
Tango or Square Dance? How Tightly Should we Integrate
Network Functionality in Browsers?

A. DavidsonF M. Frei‡ M. Gartnerz* H. HaddadiF† A. Perrig‡ J. Subirà Nieto‡ P. WinterF F. Wirz‡∗
FBrave Software ‡ETH Zurich †Imperial College London zOVGU Magdeburg

ABSTRACT
The question at which layer network functionality is pre-

sented or abstracted remains a research challenge. Tradition-
ally, network functionality was either placed into the core
network, middleboxes, or into the operating system – but
recent developments have expanded the design space to di-
rectly introduce functionality into the application (and in par-
ticular into the browser) as a way to expose it to the user.

Given the context of emerging path-aware networking tech-
nology, an interesting question arises: which layer should
handle the new features? We argue that the browser is be-
coming a powerful platform for network innovation, where
even user-driven properties can be implemented in an OS-
agnostic fashion. We demonstrate the feasibility of geo-fen-
ced browsing using a prototype browser extension, realized
by the SCION path-aware networking architecture, without
introducing any significant performance overheads.

1 Introduction
With the emergence of path-aware networks (PAN) [50],

the question arises on how applications can harness the new
network properties. In particular, Segment Routing (SR) [17]
is emerging in intra-domain environments, and SCION is be-
coming available in several inter-domain locations [10, 27].

As these architectures are seeing real-world deployment,
new opportunities emerge. In particular, PANs offer multiple
path options from which the end system can select from – si-
multaneously also providing native inter-domain multipath.
Furthermore, path-aware architectures can decorate network
paths with additional information, such as latency, expected
bandwidth, MTU, traversed ASes, carbon footprint, etc. The
combination of multiple path options and per-path informa-
tion enables exciting new possibilities. For instance, net-
work performance can be improved by selecting latency-
or bandwidth-optimized paths, by selecting a path with low
loss, or by knowing the accurate path MTU. Communication
quality can also be improved through selection of paths with
low jitter, or through QoS offerings some PAN architectures
provide [18]. PANs also enable enhanced privacy through a
property referred to as geofencing, defined by fine-grained
control over which ASes are encountered on the forwarding
*Corresponding authors: marten.gartner@ovgu.de, wirzf@ethz.ch

path, similar to Alibi routing [30]. Path decorations may also
include environmental, societal, and governance (ESG) in-
formation, such as the carbon footprint of the traversed ASes,
giving rise to ESG-based path selection. Finally, economic
aspects can be used for path selection, with the obvious low-
est-cost routing, but for instance also enabling selection of
paths based on allied ASes.

Given these new opportunities for path selection, interest-
ing research questions arise:

• What entity should collect the path information? How
is the information disseminated? How is this informa-
tion authenticated (or where applicable certified)?

• For the property classes of performance, quality, pri-
vacy, anonymity, ESG, and economics, at what layer
can or should the path decision be made? Entirely
“within” the network? By the operating system (OS)?
By the application? Or even by the user?

• What are the interfaces between the network layers to
convey path information (potentially all the way to the
user)?

In this paper, we consider the general problem of which
property would be best addressed at what layer. In particular,
we consider network properties that one can implement in
browsers – potentially even in a user-driven manner. In that
way, we leverage the browser to drive network innovation.

Browsers have already served as vehicles for network in-
novation, as in the deployment of QUIC, which was a de-
cisive force to making UDP work well throughout the In-
ternet. QUIC is also deliberately built in user-space to en-
able further evolution to be driven from the applications, be
it on the browser or web server side. Another example is the
pervasive deployment of VPN technology, which is directly
built into many browsers to provide improved privacy and
anonymity properties. The rapid deployment of DNS-over-
HTTPS (DoH) and DNS-over-TLS (DoT) constitute another
example. Being deployed in browsers, DoH and DoT bypass
the operating system’s DNS resolver.

Browser-based integration of network functionality offers
several compelling benefits. Integrating new network func-
tionality in the network or the OS comes with near insur-
mountable challenges caused by highly heterogeneous in-
frastructure and long update cycles. As a small number of

ar
X

iv
:2

21
0.

04
79

1v
1

 [
cs

.N
I]

 1
0

O
ct

 2
02

2

Table 1: Different properties enabled by path-aware net-
working. The marks indicate that the layer can mean-
ingfully select a path based on the property. In contrast,
the# marks indicate that the layer would not be the ap-
propriate place to perform the path selection. AG# mark
shows that no particular benefits are expected.

Property OS App User
Performance properties
Low latency G# G#
Loss rate #
Path MTU information G# #
Bandwidth G#
Quality properties
QoS G#
Jitter optimization G#
Privacy / Anonymity
Geofencing (Alibi routing) G#
Onion routing G#
ESG Routing
Carbon footprint reduction G#
Ethical routing G# G#
Economic aspects
Allied AS routing G#
Price optimization

browsers see high penetration [44], and as browsers run on a
variety of platforms, new functionality can be disseminated
to a spectrum of users with relative ease.

Another important benefit relates to usability. Many brow-
sers update automatically (requiring minimal user interven-
tion), making it possible to disseminate new features rapidly
and comprehensively [34].

Another aspect of this usability is that a browser integra-
tion can design interfaces for directly interacting with the
user itself if needed. The Brave browser provides a concrete
motivating example for these considerations, as it provides
a tight integration with the Tor network: a user can sim-
ply open a browser window for anonymous communication,
avoiding a manual installation of Tor [6].

To make our discussion more concrete, we leverage the
benefits of tight browser integration to instantiate the PAN
architecture with SCION [10], which is deployed as a prod-
uction-ready, next-generation network architecture currently
operated by 12 ISPs. We consider the geofencing network
property in more detail, and present an implementation in
the Brave browser. Our approach demonstrates that browser
vendors are a powerful ally when deploying new networking
functionality such as PAN.

2 Which Layer Should Make Path Decisions?
Given the exciting new properties that PAN architectures

offer, we discuss in this section which layer should best make
path decisions.

Table 1 lists the set of properties we consider.
The network layer implements PAN mechanisms in both

the control and data plane. For most properties, the con-
trol plane aggregates the required information and decorates
the path segments that are established. In the SCION con-
text, the path-segment construction beacons sent from AS
to AS, iteratively accumulate information during construc-
tion [10] – similar to a BGP update traversing the Internet.
The created path segments are then disseminated through a
path server infrastructure, along with the additional informa-
tion. End hosts fetching path segments thus receive the fully
decorated paths containing all added information.

We seek to address the following question: at what layer
should path selection take place? As the end host selects the
end-to-end path from a set offered by the network, the net-
work layer has limited discretion about which path the packet
traverses. Instead, the network layer relies on enforcing poli-
cies regarding which paths are created and disseminated, and
how much bandwidth can be obtained in the data plane.

Consequently, the ultimate decision point for the path se-
lection is at the end host, which can choose from a set of of-
fered paths. Depending on the network topology, SCION can
offer on the order of dozens to even over a hundred potential
paths through the combination of different path segments.
Such a large number of path choices offer a meaningful way
for multi-criteria end-to-end path optimization.

The question thus remains at what layer path selection
should be implemented. We see three broad possibilities:
OS, application, and user. Table 1 lists various PAN proper-
ties along with the perceived best locus of decision. The OS
networking stack can select the path based on performance
or quality properties: low-latency and high-bandwidth con-
nections clearly provide a good user experience, especially
if that connectivity is available at a low price. However, for
properties such as privacy, anonymity, or ESG (environment,
society, governance) routing, the OS generally lacks context
to determine that traffic is privacy sensitive, or how much
performance the user is willing to trade for better ESG met-
rics. Conversely, the user cannot make an informed decision
for some metrics. Metrics such as loss and MTU get ab-
stracted by lower layers, since they are directly impacted by
their interactions with the transport layer and OS.

With a path-based network API, the application can per-
form application-specific path optimizations, such as select-
ing low-latency paths for the voice channel of conferencing
applications, or low-loss paths for IoT command-and-control
channels, or anonymity for medical web sites.

An interesting observation of these considerations is that
for some properties the user context is decisive, as an appli-
cation can hardly figure out automatically for which desti-
nations CO2 optimization is desired, and when geofencing
(restricted to which areas) should be used.

3 Network Innovation in the Browser

Section 2 indicates that operating PAN architectures at the
application layer provides advantages over operating at the
OS layer, which raises the question: in which applications

should such architectures run?

3.1 Network-specific Browsing Tabs

A natural answer to this question is to develop solutions for
web browsers. Browsers are the primary medium by which
people interact with the Internet. In 2021, five billion indi-
viduals used a web browser as part of their desktop or mo-
bile phone usage – with 3.2 billion of those using Google
Chrome [45]. Developing PAN solutions in the browser en-
ables desktop and mobile users to immediately benefit from
the associated networking advantages.

One of the main benefits of deploying new technologies
within a web browser is that this minimizes the amount of
configuration and installation that is required from novice
users. In particular, many users are already familiar with the
browser that they use, and such technologies can typically be
integrated without any additional setup. The absence of any
additional configuration also ensures that comprehensive se-
curity settings can be applied by default without any user in-
tervention. Overall, this allows providing the strongest pos-
sible privacy and security guarantees for all users.

Integrations of this nature have already been demonstrated,
such as in the Brave browser’s integration of Tor-powered
browsing windows [6, 15]. This allows users to take ad-
vantage of Tor’s anonymity guarantees simply by opening
a new window, without manual installation of the Tor dae-
mon. Usage data from June 2022 suggests that around 30%
of Brave users have opened a Tor-enabled window at some
point [4], highlighting the popularity of this feature. The
Brave browser reached 60M monthly active users in 2022 [5],
which translates to around 20M users that have used this
functionality. With Tor metrics indicating that around 3M
direct connections are currently made per day [49], we can-
not underestimate the power of such browser-based integra-
tions in bringing advanced networking technologies to much
wider groups of individuals.

3.2 High-level Architecture and Challenges

To implement PAN functionality within browsers, there
are two widely accepted alternatives: 1) for browsers whose
source code is freely available (e.g., Chromium, Firefox, and
Brave), one can add new functionality directly into the brows-
er; and 2) providing new functionality as browser extensions
using the widely adopted WebExtensions framework – sup-
ported by almost all browsers. Both approaches come with
their own challenges.

Firstly, writing functionality directly into browser source
code requires expertise with complex browser internals; repli-
cating patch sets across multiple code bases (for supporting
multiple browsers); and the respective browser maintainers
need to accept the patch set, which can be a substantial po-
litical challenge. Using browser extensions allows wrapping
functionality into self-contained units of software that can
be distributed independently of browser-related release cy-
cles, without requiring expert knowledge of browser inter-

nals. However, a main drawback of extensions is that their
control over the browser is limited by design, and users must
also explicitly install them.

Considering these trade-offs, we have chosen to imple-
ment an initial proof-of-concept PAN-based application in
the WebExtensions framework. This gives us the advantage
of building a prototype that can be demonstrated to work in
today’s browsers. We show in Section 4 that we can achieve
a coherent PAN-based networking application using the var-
ious WebExtensions APIs, and that these can be integrated
seamlessly into Chromium-based browsers like Brave. We
anticipate that our results will encourage browser makers to
work towards integrating more networking-based technolo-
gies directly into browsers in the long-term.

4 Path-Aware Networking in the Browser
SCION is a path-aware inter-domain network architecture,

organizing autonomous systems (ASes) into isolation do-
mains (ISDs) which define local trust roots for SCION’s con-
trol plane public-key infrastructure (PKI) [10]. These ISDs
typically comprise ASes sharing a common legal framework
and are thus bounded geographically by a country or by a
compatible political entity.

Paths are discovered with an announcement process called
beaconing. The path information announced by the individ-
ual ASes includes various metatadata items and is authenti-
cated based on the control-plane PKI. For each AS hop on a
path, this metadata consists of the ISD and AS numbers, and
various optional items such as MTU, latency, bandwidth, ge-
ographic coordinates, or data on power efficiency and carbon
emissions of the AS’s infrastructure.

SCION’s path-awareness provides opportunities for appli-
cations and users to optimize data transport over the Internet.
We propose a design for integrating PAN over SCION into
existing browsers to bring path-aware networking to users, as
depicted in Figure 1. The core of our design consists of two
components with respective open-source implementations:
A browser extension [37] that intercepts requests initiated
by the browser interacting with a HTTP proxy [36] that se-
lects path(s) and adds a SCION packet header if needed. The
path selection is performed depending on a set of rules con-
figured by the user, called path policies. Finally, statistics on
path usage and performance of particular paths are provided
as feedback to users. In case the client or server lacks SCION
connectivity, the browser falls back to loading the resources
over IPv4/6.

4.1 Path Policies and Geofencing
To establish a connection to a remote host, a SCION appli-

cation s the set of available candidate paths from the local AS
path service, which include metadata added during beacon-
ing. The application then utilizes these path metadata to eval-
uate the path policy locally, filtering out any non-compliant
paths.

Path policies are rules to filter the available SCION paths

Browser

Rendered
web page

SCION

Statistics

BGP/IP

Packet
Forward
Engine

Extension

Provides Configures

Viewing
and

naviga�ng

HTTP Proxy

Path Selection
Module

Path Policies

IP/SCION
Switch

Figure 1: PAN using SCION for browsers.

to a particular destination expressed by a dedicated Path Pol-
icy Language (PPL) [1]. Based on this language, policies
can be designed to sort and select paths depending on spec-
ified criteria, such as bandwidth, latency or included hops.
Multiple policies can be combined for fine-grained config-
uration, e.g., optimizing the CO2 footprint while excluding
particular regions. Note that the path policy remains on the
user’s device and does not need to be shared with any exter-
nal services. It may however still be possible to infer a user’s
policy by observing their network traffic.

Geofencing is implemented by selecting paths that include
or exclude ASes or ISDs. Currently, we perform geofencing
at the ISD-level. We provide the user with an interface to
block or allow entire ISDs. Since ISDs are designed to cover
independent regions or networks, we anticipate a balanced
degree of customization, while keeping the number of op-
tions manageable. However, by integrating with the PPL, we
provide the foundation for finer-grained geofencing.

4.2 Partial Availability

Our approach depends on the availability of SCION both
on the client side as well as on the web server side. Even
if SCION adoption for websites rises rapidly, many websites
will likely remain unreachable via SCION in the near term.
In order to keep websites working despite this limited avail-
ability, and at the same time provide meaningful geofenc-
ing properties, we define two operational modes. In the de-
fault opportunistic mode, SCION is used whenever available.
Third-party resources that cannot be loaded over SCION are
fetched over IPv4/6. An icon in the browser’s UI indicates
to the user whether all, some, or no parts of the website were
fetched over SCION. To provide stronger geofencing guar-
antees, the user can selectively enable strict mode, e.g., for
particularly sensitive websites, where all resources must be
loaded over SCION. In this mode, websites may fail to load
completely. For websites that are accessible over SCION, in-
cluding any third-party resources, operators can indicate this
including an HTTP response header Strict-SCION. Upon re-
ceiving this header, the browser enforces strict mode SCION
for requests to the host from whom the message was re-
ceived, until the included max-age expiration. This is similar

in spirit to the response header for the HTTP Strict Transport
Security (HSTS) mechanism.

In the opportunistic mode, the user’s path policy is inter-
preted as a preference. If a website is available via SCION
but no policy-compliant path is available, e.g., if the user
navigates to a website that is hosted in an AS that the user
indicated to avoid, the website will still load. The user is
informed of the non-compliance with the same indicator as
when loading the website via legacy IP. Strict mode only al-
lows policy-compliant paths and the browser will display a
connection error if no such path is found.

4.3 SCION Detection for Domains
Since SCION uses a different address scheme (a combi-

nation of SCION ISD, AS and local IPv4/6 address) than
IP, adapting address resolution is required. While keeping
a curated list of SCION-available domains in the browser
provides a reasonable starting point, this approach does not
scale. Consequently, we provide two dynamic approaches
for detecting SCION-accessible domains.

First, the presence of the Strict-SCION header can also be
used as an indicator to advertise the availability of SCION
to users who have not yet enabled SCION support in their
browser – similarly to the Onion-Location header [25] that
advertises the availability of Tor in the Brave browser [8].

Secondly, additional TXT records indicating a SCION ad-
dress can be configured in existing DNS records. The HTTP
proxy can determine to use SCION, or to fall back to IP if no
SCION address is available.

5 Implementation and Evaluation
We implement a SCION-based PAN architecture proto-

type as a browser extension and deploy it in the Brave browser.
The implementation of the SCION transport is included in a
separate HTTP proxy local process.

5.1 Prototype Implementation
Our prototype implements the concept presented in Sec-

tion 4. As discussed in Section 3, the limited functionality
of the WebExtensions API requires our prototype to proxy
all of the browser’s requests. First, the browser extension
uses specific API calls to the HTTP proxy to apply path poli-
cies chosen by users. Second, the extension configures the
default proxy for all network requests to the HTTP proxy
component, which then decides on using either SCION or
IPv4/6. Note that integrating parts of the extension into the
browser code could overcome this limitation.

The browser extension itself, i.e., the JavaScript logic, has
two roles. First, it presents the options and settings in the
browser’s user interface and configures the proxy component
according to the user’s preferences. Furthermore, it takes
care of implementing the strict mode; as the proxy is a reg-
ular HTTP proxy it does not have the necessary context to
decide whether strict mode should be enabled for a particular
request or not. When the extension determines that a request

PROXY

Local Host

SCION
Traffic

IPv4/6
traffic

Figure 2: Local setup. The blue host is a SCION-enabled
file server and the grey one is a TCP/IP file server without
SCION connectivity.

Figure 3: Page Load Time (ms) for each experiment type.

is to be performed in strict mode, it first checks whether the
resource is available via a policy-compliant SCION path. If
there is such a path, the request is forwarded via the proxy,
otherwise the request is blocked.

Since SCION local AS communication is based on UDP,
SCION-aware applications can operate without OS support,
simplifying the deployment of our HTTP proxy. We exclu-
sively use QUIC as the transport layer for all web traffic over
SCION. For HTTP/1 and HTTP/2, we map the TCP data
stream into a single bidirectional QUIC stream. The primary
reason for this deviation from the norm is the stated goal to
implement all of this inside the application – high-quality li-
brary implementations of QUIC which can be made to work
on top of SCION are readily available. Our implementation
is based on the quic-go library [11] as well as Go’s built-in
HTTP implementation.

To complement our client-side implementation, we have
implemented a simple reverse proxy to add SCION support
to web servers. Alternatively, Go-based web servers can be
compiled with our PAN library to include SCION support
directly. This could also be used to build a SCION module
for popular Go-based web servers like Caddy or Traefik.

5.2 Experimental Results
We present our experimental results obtained from two dif-

ferent setups: a local environment, where the file servers pro-

SCION Internet

local
SCION

AS

remote
SCION

AS

SCION
reverse-

proxy

BGP Internet

Proxy

Figure 4: Remote setup. The browser loads the SCION
extension; the grey host represents a TCP/IP server that
is also reachable over a nearby SCION reverse proxy.

Figure 5: Comparison of Page Load Time (ms) for re-
mote pages over SCION and IPv4/6, containing either
resources from one or multiple origins.

Figure 6: Comparison of Page Load Time (ms) for an
AS local page over SCION and IPv4/6, containing either
resources from one or multiple origins.

viding static web content run on the same host as the Brave
browser and HTTP proxy, and a distributed setup, where we
access remote web servers with a SCION reverse proxy.

The local setup shown in Figure 2 is hosted on a lap-
top, where no requests exit that system. We use two file

servers providing static content hosted on a VM: the SCION
File Server (blue host) provides content over SCION, while
the TCP/IP File Server (grey host) provides resources over
TCP/IP. The HTTP proxy can establish connections both to
SCION and TCP/IP servers. These experiments compare the
Page Load Time (PLT) running the extension compared to
the PLT for the standard browsing experience.

The box plots in Figure 3 depict four experiments. The
SCION-only experiment shows the load time for a static web-
site in which all resources are located on the SCION FS. In
the mixed SCION-IP experiment, the HTTP proxy fetches re-
sources from both servers. In the strict-SCION experiment,
the browser extension runs in Strict-SCION mode,

thus only requesting SCION resources and blocking all
others. In this experiment, only one resource is located on
the SCION FS, while the others are located on the TCP/IP FS
and are thus blocked. Finally, the BGP/IP-Only experiment
shows the PLT for the browsing experience with the exten-
sion disabled, i.e., requests are not intercepted by the exten-
sion and do not traverse the HTTP proxy. The results show
a longer PLT for the SCION-only and the mixed SCION-
IP (approximately 100 ms) with respect to the PLT when
the extension is disabled (BGP/IP-Only) and to the strict-
SCION experiment. In the first two experiments, the requests
and responses go through the extension and the HTTP proxy
for all the resources creating overhead to the communica-
tion. In strict-SCION, only the request to one resource is for-
warded, while the rest are blocked, thus shortening the PLT.
In the BGP/IP-Only experiment, the extension is fully dis-
abled, thus, the overhead is removed. With tighter SCION in-
tegration in the browser and web server, we expect the over-
head to disappear, and even to achieve better performance
for large objects with performance-based path selection.

The distributed setup is depicted in Figure 4. For this
setup, we carry out two different experiments. The first ex-
periment, in Figure 5, shows the PLT for resources hosted in
distant locations. For the single origin page, we observe that
the PLT improves significantly when the resource is loaded
via SCION. The reason is that, in this particular case, SCION
benefits from path awareness to pick a lower-latency path
than the one traversed by the legacy IPv4/6 traffic. The sec-
ond experiment, in Figure 6, shows the PLT for websites lo-
cated closer to the browser host. Similarly to the local setup,
we observe that when paths are similar, the extension adds a
small overhead compared to the baseline.

6 Related Work

We discuss related work in the general areas of next-gene-
ration Internet architectures with a focus on innovation, app-
lication-level network APIs supporting advanced networking
functionality, and browser-based network innovations.

Several next-generation Internet projects had the aim to
facilitate network innovation [32, 3, 13, 20, 24, 42, 26, 19,
43, 9].

We argue that browser-based implementation is an effec-

tive means for rapid transition of these innovations, without
the need for OS support. A contrary view for the application-
level API is by the RINA architecture, which argues that the
network-level API should be similar in simplicity to local
inter-process communication [51]. As we argue in this paper,
some network properties require user input, and thus need
to be exposed to the application. Network testbeds built to
support research and innovation provide advanced function-
alities [32, 3, 48, 29], which can be used to study the API to
the OS and applications.

The Transport Services Application Programming Inter-
face (TAPS) is a new network API, built to facilitate applica-
tion’s use of new functionality [52, 16, 41]. TAPS provides a
generic interface also for PAN functionality [28], which ap-
plications can make use of for achieving the properties we
discuss in this paper.

Several low-level APIs exist for high-speed packet pro-
cessing, which bypass the OS, for instance DPDK [31], AF-
XDP [21], VPP IO [47], and PF_RING [38].

Such frameworks can be used to achieve high-speed PAN
communication without dedicated kernel support.

Browser-based network innovation has already occurred
several times: QUIC implementation in browsers [46, 14,
40] and servers [22, 12], WebRTC enabled cross-browser
video-conferencing using standard APIs without OS support
or additional plugins [23], and VPNs in browsers [35, 7, 39,
2, 33]. These highly successful deployments demonstrate the
power of browser-led innovation for the deployment of new
network functionality.

7 Conclusion

We propose a design, an open-source prototype implemen-
tation [36, 37], and initial experiments of integrating path-
aware networking into the Brave browser. To fully unlock
the benefits of PAN architectures, both web servers and browsers
should be equipped with the ability to perform context-dependent
path selection. On the side of web servers, much engineer-
ing work remains to enable PAN properties directly on the
server, without the need for a reverse proxy. While our proto-
type implementation is restricted by the limitations of browser
extensions, we plan to move features into browser code to
fully capture the potential of PAN in browsers, and bundle
the SCION setup in a single executable for simplified de-
ployment. Another direction is to implement further path
policies, i.e., optimizing network paths for energy, or CO2

footprint.
Another interesting future direction is to enable path nego-

tiation between the server and the browser, enabling another
dimension of achievable properties and innovation.

Network innovation has traditionally been driven from the
OS. Thanks to recent developments, we observe that novel,
feature-rich browsers provide a potent approach to drive in-
novation for advanced networking mechanisms – both out of
necessity (user involvement) and simplicity (ease of deploy-
ment and use for the average user). Some properties cannot

be meaningfully decided in the network or network layer,
but instead depend on user preferences. Consequently, the
browser provides a perfect environment for such properties,
and an exciting platform for network innovation.

8 References

[1] Anapaya Systems. Path Policy Language Design.
https://scion.docs.anapaya.net/en/latest/

PathPolicy.html, 2022.
[2] Apple. About iCloud Private Relay.

https://support.apple.com/en-us/HT212614,
2021.

[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and
J. Rexford. In VINI veritas: realistic and controlled
network experimentation. In Proceedings of the 2006
conference on applications, technologies,
architectures, and protocols for computer
communications (SIGCOMM), 2006.

[4] Brave. Internal usage stats. Obtained via direct
communication, 2022.

[5] Brave. Platform stats.
https://brave.com/transparency/, 2022.

[6] Brave Software. Brave introduces beta of private tabs
with tor for enhanced privacy while browsing.
https://brave.com/tor-tabs-beta/, 2018.

[7] Brave Software. Brave Firewall + VPN.
https://brave.com/firewall-vpn/, 2020.

[8] Brave Team. Handle onion-location HTTP header &
.onion domain.
https://github.com/brave/brave-core/pull/6762,
2022.

[9] I. Castro, A. Panda, B. Raghavan, S. Shenker, and
S. Gorinsky. Route Bazaar: Automatic interdomain
contract negotiation. In Proceedings of USENIX
Conference on Hot Topics in Operating Systems
(HotOS), 2015.

[10] L. Chuat, M. Legner, D. Basin, D. Hausheer, S. Hitz,
P. Müller, and A. Perrig. The Complete Guide to
SCION. Springer International Publishing, 2022.

[11] L. Clemente. quic-go.
https://github.com/lucas-clemente/ quic-go,
2022.

[12] L. Crilly. Introducing a Technology Preview of
NGINX Support for QUIC and HTTP/3.
https://www.nginx.com/blog/

introducing-technology-preview-nginx-

support-for-quic-http-3/, 2020.
[13] J. Crowcroft, S. Hand, R. Mortier, T. Roscoe, and

A. Warfield. Plutarch: An Argument for Network
Pluralism. ACM SIGCOMM Computer
Communication Review, 33(4):258–266, Aug. 2003.

[14] D. Damjanovic. QUIC and HTTP/3 Support now in
Firefox Nightly and Beta.

https://hacks.mozilla.org/2021/04/

quic-and-http-3-support-now-in-firefox-

nightly-and-beta/, 2021.
[15] R. Dingledine, N. Mathewson, and P. Syverson. Tor:

The Second-Generation onion router. In USENIX
Security Symposium, Aug. 2004.

[16] G. Fairhurst, B. Trammell, and M. Kühlewind.
Services Provided by IETF Transport Protocols and
Congestion Control Mechanisms. RFC 8095, IETF,
Jan. 2020.

[17] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene,
S. Litkowski, and R. Shakir. Segment Routing
Architecture. RFC 8402, IETF, July 2018.

[18] G. Giuliari, D. Roos, M. Wyss, J. A. García-Pardo,
M. Legner, and A. Perrig. Colibri: A cooperative
lightweight inter-domain bandwidth-reservation
infrastructure. In Proceedings of ACM International
Conference on emerging Networking EXperiments and
Technologies (CoNEXT), Dec. 2021.

[19] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica.
Pathlet routing. In Proceedings of ACM SIGCOMM
Conference on Data Communication, 2009.

[20] D. Han, A. Anand, F. Dogar, B. Li, H. Lim,
M. Machado, A. Mukundan, W. Wu, A. Akella, D. G.
Andersen, J. W. Byers, S. Seshan, and P. Steenkiste.
XIA: Efficient support for evolvable internetworking.
In Proceedings of USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2012.

[21] T. Høiland-Jørgensen, J. D. Brouer, D. Borkmann,
J. Fastabend, T. Herbert, D. Ahern, and D. Miller. The
EXpress Data Path: Fast programmable packet
processing in the operating system kernel. In
Proceedings of ACM International Conference on
Emerging Networking EXperiments and Technologies,
CoNEXT, 2018.

[22] M. Holt. caddyserver/caddy release note 0.9.
https://github.com/caddyserver/caddy/

releases/tag/v0.9.0, 2016.
[23] P. Höglund. Chrome - Firefox WebRTC Interop Test.

https://testing.googleblog.com/

2014/08/chrome-firefox-webrtc-interop-

test-pt-1.html, 2014.
[24] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F.

Plass, N. H. Briggs, and R. L. Braynard. Networking
named content. In Proceedings of International
Conference on Emerging Networking Experiments and
Technologies (CoNEXT), 2009.

[25] G. Kadianakis. Onion-location.
https://community.torproject.org/

onion-services/advanced/onion-location/, 2018.
[26] T. Koponen, S. Shenker, H. Balakrishnan,

N. Feamster, I. Ganichev, A. Ghodsi, P. B. Godfrey,
N. McKeown, G. Parulkar, B. Raghavan, J. Rexford,
S. Arianfar, and D. Kuptsov. Architecting for

https://scion.docs.anapaya.net/en/latest/PathPolicy.html
https://scion.docs.anapaya.net/en/latest/PathPolicy.html
https://support.apple.com/en-us/HT212614
https://brave.com/transparency/
https://brave.com/tor-tabs-beta/
https://brave.com/firewall-vpn/
https://github.com/brave/brave- core/pull/6762
https://github.com/lucas-clemente/
quic-go
https://www.nginx.com/blog/introducing-technology-preview-nginx-
https://www.nginx.com/blog/introducing-technology-preview-nginx-
support-for-quic-http-3/
https://hacks.mozilla.org/2021/04/quic-and-http-3-support-now-in-firefox-
https://hacks.mozilla.org/2021/04/quic-and-http-3-support-now-in-firefox-
nightly-and-beta/
https://github.com/caddyserver/caddy/releases/tag/v0.9.0
https://github.com/caddyserver/caddy/releases/tag/v0.9.0
https://testing.googleblog.com/
2014/08/chrome-firefox-webrtc-interop-
test-pt-1.html
https://community.torproject.org/onion-services/advanced/onion-location/
https://community.torproject.org/onion-services/advanced/onion-location/

innovation. ACM SIGCOMM Computer
Communication Review, July 2011.

[27] C. Krähenbühl, S. Tabaeiaghdaei, C. Gloor, J. Kwon,
A. Perrig, D. Hausheer, and D. Roos. Deployment and
scalability of an inter-domain multi-path routing
infrastructure. In Proceedings of ACM International
Conference on emerging Networking EXperiments and
Technologies (CoNEXT), Dec. 2021.

[28] T. Krüger and D. Hausheer. Towards an API for the
Path-Aware Internet. In Proceedings of ACM
SIGCOMM Workshop on Network-Application
Integration (NAI), 2021.

[29] J. Kwon, J. A. García-Pardo, M. Legner, F. Wirz,
M. Frei, D. Hausheer, and A. Perrig. SCIONLab: A
next-generation Internet testbed. In Proceedings of
IEEE Conference on Network Protocols (ICNP), 2020.

[30] D. Levin, Y. Lee, L. Valenta, Z. Li, V. Lai,
C. Lumezanu, N. Spring, and B. Bhattacharjee. Alibi
routing. In Proceedings of ACM Conference on
Special Interest Group on Data Communication
(SIGCOMM), Aug. 2015.

[31] Linux Foundation. Data Plane Development Kit.
https://www.dpdk.org/, 2018.

[32] R. McGeer, M. Berman, C. Elliott, and R. Ricci,
editors. The GENI Book. Springer International
Publishing, 2016.

[33] Microsoft. Introducing Microsoft Edge Secure
Network. https:
//techcommunity.microsoft.com/t5/articles/

introducing-microsoft-edge-secure-network/

m-p/3367243, 2022.
[34] A. Mineer. Speeding up chrome’s release cycle.

https://blog.chromium.org/2021/03/

speeding-up-release-cycle.html, 2021.
[35] Mozilla. Mozilla VPN: Protect Your Entire Device.

https://www.mozilla.org/en-US/products/vpn/,
2020.

[36] Netsec ETHZ. Skip Proxy. https://github.com/
netsec-ethz/scion-apps/tree/master/skip, 2022.

[37] Netsec ETHZ, OVGU Magdeburg. SCION Browser
Extensions. https://github.com/netsys-lab/
scion-browser-extensions, 2022.

[38] NTOP. PF_RING.
https://github.com/ntop/PF_RING, 2022.

[39] Opera. Opera Browser with free VPN.
https://www.opera.com/features/free-vpn, 2016.

[40] Opera Team. Changelog 41.0.2340 - Opera Desktop.
https://blogs.opera.com/desktop/

changelog-opera-41/, 2016.
[41] T. Pauly, B. Trammell, A. Brunstrom, G. Fairhurst,

C. Perkins, P. S. Tiesel, and C. A. Wood. An
Architecture for Transport Services. draft
draft-ietf-taps-arch-12, IETF, Jan. 2022.

[42] D. Raychaudhuri, K. Nagaraja, and A. Venkataramani.

MobilityFirst: A robust and trustworthy
mobility-centric architecture for the future Internet.
ACM SIGMOBILE Mobile Computing and
Communications Review, July 2012.

[43] G. Rouskas, I. Baldine, K. Calvert, R. Dutta,
J. Griffioen, A. Nagurney, and T. Wolf. ChoiceNet:
Network innovation through choice. In Proceedings of
International Conference on Optical Networking
Design and Modeling (ONDM), 2013.

[44] Statista. Market share of leading internet browsers.
https://www.statista.com/statistics/

276738/worldwide-and-us-market-

share-of-leading-internet-browsers/, Feb 21
2022.

[45] Statista. Web browsers - statistics & facts. https:
//www.statista.com/topics/5684/web-browsers/,
Feb 7 2022.

[46] The Chromium Project. QUIC, a multiplexed transport
over UDP.
https://www.chromium.org/quic/#History, 2022.

[47] The Fast Data Project (FD.io). VPP/What is VPP?
https://wiki.fd.io/view/VPP/ What_is_VPP%3F,
2017.

[48] The PlanetLab Consortium. PlanetLab, an open
platform for developing, deploying, and accessing
planetary-scale services.
https://www.planet-lab.org/, 2016.

[49] Tor Project. User metrics. https://metrics.
torproject.org/userstats-relay-country.html?

start=2011-01-01, 21 June 2022.
[50] B. Trammell, J.-P. Smith, and A. Perrig. Adding path

awareness to the internet architecture. IEEE Internet
Computing, 22(2):96–102, Mar. 2018.

[51] Y. Wang, I. Matta, F. Esposito, and J. Day. Introducing
ProtoRINA: A Prototype for Programming
Recursive-Networking Policies. In Proceedings of
ACM SIGCOMM Conference, volume 44, page
129–131, New York, NY, USA, jul 2014. Association
for Computing Machinery.

[52] M. Welzl, M. Tüxen, and N. Khademi. On the Usage
of Transport Features Provided by IETF Transport
Protocols. RFC 8303, IETF, Dec. 2020.

https://www.dpdk.org/
https://techcommunity.microsoft.com/t5/articles/introducing-microsoft-edge-secure-network/m-p/3367243
https://techcommunity.microsoft.com/t5/articles/introducing-microsoft-edge-secure-network/m-p/3367243
https://techcommunity.microsoft.com/t5/articles/introducing-microsoft-edge-secure-network/m-p/3367243
https://techcommunity.microsoft.com/t5/articles/introducing-microsoft-edge-secure-network/m-p/3367243
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://blog.chromium.org/2021/03/speeding-up-release-cycle.html
https://www.mozilla.org/en-US/products/vpn/
https://github.com/netsec-ethz/scion-apps/tree/master/skip
https://github.com/netsec-ethz/scion-apps/tree/master/skip
https://github.com/netsys-lab/scion-browser-extensions
https://github.com/netsys-lab/scion-browser-extensions
https://github.com/ntop/PF_RING
https://www.opera.com/features/free-vpn
https://blogs.opera.com/desktop/changelog-opera-41/
https://blogs.opera.com/desktop/changelog-opera-41/
https://www.statista.com/statistics/
276738/worldwide-and-us-market-
share-of-leading-internet-browsers/
https://www.statista.com/topics/5684/web-browsers/
https://www.statista.com/topics/5684/web-browsers/
https://www.chromium.org/quic/#History
https://wiki.fd.io/view/VPP/
What_is_VPP%3F
https://www.planet-lab.org/
https://metrics.torproject.org/userstats-relay-country.html?start=2011-01-01
https://metrics.torproject.org/userstats-relay-country.html?start=2011-01-01
https://metrics.torproject.org/userstats-relay-country.html?start=2011-01-01

	1 Introduction
	2 Which Layer Should Make Path Decisions?
	3 Network Innovation in the Browser
	3.1 Network-specific Browsing Tabs
	3.2 High-level Architecture and Challenges

	4 Path-Aware Networking in the Browser
	4.1 Path Policies and Geofencing
	4.2 Partial Availability
	4.3 SCION Detection for Domains

	5 Implementation and Evaluation
	5.1 Prototype Implementation
	5.2 Experimental Results

	6 Related Work
	7 Conclusion
	8 References

