selected CNN layer.

x � � x x �

CAM [62] Added global average pooling layer to calculate
feature maps contribution in the last conv. layer.

x � � x x �

Grad-CAM
[63]

Calculated positive gradients in the last conv.
Layer w.r.t the output class.

x � � x x �

Grad-CAM++
[64]

Calculated gradient weights for pixels on the last
conv. layer w.r.t the output class.

x � � x x �

Smooth
Grad-CAM++
[65]

Generated multiple noised images and calculated
average gradient weights.

x � � x x �

Augmented
Grad-CAM
[67]

Generated augmented images and applied
Grad-CAM on each augmented image before
combining all activation maps.

x � � x x �

Score-CAM
[70]

Applied increase of confidence to extract
activation maps and masked the input image with
extracted activation maps to produce final
heatmap.

x � � x x �

Equalizer [75] Identified bias in image captioning by adding new
loss functions during the CNN training.

x � � x x �

CNNV [77] Visualized learned features in CNN layers by
applying acyclic directed graph.

x � x � x �

Teacher-
Student
[73]

Identified important regions in the image by
applying an autoencoder for reconstructing the
input image.

� x � x x �

Eigen-CAM
[69]

Extracted learned features by visualizing principal
components.

x � � x x �

IBD [8] Added semantic description to generated
activation maps along with their labels and
ranking.

x � � x x �

Mask [72] Identified important regions in the input image by
masking it using noising and blurring techniques.

x � � x x �

Hpnet [74] Extracted a hierarchy of prototypes to describe
the relations between class activation maps and
their class category.

� x � x x �

U-CAM [68] Added an attention network to LSTM to calculate
uncertainty loss, minimize uncertainty, and
improve the CNN interpretability.

x � � x x �

5 REVIEW OF XAI EVALUATION METRICS

5.1 Model-centric Metrics

Model-centric metrics evaluate explanations that use a model to explain a given task, like image
classification, VQA, and image captioning. Quantitative and qualitative metrics measured the ex-
planatory power of the XAI model.

5.1.1 Visualization. Producing visual interpretations was the most frequent metric used to eval-
uate the XAI model’s performance. This metric expressed the qualitative human trust in the CNNs
interpretations. Some models visualized feature maps and filters in different layers like in NIN [33],
SAD/FAD [38], and CAR [50]. For example, CAR [50] improved the interpretability of pre-trained
networks by proposing CARc index which ranked filters based on their importance w.r.t the
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Fig. 5. Correlations of XAI models for various taxonomies.

Fig. 6. AlexNet Layer 5 filters with highest CARc index [50].

predicted class. Figure 6(A) shows image patches of three filters with highest CARc index.
Figure 6(B) shows the top five classes, while Figure 6(C) shows the bottom five classes. We can
observe that curvature in filter 1 appeared in top classes like steep bridge and soup bowl. Mean-
while, curvature appeared less in classes like an altar and coral reef. Filter 2 appeared more in
classes with bird and insect heads. Filter 3 appeared more in classes with long tools like banjo and
oboe.

Other models visualized class activation maps to evaluate the class discrimination like Dynamic-
K [37], XCNN [20], ProtoPNet [41], FBI [39], FCM [44], Loss Attention [30], SENN [47], Subnet-
work [49], CAM [62], Grad-CAM [63], Grad-CAM++ [64], Smooth Grad-CAM++ [65], Augmented
Grad-CAM [67], Score-CAM [70], IBD [8], HPnet [74], and U-CAM [68]. Additionally, saliency
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Fig. 7. Various visualizations for single object classification [70].

Fig. 8. Pixels contributing to the prediction of three classes in LIME [52].

maps were visualized to reconstruct the input image based on the pixels/features influence on the
CNN decision like in Integrated Gradients [57], FER-CNN [59], LRP [56], DeepLIFT [58], Saliency
maps [60], Deconv [61], and Mask [72]. Figure 7 shows various saliency maps and class activa-
tion maps for single object images. We can notice that the first three visualizations from the left
belong to saliency maps [60], SMOOTHGRAD [66], and Integrated Gradients [57]. These XAI
models rank the important pixels in the input image by applying backpropagation and building
sensitivity maps. However, an apparent noise level appears in their sensitivity maps. This level of
noise can impact class discrimination in the input image. Therefore, XAI models like Grad-CAM
[63], Grad-CAM++ [64], Mask [72], and Score-CAM [70] were proposed to overcome this issue
and enhance object localization. These XAI models shown in the last four images utilize feature
maps to highlight important regions that contribute significantly to the network decision. Despite
adopting different approaches to generate activation maps (i.e., gradients vs. masking), it is evident
that these XAI models improved the object localization and were class discriminative. Furthermore,
activation graph plots in CNN-INTE [48] were provided to test if an instance was wrongly clas-
sified. Interpretable units at different layers in CNN Dissection [51] were visualized to check if
participants could recognize high-level visual concepts.

LIME [52] followed a masking approach to visualize significant pixels that contributed the most
to the CNN decision. Figure 8 shows the pixels which contributed to the prediction of the top three
classes, “Electric Guitar”, “Acoustic Guitar”, and “Labrador”. The grey areas in images represent
unimportant pixels. We can notice in Figure 8(b) that LIME relied on the fretboard to decide that the
input image was for an “Electric Guitar”. Meanwhile, in Figure 8(c), LIME relied on the dog’s face
to decide that it was a “Labrador”. CNNV [77] provided a visual design for CNN learned features in
low-level and high-level layers. Moreover, binary threshold visualization was generated to detect
regions that could be a symptom of plant disease in the Teacher-Student model [73].

5.1.2 Localization. This metric was used to evaluate the ability of XAI models to capture most
parts of the classified object. Most models applied the Intersection over Union (IoU) metric,
which compared the object captured proportion with the ground truth label. The larger the IoU
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Fig. 9. Intersection over Union (IoU) metric [78].

value was, the better localization the model could achieve. The bounding box was calculated using
a threshold of 15% and drawing a rectangle around the largest segment of the binarized mask. The
IoU metric was used to evaluate captured objects and parts in studies like in Interpretable CNN
[36], AOG [40], CNN Explainer [19], Dynamic-K Activation [37], XCNN [20], Loss Attention [30],
Subnetwork Extraction [49], CAM [62], Grad-CAM [63], Augmented Grad-CAM [67], Mask [72],
and Eigen-CAM [69]. In Figure 9, we can see the bounding boxes plotted to localize an object. The
left image in the figure shows two bounding boxes, a ground-truth bounding box (green) and a
prediction bounding box (red). The ground truth bounding box is manual labeling that correctly
locates the object (i.e., stop sign). However, the prediction bounding box is generated by the XAI
model. The IoU metric is applied to calculate the difference between the two bounding boxes by
identifying the area of overlap and the area of union. The high value of IoU, shown in the vehicle
images (i.e., IoU of 0.7980 and 0.7899), proves that the two bounding boxes overlap significantly.
Thus, the XAI model captured a high portion of the vehicles in both images. Some models like
Score-CAM [70] adopted an energy-based approach to measuring how much energy of the saliency
map lies within the bounding box. The image was binarized with 0 and 1 values based on the region
(i.e., inside vs. outside the bounding box). After that, the binarized image was multiplied with the
saliency map to extract the amount of energy.

5.1.3 Robustness. Evaluating robustness in the literature can fall under two categories: resis-
tance against noised models or data, and resistance against adversarial attacks. In resistance against
noise, the intrinsic Residual Attention [29] classification error was compared to state-of-art net-
works to check if the modified CNN improved the original network accuracy. Furthermore, Grad-
CAM [63] could still localize the object when perturbing the input image. Consequently, this XAI
model was robust against adversarial noise. Grad-CAM could generate an activation map that
localized the object despite the misclassification of the input image. In adversarial resistance, ad-
versarial examples such as FGSM, BIM, and C&W were applied to perturb the input image. For
example, CSG [34] added a class-specific gate in the last convolutional layer that made the CNN
more robust against white-box adversarial examples. Deep KNN [46] model combined the K-NN
classifier with each layer in the CNN. This simplification allowed the XAI model to detect perturbed
images and provide insights into the adversarial attack. Subnetwork Extraction [49] proved to be
robust against multiple adversarial examples. Eigen-CAM [69] was more robust against DeepFool
attacks since it relied on feature extraction, not the CNN architecture. Mask [72] could detect the
difference between learned masks in clean and adversarial images.

5.1.4 Classification Accuracy. Classification accuracy is a quantitative metric that was exten-
sively applied to intrinsic XAI models. For example, DomainNet [28], Residual Attention [29], NIN
[33], AOG [40], Dynamic-K Activation [37], CSG [34], ProtoPNet [41], Attribute Estimation [35],
Loss Attention [30], Subnetwork Extraction [49], CAR [50], and FER-CNN [59] proved that the
existence of the XAI models lowered the test and validation error compared to traditional neural
networks like VGG-16, VGG-11, AlexNet, ResNet-50, Inception-V3. In contrast, some XAI models
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sacrificed the CNN accuracy for improving the interpretation like in FCM [44], CNN Explainer
[19], ProtoPNet [41], ProtoPShare [42], Decision Trees [45], and Hpnet [74].

5.1.5 Other Metrics. Some XAI models applied other metrics for evaluation. For example, In-
terpretable CNN [36] and CNN Explainer [19] used location instability metrics to evaluate convo-
lution filter interpretability. This metric supposed that the distance between inferred object part
and a given landmark should not change across images. In addition, CSG [34] applied mutual

information score (MIS) to calculate the correspondence between filter activations and class
prediction. In face recognition, the SAD/FAD [38] model applied verification and identification
quantitative metrics to evaluate the performance on face occlusion datasets. Despite using mul-
tiple factors to evaluate interpretability, Network Dissection [51] model quantified the measure-
ment of interpretability by aligning the individual hidden units with human interpretable concepts.
Similarly, LIME [52] quantified trust by calculating precision/recall for the model’s human selec-
tion. In addition, LIME measured usefulness by providing insights into detecting CNN biased deci-
sions. The EBANO [53] model applied IR and IRP indices. The IR index calculated the probability of
real class in the original image w.r.t the perturbed image. In comparison, the IRP index measured
the influence of each feature on all classes. DGN-AM [55] applied dataset generalization metric
to prove that the model can analyze learned features and synthesize images similar to the input
image on different datasets. Furthermore, other metrics were quantified, like faithfulness. Grad-
CAM [63], Grad-CAM++ [64], and Score-CAM [70] measured the visualization faithfulness by
calculating the classification drop/increase when the input image was masked with the activation
maps. The sanity check metric was applied to ensure that the class activation map is sensitive to
the model and data randomizations. Equalizer [75] applied the gender ratio error metric in image
captioning to calculate the ratio of sentences that belong to “woman” or “man”. Teacher-Student
[73] applied Area Over perturbation curve (AOPC) metric to measure the CNN classification
drop while erasing important pixels from the input image.

5.2 Human-centric Metrics

Human-centric metrics involve human subject experiments where lay humans evaluate explana-
tions’ quality. Two types of human-centric metrics are discussed, subjective and objective metrics.
Subjective metrics measured human trust in explanations, while objective metrics measured the
behavioral state of humans and task performance.

5.2.1 Subjective Metrics. Trust was defined as “guarantee required by the trustor that the
trustee will act as it is expected to do without any supervision” [79]. Apparently, previous def-
initions imply the interaction between two parties, a trustor, and a trustee. The trustee is the party
who is trusted, and the trustor is the party who trusts. Previous studies investigated the effect of
adding explanations to clinical decision-support systems to improve trust and reliability in their
decisions [80]. Their experiments stated the demand for a proper balance between comprehensive
and selective explanations. Similarly, a deep learning tool called SMILY was proposed to allow
pathologists to search for a medical image in the query box [81]. After that, the tool shows similar
images from the database along with their diagnosis. Their experiments proved that the tool in-
creased physicians’ trust in the medical system. Moreover, trust was measured in different levels
of decision-support systems like high-stake and low-stake systems [3]. Each level had three types
of explanations, a black-box where no explanations were provided, a grey box where post-hoc ex-
planations were provided, and a white-box where decision trees were used as a self-explanatory
explanation. For a given level, the user had to decide and express the degree of trust based on a
5-point Likert scale.
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5.2.2 Objective Metrics. The response time metric was investigated when users performed
problem-solving tasks using models like decision trees and propositional rules [82]. Experiments
proved that decision tables’ response time was the least as users found them the easiest to perform
the task. Decision sets were proposed like sets of if-then rules [83]. The interpretability of decision
sets was assessed by conducting a user study where people answered multiple-choice questions.
Experiments analyzed the responses and evaluated the accuracy and response time. Moreover, the
stability metric was derived from prediction, where the algorithm was said to be stable if a small
perturbation results in slight prediction changes [84]. In XAI, explanations are stable if similar ob-
jects return similar explanations [85]. Therefore, explanations with good quality may suffer from
low stability and provide different results when repeated with the same instances and parameters.
For the separability metric, XAI explanations are separable if two different objects with variant
features produce different explanations [86].

6 REVIEW OF XAI APPLICATIONS

This section presents a review of different Explainable AI (XAI) applications such as image
classification, recommendation systems, visual question answering, bias detection, and image
captioning.

6.1 Image Classification

Most of the XAI models were applied in image classification and object recognition. The im-
age classification involved using computer vision datasets like ImageNet ILSVRC2012, ImageNet
ILSVRC2013, Caltech, CIFAR-10, CIFAR-100, CUB200-2011, PASCAL-VOC, Place365, Tiny Ima-
geNet, MNIST, Stanford Cars, SVHN, COMPAS, GTSRB, Broden, ModelNet, COCO, VQA, and
PlantVillage. Moreover, those datasets were interpreted using state-of-art pre-trained neural net-
works like Inception-V3, AlexNet, VGG-16, VGG-S, VGG-M, ResNet, DenseNet, VGG-11, LeNet,
CaffeNet, and GoogleNet.

6.2 Recommendation Systems

Despite focusing on interpreting CNNs in image classification, some XAI models improved the in-
terpretation in other applications like text classification, face recognition, visual question answer-
ing, image captioning, and bias detection. For example, D-Attn [31] was applied in recommenda-
tion systems to learn user and item features and predict a review rating by adding attention layers
to the CNN. Similarly, LIME [52] was applied in sentiment analysis to interpret positive and nega-
tive reviews. Unlike images, LIME interpreted textual reviews by visualizing features that mostly
contributed to the CNN decision. Figure 10 shows a LIME plot for an insincere Quora question [87].
First, the logistic regression algorithm classified the question as “insincere”; then LIME plots the
features (i.e., unigrams) that contributed to this prediction. We can notice that the term “stupid”
showed a high negative score (i.e., insincere with a 0.37 score), followed by the “people” term with
a negative score of 0.11. In addition, terms like “general” and “seemingly” had positive scores of
0.07 and 0.04, respectively. Overall, the LIME plot justifies the model prediction by showing that
the average negativity score was higher than the average positivity score.

6.3 Visual Question Answering

Integrated Gradients [57] was used in question classification, neural machine translation, and
chemistry models. In question classification, it identified the type of answer for a given question.
Questions could have yes/no, numeric, string, and date answers. Visualization models like CAM
[62], Grad-CAM [63], and U-CAM [68] were applied in visual question answering. These models
generated activation maps to explain the answer to the question. The activation maps captured the
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Fig. 10. LIME plot for an insincere Quora question [87].

Fig. 11. Class activation maps in VQA [63].

image regions that were relevant to the answer. Figure 11 shows an example of using Grad-CAM
in VQA applications.

The first image is associated with the question, “What color is the fire hydrant?”. We can ob-
serve that the activation maps in Figures 11(a)–11(c) were synchronized with the top answers. For
instance, when the RNN-CNN network processed visual (i.e., image) and textual (i.e., question)
information to provide an answer of “Red”, the Grad-CAM activation map captured the lower red
part of the fire hydrant. In addition, when an answer of “Yellow” was provided, the class activa-
tion map captured the upper yellow part of the fire hydrant. Moreover, the class activation map
captured all parts of the fire hydrant when the “Yellow and Red” answer was provided.

6.4 Bias Detection

Grad-CAM [63] and Score-CAM [70] experiments proved that these XAI models effectively de-
tected biased decisions. For instance, Grad-CAM activation maps revealed that CNN was looking
at the person’s face/hairstyle to decide if the image was a doctor or nurse, as shown in Figure 12.
This gender-biased CNN was because of the biased training data. They analyzed the training data
and found that 78% of doctor’s images were men, while 93% of nurse images were women. There-
fore, the unbalanced training data forced CNN to learn a gender stereotype.

6.5 Image Captioning

In image captioning, XAI models like Grad-CAM [63], Grad-CAM++ [64], and Equalizer [75] used
the generated caption to capture the occurrence of every object in the caption. Besides highlight-
ing the important regions in the input image, XAI models could detect gender-biased captions.
The models found that CNN was not looking at the person but at other visual cues when gener-
ating captions like “man” and “woman”. For instance, Figure 13 shows how Equalizer activation
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Fig. 12. Gender bias detection [63].

Fig. 13. Gender bias detection in image captioning [75].

maps detected the gender bias in captions generated for a given image. Figure 13(a) shows an in-
correct caption of “A man sitting at a desk with a laptop computer”. Moreover, it was evident that
CNN was looking at the computer, not the person. In contrast, the Equalizer activation map in
Figure 13(b) proved that CNN generated the correct caption by looking at the person. Addition-
ally, Grad-CAM++ [64] was applied in 3D video action recognition. Therefore, visualizations were
generated for each frame in the original video. The XAI model could classify human activities like
soccer, tennis, and baseball by highlighting important regions in each frame.

7 DISCUSSION AND FUTURE DIRECTIONS

This section presents discussion and future directions, such as model generalization, the need
for unified evaluation criteria, model or parameters selection framework, interpreting adversarial
attacks, and semantic interpretation.

7.1 Model Generalization

A major concern of XAI models is their ability to generalize across different applications and neural
networks.

7.1.1 Post-hoc vs. Intrinsic (Generalization across Applications/Tasks). In this section, we con-
duct a comparative analysis between post-hoc and intrinsic models in terms of generalization.
Most intrinsic and post-hoc XAI models were applied in image classification and object recog-
nition. However, some post-hoc models were applied in other applications like image captioning,
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Fig. 14. XAI models per application.

question classification, and VQA, such as Integrated Gradients [57], Grad-CAM [63], Grad-CAM++
[64], Equalizer [75], and U-CAM [68]. This indicates that post-hoc models had a higher ability to
generalize across different tasks.

Moreover, intrinsic models modified parts in CNNs like layers, features, and loss functions to
improve the network interpretability. Most intrinsic models expressed a higher classification ac-
curacy compared to state-of-art neural networks. However, some models decreased the accuracy
of state-of-art neural networks like NIN [33], CNN Explainer [19], XCNN [20], and FCM [44]. The
accuracy of these models should be considered when they are applied in crucial applications such
as autonomous vehicles and medical imaging. Therefore, the generalization of intrinsic models
that cause a drop in accuracy is limited to other applications where interpretability is preferred
over accuracy.

Some post-hoc models proved to be useful in detecting bias like Grad-CAM [63], Score-CAM
[70], Equalizer [75], and LIME [52]. However, the heatmaps they generated were passive. For
instance, the gender bias detection example in Figure 12 clarified the existence of the bias but
could not identify the defect in the training data. Additionally, it could not provide suggestions
to mitigate or avoid this bias, like fixing the training data or tuning the model’s hyperparameters.
Therefore, we believe that providing more suggestions with the heatmaps can improve the user
trust in CNNs and encourage the adoption of post-hoc models in more applications.

7.1.2 Model-specific vs. Model-agnostic (Generalization across Neural Networks). In this study,
we consider a model to be agnostic if it was applied to different state-of-art CNNs. Also, we con-
sider the model to be specific if it was applied only to a customized CNN. Therefore, most XAI
models we reviewed in the literature were model-agnostic as they could generalize across state-of-
art neural networks. For instance, Interpretable CNN [36] and CNN Explainer [19] modified neu-
ral networks like AlexNet, VGG-M, VGG-S, and VGG-16. CAR [50] compressed neural networks
like LeNet, AlexNet, and ResNet-50. Grad-CAM [63], Grad-CAM++ [64], and Score-CAM [70]
heatmaps were generated by neural networks like AlexNet, VGG-16, ResNet-50, and GoogleNet.
In addition, only the CNNV model [77] failed to generalize since it produced an acyclic directed
graph built on a customized neural network, with four convolutional layers and two fully con-
nected layers.

7.1.3 Summary. Figure 14 shows the summary of applications and tasks for intrinsic and post-
hoc XAI models. We can notice that post-hoc models were used in seven applications, while intrin-
sic models were used in four applications. Furthermore, image classification was the most used ap-
plication to test post-hoc and intrinsic models with a percentage of 65.52% and 85.71%, respectively.
This result indicates that XAI studies focused on the impact of adding an auxiliary component (i.e.,
post-hoc) or modifying the neural network (i.e., intrinsic) on the network classification accuracy.
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7.2 Unified Evaluation Criteria

Most XAI models were evaluated based on classification accuracy, class discrimination, object lo-
calization, and robustness. There was a lack of a complexity analysis to measure the computation of
XAI models. Applying XAI models in real-time applications like surveillance systems, autonomous
vehicles, and sports analysis requires efficiency along with efficacy. Therefore, XAI models should
consider three factors, accuracy, explainability, and complexity.

7.2.1 Post-hoc vs. Intrinsic (XAI Model Evaluation).

7.2.1.1 Classification Accuracy. Intrinsic XAI models like Interpretable CNN [36], CNN Ex-
plainer [19], XCNN [20], and FCM [44] improved CNN interpretation by adding loss functions,
autoencoders, clustering algorithms, and decision trees. These extra components impacted the
CNN classification and degraded the accuracy. Therefore, embedding these XAI models in crucial
applications like autonomous vehicles and medical imaging can have dangerous consequences. In
addition, the training of modified neural networks can be challenging and time-consuming, like
in Deep KNN [46]. This intrinsic model applied a KNN classifier on the top of each CNN layer
which impacts the computational cost of CNN. Therefore, previous XAI models ignored the addi-
tional cost caused by combining and adding these extra components. Meanwhile, post-hoc models
like Grad-CAM [63], Score-CAM [70], Eigen-CAM [69], and U-CAM [68] were added as auxiliary
components to pre-trained CNNs. Therefore, these models ignored the classification accuracy and
maintained CNNs architecture.

7.2.1.2 Class Discrimination. For the class discrimination evaluation, saliency maps and
heatmaps were evaluated qualitatively. XAI models in this criterion relied on human judgment to
decide that the model visualization was more interpretable. Some intrinsic models like CNN Ex-
plainer [19], Dynamic-K Activation [37], ProtoPNet [41], and Loss Attention [30] used Grad-CAM
[63] heatmaps to prove that their modified CNNs produced better interpretation. Meanwhile,
other intrinsic models like XCNN [20], FCM [44], and SENN [47] used various heatmaps like
Saliency Maps [60], LRP [56], LIME [52], and SHAP [11] for class discrimination evaluation.
Furthermore, post-hoc models were qualitatively evaluated by comparing their heatmaps with
other post-hoc models. For instance, DeepLIFT [58] compared its saliency maps with other models
like Integrated Gradients [57]. Additionally, Score-CAM [70] compared its heatmap with the
heatmap of Grad-CAM [63].

7.2.1.3 Object Localization. For object localization, most XAI models used the Intersection over
Union (IoU) metric. These models followed the approach described in Section 5.2, which plots
bounding boxes for the model and ground-truth. After that, it uses the IoU metric to calculate the
overlapping area between the two bounding boxes. Intrinsic models like Interpretable CNN [36],
AOG [40], and Dynamic-K Activation [37] applied the IoU metric to evaluate object localization.
Other intrinsic models like CNN Explainer [19] used the location instability metric that measured
the localization of an object part generated by a specific feature map and filter. Similarly, post-hoc
models like Grad-CAM [63], Grad-CAM++ [64], Eigen-CAM [69], and Mask [72] used the IoU
metric to evaluate the object localization. Score-CAM [70] followed an energy-based approach
to evaluate object localization. This approach binarized the image based on the bounding box;
then, it multiplied the binarized image with the saliency map to calculate the energy inside the
bounding box.

7.2.1.4 Robustness. Furthermore, CNNs proved to be vulnerable to adversarial examples. Un-
noticeable perturbations could cause the CNN to misclassify the image. Therefore, it is important
to evaluate the robustness of XAI models against adversarial examples. Although most XAI models
ignored the robustness evaluation metric, intrinsic models like Residual Attention [29] proved that
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Table 5. Intrinsic Models that Impacted CNN Classification Accuracy

Model Description Added components

Interpretable CNN
[36]

AlexNet, VGG-M. VGG-S, VGG-16 outperformed Interpretable
CNN in classification accuracy for single class

Added loss of feature map to
each filter in high conv. layers

CNN Explainer [19] AlexNet, VGG-M. VGG-S, VGG-16 outperformed CNN
Explainer in classification accuracy

Added Autoencoder to each
feature map in middle layers

XCNN [20] VGG-16 outperformed XCNN in classification accuracy Attached Autoencoder to CNN

FCM [44] Base CNN outperformed FCM in classification accuracy Added fuzzy classifier to the last
conv. layer

Table 6. Robustness Evaluation in XAI Models

Model Description Evaluation

Residual Attention
[29]

Evaluated against noised labels and proved to outperform
ResNet in classification accuracy

Perturbed images from CIFAR
dataset

ProtoPShare [42] Evaluated against perturbed images and proved to outperform
ProtoPNet [41] in classification accuracy

Perturbed images from
CUB-200-2011 dataset

SENN [47] Evaluated against perturbed images and proved to outperform
LIME [52] and SHAP [11] in interpretation

Perturbed images from MNIST
and COMPAS datasets

Deep KNN [46] Evaluated against FGSM, BIM, and SW adversarial attacks and
proved to outperform traditional CNN in prediction

Perturbed images from MNIST,
SVHN, and GTSRB datasets

Grad-CAM [63] Evaluated against perturbed images and proved to localize the
object correctly

Perturbed images from ImageNet
dataset

Mask [72] Evaluated against perturbed images and proved to outperform
Grad-CAM [63] in classification accuracy

Perturbed images

Subnetwork
Extraction [49]

Evaluated against FGSM, BIM, DeepFool, and SW adversarial
attacks and proved to outperform LID and Mahalanobis in
adversarial example detection (AUROC)

Perturbed images from CIFAR-10,
CIFAR-100, and SVHN datasets

Eigen-CAM [69] Evaluated against DeepFool adversarial attacks and proved to
outperform CAM [62] and Grad-CAM [63] in prediction

Perturbed images from ImageNet
dataset

the model was resistant to noised labels when comparing its accuracy with ResNet. In addition,
ProtoPShare [42] proved to be robust against image perturbations like contrast and brightness.
SENN [47] proved to be more robust than LIME [52] and SHAP [11] against adversarial examples
on various datasets. Moreover, Deep KNN [46] proved to be more robust than traditional CNN
against adversarial examples like FGSM, BIM, and C&W. Meanwhile, post-hoc models like Grad-
CAM [63] and Mask [72] were evaluated against local image perturbations. Subnetwork Extraction
[49] and Eigen-CAM [69] evaluated their robustness against effective attacks such as FGSM, BIM,
DeepFool, and C&W. However, the literature lacked a comparative analysis for analyzing the im-
pact of adversarial attacks on various XAI models, neural networks, and datasets. Also, there was
no quantitative and qualitative evaluation of the XAI models’ performance after being attacked.
Overall, there is a need for a unified evaluation framework that provides guidelines for selecting
evaluation metrics that fit with the XAI model, dataset, network, and application area.

7.2.2 Summary. Table 5 shows four intrinsic models that caused a drop in the CNN accuracy
when adding components to improve the network interpretability. Meanwhile, Table 6 shows XAI
models evaluated against various adversarial attacks.

7.3 Model or Parameters Selection Framework

Various modifications were applied to CNN architecture to improve their interpretation. However,
there was a lack of analysis in selecting features and layers to be modified. XAI models did not
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Table 7. XAI Models with Parametric Algorithms

Model Algorithm Parameters

Deep KNN [46] KNN classification that applied cosine similarity to find nearest
neighbors

Number of neighbors k

Subnetwork
Extraction [49]

Agglomerative hierarchical clustering to categorize specific
subnetwork representations

Number of clusters k

CAR [50] Structural compression of CNN filters Compression ratio rt ar дet

EBANO [53] K-means clustering of hyper columns to identify interpretable
features

Number of clusters n, Set of
centroids k

propose a criterion for identifying the most informative features/layers (i.e., low vs. intermediate
vs. high layers). For example, what features/layers can provide more insights when adding KNN
classifiers or attention layers. Therefore, we believe that selecting informative features/layers re-
quires further analysis. Moreover, some XAI models integrated parametric machine learning algo-
rithms to interpret CNNs like Deep KNN [46], Subnetwork Extraction [49], CAR [50], and EBANO
[53]. However, the main drawback of these algorithms is the initialization of their parameters. Se-
lecting the appropriate number of clusters for large networks and datasets could be challenging.
Table 7 shows XAI models that integrated parametric algorithms. We notice from the table that
algorithms like KNN, hierarchical clustering, K-means, and compression require initializing some
parameters. For example, KNN proved to be sensitive to the value of k, and selecting its value can
be challenging for datasets with various sizes [88]. Moreover, the prediction stability relies on the
value of k. If the k value is low (i.e., equal to 1), the prediction becomes less stable. Meanwhile, if
the k value increases to a certain point, the prediction will produce more errors. In K-means [89],
the algorithms select a random set of centroids k as initial seeds. However, this random seeding
could generate poor results since some clusters are merged early and are hard to split later [90].
Therefore, initializing parameters in XAI models that use machine learning algorithms should be
considered carefully.

In addition, selecting the appropriate layer and network to be compressed or clustered requires
collaboration with domain experts. For instance, the features clustering in EBANO [53] lacked the
importance of features ranking and the analysis of features interaction (i.e., interconnection) in
CNN. In addition, visualization models did not mention which activation maps fit a specific level
of users or applications, for example, which output is more interpretable to end-users in medical
imaging, activation maps, saliency maps, or masked images. Overall, there is a need for a unified
framework for selecting the XAI model that provides optimal interpretation for a given dataset,
neural network, and application.

7.4 Interpreting Adversarial Attacks

Despite the lack of robustness evaluation, some efforts were made to clarify the vulnerability of
XAI models against adversarial examples. It was proven that ADV 2 [91] attack succeeded in fool-
ing CNN and the post-hoc XAI model. The reason for the post-hoc model vulnerability was the
gap between prediction and interpretation. They argued that the gap was due to partial indepen-
dence between CNN and XAI models since they partially described the prediction. Moreover, the
adversarial interpretation distillation (AID) framework was proposed to reduce this gap by
adding a loss function to the XAI model to minimize interpretation loss. A promising approach
is embedding defense strategies in XAI models to empower robustness. Defense strategies can be
categorized into three types: modifying input image, modifying neural network, and adding an
auxiliary network. Table 8 shows defense strategies that can be applied in XAI models.
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Table 8. Defense Strategies Models

Defense Model Defense Strategy
Modifying Input

Image
Modifying Neural

Network
Network
add-on

Defensive Distillation [92] Network Distillation Yes

Noise-GAN [93] Adversarial Training Yes

Defense-Net [94] Adversarial Detection Yes

Image Super-Resolution [95] Input Reconstruction Yes

Spartan [96] Feature Reduction Yes

FN [97] Gradient Masking Yes

7.5 Semantic Interpretation

Combining semantic details with CNN filters or class activation maps is an interesting approach
for improving human cognition. For example, Subnetwork Extraction [49] applied hierarchical
clustering to measure the semantic similarity among a set of samples. Each cluster could represent
a unique semantic label (e.g., eagle heads, car wheels). However, these clusters were extracted but
not assigned to annotations. Network Dissection [51] extracted the semantics of CNN intermediate
layers by using the Broden dataset. This dataset contains a set of labeled visual cues. Convolutional
units were binary segmented and compared to the Broden dataset to predict the semantic label.
Moreover, IBD [8] used the Broden dataset to extract decomposed semantic labels for the CNN
prediction. The model generated class activation maps and associated each map with a semantic
label and a rank. A potential limitation of semantic interpretation is that XAI models relied heav-
ily on the Broden dataset. Therefore, the quality of visual cues in this dataset could impact the
interpretations (i.e., semantic labels). Another limitation for semantic interpretation is extracting
semantic labels in applications like medical imaging. For instance, finding labeled radiology image
datasets could be challenging. Also, the extraction of semantic labels and identifying the important
ones require collaboration with domain experts.

8 CONCLUSION

We conducted an extensive review of XAI models that improved the interpretation of convolutional
neural networks. We started by describing our search methodology. First, we used Google Scholar
to retrieve papers related to “explainable”, “interpretable”, and “convolutional neural networks”
keywords. After that, we excluded non-relevant ones. In addition, we analyzed the latest trend of
XAI papers in the last two decades. The trend showed that explainability and interpretability were
attracting more researchers. Furthermore, we identified frequent terms in XAI papers in the last
three years. It was evident that terms like “image”, “classification”, “feature”, and “human” were
closely related to the interpretation of CNNs. After that, we explained XAI terms and definitions,
like explainability and interpretability. We highlighted the importance of collaboration between
HCI and software engineering to generate perceivable explanations for different users. Also, we
discussed how explanations should be provided to build responsible neural networks.

We discussed XAI taxonomies such as scope (global vs. local), structure (intrinsic vs. post-
hoc), dependency (model-specific vs. model-agnostic), and dataset (image vs. text). Then, we
categorized XAI models that interpreted CNNs into four categories: architecture modification,
architecture simplification, features relevance, and visualization. In each category, we discussed
each model and described its approach and drawbacks. Furthermore, we summarized models in
each category and clarified each model’s scope, structure, and dependency. After that, we con-
ducted a correlation analysis to recognize the behavior of XAI models. We found that models in
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the architecture modification category were intrinsic and local. While in the architecture simpli-
fication, models were model-agnostic and local. In feature relevance, most models were post-hoc
and local. In the visualization category, most models were model-agnostic, post-hoc, and local. In
addition, we studied the evaluation metrics in XAI models. This analysis showed that most in-
terpretations were evaluated by visualization, localization, robustness, and classification accuracy
metrics. In visualization metric, we added use cases to describe visualizations like saliency maps
[60, 57, 66], class activation maps [63, 64, 70], and pixels visualization [52]. We showed how class
activation maps outperformed saliency maps in class discrimination. In the localization metric, we
added a use case to discuss the IoU metric. We showed that the higher value of IoU reflects better
object localization. In robustness metric, we discussed models that proved to be resistant against
noised images [63, 72] or adversarial attacks [34, 46, 49, 69]. Moreover, we showed that intrinsic
models [28, 29, 33, 44, 19, 41] relied on the accuracy metric to evaluate the neural network after
modifying or adding some components.

Furthermore, we studied the trend of the applications and tasks in XAI models. This analysis
showed that most models were applied to image classification, recommendation systems, visual
question answering (VQA), bias detection, and image captioning. We added a use case to describe
how class activation maps [63] could capture fire hydrant parts that represent the answer in VQA.
In bias detection, we showed how class activation maps [63] helped uncover the gender stereo bias
in convolutional neural networks. Interestingly, the activation maps revealed that the CNN was
looking at the hairstyle and face of the person, not at the dress or tools the person was wearing.
In image captioning, we showed how class activation maps [63, 64] could capture each object
mentioned in the generated caption. Moreover, we added a use case to prove how activation maps
[75] could detect the gender bias in captions generated.

Finally, we summarized our reflections on the gaps and future directions of CNN interpretation
models. In terms of generalization, we conducted a comparative analysis between post-hoc and
intrinsic models. It was apparent that post-hoc models could generalize across more applications
like image captioning and VQA. Moreover, post-hoc and intrinsic models were mostly applied
to the image classification task. For the evaluation criteria, we conducted a comparative analy-
sis between post-hoc and intrinsic models in terms of classification accuracy, class discrimination,
object localization, and robustness. Intrinsic models relied more on the classification accuracy met-
ric to measure the performance of modified CNN. In addition, intrinsic models have used post-hoc
saliency maps and heatmaps to evaluate their visualizations qualitatively. For object localization,
the IoU metric was mostly used by intrinsic and post-hoc models. Furthermore, four intrinsic
models were evaluated against perturbed images and adversarial attacks [29, 42, 47, 46], and four
post-hoc models were evaluated against perturbed images and adversarial attacks [63, 72, 49, 69].
In terms of parameters selection, some models used machine learning algorithms like clustering
and compression to improve CNN interpretation [46, 49, 50, 53]. However, there is a demand for
collaboration with domain experts to initialize parameters. We showed that post-hoc models were
vulnerable to adversarial attacks due to their partial independence from CNNs [91]. We proposed
defense strategies to improve the robustness of the interpretation model. Also, we highlighted the
importance of adding semantics to activation maps and discussed some limitations in this area.

This survey aims to provide researchers and practitioners with a wide range of interpretation
models they can use in different tasks and application areas.

LIST OF ABBREVIATIONS

XAI Explainable Artificial Intelligence
CNN Convolutional Neural Network
CAM Class Activation Map
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