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The existence of simple uncoupled no-regret learning dynamics that converge to correlated equilibria in
normal-form games is a celebrated result in the theory of multi-agent systems. Specifically, it has been known
for more than 20 years that when all players seek to minimize their internal regret in a repeated normal-
form game, the empirical frequency of play converges to a normal-form correlated equilibrium. Extensive-
form (that is, tree-form) games generalize normal-form games by modeling both sequential and simultaneous
moves, as well as imperfect information. Because of the sequential nature and presence of private information
in the game, correlation in extensive-form games possesses significantly different properties than in normal-
form games, many of which are still open research directions. Extensive-form correlated equilibrium (EFCE)
has been proposed as the natural extensive-form counterpart to the classical notion of correlated equilibrium
in normal-form games. Compared to the latter, the constraints that define the set of EFCEs are significantly
more complex, as the correlation device (a.k.a. mediator) must take into account the evolution of beliefs of
each player as they make observations throughout the game. Due to that significant added complexity, the
existence of uncoupled learning dynamics leading to an EFCE has remained a challenging open research ques-
tion for a long time. In this article, we settle that question by giving the first uncoupled no-regret dynamics
that converge to the set of EFCEs in n-player general-sum extensive-form games with perfect recall. We show
that each iterate can be computed in time polynomial in the size of the game tree, and that, when all players
play repeatedly according to our learning dynamics, the empirical frequency of play afterT game repetitions
is proven to be a O(1/

√
T )-approximate EFCE with high probability, and an EFCE almost surely in the limit.
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1 INTRODUCTION

The Nash equilibrium (NE) [38] is the most common notion of rationality in game theory, and its
computation in two-player zero-sum games has been the flagship computational challenge at the
interface between computer science and game theory (see, e.g., the landmark results in heads-up
no-limit poker by Brown and Sandholm [3] and Moravčík et al. [35]). The assumption underpin-
ning NE is that the interaction among players is fully decentralized. Therefore, an NE is an element
of the uncorrelated strategy space of the game, that is, a product of independent probability dis-
tributions over actions, one per player. A competing notion of rationality is the correlated equi-

librium (CE) proposed by Aumann [1]. A CE is defined as a probability distribution over joint
action profiles—specifying an action for each player—and it is customarily modeled via a trusted
external mediator that draws an action profile from this distribution and privately recommends to
each player their component. The probability distribution is a CE if no player has an incentive to
choose an action different from the mediator’s recommendation, because, assuming that all other
players follow their recommended action, the suggested action is the best in expectation.

Many real-world strategic interactions involve more than two players with arbitrary (i.e.,
general-sum) utilities. In those settings, the CE is an appealing solution concept, as it overcomes
several weaknesses of the NE. First, the NE is prone to equilibrium selection issues, raising the
question as to how players can select an equilibrium while they are assumed not to be able to
communicate with each other. Second, computing an NE is computationally intractable, being
PPAD-complete even in two-player games [10, 11], whereas a CE can be computed in polynomial
time.1 Third, the social welfare that can be attained by an NE may be arbitrarily lower than what
can be achieved via a CE [6, 31, 42]. Last, in normal-form (that is, simultaneous-move) games, the
notion of CE arises from simple uncoupled learning dynamics even in general-sum settings with an
arbitrary number of players. In words, these learning dynamics are such that each player adjusts
their strategy on the basis of their own payoff function, and on other players’ strategies, but not
on the payoff functions of other players. The existence of uncoupled dynamics allows to overcome
the—often unreasonable—assumption that players have perfect knowledge of other players’ pay-
off functions, while at the same time offering a parallel, scalable avenue for finding equilibria. In
contrast, in the case of the NE, uncoupled learning dynamics are only known in the two-player
zero-sum setting [9, 22, 24] or in multi-player games with particular structures (see, e.g., the case
of polymatrix games [12]). All of the above considerations contribute to the idea that CE is often
a better prescriptive solution concept than NE in general-sum and multi-player settings.

Extensive-form correlated equilibrium (EFCE), introduced by von Stengel and Forges [48],
is a natural extension of the correlated equilibrium to the case of extensive-form (that is, tree-
form, sequential) games. Extensive-form games generalize normal-form games by modeling both
sequential and simultaneous moves, as well as imperfect information. In an EFCE, the mediator
draws, before the beginning of the sequential interaction, a recommended action for each of the
possible decision points (also known as information sets) that players may encounter in the game,

1In normal-form games, a CE can be computed in polynomial time via linear programming. In extensive-form games, the
computational complexity of computing a CE depends on the specific notion of correlation that is adopted. As discussed
in more detail in the following, the problem can be solved in polynomial time for the notion studied in this article.
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but these recommendations are not immediately revealed to each player. Instead, the mediator
incrementally reveals relevant individual moves as players reach new information sets. At any de-
cision point, the acting player is free to deviate from the recommended action, but doing so comes
at the cost of future recommendations, which are no longer issued to that player if they deviate. It
is up to the mediator to make sure that the recommended behavior is indeed an equilibrium—that
is, that no player would be better off ever deviating from following the mediator’s recommen-
dations at each information set. Compared to the constraints that characterize the set of CEs in
normal-form games, those that define the set of EFCEs in extensive-form games are significantly
more complex. Indeed, the main challenge of the EFCE case is that the mediator must take into
account the evolution of beliefs of each player as they make observations throughout the game
tree.

One could define a CE for an extensive-form game by allowing the mediator to draw and recom-
mend an action for each information set to each player before the game starts. Then, each player
could decide whether to follow the recommendation or deviate to an arbitrary strategy they de-
sire. In an EFCE, players know less about the action recommendations that were sampled by the
mediator than in a CE for extensive-form games, where the whole set of recommendations is im-
mediately revealed. Therefore, by exploiting an EFCE, the mediator can more easily incentivize
players to follow strategies that may hurt them, as long as players are indifferent as to whether or
not to follow the recommendations. This is beneficial when the mediator wants to maximize, e.g.,
the social-welfare of the game.

In general-sum extensive-form games with an arbitrary number of players (including poten-
tially the chance player modeling exogenous stochastic events), the problem of computing a feasi-
ble EFCE can be solved in polynomial time in the size of the game tree [27] via a variation of the
Ellipsoid Against Hope algorithm [28, 40]. Dudík and Gordon [13] provide an alternative sampling-
based algorithm to compute EFCEs. However, their algorithm is centralized and based on MCMC
sampling, which limits its applicability on large-scale problems. In practice, these approaches can-
not scale beyond toy problems. However, methods based on uncoupled learning dynamics usually
work quite well in large real-world problems, while retaining the appealing properties of uncou-
pled dynamics that we discussed above.

The following fundamental research question remains open:

Is it possible to devise uncoupled learning dynamics that converge to an EFCE?

We show that the answer is positive, at least in the full-information feedback model.
In the first part of the article, we formalize the notion of trigger regret, simplifying and extend-

ing an idea by Gordon et al. [20]. Trigger regret is a notion of regret suitable for extensive-form
games that naturally expresses the regret incurred by each player for following the recommenda-
tions issued by the EFCE mediator, instead of deviating according to some optimal-in-hindsight
strategy. Specifically, trigger regret is a particular instantiation of the framework known as phi-
regret minimization introduced by Stoltz and Lugosi [44] building on previous work by Greenwald
and Jafari [21]. In general, phi-regret minimization operates with a notion of regret defined with
respect to a given set of linear transformations on the decision set. To define trigger regret, we
identify suitable linear transformations that allow us to encode the behavior of trigger agents in
the definition of EFCE, which we coin canonical trigger deviation functions. Intuitively, canonical
trigger deviation functions encode all the possible ways in which a trigger agent may deviate from
the recommendations issued by the EFCE mediator, and instead start playing from that point on
according to a different strategy than the recommended one. Our core result on trigger regret is
the following: If each player plays according to a no-trigger-regret learning algorithm, then the
empirical frequency of play approaches the set of EFCEs.
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In the rest of the article, we provide an efficient (that is, requiring time polynomial in the size of
the game tree at each iteration) algorithm that minimizes trigger regret. The algorithm is based on
the general template for constructing phi-regret minimization algorithms given by Gordon et al.
[20], extending prior work by Hazan and Kale [25]. Before one can use that template, two missing
pieces need to be solved: (1) constructing an efficient regret minimizer for the set of all valid canon-
ical trigger deviation functions, and (2) showing that any convex combination of canonical trigger
deviation functions admits a fixed point strategy, and that such fixed point can be computed effi-
ciently. We solve (1) by exploiting the non-trivial combinatorial structure of the set of canonical
trigger deviation functions, and (2) by giving an efficient incremental procedure to compute the
fixed point strategy in a top-down traversal of the game tree. Our resulting algorithm minimizes
trigger regret, guaranteeing O(

√
T ) trigger regret with high probability after T iterations and re-

quiring time polynomial in the size of the game tree at each iteration. Thus, when all players play
according to the uncoupled learning dynamics defined by our algorithm, the empirical frequency
of play afterT game repetitions is proven to be aO(1/

√
T )-approximate EFCE with high probabil-

ity, and an EFCE almost surely in the limit. These results generalize the seminal work by Hart and
Mas-Colell [22] to the extensive-form game case via a simple and natural framework.

1.1 Related Work

The study of adaptive procedures leading to a CE dates back to at least the seminal works by Foster
and Vohra [16], Fudenberg and Levine [17, 19], and Hart andMas-Colell [22, 23]; see also themono-
graph by Fudenberg and Levine [18]. In particular, the work by Hart and Mas-Colell [22] proves
that simple dynamics based on the notion of internal regret result in empirical frequencies of play
that converge to the set of CEs in normal-form games. The strategy that the authors introduce—
the so-called regret matching—is conceptually simple and guarantees that if all players follow this
strategy, then the empirical frequency of play converges to the set of CEs (see also Cahn [5]). Other
works describe extensions to the models studied in the aforementioned papers. For example, Stoltz
and Lugosi [44] describe an adaptive procedure such that the resulting empirical frequency of play
converges to the set of CEs in games with an infinite, but compact, set of actions, while Kakade
et al. [29] consider efficient algorithms for computing correlated equilibria in graphical games.

In more recent years, a growing effort has been devoted to understanding the relationships
between no-regret learning dynamics and equilibria in extensive-form games. These games pose
additional challenges when compared to normal-form games, due to their sequential nature and
the presence of imperfect information. While in two-player zero-sum extensive-form games it is
widely known that no-regret learning dynamics converge to an NE—with the counterfactual

regret minimization (CFR) algorithm and its variations being the state-of-the-art for equilib-
rium finding in such games [4, 33, 45, 46, 49]—the general case is less understood. Celli et al. [7]
provide some variations of the classical CFR algorithm for n-player general-sum extensive-form
games, showing that they provably converge to a normal-form coarse correlated equilibrium, which
is based on a form of correlation that is less appealing than that of EFCE in sequential games. In-
deed, normal-form coarse correlated equilibria require that the players commit to following all the
recommendations issued by the mediator upfront before the beginning of the game, which is not
realistic in practice.

Finally, we mention relevant literature subsequent to the conference version of this article. In a
recent paper, Morrill et al. [37] conduct a study of different forms of correlation in extensive-form
games, defining a taxonomy of solution concepts. Each of their solution concepts is attained by
a particular set of no-regret learning dynamics, which is obtained by instantiating the phi-regret
minimization framework [20, 21, 44] with a suitably defined deviation function. As part of their

Journal of the ACM, Vol. 69, No. 6, Article 41. Publication date: November 2022.



Simple Uncoupled No-regret Learning Dynamics for Extensive-form CE 41:5

analysis, Morrill et al. [37] investigate some properties of the well-established CFR regret mini-
mization algorithm [49] applied to n-player general-sum extensive-form games, establishing that
it is hindsight-rational with respect to a specific set of deviation functions, which the authors coin
blind counterfactual deviations. In subsequent recent work, Morrill et al. [36] extend their prior
work [37] by identifying a general class of deviations—called behavioral deviations—that induce
equilibria that can be found through uncoupled no-regret learning dynamics. Behavioral devia-
tions are defined as those specifying an action transformation independently at each information
set of the game. As the authors note, the deviation functions involved in the definition of EFCE
do not fall under that category. A particular class of behavioral deviation functions—called causal
partial sequence deviations—induces solution concepts that are (subsets of) EFCEs. Thus, their re-
sult begets an alternative set of no-regret learning dynamics that converge to EFCE, based on a
different set of deviation functions than those we use in this article.

2 PRELIMINARIES

In this section, we provide some standard definitions related to extensive-form games and regret
minimization that will be employed in the remainder of the article. A more comprehensive treat-
ment of basic concepts in the theory of extensive-form games can be found in the book by Shoham
and Leyton-Brown [43], and an introduction to the theory of learning in games can be found in
the book by Cesa-Bianchi and Lugosi [9].

2.1 Mathematical Notation and Algorithmic Conventions

In this article, we adopt the following notational and algorithmic conventions:

• We denote the set of real numbers as R, the set of nonnegative real numbers as R≥0, and the
set {1, 2, . . . } of positive integers as N>0.
• The set {1, . . . ,n}, where n ∈ N>0, is compactly denoted as [n]; the empty set as ∅.
• Given a set S , we denote its convex hull with the symbol co(S).
• Vectors and matrices are marked in bold.
• Given a discrete set S = {s1, . . . , sn}, we denote as RS (respectively, RS

≥0) the set of
real (respectively, nonnegative real) |S |-dimensional vectors whose entries are denoted as
x[s1], . . . ,x[sn]. Given an element s ∈ S , we denote by es ∈ RS the canonical basis vector
whose entries are all zeros except for es [s] = 1.

• Similarly, given a discrete set S , we denote as R |S |× |S | (respectively, R |S |× |S |≥0 ) the set of real
(respectively, nonnegative real) |S | × |S | square matrices M whose entries are denoted as
M[sr , sc ] (sr , sc ∈ S), where sr corresponds to the row index and sc to the column index.
• Given a discrete set S , we denote by ΔS the simplex ΔS � {x ∈ RS

≥0 :
∑

s ∈S x[s] = 1}. The
symbol Δn , with n ∈ N>0, is used to mean Δ[n].

• Given a discrete set S , we use the symbol SS ⊆ R |S |× |S |≥0 to denote the set of stochastic
matrices, that is, nonnegative square matrices whose columns all sum up to 1. The symbol
Sn , where n ∈ N>0, is used to mean S[n].
• Given two functions f : X → Y and д : Y → Z , we denote by д ◦ f : X → Z their
composition x 	→ д(f (x)).
• Given a set S and a function f , the image of S via f is denoted as f (S) � { f (s) : s ∈ S}.
• Given a proposition p, we denote with 1{p} the indicator function of that proposition: 1{p} =
1 if p is true, and 1{p} = 0 if not.
• Given a partially ordered set (S,≺) and two elements s, s ′ ∈ S , we use the standard derived
symbols s � s ′ to mean that (s = s ′) ∨ (s ≺ s ′), s � s ′ to mean that s ′ ≺ s , and s � s ′ to
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mean that s ′ � s . Furthermore, we use the crossed symbols ⊀, �, �, and � to mean that the
relations ≺, �,�, and � (respectively) do not hold.
• Several of the algorithms presented in this article take as input, give as output, or other-
wise manipulate, linear functions. Therefore, to study the complexity of our routines, it is
necessary to settle on a representation for such linear functions. Unless otherwise specified,
we will always assume that a linear function f is stored in memory using coordinates rel-
ative to the canonical basis of their domain and codomain and call that representation the
canonical representation of f , denoted 〈f 〉. Specifically:
– If f is a linear function from RS (for some discrete set S) to R, then its canonical represen-

tation 〈f 〉 is the (unique) vectorv ∈ RS such that

f (x) = v�x ∀ x ∈ RS ,

where � denotes transposition.
– If f is a linear function from RS to RS (for some discrete set S), then its canonical repre-

sentation 〈f 〉 is the (unique) matrixM ∈ R |S |× |S | such that

f (x) = Mx ∀ x ∈ RS .

– If F is a linear functional, mapping linear functionsϕ : RS → RS to reals, then its canonical
representation 〈F 〉 is the (unique) matrix Λ ∈ R |S |× |S | such that

F (ϕ) =
∑

sr ,sc ∈S
Λ[sr , sc ] · 〈ϕ〉[sr , sc ] ∀ ϕ : RS → RS , (1)

where 〈ϕ〉 is the canonical representation of ϕ.

2.2 Extensive-form Games

In this subsection, we introduce some standard concepts, terminology, and notation that we will
use to deal with extensive-form games. A summary of the notation we introduce can be found in
Table 1. Examples 2.1 and 2.5 demonstrate some of the notation in a simple extensive-form game.

An extensive-form game is played on an oriented rooted game tree. We denote by H the set of
nodes of the game tree. Each node h ∈ H that is not a leaf of the game tree is called a decision node
and has an associated player that acts at that node. In an n-player extensive-form game, the set of
valid players is the set [n] ∪ {c}, where c denotes the chance player—a fictitious player that selects
actions according to a known fixed probability distribution and models exogenous stochasticity
of the environment (for example, a roll of the dice or drawing a card from a deck). The player
that acts at h is free to pick any one of the actions A(h) that are available at h. For each possible
action a ∈ A(h), an edge connects h to the node to which the game transitions whenever action a
is picked at h. Given a player i ∈ [n] ∪ {c}, we denote with H(i) ⊆ H the set of all decision nodes
that belong to Player i .

Leaves of the game tree are called terminal nodes and represent the outcomes of the game. As
such, they are not associated with any acting player, and the set of actions is conventionally set
to the empty set. The set of all terminal nodes in the game is denoted with the letter Z. So, the
set of all nodes in the game tree is the disjoint union H = H(1) ∪ · · · ∪H(n) ∪ Z. When the game
transitions to a terminal node z ∈ Z, payoffs are assigned to each of the non-chance players by
the set of functions {u(i) : Z → R}i ∈[n]. Furthermore, we let pc : Z → (0, 1) denote the function
assigning each terminal node z ∈ Z to the product of probabilities of chance moves encountered
on the path from the root of the game tree to z.
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Table 1. Summary of Game-theoretic Notation Used in this Article

Symbol Description

H Set of nodes of the game tree.
H(i) Set of nodes at which Player i acts.
A(h) Actions available to the player acting at h ∈ H (empty set if h is a terminal node).
J(i) Information partition of Player i .
A(j) Set of actions available at any node in the information set j.

Z Set of terminal nodes (leaves of the game tree).
u(i)(z) Payoff of Player i at terminal node z ∈ Z.
pc (z) Product of probabilities of all the stochastic events on the path from the root to

terminal node z ∈ Z.

Σ(i) Set of sequences of Player i , defined as Σ(i) � {(j,a) : j ∈ J(i),a ∈ A(j)} ∪ {�},
� where the special element � is called the empty sequence.

Σ(i)∗ Set of sequences of Player i , excluding the empty sequence �.
σ (i)(z) Last sequence of Player i encountered on the path from the root to node z ∈ Z.
σ (i)(j) Last sequence of Player i on the path from the root to any node in j ∈ J(i).

j ≺ j ′ Information set j ∈ J(i) is an ancestor of j ′ ∈ J(i), that is, there exists a directed
path in the game tree connecting a node h ∈ j to some node h′ ∈ j ′.

σ ≺ σ ′ Sequence σ precedes sequence σ ′, where σ ,σ ′ belong to the same player.
σ � j Sequence σ = (j ′,a′) is such that j ′ � j.

Σ(i)j Sequences at j ∈ J(i) and all of its descendants, Σ(i)j � {σ ∈ Σ(i) : σ � j}.

Q(i) Sequence-form strategies of Player i (Definition 2.2).

Q(i)j Sequence-form strategies for the subtree2 rooted at j ∈ J(i) (Definition 2.3).

Π(i) Deterministic sequence-form strategies of Player i .

Π(i)j Deterministic sequence-form strategies for the subtree2 rooted at j ∈ J(i).
Π Set of joint deterministic sequence-form strategies, Π �

�
i ∈[n] Π

(i).

2.2.1 Imperfect Information. To model imperfect information, the nodes H(i) of each player
i ∈ [n] are partitioned into a collection J(i) of set of nodes, called information sets. Each information
set j ∈ J(i) groups together nodes that Player i cannot distinguish between when he or she acts
there. Since a player always knows what actions are available at a decision node, any two nodes
h,h′ belonging to the same information set j must have the same action set, that is, A(h) = A(h′)
for all h,h′ ∈ j. For that reason, we can safely overload notation and write A(j) to mean the set of
actions available at any node that belongs to information set j.

As is standard in the literature, we assume that the extensive-form game has perfect recall, that
is, information sets are such that no player forgets information once acquired. An immediate con-
sequence of perfect recall is that, for any player i ∈ [n] and any two nodes h,h′ in the same
information set j ∈ J(i), the sequence of Player i’s actions encountered along the path from the
root to h and from the root to h′ must coincide (or otherwise Player i would be able to distinguish
among the nodes, since the player remembers all of the actions they played in the past). This

2The term “subtree” does not refer to a subtree of the game tree, but rather to a subtree of the partially ordered set (J(i ), ≺).
In other words, the term subtree here refers to the fact that the quantities are specified only at information set j and all of
its descendants.
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suggests the following partial ordering ≺ on the set J(i): We write j ≺ j ′—and say that j ∈ J(i) is
an ancestor of j ′ ∈ J(i) or equivalently that j ′ is a descendant of j—if there exist nodes h′ ∈ j ′ and
h ∈ j such that the path from the root of the game tree to h′ passes through h.

It is a well-known consequence of perfect recall that the partially ordered set (J(i),≺) is a forest
for any player i ∈ [n], in the precise sense that, given any information set j ∈ J(i), the set of all of
its predecessors forms a chain (that is, it is well-ordered by ≺).

2.2.2 Sequences. For any player i ∈ [n], and given an information set j ∈ J(i) and an action
a ∈ A(j), we denote as σ = (j,a) the sequence of Player i’s actions encountered on the path from
the root of the game tree down to action a (included) at any node in information set j. In perfect-
recall extensive-form games, such a sequence is guaranteed to be uniquely determined, because
paths that reach decision nodes belonging to the same information set identify the same sequence
of Player i’s actions. A special element � denotes the empty sequence of Player i . Then, the set of
Player i’s sequences is defined as

Σ(i) � {(j,a) : j ∈ J(i),a ∈ A(j)} ∪ {�}.

Moreover, we let Σ(i)∗ � Σ(i) \ {�} be the set of all sequences of Player i other than the empty one.
Given a node h ∈ H, we denote by σ (i)(j) ∈ Σ(i) the last sequence (information set-action pair)

of Player i encountered on the path from the root of the game tree to any node in j, also known
as j’s parent sequence. If Player i does not act before h, then σ (i)(h) is set to the empty sequence
�. If σ (i)(j) = �, then we say that information set j is a root information set of Player i , while,
whenever σ (i)(j) = (j ′,a), we say that j ′ is the immediate predecessor of j, or equivalently that
information set j is immediately reachable from sequence σ (i)(j). That nomenclature is supported
by the observation that j ′ ≺ j, and that Player i does not need to take other actions after choosing
a at j ′ to reach j. Analogously, for all z ∈ Z, we define σ (i)(z) ∈ Σ(i) as the last sequence of
Player i’s actions encountered the path from the root of the game tree to terminal node z (notice
that σ (i)(z) = � whenever Player i never plays on the path from the root to z).

Just like information sets, there exists a natural partial ordering on sequences, which we also
denote with the same symbol ≺. For every i ∈ [n] and any pair of sequences σ ,σ ′ ∈ Σ(i), the
relation σ ≺ σ ′ holds if σ = � � σ ′, or if the sequences are of the form σ = (j,a),σ ′ = (j ′,a′),
and the set of Player i’s actions encountered on the path from the root of the tree to any node
in j ′ includes playing action a at one of information set j’s nodes. As for information sets, it is
a direct consequence of the perfect recall assumption that the partially ordered set (Σ(i),≺) is a
forest. Finally, we introduce the overloaded notation σ � j (or equivalently j � σ ), defined for
any player i ∈ [n], information set j ∈ J(i), and sequence σ ∈ Σ(i), to mean that the sequence
of Player i ’s actions that is denoted by σ must lead the player to pass through (some node in) j;

formally σ = (j ′,a′) ∈ Σ(i)∗ ∧ j ′ � j. With that, we let Σ(i)j � {σ ∈ Σ(i) : σ � j} ⊆ Σ(i) be the set of
Player i’s sequences that terminate at j or any of its descendant information sets.

Example 2.1. To illustrate some of the concepts and notation described so far, we consider the
simple two-player extensive-form game in Figure 1, in which black round nodes belong to Player 1,
and white round nodes belong to Player 2. The gray clusters of nodes identify the information sets.
Since we chose different action numbers for different information sets, there exists a one-to-one
correspondence between actions and sequences, and we will sometimes refer to sequences using
the corresponding action number. For example, we will sometimes refer to sequence “3” to mean
sequence (b, 3), sequence “8” to mean sequence (d, 8), and so on. Player 1 has four information
sets—denoted a, b, c, and d—with two actions each. Player 2 only has two information sets, r and
s, each with two actions. Information set d of Player 1 contains two nodes and models Player 1’s
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Fig. 1. (Left) Example of an extensive-form game with two players. Black round nodes belong to Player 1,

white round nodes belong to Player 2. Small white square nodes represent terminal nodes. The gray partitions

represent the information sets of the game. The numbers on the edges identify each of Player 1’s actions.

(Right): Forest of information sets of Player 1, corresponding to the partially ordered set (J(1),≺).

lack of knowledge of the action taken by Player 2 at information set s. The partial ordering between
information sets for Player 1 is a ≺ b,a ≺ c,a ≺ d. Moreover, we have that σ (1)(a) = �, σ (1)(b) =
σ (1)(c) = 1, and σ (1)(d) = 2. For the terminal node z in the picture, σ (1)(z) = 3. Finally, we have

that Σ(1)a = Σ(1)∗ = {1, 2, . . . , 8}, Σ(1)b = {3, 4}, Σ(1)c = {5, 6}, and Σ(1)d = {7, 8}.

2.2.3 Sequence-form Strategies. Conceptually, a strategy for a player specifies a probability dis-
tribution over the actions at each information set for that player. So, perhaps the most intuitive
representation of a strategy, called a behavioral strategy in the literature, is as a vector that assigns

to each information set-action pair (j,a) ∈ Σ(i)∗ the probability of picking action a at information
set j. That representation has a major drawback: The probability of reaching any given terminal
node z ∈ Z is expressed as the product of several entries in the vector (one per each action on
the path from the root of the game tree to z), rendering critical quantities—including the expected
utility of a player—a non-convex function of the behavioral strategies of the players. As is stan-
dard in the literature, to soundly overcome the issue of non-convexity, throughout this article, we
will exclusively use a different representation of strategies, known as the sequence-form represen-
tation [30, 41, 47].

Like behavioral strategies, a sequence-form strategy3 for Player i ∈ [n] is a vectorq ∈ RΣ(i )
≥0 . How-

ever, unlike behavioral strategies, each entry q[(j,a)] of a sequence-form strategy q contains the
product of the probabilities of playing all of Player i’s actions on the path from the root of the game
tree down to action a at information set j included. Furthermore, the entry q[�] corresponding to
the empty sequence is defined as the constant value 1.

To ensure consistency, all sequence-form strategies must satisfy the probability-mass-
conservation constraints

q[�] = 1, q[σ (i)(j)] =
∑

a∈A(j)
q[(j,a)], ∀ j ∈ J(i).

The above probability-mass-conservation constraints are linear, and therefore the set of sequence-
form strategies is a convex polytope, suggesting the following definition:

Definition 2.2. The sequence-form strategy polytope for Player i ∈ [n] is the convex polytope

Q(i) �
⎧⎪⎪⎨⎪⎪⎩q ∈ RΣ(i )

≥0 : q[�] = 1 and q[σ (i)(j)] =
∑

a∈A(j)
q[(j,a)], ∀ j ∈ J(i)

⎫⎪⎪⎬⎪⎪⎭.
3Sequence-form strategies are also known under the term realization plans in the literature (e.g., Reference [47]). We will
not use that latter term in this article.
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As we mentioned in Section 2.2.2, the partially ordered set (J(i),≺) is a forest. Thus, it makes
sense to consider partial strategies that only specify behavior at an information set j and all of its
descendants j ′ � j. We make that formal through the following definition:

Definition 2.3. Let i ∈ [n] be a player and j ∈ J(i) be an information set for Player i . The set

of sequence-form strategies for the subtree rooted at j, denoted Q(i)j , is the set of all vectors q ∈

R
Σ(i )j

≥0 such that probability-mass-conservation constraints hold at information set j and all of its
descendants j ′ � j, specifically,

Q(i)j �

⎧⎪⎪⎨⎪⎪⎩q ∈ R
Σ(i )j

≥0 :
∑

a∈A(j)
q[(j,a)] = 1, and q[σ (i)(j ′)] =

∑
a∈A(j′)

q[(j ′,a)] ∀ j ′ � j

⎫⎪⎪⎬⎪⎪⎭. (2)

2.2.4 Deterministic Sequence-form Strategies. Deterministic strategies are those that select, at
each information set at which the player acts, exactly one action with probability one. Since the
probability mass on each action is either 0 or 1, the set of deterministic sequence-form strategies
for Player i—which we denote with the capital letter Π(i)—corresponds exactly with the set of all
sequence-form strategies whose components are all either 0 or 1.

Definition 2.4. The set of deterministic sequence-form strategies for Player i ∈ [n] is the set

Π(i) � Q(i) ∩ {0, 1}Σ(i ) .

Similarly, the set of deterministic sequence-form strategies for the subtree2 rooted at j is

Π(i)j � Q
(i)
j ∩ {0, 1}

Σ(i )j .

The set of deterministic sequence-form strategies corresponds one-to-one to the game-theoretic
notion of reduced normal-form strategies (e.g., von Stengel [47, Section 4]). Furthermore, Kuhn’s
Theorem [32] implies that

Q(i) = co(Π(i)), Q(i)j = co(Π(i)j ) ∀ i ∈ [n], j ∈ J(i).
When it is important to emphasize that an arbitrary sequence-form strategyq ∈ Q(i) (orq ∈ Q(i)j

for some j ∈ J(i)) of Player i ∈ [n] need not be a deterministic sequence-form strategy, we will say
that q is a mixed sequence-form strategy.

Given a sequence-form strategy q ∈ Q(i), it is possible to build an unbiased sampling scheme
resulting in a (random) deterministic strategy π ∈ Π(i) such that E[π ] = q. A natural unbiased
sampling procedure is the following: Start from any root information set of Player i , that is, an
information set j ∈ J(i) such that σ (i)(j) = �. Given any information set j ∈ J(i), an action aj ∈ A(j)
is sampled with probability q[(j,aj )]/q[σ (i)(j)]; then, the same procedure is applied recursively
to all information sets immediately reachable from sequence (j,aj ), that is, the information sets
j ′ ∈ J(i) such that σ (i)(j ′) = (j,aj ). The process is repeated for all the root information sets of
Player i . The final deterministic sequence-form strategy π is obtained by setting π [(j,aj )] = 1 for
each information set j ∈ J(i) visited during the procedure, and all other entries equal to 0.

Finally, we denote as Π �
�

i ∈[n] Π
(i) the set of joint deterministic sequence-form strategies of

all the players. Therefore, an element of Π is a tuple π = (π (1), . . . ,π (n)) specifying a deterministic
sequence-form strategy π (i) for each player i ∈ [n].

Example 2.5. Continuing Example 2.1, in Figure 2, we provide one (mixed) sequence-form strat-
egy q ∈ Q(1) and five deterministic sequence-form strategies {q135,q136,q145,q27,q28} ⊆ Π(1) for
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Fig. 2. Examples of sequence-form strategies for Player i in the game of Figure 1 (left).

the small game in Figure 1 (left). One can check that these vectors are valid sequence-form strate-
gies by verifying that the probability-mass-conservation constraints of Definition 2.2 hold. Let us
consider the mixed sequence-form strategy q. There, q[(a, 1)] = q[(a, 2)] = 0.5, and therefore
Player 1 will select between actions 1 and 2 at information set a uniformly at random. Suppose
Player 1 selects action 1. Then, if Player 1 reached information set b, then she would select ac-
tions 3 and 4 with probability 0.25/0.5 = 0.5 each. However, if Player 1 reached information set
c, then she would choose action 5 with probability 0.1/0.5 = 0.2, and action 6 with probability
0.4/0.5 = 0.8. Analogously, if Player 1 played action 2 at information set a, then upon reaching
information set d she would play action 8 with probability 0.5/0.5 = 1. In general, the probability
of playing action a at a generic information set j can be obtained by dividing q[(j,a)] by q[σ (i)(j)].
As a second example, consider the deterministic sequence-form strategyq136. When Player 1 plays
according to that strategy, she will always choose action 1 at information set a, action 3 at infor-
mation set b, and action 6 at information set c. It is impossible for the player to reach information
set d given her strategy at a and correspondingly q136[7] = q136[8] = 0.

2.3 Extensive-form Correlated Equilibrium (EFCE)

Extensive-form correlated equilibrium has been proposed by von Stengel and Forges [48] as the
natural counterpart to (normal-form) correlated equilibrium in extensive-form games. In an EFCE,
before the beginning of the game the mediator draws a recommended action for each of the pos-
sible information sets that players may encounter in the game, according to some probability
distribution defined over joint reduced normal-form strategies. These recommendations are not
immediately revealed to each player. Instead, the mediator incrementally reveals relevant action
recommendations as players reach new information sets. At any information set, the acting player
is free to deviate from the recommended action, but doing so comes at the cost of future recommen-
dations, which are no longer issued if the player deviates. In an EFCE, the recommended behavior
is incentive-compatible for each player, that is, no player is strictly better off ever deviating from
any of the mediator’s recommended actions.

Before introducing the formal definition of EFCE, let us mention that one could directly
extend the definition of CE [1] to extensive-form games, thereby obtaining what is usually called
normal-form correlated equilibrium (NFCE) of the extensive-form game. In this case, the
mediator draws and recommends a complete reduced normal-form strategy to each player before
the game starts. Then, before the beginning of the game, each player can decide whether to follow
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the recommended plan or deviate to an arbitrary strategy they desire. For arbitrary extensive-form
games with perfect recall, the following inclusion of the set of equilibria holds: NFCE ⊆ EFCE.

Multiple equivalent definitions of EFCE can be given. In this article, we follow the equivalent
formulation given by Farina et al. [15] based on the concept of trigger agents introduced by Gordon
et al. [20] andDudík andGordon [13]. Inwhat follows, wewill assume that an extensive-form game
has been fixed:

Definition 2.6 (Trigger Agent). Let i ∈ [n] be a player, let σ̂ = (j,a) ∈ Σ(i)∗ , and let π̂ ∈ Π(i)j . The
(σ̂ , π̂ )-trigger agent is the agent that plays the game as Player i according to the following rules:

• If the trigger agent has never been recommended to play action a at information set j, then
the trigger agent will follow whatever recommendation is issued by the mediator.
• When the trigger agent reaches information set j and is recommended to play action a, we
say that the trigger agent “gets triggered” by the trigger sequence σ̂ = (j,a). This means
that, from that point on, the trigger agent will disregard the recommendations and play
according to the continuation strategy π̂ from information set j onward (that is, at j and all
of its descendant information sets).

An EFCE is a probability distribution μ ∈ ΔΠ over Π such that for any player i ∈ [n], trigger
sequence σ̂ = (j,a) ∈ Σ(i)∗ , and continuation strategy π̂ ∈ Π(i)j , the expected utility of the (σ̂ , π̂ )-
trigger agent is not strictly greater than the expected utility that Player i would obtain by always
following all of the mediator’s recommendations.

To turn the above condition into an analytic expression, it is useful to introduce the following
additional quantities: Given a distribution μ ∈ ΔΠ , we let rμ(z) be the probability that the game
ends in terminal node z ∈ Z when all players follow recommendations issued by the mediator
according to μ; in particular, for every z ∈ Z, it holds:

rμ(z) �
∑

(π (1), ...,π (n))∈Π
π (i )[σ (i )(z)]=1 ∀i ∈[n]

μ[(π (1), . . . ,π (n))],

where the summation is over all joint strategies (π (1), . . . ,π (n)) ∈ Π such that terminal node z is
reachable when each player i ∈ [n] plays according to π (i). Additionally, given a trigger sequence

σ̂ = (j,a) ∈ Σ(i)∗ for a player i ∈ [n] and a continuation strategy π̂ ∈ Π(i)j , we let r (i)
μ, σ̂→π̂

(z) be the

probability with which the (σ̂ , π̂ )-trigger agent reaches terminal node z. In particular, for every
terminal node z ∈ Z such that σ (i)(z) � j it holds that:

r (i)
μ, σ̂→π̂

(z) �

��������

∑

(π (1), ...,π (n))∈Π
π (i
′)[σ (i′)(z)]=1 ∀i′�i

π (i )[σ̂ ]=1

μ[(π (1), . . . ,π (n))]

���������
π̂ [σ (i)(z)].

We can now state the formal definition of EFCE and approximate EFCE.

Definition 2.7 (ϵ-EFCE; EFCE). Given ϵ ≥ 0, a probability distribution μ ∈ ΔΠ is an ϵ-approximate

EFCE (or ϵ-EFCE for short) if, for every player i ∈ [n], trigger sequence σ̂ = (j,a) ∈ Σ(i)∗ , and

continuation strategy π̂ ∈ Π(i)j , the expected utility of the (σ̂ , π̂ )-trigger agent is never larger
than the expected utility that Player i would obtain by always following all of the mediator’s
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recommendations by more than the amount ϵ . In symbols,∑
z∈Z

σ (i )(z)�σ̂

u(i)(z)pc (z) rμ(z) ≥
∑
z∈Z

σ (i )(z)�j

u(i)(z)pc (z) r (i)μ, σ̂→π̂
(z) − ϵ .

A probability distribution μ ∈ ΔΠ is an EFCE if it is a 0-EFCE.

2.4 Regret Minimization and Phi-regret Minimization

In this article, we will make heavy use of a mathematical object—one of the core abstractions in
the field of online optimization—called a regret minimizer.

Definition 2.8. Let X be a subset of an Euclidean space with suitable dimension. A regret mini-
mizer for X is an abstract model for a decision maker that repeatedly interacts with a black-box
environment. At each time t , the regret minimizer interacts with the environment through two
operations:

• NextElement has the effect that the regret minimizer will output an element x t ∈ X;
• ObserveUtility(�t ) provides the environment’s feedback to the regret minimizer, in the
form of a linear4 utility function �t : X → R that evaluates how good the last-output point
x t was. The utility function can depend adversarially on the outputs x1, . . . ,x t−1 of the
regret minimizer, but not on x t .5

Calls to NextElement and ObserveUtility keep alternating to each other: First, the regret
minimizer will output a point x1, then it will received feedback �1 from the environment, then it
will output a new point x2, and so on. The decision making encoded by the regret minimizer is
online, in the sense that at each time t , the output of the regret minimizer can depend on the prior
outputs x1, . . . ,x t−1 and corresponding observed utility functions �1, . . . , �t−1, but no information
about future utilities is available. The objective for the regret minimizer is to output points so the
cumulative regret (or simply regret)

RT � max
x ∗ ∈X

T∑
t=1

(
�t (x∗) − �t (x t )

)
(3)

grows asymptotically sublinearly in the timeT . Many regret minimizers that guarantee a cumula-
tive regret RT = O(

√
T ) at all timesT for any convex and compact setX are known in the literature

(see, e.g., Cesa-Bianchi and Lugosi [9]).

4Throughout the article, we use the term linear and affine when referring to a function f on a domain X to mean that f

extends to a linear or affine function in the Euclidean space that contains X.
5More precisely, throughout the article, we make the following, standard technical assumptions about the way randomness
can be leveraged by the regret minimizer and by the environment it interacts with:
– At all t , the regret minimizer has access to a private source of randomness, whichwemodel as a random vector with finite

mean S
t . Similarly, the environment has access to a private source of randomness, which we model again as a random

vector with finite mean E
t . All sources of randomness are independent, that is, {S1, E

1, S
2, E

2, . . . } are independent
random variables.

– At all t , the output x t ∈ X of the regret minimizer is a function of the past outputs x 1, . . . , x t−1 and their correspond-
ing feedbacks �1, . . . , �t−1, as well as on the random outcome S

t . So, x t is measurable with respect to the σ -algebra
generated by {E1, . . . , E

t−1, S
1, . . . , S

t }.
– At all t , the linear utility function �t constructed by the environment is a function of the past outputs x 1, . . . , x t−1

and their corresponding feedback �1, . . . , �t−1, as well as of the random outcome E
t . So, �t is measurable with respect

to the σ -algebra generated by {E1, . . . , E
t , S

1, . . . , S
t−1 }.

– Consequently, at all t , �t is conditionally independent of x t , given the σ -algebra Ft−1 � σ (E 1, . . . , E t−1,
S 1, . . . , S t−1) generated by all past random outcomes.
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A phi-regret minimizer is an extension of the concept of a regret minimizer introduced by Stoltz
and Lugosi [44], building on previous work by Greenwald and Jafari [21].

Definition 2.9. Given a set X of points and a set Φ of affine transformations ϕ : X → X, a
phi-regret minimizer relative to Φ for the set X—abbreviated in the term “Φ-regret minimizer”—is
an object with the same semantics and operations of a regret minimizer, but whose quality metric
is its cumulative phi-regret relative to Φ (or simply phi-regret relative to Φ, or Φ-regret for short)

RT � max
ϕ∗ ∈Φ

T∑
t=1

(
�t (ϕ∗(x t )) − �t (x t )

)
, (4)

instead of the regular cumulative regret defined in (3). Once again, the goal for a phi-regret mini-
mizer is to guarantee that its phi-regret grows asymptotically sublinearly as time T increases.

In the special case of the set of constant transformations Φconst � {X � x 	→ x̂ : x̂ ∈ X}, the
definition of cumulative phi-regret (4) reduces to that of cumulative regret given in (3). So, a regret
minimizer is a special case of a phi-regret minimizer.

A general construction by Gordon et al. [20] gives a way to construct a Φ-regret minimizer for
X starting from any regret minimizer (in the sense of Definition 2.8) for the convex hull co(Φ)
of the set of functions Φ. Specifically, let RΦ be a deterministic6 regret minimizer for the set of
transformations co(Φ)whose cumulative regret grows sublinearly and assume that everyϕ ∈ co(Φ)
admits a fixed point ϕ(x) = x ∈ X. Then, a Φ-regret minimizer R can be constructed starting from
RΦ as follows:

• Each call to R .NextElement first calls NextElement on RΦ to obtain the next transforma-
tion ϕt ∈ co(Φ). Then, a fixed point x t = ϕt (x t ) is computed and output.
• Each call toR .ObserveUtility(�t )with linear utility function �t constructs the linear utility
function Lt : ϕ 	→ �t (ϕ(x t )), where x t is the last-output strategy, and passes it to RΦ by
calling RΦ.ObserveUtility(Lt ).7

The proof of correctness of the above construction is deceptively simple, andwe recall it next. Since
RΦ outputs transformations ϕ1,ϕ2, . . . and receives utilities ϕ 	→ �1(ϕ(x1)),ϕ 	→ �2(ϕ(x2)), . . . , its
cumulative regret RT

Φ is

RT
Φ = max

ϕ∗ ∈co(Φ)

T∑
t=1

(
�t (ϕ∗(x t )) − �t (ϕt (x t ))

)
.

Hence, since x t = ϕt (x t ) is a fixed point of ϕt , we can write

RT
Φ = max

ϕ∗ ∈co(Φ)

T∑
t=1

(
�t (ϕ∗(x t )) − �t (x t )

)
≥ max

ϕ∗ ∈Φ

T∑
t=1

(
�t (ϕ∗(x t )) − �t (x t )

)
, (5)

where the inequality follows from the observation that co(Φ) ⊇ Φ. The right-hand side is exactly
the cumulative Φ-regret RT incurred by R, as defined in (4). So, because the regret cumulated by
RΦ grows sublinearly by hypothesis, then so does the Φ-regret cumulated by R.

6The assumption that RΦ is deterministic immediately guarantees that, at all times t , any linear utility function given as
feedback to RΦ is conditionally independent of the last output ϕt , given the random outcomes used by the environments
E 1, . . . , E t−1 (cf. Footnote 5).
7On the surface, it might look like Lt is independent of the last output ϕt of the regret minimizer RΦ, and thus, that it
trivially satisfies the requirements of Definition 2.8. However, that is not true: x t is a fixed point of ϕt , and, since x t enters
into the definition of Lt , if RΦ picks ϕt randomly, then it might very well be that Lt is not conditionally independent of
ϕt . We sidestep this issue by requiring that RΦ is deterministic (cf. Footnote 6).
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3 TRIGGER REGRET AND RELATIONSHIP WITH EFCE

In this section, we formalize a notion of trigger deviation function, building on an idea by Gordon
et al. [20, Section 3]. We also introduce a connected notion of trigger regret minimization, which is
an instance of phi-regret minimization, as recalled in Section 2.4. The central result of this section,
Theorem 3.8, establishes a formal connection between EFCE and agents that minimize their trigger
regret, thereby extending and generalizing the classic connection between correlated equilibrium
and no-internal-regret in normal-form games [22] to the extensive-form game counterpart.

Definition 3.1 (Trigger Deviation Function). Let σ̂ = (j,a) ∈ Σ(i)∗ , and π̂ ∈ Π(i)j . We call “trigger

deviation function corresponding to trigger σ̂ and continuation strategy π̂” any linear function f :

RΣ(i ) → RΣ(i ) whose effect on deterministic sequence-form strategies is as follows:

• all strategies π ∈ Π(i) that do not prescribe the sequence σ̂ are left unmodified. In symbols,

f (π ) = π ∀ π ∈ Π(i) : π [σ̂ ] = 0; (6)

• all strategies π ∈ Π(i) that prescribe sequence σ̂ = (j,a) are modified so the behavior at j and
all of its descendants is replaced with the behavior prescribed by the continuation strategy
π̂ . In symbols,

f (π )[σ ] =
{
π [σ ] if σ � j

π̂ [σ ] if σ � j,
∀ σ ∈ Σ(i),π ∈ Π(i) : π [σ̂ ] = 1. (7)

Trigger deviation functions are simpler than the extensive-form transformations described
by Gordon et al. [20]. Specifically, extensive-form transformations allow one to specify more than
one trigger sequence (together with different continuation strategies, one for each specified trigger
sequence), whereas our notion of trigger deviation functions only contemplates a single trigger se-
quence. Consequently, the set of all trigger deviation functions is significantly smaller, and simpler,
than the set of all extensive-form transformations. The simpler structural properties of the set of
trigger deviation functions, explored in Section 4.3, will enable us to construct an efficient regret
minimizer for the convex hull of the set of all trigger deviation functions.

At this stage, it is technically unclear whether a linear function that satisfies Definition 3.1 exists
for all valid choices of σ̂ and π̂ . We show that this is indeed the case by explicitly exhibiting a linear
function, which we call the canonical trigger deviation function. We start with a definition:

Definition 3.2. Let σ̂ = (j,a) ∈ Σ(i)∗ andy ∈ R
Σ(i )j

≥0 . We denote withM (i)
σ̂→y ∈ R

|Σ(i ) |× |Σ(i ) |
≥0 the matrix

whose entries are defined as

M (i)
σ̂→y [σr ,σc ] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if σc � σ̂ and σr = σc

y[σr ] if σc = σ̂ and σr � j

0 otherwise,

∀ σr ,σc ∈ Σ(i). (8)

Furthermore, we denote with the symbol ϕ(i)
σ̂→y the linear map RΣ(i ) � x 	→ M (i)

σ̂→y x .

Intuitively, by recalling that the columns of a matrix are the images of the unit basis vectors

under the linear map, we observe that M (i)
σ̂→y maps the canonical basis vector eσ̂ to y, the vector

eσ is mapped to itself for each σ � σ̂ , and eσ is mapped to zero for every σ � σ̂ .
In the following, wewill focus on trigger deviation functions defined through the linearmapping

of Equation (8). We call such deviation functions canonical trigger deviation functions.
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Definition 3.3. Let σ̂ = (j,a) ∈ Σ(i)∗ and π̂ ∈ Π(i)j . The function ϕ(i)
σ̂→π̂

is called the “canonical

trigger deviation function corresponding to trigger σ̂ and continuation strategy π̂ .” Furthermore, the
set of all canonical trigger deviation functions is denoted with the symbol

Ψ(i) �
{
ϕ(i)

σ̂→π̂
: σ̂ = (j,a) ∈ Σ(i)∗ , π̂ ∈ Π(i)j

}
.

Lemma 3.4. For any σ̂ = (j,a) ∈ Σ(i)∗ and π̂ ∈ Π(i)j , the linear function ϕ(i)
σ̂→π̂

as defined in

Definition 3.3 is a trigger deviation function in the sense of Definition 3.1.

Proof. The proof just amounts to a simple application of several definitions. Let π ∈ Π(i) be
an arbitrary deterministic sequence-form strategy. By expanding the matrix-vector multiplication

M (i)
σ̂→π̂

π using the Definition (8), we obtain that for all σ ∈ Σ(i)

(M (i)
σ̂→π̂

π )[σ ] = π [σ ]1{σ�σ̂ } + π̂ [σ ]π [σ̂ ]1{σ �j } . (9)

There are only two possibilities:

• If π [σ̂ ] = 0, then (9) simplifies to

(M (i)
σ̂→π̂

π )[σ ] =
{
π [σ ] if σ � σ̂

0 otherwise.

Since by case hypothesis the probability of the sequence of actions from the root of the game
tree down to σ̂ is zero, then necessarily the probability of any longer sequence of actions

σ � σ̂ must be zero as well, that is, π [σ ] = 0 for all σ � σ̂ . So,M (i)
σ̂→π̂

π = π and (6) holds.

• Conversely, assume π [σ̂ ] = 1. This means that at information set j ∈ J(i) action a is selected
(with probability 1), and therefore π [σ ] = 0 for all σ = (j,a′) : a′ ∈ Aj ,a

′ � a. This means
that π [σ ]1{σ�σ̂ } = π [σ ]1{σ�j } for all σ ∈ Σ(i). Substituting that equality into (9) gives
Equation (7), as we wanted to show. �

Since Π(i)j ⊆ {0, 1}
Σ(i )j , and |Σ(i)j | ≤ |Σ(i) | by definition, we have the following immediate bound

on the number of trigger deviation functions:

Lemma 3.5. The number |Ψ(i) | of canonical trigger deviation functions for any player i ∈ [n] is

upper bounded by |Σ(i) | · 2 |Σ(i ) | .
In the following example, we show three examples of canonical trigger deviation functions op-

erate. In particular, we show how they modify some deterministic sequence-form strategies on a
simple extensive-form game.

Example 3.6. We build on the small extensive-form game of Figure 1, and the sequence-form
strategies defined in Example 2.1, to provide some concrete intuition behind canonical trigger
deviation functions as defined in Definition 3.3.

• First, let us consider the trigger deviation function ϕa � ϕ(1)(a,1)→π̂a
, where the trigger

sequence is σ̂ = (a, 1), and the continuation strategy π̂a is such that Player 1 plays ac-
tion 2 at information set a, and subsequently sequence 7 at information set d. The matrix

Ma � M (1)(a,1)→π̂a
corresponding to ϕa is reported in Figure 3 (left). To illustrate the effect

of this linear mapping on sequence-form strategies, we provide some examples using the
deterministic sequence-form strategy vectors defined in Figure 2. First, we observe that any
deterministic sequence-form strategy choosing action 1 with probability 1 triggers a devia-
tion that follows the continuation strategy π̂ . The deviation for those sequence-form strate-
gies results in a final deterministic sequence-form strategy equal to q27. For example, using
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Fig. 3. Matrices defining different canonical trigger deviation functions (Definition 3.3) for the simple

extensive-form game of Figure 1. Entries highlighted in dark gray represent the entries of the matrix de-

fined in the second case of Equation (8). Let σ̂ = (j,a) ∈ Σ
(1)
∗ be the trigger sequence of the trigger deviation

function. All indices (σr ,σc ) such that σr ,σc � j are highlighted in light gray.

some of the deterministic-sequence form strategies of Figure 2, it can be easily verified (by
working out the matrix-vector product) that:

Maq135 = Maq136 = Maq145 = q27.

However, deterministic sequence-form strategies that do not select sequence 1 are left un-
modified by the linear mapping. For instance,

Maq28 = q28 and Maq27 = q27.

• Second, we examine the trigger deviation function ϕb � ϕ(1)(a,2)→π̂b
for trigger sequence

σ̂ = (a, 2), where the continuation strategy π̂b is defined so Player 1 plays action 1 at in-
formation set a, sequence 3 at information set b, and action 5 at information set c. The

corresponding matrix Mb � M (1)(a,2)→π̂b
is reported in Figure 3 (middle). As in the previous

case, all deterministic sequence-form strategy vectors that put probability 1 on action 2 at
information set a are modified so that the strategy at a and its descendants b,c,d matches
the continuation strategy. For example, we have that

Mbq27 = Mbq28 = q135.

Furthermore, sequence-form strategies that do not put probability 1 on sequence (a, 2) are
left unchanged. So, for example,

Mbq136 = q136 and Mbq145 = q145.

• As a final example, Figure 3 (right) reports the deviation matrix Mc corresponding to a

trigger deviation function ϕc � ϕ(1)(b,3)→π̂c
, corresponding to trigger sequence σ̂ = (b, 3)

and continuation strategy π̂c selecting action 4 at information set b. Here, we have that
Mcq135 = Mcq145, andMcq145 = q145.
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We are now ready to define the concept of trigger regret minimization, which extends and gen-
eralizes the homonymous notion in the conference version of this article [8], as well as the notion
of internal regret minimization in normal-form games.

Definition 3.7. For every i ∈ [n], we call trigger regret minimizer for player i any Ψ(i)-regret
minimizer for the set of deterministic sequence-form strategies Π(i).

The following theorem shows that if each player i ∈ [n] in the game plays according to a Ψ(i)-
regret minimizer, then the empirical frequency of play approaches the set of EFCEs. The result
is proved starting from the definition of cumulative Ψ(i)-regret, which is manipulated by using
the definition of trigger deviation functions. Then, we rewrite the empirical frequency of play,
replacing the summation over joint deterministic sequence-form strategies played at each t ∈ [T ]
with a weighted sum depending on the empirical frequency of play (see Equation (16)), which
allows us to recover the definition of EFCE (Definition 2.7).We also remark that, to define the linear
utility functions in the following theorem, we assume to be working under the full-information
feedback model: The regret minimizer for Player i has access to the utility function u(i) of Player i ,
the function pc encoding probabilities of chance moves, and the pure sequence-form strategies
π (i

′),t for each i ′ � i . Extending the result to the bandit-information feedback setting is left as an
open question.

Theorem 3.8. For each player i ∈ [n], letπ (i), 1,π (i), 2, . . . ,π (i), T ∈ Π(i) be deterministic sequence-

form strategies whose cumulative Ψ(i)-regret with respect to the sequence of linear utility functions

�(i), t : Π(i) � π (i) 	→
∑
z∈Z

u(i)(z)pc (z)
(∏

i′�i

π (i
′), t [σ (i′)(z)]

)
π (i)[σ (i)(z)] (10)

is R(i), T . Then, the empirical frequency of play defined as the probability distribution μ ∈ ΔΠ that

draws each joint profile (π (1), . . . ,π (n)) ∈ Π with probability

μ[(π (1), . . . ,π (n))] � 1

T

T∑
t=1

1{(π (1), t , ...,π (n), t )=(π (1), ...,π (n))}

is an ϵ-EFCE, where ϵ � 1
T
maxi ∈[n] R

(i), T .

Proof. It is immediate to check that μ is indeed a valid element of the |Π |-simplex. Furthermore,
the utility function �(i), t clearly satisfies the requirement of being independent of π (i), t , for all
i ∈ [n].Wewill show that μ defines an ϵ-EFCE by verifying that the definition holds (Definition 2.7).

Fix any player i ∈ [n], trigger sequence σ̂ = (j,a) ∈ Σ(i)∗ , and continuation strategy π̂ ∈ Π(i)j . Since

by hypothesis the cumulative Ψ(i)-regret is upper bounded by R(i), T , and R(i), T ≤ Tϵ by definition
of ϵ , we must have

Tϵ ≥
T∑

t=1

�(i), t
(
ϕ(i)

σ̂→π̂
(π (i), t )

)
− �(i), t

(
π (i), t

)
.

By expanding the definition of the utility function, which was given in (10), the previous inequality
is equivalent to

Tϵ ≥
T∑

t=1

∑
z∈Z

α (i), t
z ·

(
ϕ(i)

σ̂→π̂
(π (i), t )[σ (i)(z)] − π (i), t [σ (i)(z)]

)
, (11)
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where we used the symbol

α (i), t
z � u(i)(z)pc (z)

(∏
i′�i

π (i
′), t [σ (i′)(z)]

)
to lighten the notation. Since ϕ(i)

σ̂→π̂
is a trigger deviation function (Lemmas 3.4), we have that (6)

and (7) hold, and in particular it follows that

ϕ(i)
σ̂→π̂
(π (i), t )[σ ] = π (i), t [σ ]

for all t = 1, . . . ,T and σ � j. So, the summation term in (11) is zero for all terminal states z ∈ Z
such that σ (i)(z) � j, and thus we can safely restrict the domain of the summation over terminal

states z ∈ Z(i)j � {z ∈ Z : σ (i)(z) � j} only, obtaining

Tϵ ≥
T∑

t=1

∑
z∈Z(i )j

α (i), t
z ·

(
ϕ(i)

σ̂→π̂
(π (i), t )[σ (i)(z)] − π (i), t [σ (i)(z)]

)
. (12)

We now study the term ϕ(i)
σ̂→π̂
(π (i), t )[σ (i)(z)] for a generic t ∈ {1, . . . ,T } and z ∈ Z(i)j by splitting

into cases contingent on the value of π (i), t [σ̂ ] ∈ {0, 1}. If π (i), t [σ̂ ] = 0, then (6) applies, and
therefore

ϕ(i)
σ̂→π̂
(π (i), t )[σ (i)(z)] − π (i), t [σ (i)(z)] = 0.

If, on the contrary, π (i), t [σ̂ ] = 1, then (7) applies, and ϕ(i)
σ̂→π̂
(π (i), t )[σ (i)(z)] = π̂ [σ (i)(z)], where

we used the fact that σ (i)(z) � j by definition of z ∈ Z(i)j . So, at all t = 1, . . . ,T and for all z ∈ Z(i)j ,
it holds that

ϕ(i)
σ̂→π̂
(π (i), t )[σ (i)(z)] − π (i), t [σ (i)(z)] = π (i), t [σ̂ ]

(
π̂ [σ (i)(z)] − π (i), t [σ (i)(z)]

)
,

and thus (12) can be equivalently written as

Tϵ ≥
T∑

t=1

∑
z∈Z(i )j

π (i), t [σ̂ ]α (i), t
z ·

(
π̂ [σ (i)(z)] − π (i), t [σ (i)(z)]

)
. (13)

We now make the crucial observation that time t appears in α (i), t
z and (13) only as a superscript

in the strategies π (1), t , . . . ,π (n), t , and nowhere else. Therefore, by introducing the functions

α (i)z : Π � (π (1), . . . ,π (n)) 	→ u(i)(z)pc (z)
(∏

i′�i

π (i
′)[σ (i′)(z)]

)
, and (14)

v(i)
σ̂→π̂

: Π � π = (π (1), . . . ,π (n)) 	→
∑

z∈Z(i )j

π (i)[σ̂ ]α (i)z (π ) ·
(
π̂ [σ (i)(z)] − π (i)[σ (i)(z)]

)
, (15)

we can rewrite (13) as

Tϵ ≥
T∑

t=1

v(i)
σ̂→π̂
(π (1), t , . . . ,π (n), t ) =

T∑
t=1

∑
π ∈Π

1{(π (1), t , ...,π (n), t )=π } · v
(i)
σ̂→π̂
(π )

=
∑
π ∈Π

(
T∑

t=1

1{(π (1), t , ...,π (n), t )=π }

)
v(i)

σ̂→π̂
(π ) = T

∑
π ∈Π

μ[π ]v(i)
σ̂→π̂
(π ), (16)
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where we used the definition of μ in the third equality. Dividing byT in (16), we can further write

ϵ ≥
∑
π ∈Π

μ[π ]v(i)
σ̂→π̂
(π ). (17)

Finally, by expanding the definition of v(i)
σ̂→π̂

in (17),

ϵ ≥
∑

π=(π (1), ...,π (n))∈Π

���
μ[π ]
∑

z∈Z(i )j

π (i)[σ̂ ]α (i)z (π ) ·
(
π̂ [σ (i)(z)] − π (i)[σ (i)(z)]

)����
=

∑
z∈Z(i )j

∑
π=(π (1), ...,π (n))∈Π

μ[π ]π (i)[σ̂ ]α (i)z (π ) ·
(
π̂ [σ (i)(z)] − π (i)[σ (i)(z)]

)
. (18)

The right-hand side of (18) can be simplified further by noticing that, by definition of α (i)z (π ),

π (i)[σ̂ ]α (i)z (π (1), . . . ,π (n)) = u(i)(z)pc (z)π (i)[σ̂ ]
(∏

i′�i

π (i
′)[σ (i′)(z)]

)
=

{
u(i)(z)pc (z) if π (i)[σ̂ ] = 1,π (i

′)[σ (i′)(z)] = 1 ∀i ′ � i
0 otherwise.

Substituting the above expression into (18), we obtain

ϵ ≥
∑

z∈Z(i )j

u(i)(z)pc (z)

��������

∑

(π (1), ...,π (n))∈Π
π (i
′)[σ (i′)(z)]=1 ∀i′�i

π (i )[σ̂ ]=1

μ[(π (1), . . . ,π (n))] ·
(
π̂ [σ (i)(z)] − π (i)[σ (i)(z)]

)���������
=

∑
z∈Z(i )j

u(i)(z)pc (z)r (i)μ, σ̂→π̂
(z) −

∑
z∈Z(i )j

u(i)(z)pc (z)

��������

∑

(π (1), ...,π (n))∈Π
π (i
′)[σ (i′)(z)]=1 ∀i′ ∈[n]

π (i )[σ̂ ]=1

μ[(π (1), . . . ,π (n))]

���������
,

where, to get the last equality, we used the definition of r (i)
μ, σ̂→π̂

and we dropped the factor

π (i)[σ (i)(z)] ∈ {0, 1} in the second summation by adding the condition π (i)[σ (i)(z)] = 1 to its

domain. Notice that, by definition of Z(i)j , the first summation above is exactly the term appear-
ing in the left-hand side of the inequality in the definition of ϵ-EFCE (Definition 2.7). Moreover,
since for any (π (1), . . . ,π (n)) ∈ Π it holds that π (i)[σ (i)(z)] = 1 and π (i)[σ̂ ] = 1 only for terminal

nodes z ∈ Z
(i)
j such that σ̂ � σ (i)(z), we can restrict the domain of the second summation above

to z ∈ Z : σ (i)(z) � σ̂ and equivalently rewrite it as

∑
z∈Z

σ (i )(z)�σ̂

u(i)(z)pc (z)
�����


∑
(π (1), ...,π (n))∈Π

π (i
′)[σ (i′)(z)]=1 ∀i′ ∈[n]

μ[(π (1), . . . ,π (n))]
������
=

∑
z∈Z

σ (i )(z)�σ̂

u(i)(z)pc (z)rμ(z),

Journal of the ACM, Vol. 69, No. 6, Article 41. Publication date: November 2022.



Simple Uncoupled No-regret Learning Dynamics for Extensive-form CE 41:21

which is exactly the first term appearing in the right-hand side of the inequality in the definition
of ϵ-EFCE (Definition 2.7). Thus, we obtain that

ϵ ≥
∑
z∈Z

σ (i )(z)�j

u(i)(z)pc (z)r (i)μ, σ̂→π̂
(z) −

∑
z∈Z

σ (i )(z)�σ̂

u(i)(z)pc (z)rμ(z),

for all σ̂ = (j,a) ∈ Σ(i)∗ and π̂ ∈ Π(i)j , which is the definition of μ being an ϵ-EFCE. �

4 EFFICIENT NO-TRIGGER-REGRET ALGORITHM

Theorem 3.8 in Section 3 immediately implies that if all players i ∈ [n] play according to the strate-
gies output by a Ψ(i)-regret minimizer for the set of their deterministic sequence-form strategies
Π(i), then their empirical frequency of play converges to the set of EFCEs. Therefore, the existence
of uncoupled no-regret learning dynamics that converge to EFCE can be proved constructively
by showing that one such Ψ(i)-regret minimizer can be constructed for each player i ∈ [n]. More
precisely, in this section, we seek to solve the following problem:

Problem 1. Given any player i ∈ [n], construct a Ψ(i)-regret minimizer for the set of the player’s
deterministic sequence-form strategies Π(i), such that:

• it is efficient: TheNextElement and theObserveUtility operations both run in polynomial
time in the number |Σ(i) | of sequences of the player; and
• it guarantees low regret: After anyT observed linear utility functions and for any δ ∈ (0, 1),
with probability at least 1 − δ the cumulative Ψ(i)-regret is O(poly(|Σ(i) |) ·

√
T log(1/δ )).

The central result of this section, Theorem 4.17, establishes that the Ψ(i)-regret minimizer R(i)
defined in Algorithm 6 satisfies all the requirements of Problem 1.

4.1 Overview

Before delving into the details of the construction of our Ψ(i)-regret minimizer for the set of deter-
ministic sequence-form strategies Π(i) of a generic player i ∈ [n], we give an overview of the main
logical steps that we use to solve Problem 1.

• In Section 4.2, we show that one can soundly move the attention from the set of deterministic

sequence-form strategies Π(i) to the set of mixed sequence-form strategies Q(i) = co(Π(i)).
In particular, in the rest of the section, we will seek to construct a Ψ(i)-regret minimizer
for the set Q(i) (as opposed to Π(i)) that guarantees sublinear regret and polynomial-time
implementation in the worst case.
• In Section 4.3, we show that the convex hull co(Ψ(i)) of the set of canonical trigger deviation
functions possesses a combinatorial structure that can be leveraged to construct an efficient
deterministic regret minimizer for it.
• Finally, in Section 4.4, we prove that given any ϕ ∈ co(Ψ(i)), there exists a fixed-point
sequence-form strategy q ∈ Q(i) such that ϕ(q) = q, and that such a fixed-point strategy
can be found in polynomial time in the number of sequences |Σ(i) | of Player i .

Together, the last two steps enable us to apply the construction by Gordon et al. [20] described
in Section 2.4 to obtain an efficient co(Ψ(i))-regret minimizer for the set of sequence-form strate-
gies Q(i) with worst-case sublinear regret guarantees. We summarize that construction in Figure 4,
which can serve as a reading aid for the section. Since co(Ψ(i)) ⊇ Ψ(i), such co(Ψ(i))-regret mini-
mizer is also a Ψ(i)-regret minimizer, and the construction is complete.

Journal of the ACM, Vol. 69, No. 6, Article 41. Publication date: November 2022.



41:22 G. Farina et al.

4.2 From Deterministic to Mixed Strategies

Suppose that a regret minimizer for a generic discrete set X were sought, but only regret minimiz-
ers for the convex hull co(X)were known. It seems natural to wonder whether one could take any
regret minimizer for co(X) and convert it into a regret minimizer for X by sampling the outputs
x̄ t of the former using an unbiased estimator x t ∈ X, with E[x t ] = x̄ t . It is a folklore result, justi-
fied by a concentration argument, that this is indeed the case (see, for instance, Reference [9, page
192]). In particular, in the case of our interest where X = Π(i), the following can be shown:

Lemma 4.1. Let i ∈ [n] be any player, and R̄(i) be any Ψ(i)-regret minimizer for the set

Q(i) of mixed sequence-form strategies. Consider the algorithm R(i) whose NextElement and
ObserveUtility operations are defined as follows at all times t :

• R(i).NextElement calls R̄(i).NextElement, thereby obtaining a mixed sequence-form strat-

egy q(i), t ∈ Q(i). Then, an unbiased sampling scheme (such as the natural sampling scheme
described in Section 2.2) is used to sample a random deterministic sequence-form strategy

π (i), t ∈ Π(i) in linear time in the number of sequences |Σ(i) |. Finally, π (i), t is returned to
the caller;
• R(i).ObserveUtility(�t ) calls R̄(i).ObserveUtility(�t ) with the same utility function �t .

Furthermore, assume that the linear utility functions �1, �2, . . . received as feedback by R(i) have
range upper bounded by a constant D, that is, maxq,q′ ∈Q(i ) {�t (q) − �t (q′)} ≤ D for all t = 1, . . . ,T .

Then, R(i) is a Ψ(i)-regret minimizer for the set of deterministic sequence-form strategies Π(i), and its

cumulative Ψ(i)-regret satisfies, at all times T and for all δ ∈ (0, 1), the inequality

P

⎡⎢⎢⎢⎢⎣R(i), T ≤ R̄(i), T + 4D

√
T · |Σ(i) | log

(
1

δ

)⎤⎥⎥⎥⎥⎦ ≥ 1 − δ .

Proof. Let �1, �2, . . . be the sequence of linear utility functions observed by R(i), and fix any
ϕ ∈ Ψ(i). We introduce the discrete-time stochastic process8

wt � �t (ϕ(π (i), t )) − �t (π (i), t ) − �t (ϕ(q(i), t )) + �t (q(i), t ). (19)

Since (i) �t and ϕ are both linear functions, (ii) �t is independent9 of π (i), t , and (iii) π (i), t is an
unbiased estimator ofq(i), t at all times t by hypothesis, thenwt is a martingale difference sequence.
Furthermore, each increment |wt | can be easily upper bounded, at all times t , according to

|wt | ≤ |�t (ϕ(π (i), t )) − �t (π (i), t )| + |�t (ϕ(q(i), t )) − �t (q(i), t )| ≤ 2D, (20)

where the second inequality follows from the fact that ϕ maps sequence-form strategies to
sequence-form strategies, together with the hypothesis that �t has range upper bounded by D.

For any T , let R(i), T (ϕ) and R̄(i), T (ϕ) denote the regret cumulated by R(i) and R̄(i), respectively,
compared to always picking transformation ϕ; in symbols

R(i), T (ϕ) �
T∑

t=1

�t (ϕ(π (i), t )) − �t (π (i), t ), R̄(i), T (ϕ) �
T∑

t=1

�t (ϕ(q(i), t )) − �t (q(i), t ).

8As is common in the analysis of randomized algorithms, the stochastic process is adapted to the filtration of σ -algebras
generated by all the past random outcomes of the algorithm (in our case, all past outcomes of the sources of randomness
used by the regret minimizer and by the environment). In other words, using the notation of Footnote 5, {w t } is adapted
to the filtration {Ft }.
9More precisely, �t is conditionally independent of π (i ), t , given Ft−1 (cf. Definition 2.8 and Footnote 5).
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Fig. 4. Pictorial depiction of our co(Ψ(i))-regret minimizer for the set of sequence-form strategies Q(i). The

symbol ⊗ in the figure denotes a multilinear transformation of the input(s) into the output. Dashed lines

denote utility functions. For notational convenience, we let Σ
(i)
∗ � {1, . . . , m}.

It is immediate to see from Definition (19) ofwt , that

T∑
t=1

wt = R(i), T (ϕ) − R̄(i), T (ϕ) ∀ T ∈ {1, 2, . . . }. (21)

Using the Azuma-Hoeffding concentration inequality,10 it follows that, for all T ,

P

⎡⎢⎢⎢⎢⎣R(i), T (ϕ) − R̄(i), T (ϕ) ≤ D

√
8T log

(
1

δ

)⎤⎥⎥⎥⎥⎦ = P
⎡⎢⎢⎢⎢⎣

T∑
t=1

wt ≤ D

√
8T log

(
1

δ

)⎤⎥⎥⎥⎥⎦
≥ 1 − exp

⎧⎪⎪⎨⎪⎪⎩−
2∑T

t=1(2|wt |)2
��
D

√
8T log

(
1

δ

)���
2⎫⎪⎪⎬⎪⎪⎭

≥ 1 − exp

⎧⎪⎪⎨⎪⎪⎩−
2

(4D)2T
��
D

√
8T log

(
1

δ

)���
2⎫⎪⎪⎬⎪⎪⎭ = 1 − δ , (22)

where we used (21) in the equality and (20) in the second inequality. Since (22) holds for any choice
of ϕ ∈ Ψ(i), we can now write

P

⎡⎢⎢⎢⎢⎣R(i), T ≤ R̄(i), T + D

√
8T log

(
1

δ

)⎤⎥⎥⎥⎥⎦ = P
⎡⎢⎢⎢⎢⎣max
ϕ ∈Ψ(i )

{R(i), T (ϕ)} ≤ max
ϕ ∈Ψ(i )

{R̄(i), T (ϕ)} + D

√
8T log

(
1

δ

)⎤⎥⎥⎥⎥⎦
≥ P

⎡⎢⎢⎢⎢⎣max
ϕ ∈Ψ(i )

{R(i), T (ϕ) − R̄(i), T (ϕ)} ≤ D

√
8T log

(
1

δ

)⎤⎥⎥⎥⎥⎦
10We recall the classic Azuma-Hoeffding inequality [2, 26] formartingale difference sequences (e.g., Reference [34, Theorem
3.14]).

Lemma 4.2 (Azuma-Hoeffding ineqality). Let Y1, . . . , Yn be a martingale difference sequence with ak ≤ Yk ≤ bk

for each k , for suitable constants ak , bk . Then for any τ ≥ 0, P[
∑

Yk ≤ τ ] ≥ 1 − e−2τ 2/
∑
(bk−ak )2 .
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= P

⎡⎢⎢⎢⎢⎣R(i), T (ϕ) − R̄(i), T (ϕ) ≤ D

√
8T log

(
1

δ

)
∀ϕ ∈ Ψ(i)

⎤⎥⎥⎥⎥⎦
≥ 1 − |Ψ(i) | · δ , (23)

where the first inequality follows from the fact that maxϕ ∈Ψ(i ) {R(i), T (ϕ)} −maxϕ ∈Ψ(i ) {R̄(i), T (ϕ)} ≤
maxϕ ∈Ψ(i ) {R(i), T (ϕ) − R̄(i), T (ϕ)}, while the second inequality follows from applying (22) and the

union bound. Using Lemma 3.5, setting δ ′ � |Σ(i) | · 2 |Σ(i ) | · δ , and noticing that log(|Σ(i) | · 2 |Σ(i ) | ) ≤
log(22 |Σ(i ) | ) ≤ 2|Σ(i) |, we obtain the statement. �

Lemma 4.1 immediately implies that, to solve Problem 1, it is enough to solve the following
problem:

Problem 2. Given any player i ∈ [n], construct a Ψ(i)-regret minimizer for the set of mixed
sequence-form strategies Q(i) such that:

• it is efficient: Both the NextElement and the ObserveUtility operations can be imple-
mented in polynomial time in |Σ(i) |; and
• it guarantees low regret: After any T observed utilities, the cumulative Ψ(i)-regret is upper
bounded as O(poly(|Σ(i) |)·

√
T ).

The remainder of this section gives an algorithm that solves Problem 2 and, thus, indirectly, also
Problem 1.

4.3 Regret Minimizer for the Convex Hull of the Set of Trigger Deviation Functions

In this subsection, we begin the construction of a phi-regret minimizer relative to the convex hull
co(Ψ(i)) of the set of trigger deviation functions Ψ(i) for the set Q(i). Since co(Ψ(i)) ⊇ Ψ(i), any such
(co(Ψ(i)))-regret minimizer is trivially also a Ψ(i)-regret minimizer for Q(i).

To obtain our (co(Ψ(i)))-regret minimizer, wewill leverage the general framework due to Gordon
et al. [20] that we recalled at the end of Section 2.4. In our particular case, that construction reduces
to showing the following:

(1) existence of a deterministic regret minimizer for the set of deviations co(Ψ(i)); and
(2) existence of a fixed point q = ϕ(q) for any ϕ ∈ co(Ψ(i)).
In this subsection, we will focus on point (1), while in the next subsection, we will focus on point

(2). Specifically, the central result of this subsection, Theorem 4.6, will constructively establish the
existence of an efficient deterministic regret minimizer R̃(i) for the set co(Ψ(i)).

The starting point of our approach is the observation that, because the convex hull operation

is associative, co(Ψ(i)) = co({ϕ(i)
σ̂→π̂

: σ̂ = (j,a) ∈ Σ(i)∗ , π̂ ∈ Π(i)j }) can be evaluated in two stages:

First, for each sequence σ̂ = (j,a) ∈ Σ(i)∗ one can define the set

Ψ̄(i)
σ̂
� co

({
ϕ(i)

σ̂→π̂
: π̂ ∈ Π(i)j

})
;

and then, one can take the convex hull of all Ψ̄(i)
σ̂
, that is,

co(Ψ(i)) = co
({

Ψ̄(i)
σ̂

: σ̂ ∈ Σ(i)∗

})
. (24)

Our construction of R̃(i) will follow a similar structure. First, for each σ̂ ∈ Σ(i)∗ , we will construct
a regret minimizer R̃(i)

σ̂
for the set of deviations Ψ̄(i)

σ̂
(Section 4.3.1). Then, we will combine all the

regret minimizers R̃(i)
σ̂

into a composite regret minimizer R̃(i) for the set co(Ψ(i)) (Section 4.3.2).
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4.3.1 Regret Minimizer for Ψ̄(i)
σ̂

. Fix any σ̂ = (j,a) ∈ Σ(i)∗ . A deterministic regret minimizer for

the set Ψ̄(i)
σ̂

can be constructed starting from any deterministic regret minimizer for the set Q(i)j .
The crucial insight lies in the observation that the mapping

h(i)
σ̂

: RΣ(i )j � y 	→ ϕ(i)
σ̂→y

is affine, since the entries in M (i)
σ̂→y are defined using only constants and linear combinations of

entries in y (Definition 3.2). Hence, using the properties of affine functions, we can write

co

({
ϕ(i)

σ̂→π̂
: π̂ ∈ Π(i)j

})
= co(h(i)

σ̂
(Π(i)j )) = h

(i)
σ̂
(co(Π(i)j )) = h

(i)
σ̂
(Q(i)j ).

So, we have just proved the following characterization of the set Ψ̄(i)
σ̂
:

Lemma 4.3. For all sequences σ̂ = (j,a) ∈ Σ(i)∗ , Ψ̄(i)
σ̂

is the image of Q(i)j under the affine mapping

h(i)
σ̂

. In symbols,

Ψ̄(i)
σ̂
=

{
ϕ(i)

σ̂→qσ̂
: qσ̂ ∈ Q(i)j

}
.

As a consequence of Lemma 4.3, given any σ̂ = (j,a) ∈ Σ(i)∗ , all transformations ϕ ∈ Ψ̄(i)
σ̂

are of the form ϕ = ϕ(i)
σ̂→qσ̂

for some qσ̂ ∈ Q(i)j . Thus, the cumulative regret incurred by a generic

sequence of transformations ϕ1 = ϕ(i)
σ̂→q1

σ̂

, . . . ,ϕT = ϕ(i)
σ̂→qT

σ̂

against generic linear utility functions

L1, . . . ,LT can be written as

max
ϕ∗ ∈Ψ̄(i )

σ̂

T∑
t=1

Lt (ϕ∗) − Lt (ϕt ) = max
q̂∗ ∈Q(i )j

T∑
t=1

Lt (ϕ(i)
σ̂→q̂∗

) − Lt (ϕ(i)
σ̂→qt

σ̂

)

= max
q̂∗ ∈Q(i )j

T∑
t=1

(Lt ◦ h(i)
σ̂
)(q̂∗) − (Lt ◦ h(i)

σ̂
)(qt

σ̂ ). (25)

Since Lt is linear and h(i)
σ̂

is affine, their composition Lt ◦ h(i)
σ̂

is affine, and therefore the shifted
function

д(i), t

σ̂
: RΣ(i )j � x 	→ Lt (h(i)

σ̂
(x)) − Lt (h(i)

σ̂
(0))

is linear.11 Furthermore, from (25) it follows that

max
ϕ∗ ∈Ψ̄(i )

σ̂

T∑
t=1

Lt (ϕ∗) − Lt (ϕ(i)
σ̂→qt

σ̂

) = max
q̂∗ ∈Q(i )j

T∑
t=1

д(i), t

σ̂
(q̂∗) − д(i), t

σ̂
(qt

σ̂ ). (26)

Equation (26) suggests that if the continuation strategies qt
σ̂
∈ Q(i)j are picked by a determin-

istic regret minimizer R̃(i)Q, σ̂ that observes the linear utility functions д(i), t

σ̂
at all times t , then the

regret cumulated with respect to utility functions Lt by the corresponding elements ϕ(i)
σ̂→qt

σ̂

grows

sublinearly. We make that construction explicit in Algorithm 1.

11We shift Lt ◦ h
(i )
σ̂

purely for technical reasons. We do it so д(i ), t is a linear utility function, and thus it can be passed in

as feedback to a regret minimizer.
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ALGORITHM 1: Regret minimizer R̃(i)
σ̂

for the set Ψ̄
(i)
σ̂
� {ϕ(i)

σ̂→qσ̂
: qσ̂ ∈ Q

(i)
j }

Data: • i ∈ [n] player
• σ̂ = (j,a) ∈ Σ

(i)
∗ trigger sequence

• R̃(i)Q, σ̂
deterministic regret minimizer for set Q(i)j (e.g., the CFR algorithm [49])

1 function NextElement()

2 qt
σ̂
← R̃(i)Q, σ̂

.NextElement()

3 return ϕ
(i)
σ̂→qt

σ̂

, represented in memory implicitly through the vector qt
σ̂

4 function ObserveUtility(Lt )

5 д
(i), t
σ̂
← linear function RΣ(i )j � x 	→ Lt (h(i)

σ̂
(x)) − Lt (h(i)

σ̂
(0))

6 R̃(i)Q, σ̂
.ObserveUtility(д(i), t

σ̂
)

Algorithm 1 can be instantiated with any deterministic regret minimizer R̃(i)Q, σ̂
for the set of

sequence-form strategies Q(i)j . The following proposition formalizes the cumulative regret guaran-

tee when R̃(i)Q, σ̂
is set to the CFR algorithm [49], which so far has arguably been the most widely

used regret minimizer for sequence-form strategy spaces:

Proposition 4.4. Let i ∈ [n] be any player and σ̂ = (j,a) ∈ Σ(i)∗ be any trigger sequence. Con-

sider the deterministic regret minimizer R̃(i)
σ̂

(Algorithm 1), where R̃Q, σ̂ is set to be the CFR regret

minimizer [49]. Upon observing a sequence of linear utility functions L1, . . . ,LT : co(Ψ(i)) → R, the

regret cumulated by the elements ϕ1 = ϕ(i)
σ̂→q1

σ̂

, . . . ,ϕT = ϕ(i)
σ̂→qT

σ̂

output by R̃(i)
σ̂

satisfies

RT = max
ϕ∗ ∈Ψ̄(i )

σ̂

T∑
t=1

Lt (ϕ∗) − Lt (ϕt ) ≤ D |Σ(i)j |
√
T ,

whereD is the range of L1, . . . ,Lt , that is, any constant such that max
ϕ,ϕ′ ∈Ψ̄(i )

σ̂

{Lt (ϕ)−Lt (ϕ ′)} ≤ D for

all t = 1, . . . ,T . Furthermore, the NextElement and the ObserveUtility operations run in O(|Σ(i) |)
time.

Proof. As shown in (26), the regret cumulated by R̃(i)
σ̂

upon observing linear utility functions
L1, . . . ,Lt equals the regret cumulated by the CFR algorithm upon observing linear utility func-

tions д(i), t

σ̂
: RΣ(i )j � x 	→ Lt (h(i)

σ̂
(x)) − Lt (h(i)

σ̂
(0)). Furthermore, the range of д(i), t

σ̂
satisfies the

inequality

max
q, q′ ∈Q(i )j

{
д(i), t

σ̂
(q) − д(i), t

σ̂
(q′)

}
= max

q, q′ ∈Q(i )j

{
Lt (h(i)

σ̂
(q)) − Lt (h(i)

σ̂
(q′))

}
= max

ϕ, ϕ′ ∈Ψ̄(i )
σ̂

{
Lt (ϕ) − Lt (ϕ ′)

}
≤ D.

So, applying the regret bound of the CFR algorithm (Theorems 3 and 4 of Zinkevich et al. [49]),

RT ≤ D

(∑
j′ �j

√
|A(j ′)|

)
√
T ≤ D

(∑
j′ �j

|A(j ′)|
)
√
T = D |Σ(i)j |

√
T ,

completing the proof of the regret bound.
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The complexity analysis of the NextElement operation follows directly from the fact that

CFR’s NextElement operation runs in linear time in |Σ(i)j |. So, we focus on the complexity of the

ObserveUtility operation. Fix any time t , and let Λt � 〈Lt 〉 be the canonical representation (de-

fined in Section 2.1) of the linear utility function Lt . Since the canonical representation of h(i)
σ̂
(x)

is the matrix M (i)
σ̂→x for all x ∈ R

Σ(i )j

≥0 , from (1), we obtain

Lt (h(i)
σ̂
(x)) − Lt (h(i)

σ̂
(0)) =

∑
σr ,σc ∈Σ(i )j

Λt [σr ,σc ]
(
M (i)

σ̂→x [σr ,σc ] −M (i)σ̂→0
[σr ,σc ]

)
=

∑
σr �j

Λt [σr , σ̂ ]x[σr ],

where the second equality follows from expanding the definitions of M (i)
σ̂→x [σr ,σc ] and

M (i)
σ̂→0
[σr ,σc ] given in (8). So, the canonical representation 〈д(i), t

σ̂
〉 of д(i), t

σ̂
is the vector

(Λt [σr , σ̂ ])σr ∈Σ(i )j

, which can be clearly computed and stored in memory in O(|Σ(i)j |) time. Using

the fact that CFR’s ObserveUtility operation runs in linear time in |Σ(i)j |, the complexity bound
of the statement follows. �

4.3.2 Regret Minimizer for co(Ψ(i)). Recently, Farina et al. [14] showed that a regret minimizer
for a composite set of the form co({X1, . . . ,Xm}) can be constructed by combining any individ-
ual regret minimizers for X1, . . . ,Xm through a construction—called a regret circuit—which we
describe next.

Proposition 4.5 (Farina et al. [14], Section 4.312). LetX1, . . . ,Xm be a finite collection of sets,
and let R1, . . . ,Rm be any regret minimizers for them. Furthermore, let RΔ be any regret minimizer
for the m-simplex Δm � {(λ1, . . . , λm) ∈ Rm

≥0,
∑

k λk = 1}. A regret minimizer Rco for the set
co({X1, . . . ,Xm}) can be constructed starting from R1, . . . ,Rm and RΔ as follows:

• Rco.NextElement calls NextElement on each of the regret minimizers R1, . . . ,Rm , obtaining
elements x t

1 , . . . ,x
t
m . Then, it calls the NextElement operation on RΔ, obtaining an element of

the simplex λt = (λt
1, . . . , λ

t
m). Finally, it returns the element

λt
1x

t
1 + · · · + λt

mx t
m ∈ co({X1, . . . ,Xm}).

• Rco.ObserveUtility(Lt ) forwards the linear utility function Lt to each of the regret minimizers
R1, . . . ,Rm . Then, it calls the ObserveUtility operation on Rco with the linear utility function
(λ1, . . . , λm) 	→ Lt (x t

1)λ1 + · · · + Lt (x t
m)λm .

In doing so, the regret RT
co cumulated by Rco upon observing any T linear utility functions relates to

the regrets RT
1 , . . . ,R

T
m ,R

T
Δ cumulated by R1, . . . ,Rm ,RΔ, respectively, according to the inequality

RT
co ≤ RT

Δ +max{RT
1 , . . . ,R

T
m}. (27)

We apply the construction described in Proposition 4.5 to obtain our deterministic regret min-

imizer R(i) for the set co(Ψ(i)) = co({Ψ̄(i)
σ̂

: σ̂ ∈ Σ(i)}) starting from the deterministic regret

minimizers R̃(i)
σ̂

(Algorithm 1), one for each sequence σ̂ ∈ Σ(i)∗ , as well as any deterministic regret

minimizer R(i)Δ for the simplex ΔΣ(i )∗ . Pseudocode is given in Algorithm 2.

12Technically, Farina et al. [14] only prove the bound (27) for the case m = 2. However, as mentioned by the authors, the
extension to generic m ∈ N>0 is direct.
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ALGORITHM 2: Regret minimizer R̃(i) for the set co(Ψ(i)) = co({Ψ̄(i)
σ̂

: σ̂ ∈ Σ(i)})
Data: • i ∈ [n] player

• R̃(i)
σ̂

(one for each σ̂ ∈ Σ
(i)
∗ ) regret minimizer for Ψ̄

(i)
σ̂

as defined in Algorithm 1

• R(i)Δ deterministic regret minimizer for ΔΣ(i )∗ (e.g., regret matching [22])

1 function NextElement()

2 λt ← R̃(i)Δ .NextElement()
3 for σ̂ ∈ Σ

(i)
∗ do

4 ϕ
(i)
σ̂→qt

σ̂

← R̃(i)
σ̂
.NextElement() [� Algorithm 1]

5 return
∑

σ̂ ∈Σ(i )∗
λt [σ̂ ]ϕ(i)

σ̂→qt
σ̂

, represented in memory implicitly as list {(λt [σ̂ ],qt
σ̂
)}

σ̂ ∈Σ(i )∗

6 function ObserveUtility(Lt )

7 for σ̂ ∈ Σ
(i)
∗ do

8 R̃(i)
σ̂
.ObserveUtility(Lt ) [� Algorithm 1]

9 �t
λ
← linear utility function λ 	→

∑
σ̂ ∈Σ(i )∗

λ[σ̂ ]Lt (ϕ(i)
σ̂→qt

σ̂

)

10 R̃(i)Δ .ObserveUtility(�t
λ
)

Combining Proposition 4.5 and Proposition 4.4, we obtain the following result:

Theorem 4.6. Consider the regret minimizer R̃(i) (Algorithm 2), where R(i)Δ is set to the regret

matching algorithm, and R̃(i)
σ̂

is instantiated as described in Proposition 4.4. Upon observing a sequence

of linear utility functions L1, . . . ,LT : co(Ψ(i)) → R, the regret cumulated by the transformations

ϕ1, . . . ,ϕT ∈ co(Ψ(i)) output by R̃(i) satisfies

RT = max
ϕ∗ ∈co(Ψ(i ))

T∑
t=1

Lt (ϕ∗) − Lt (ϕt ) ≤ 2D |Σ(i) |
√
T ,

where D is the range of L1, . . . ,Lt , that is, any constant such that maxϕ,ϕ′ ∈co(Ψ(i )){Lt (ϕ) − Lt (ϕ ′)} ≤
D for all t = 1, . . . ,T . Furthermore, the NextElement and the ObserveUtility operations run in

O(|Σ(i) |2) time.

Proof. At all t , the range of the linear utility function λ 	→
∑

σ̂ ∈Σ(i )∗
λ[σ̂ ]Lt (ϕ(i)

σ̂→qt
σ̂

) is upper

bounded by D. Hence, from the known regret bound of the regret matching algorithm [22, 49], the

regret cumulated by R(i)Δ after T iterations is upper bounded as

RT
Δ ≤ D

√
|Σ(i)∗ |
√
T ≤ D |Σ(i) |

√
T .

However, the regret bound in Proposition 4.4 shows that, for all σ̂ = (j,a) ∈ Σ(i)∗ , the regret RT
σ̂

cumulated by R̃(i)
σ̂

is upper bounded as RT
σ̂
≤ D |Σ(i)j |

√
T . Applying (27) together with the fact that

|Σ(i)j | ≤ |Σ(i) | for all j ∈ J(i) yields the regret bound in the statement.
The complexity analysis of NextElement is straightforward: The regret matching algo-

rithm produces elements in O(|Σ(i) |) time, while each iteration of the loop over Σ(i)∗ requires
O(|Σ(i) |) time. Then, we focus on the complexity of ObserveUtility. There, the only opera-
tion whose analysis is not immediately obvious is the construction of the linear utility function

�t
λ
: λ 	→

∑
σ̂ ∈Σ(i )∗

λ[σ̂ ]Lt (ϕ(i)
σ̂→qt

σ̂

), where it is necessary to check that its canonical representation
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(Section 2.1), given by the vector (Lt (ϕ(i)
σ̂→qt

σ̂

))
σ̂ ∈Σ(i )∗

, can be computed and stored in memory in

O(|Σ(i) |2) time. Fix any σ̂ ∈ Σ(i)∗ . The canonical representation of ϕ(i)
σ̂→qt

σ̂

is M (i)
σ̂→qt

σ̂

, which is a

matrix with O(|Σ(i) |) nonzero entries. Therefore, using (1), the evaluation of Lt (ϕ(i)
σ̂→qt

σ̂

) via the

canonical representations of Lt (given as input) and ϕ(i)
σ̂→qt

σ̂

takes O(|Σ(i) |) time. Thus, the repre-

sentation of �λ can be computed in O(|Σ(i) |2) time, confirming the analysis in the statement. �

4.4 Computation of the Next Strategy

In this subsection, we complete the construction of our co(Ψ(i))-regret minimizer forQ(i) started in
Section 4.3 by showing that every transformation ϕ ∈ co(Ψ(i)) admits a fixed point ϕ(q) = q ∈ Q(i)
and that such a fixed point can be computed in time quadratic in the number of sequences Σ(i) of
Player i .

As a key step in our algorithm, we will use the following well-known result about stationary
distributions of stochastic matrices:

Lemma 4.7. Let A ∈ Sm be a stochastic matrix. Then, A admits a fixed point Ax = x ∈ Δm .
Furthermore, such a fixed point can be computed in polynomial time inm.

Several algorithms are known for computing fixed points of stochastic matrices (see, e.g., Ref-
erence [39] for a comparison of eight different methods). Since the particular choice of method is
irrelevant, in this article, we will make the following assumption:

Assumption 1. Given anym ∈ N>0, we assume access to an oracle for computing a fixed point of
anym ×m stochastic matrix A. Furthermore, we assume that the oracle requires at most FP(m) time
in the worst case to compute any such fixed point.

Our algorithm for computing a fixed point of ϕ ∈ co(Ψ(i)) requires that the transformation ϕ be

expressed as a convex combination of elements from the sets {Ψ̄(i)
σ̂
}

σ̂ ∈Σ(i )∗
, that is, an expression of

the form

ϕ =
∑

σ̂ ∈Σ(i )∗

λσ̂ ϕ(i)
σ̂→qσ̂

, where
∑

σ̂ ∈Σ(i )∗

λσ̂ = 1, and λσ̂ ≥ 0, qσ̂ ∈ Q(i)j ∀ σ̂ = (j,a) ∈ Σ(i)∗ , (28)

in accordance with the characterization of co(Ψ(i)) established by (24) and Lemma 4.3. Note that
our regret minimizer R̃(i) for the set co(Ψ(i)) (Algorithm 2) already outputs transformations ϕ
expressed in the form above.

Our algorithm operates incrementally, constructing a fixed point sequence-form strategy q for
ϕ information set by information set in a top-down fashion. To formalize this notion of top-down
construction, we will make use of the two following definitions:

Definition 4.8. Let i ∈ [n] be a player and J ⊆ J(i) be a subset of that player’s information sets.
We say that J is a trunk of J(i) if, for every j ∈ J , all predecessors of j (that is, all j ′ ∈ J(i) such that
j ′ ≺ j) are also in J .

Example 4.9. In the small game of Figure 1 (left), the sets {a}, {a, b}, {a, c}, {a,d}, {a, b,d},
{a, c,d}, and {a, b, c d} = J(1), as well as the empty seq ∅, exhaust all the possible trunks for
Player 1. Conversely, set J = {b} is not a trunk for Player 1, because a ≺ b and yet a � J .

Definition 4.10. Let i ∈ [n] be a player, J ⊆ J(i) be a trunk of J(i) (Definition 4.8), and ϕ ∈
co(Ψ(i)). We say that a vector x ∈ RΣ(i )

≥0 is a J -partial fixed point of ϕ if it satisfies the sequence-form
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constraints at all j ∈ J , that is,

x[�] = 1, x[σ (i)(j)] =
∑

a∈A(j)
x[(j,a)] ∀ j ∈ J , (29)

and furthermore

ϕ(x)[�] = x[�] = 1, ϕ(x)[(j,a)] = x[(j,a)] ∀ j ∈ J , a ∈ A(j). (30)

It follows from Definition 4.10 that a J(i)-partial fixed point of ϕ is a vector q ∈ Q(i) such that
q = ϕ(q). The following simple lemma establishes an ∅-partial fixed point for any transformation
ϕ ∈ co(Ψ(i)):

Lemma 4.11. Let i ∈ [n] be a player, and ϕ =
∑

σ̂ ∈Σ(i )∗
λσ̂ϕ

(i)
σ̂→qσ̂

be any transformation in co(Ψ(i)),
expressed as in (28). Then, the vector x0 ∈ RΣ(i )

≥0 , whose entries are all zeros except for x0[�] = 1, is a
∅-partial fixed point of ϕ.

Proof. Condition (29) is straightforward. So, we focus on (30). Fix any σ̂ = (j,a) ∈ Σ(i)∗ . The

definition ofM (i)
σ̂→q̂

, given in (8), implies that

M (i)
σ̂→q̂σ̂

[σr ,�] =
{
1 if σr = �
0 otherwise

∀σr ∈ Σ(i).

Consequently, ϕ(i)
σ̂→q̂σ̂

(x0) = M (i)
σ̂→q̂σ̂

x0 = x0 (from expanding the matrix-vector multiplication).

So, ϕ(x0) =
∑

σ̂ ∈Σ(i )∗
λσ̂ϕ

(i)
σ̂→q̂σ̂

(x0) = x0 and in particular ϕ(x0)[�] = x0[�] = 1. So, (30) holds, as

we wanted to show. �

The key result that powers our algorithm to compute a fixed point of any ϕ ∈ co (Ψ(i)) is that a
J -partial fixed point can be cheaply promoted to be a (J∪{j∗})-partial fixed point, where j∗ ∈ J(i)\J
is any information set whose predecessors are all in J . Algorithm 3 below gives an implementation
of such a promotion: Extend(ϕ, J , j∗,x) starts with a J -partial fixed point x of ϕ and modifies all
entries x[(j∗,a)], a ∈ A(j∗), so x becomes a (J ∪{j∗})-partial fixed point. Therefore, at a conceptual
level, one can repeatedly invoke Extend, growing the trunk J one information set at a time until
J = J(i), starting from the ∅-partial fixed point x0 described in Lemma 4.11.

Before giving a proof of correctness and an analysis of the complexity of Extend, we illustrate
an application of the algorithm in the simple extensive-form game of Figure 1.

Example 4.12. Consider the simple extensive-form game of Figure 1 (left), and recall the three

deviation functionsϕ(1)(a,1)→π̂a
,ϕ(1)(a,2)→π̂b

,ϕ(1)(b,3)→π̂c
considered in Example 3.6.Wewill illustrate two

applications of Extend, with respect to the transformation

ϕ �
1

2
ϕ(1)(a,1)→π̂a

+
1

3
ϕ(1)(a,2)→π̂b

+
1

6
ϕ(1)(b,3)→π̂c

∈ co(Ψ(i))[1].

• In the first application, consider the trunk J = ∅, information set j∗ = a, and the ∅-partial
fixed point described in Lemma 4.11, that is, the vector x whose components are all 0 except
for the entry corresponding to the empty sequence �, which is set to 1. In this case, σp =

σ (i)(j∗) (Line 1 of Algorithm 3) is the empty sequence. Since no information set j ′ can possibly
satisfy j ′ � σp , the vector r defined on Line 2 is the zero vector. Consequently, the matrix
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ALGORITHM 3: Extend(ϕ, J , j∗,x)

Input : • ϕ =
∑

σ̂ ∈Σ(i )∗
λσ̂ϕ

(i)
σ̂→qσ̂

∈ co(Ψ(i)) transformation for a player i ∈ [n], represented in

memory implicitly as the list {(λσ̂ ,qσ̂ )}σ̂ ∈Σ(i )∗
• J ⊆ J(i) trunk for Player i
• j∗ ∈ J(i) information set not in J such that its immediate predecessor is in J

• x ∈ RΣ(i )
≥0 J -partial fixed point of ϕ

Output: • x ′ ∈ RΣ(i )
≥0 (J ∪ {j

∗})-partial fixed point of ϕ

1 σp ← σ (i)(j∗)
2 Let r ∈ RA(j

∗)
≥0 be the vector whose entries are defined, for all a ∈ A(j∗), as

r [a] �
∑

j′ �σp

∑
a′ ∈A(j′)

λ(j′,a′) q(j′,a′)[(j∗,a)]x[(j ′,a′)]

3 LetW ∈ x[σp ] · SA(j
∗) be the matrix whose entries are defined, for all ar ,ac ∈ A(j∗), as

W [ar ,ac ] � r [ar ] +
���
λ(j∗,ac )q(j∗,ac )[(j

∗,ar )] +
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �(j∗,ac )

λσ̂

����1{ar=ac }
����x[σp ]

4 if x[σp ] = 0 then

5 w ← 0 ∈ RA(j
∗)

≥0
6 else

7 b ∈ ΔA(j∗) ← fixed point of stochastic matrix 1
x [σp ]W

8 w ← x[σp ]b
9 x ′ ← x

10 for a ∈ A(j∗) do

11 x ′[(j∗,a)] ← w[(j∗,a)]
12 return x ′

W defined on Line 3 is

which is a stochastic matrix. A fixed point forW is given by the vectorb � (2/5, 3/5) ∈ Δ{2,3} .
So, the vector x ′ returned by extend is given by

x ′[�] = 1, x ′[(a, 1)] = 2

5
, x ′[(a, 2)] = 3

5

and zero entries everywhere else. Direct computation reveals that x ′ is indeed a {a}-partial
fixed point of ϕ.
• In the second application of Extend, we start from the {a}-partial fixed point that we com-
puted in the previous bullet point and extend it to a {a,d}-partial fixed point. Here, j∗ = d,
and so σp = (a, 2). The only j ′ � σp is a, and so the vector r defined on Line 2 is

r [7] = 1

5
, r [8] = 0.
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Consequently, the matrixW defined on Line 3 is

As expected,W ∈ 3/5S{7,8} = x[(a, 2)]S{7,8} . A fixed point for 1
x [(a,2)]W = 5/3W is given by

the vector b � (1, 0). So, the vector x ′ returned by Extend is given by

x ′[�] = 1, x ′[(a, 1)] = 2

5
, x ′[(a, 2)] = 3

5
, x ′[(d, 7)] = 3

5
, x ′[(d, 8)] = 0

and zero entries everywhere else. Once again, direct computation reveals that x ′ is indeed a
{a,d}-partial fixed point of ϕ.

To prove correctness of Extend in Proposition 4.14, we will find useful the following technical
lemma:

Lemma 4.13. Let i ∈ [n] be any player, and ϕ =
∑

σ̂ ∈Σ(i )∗
λσ̂ ϕ(i)

σ̂→qσ̂
be any linear transformation

in co(Ψ(i)) expressed as in (28). Then, for all σ ∈ Σ(i),

ϕ(x)[σ ] =
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �σ

λσ̂

����x[σ ] +
∑
j′ �σ

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[σ ]x[(j ′,a′)].

Proof. Fix any trigger sequence σ̂ = (j ′,a′) ∈ Σ(i)∗ . By expanding the matrix-vector multiplica-

tion betweenM (i)
σ̂→qσ̂

(Definition 3.2) and x , we have that for all σ ∈ Σ(i),

ϕ(i)
σ̂→qσ̂

(x)[σ ] = x[σ ]1{σ�σ̂ } + qσ̂ [σ ]x[σ̂ ]1{σ �j′ } . (31)

Therefore, for all σ ∈ Σ(i),

ϕ(x)[σ ] =
∑

σ̂ ∈Σ(i )∗

λσ̂ ϕ(i)
σ̂→qσ̂

(x)[σ ] =
∑

σ̂=(j′,a′)∈Σ(i )∗

λσ̂

(
x[σ ]1{σ�σ̂ } + qσ̂ [σ ]x[σ̂ ]1{σ �j′ }

)
=

���

∑

σ̂ ∈Σ(i )∗ , σ�σ̂

λσ̂

����x[σ ] +
∑
j′ �σ

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[σ ]x[(j ′,a′)]

=
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �σ

λσ̂

����x[σ ] +
∑
j′ �σ

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[σ ]x[(j ′,a′)],

as we wanted to show. �

Proposition 4.14. Let i ∈ [n] be a player, ϕ =
∑

σ̂ ∈Σ(i )∗
λσ̂ ϕ(i)

σ̂→qσ̂
be a linear transformation in

co(Ψ(i)) expressed as in (28), x ∈ RΣ(i )
≥0 be a J -partial fixed point of ϕ, and j∗ ∈ J(i) be a information

set not in J such that its immediate predecessor is in J . Then, Extend(ϕ, J , j∗,x), given in Algorithm 3,

computes a (J ∪{j∗})-partial fixed point of ϕ in time upper bounded byO(|Σ(i) | |A(j∗)|+FP(|A(j∗)|)).

Proof. We break the proof into four parts. In the first part, we analyze the sum of the entries
of vector r defined in Line 2 of Algorithm 3. In the second part, we prove that 1

x [σp ]W ∈ SA(j∗), as
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stated in Line 3. In the third part, we show that the output x ′ of the algorithm is indeed a (J ∪{j∗})-
partial fixed point of ϕ. Finally, in the fourth part, we analyze the computational complexity of the
algorithm.

Part 1: sum of the entries of r . In this first part of the proof, we study the sum of the entries of
the vector r defined on Line 2 in Algorithm 3. By hypothesis, the immediate predecessor of j∗ is
in J . So, because x is a J -partial fixed point, the sequence σp � σ (i)(j∗) satisfies ϕ(x)[σp ] = x[σp ].
Hence, expanding the term ϕ(x)[σp ] using Lemma 4.13, we conclude that

���
1 −
∑

σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂

����x[σp ] +
∑

j′ �σp

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[σp ]x[(j ′,a′)] = x[σp ].

By rearranging terms, we have

���

∑

σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂

����x[σp ] =
∑

j′ �σp

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[σp ]x[(j ′,a′)]. (32)

However, since q(j′,a′) ∈ Q(i)j′ for all j ′ � σp ,a
′ ∈ A(j ′), the sequence-form (probability-mass-

conservation) constraints (2) imply that

q(j′,a′)[σp ] =
∑

a∈A(j∗)
q(j′,a′)[(j∗,a)]. ∀ j ′ � σp ,a

′ ∈ A(j ′).

Hence, plugging the previous equality into (32), we obtain

���

∑

σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂

����x[σp ] =
∑

j′ �σp

∑
a′ ∈A(j′)

∑
a∈A(j∗)

λ(j′,a′)q(j′,a′)[(j∗,a)]x[(j ′,a′)]

=
∑

a∈A(j∗)

��

∑

j′ �σp

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[(j∗,a)]x[(j ′,a′)]
���

=
∑

a∈A(j∗)
r [a],

where the last equality follows from recognizing the definition of r on Line 2 of Algorithm 3. So,
in conclusion,

∑
a∈A(j∗)

r [a] =
���


∑
σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂

����x[σp ]. (33)

Part 2:W belongs to x[σp ] ·SA(j
∗). In this second part of the proof, we will prove that all columns

of the nonnegative matrixW , defined on Line 3 of Algorithm 3, sum to the same value x[σp ]. Fix
any ac ∈ A(j∗). Using the definition ofW , the sum of the entries in the column ofW corresponding
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to action ac is

∑
ar ∈A(j∗)

W [ar ,ac ] =
∑

ar ∈A(j∗)
r [ar ] +

���
λ(j∗,ac )q(j∗,ac )[(j∗,ar )] +
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �(j∗,ac )

λσ̂

����1{ar=ac }
����x[σp ]

=
���


∑
σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂

����x[σp ] + x[σp ] λ(j∗,ac )
��


∑
ar ∈A(j∗)

q(j∗,ac )[(j∗,ar )]
��� +

���
1 −
∑

σ̂ ∈Σ(i )∗ , σ̂ �(j∗,ac )

λσ̂

����x[σp ]

=
���


∑
σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂

����x[σp ] + x[σp ] λ(j∗,ac ) +
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �(j∗,ac )

λσ̂

����x[σp ],

where we used (33) in the second equality, and the fact that
∑

ar ∈A(j∗)q(j∗,ac )[(j∗,ar )] = 1, since

q(j∗,ac ) ∈ Q
(i)
j∗ (Definition 2.3), in the third. Using the fact that the set of all predecessors of sequence

(j∗,ac ) is the union between all predecessors of the parent sequence σp and {(j∗,ac )} itself, after
rearranging terms, we can write

∑
ar ∈A(j∗)

W [ar ,ac ] =
���


∑
σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂

����x[σp ] + x[σp ] λ(j∗,ac ) +
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �(j∗,ac )

λσ̂

����x[σp ]

= x[σp ]
���
1 + λ(j∗,ac ) +

∑
σ̂ ∈Σ(i )∗ , σ̂ �σp

λσ̂ −
∑

σ̂ ∈Σ(i )∗ , σ̂ �(j∗,ac )

λσ̂

����
= x[σp ].

So, all columns of the nonnegative matrixW sum to the same nonnegative quantity x[σp ] and
thereforeW ∈ x[σp ] · SA(j

∗).

Part 3: x ′ is a (J ∪{j∗})-partial fixed point of ϕ. We start by arguing that x ′ satisfies the sequence-
form constraints (29) for all j ∈ J ∪ {j∗}. The crucial observation is that Algorithm 3 only modifies
the indices corresponding to sequences (j∗,a) for a ∈ A(j∗) and keeps all other entries unmodified.
In particular,

x ′[(j,a)] = x[(j,a)] ∀ j ∈ J ,a ∈ A(j). (34)

Furthermore, because J is a trunk for Player i , the above equation implies that

x ′[σ (i)(j)] = x[σ (i)(j)] ∀ j ∈ J .

Hence, using the hypothesis that x is a J -partial fixed point of ϕ at the beginning of the call, we
immediately conclude that the constraints (29) corresponding to j ∈ J hold for vector x ′, and the
only condition that remains to be verified is that

x ′[σp ] =
∑

a∈A(j∗)
x ′[(j∗,a)]. (35)

If x[σp ] = 0, then all entries x ′[(j∗,a)] are set to 0 (Line 5) and so (35) is trivially satisfied. However,
ifx[σp ] � 0, thenx ′[(j∗,a)] is set to the valuex[σp ]b[a] (Line 8), and, sinceb belongs to the simplex
ΔA(j∗), (35) holds in this case, too. So, x ′ satisfies (29) for all j ∈ J ∪ {j∗}, as we wanted to show.
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We now turn our attention to conditions (30). From Lemma 4.13 it follows that ϕ(x)[σ ] only
depends on the values of x[(j ′,a′)] for j ′ � σ ,a′ ∈ A(j ′). So, from (34) it follows that

ϕ(x ′)[(j,a)] = x[(j,a)] = x ′[(j,a)] ∀ j ∈ J ,a ∈ A(j),

and the only condition that remains to be verified is that

ϕ(x ′)[(j∗,a∗)] = x ′[(j∗,a∗)] ∀ a∗ ∈ A(j∗). (36)

Fix any a∗ ∈ A(j∗). We break the analysis into two cases.

• If x[σp ] = 0, thenw = 0 (Line 5) and therefore x ′[(j∗,a∗)] = 0. Hence, to show that (36) holds,
we need to show that ϕ(x ′)[(j∗,a∗)] = 0. To show that, we start from applying Lemma 4.13:

ϕ(x ′)[(j∗,a∗)] =
∑

j′ �(j∗,a∗)

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[(j∗,a∗)]x ′[(j ′,a′)].

Now, using the fact that {j ′ ∈ J(i) : j ′ � (j∗,a∗)} is equal to the disjoint union {j ′ ∈ J(i) :
j ′ � σp } ∪ {j∗}, and that x ′[(j∗,a′)] = 0 for all a′ ∈ A(j∗), we have

ϕ(x ′)[(j∗,a∗)] =
∑

j′ �σp

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[(j∗,a∗)]x ′[(j ′,a′)]. (37)

Since q(j′,a′) ∈ Q(i)j′ is a nonnegative vector, from Definition 2.3, it follows that

q(j′,a′)[σp ] =
∑

a∈A(j∗)
q(j′,a′)[(j∗,a)] ≥ q(j′,a′)[(j∗,a∗)]. (38)

Hence, substituting (38) into (37),

ϕ(x ′)[(j∗,a∗)] ≤
∑

j′ �σp

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[σp ]x ′[(j ′,a′)]

= ϕ(x ′)[σp ] = x ′[σp ] = 0,

where the first equality follows again from Lemma 4.13, and the second equality follows from
the inductive hypothesis thatx ′ is a J -partial fixed point ofϕ. Sincex ′ is a nonnegative vector
andϕ maps nonnegative vectors to nonnegative vectors, we conclude thatϕ(x ′)[(j∗,a∗)] = 0,
as we wanted to show.
• If x[σp ] � 0, then b is a fixed point of the stochastic matrix 1

x [σp ]W , and therefore it satisfies∑
ac ∈A(j∗)

W [a∗,ac ]b[ac ] = x[σp ]b[a∗].

Hence, by using the fact that x ′[(j∗,a∗)] = x[σp ]b[a∗] (Line 11), we can write

x ′[(j∗,a∗)] =
∑

ac ∈A(j∗)
W [a∗,ac ]b[ac ].
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By expanding the definition ofW [a∗,ac ] (Line 3) on the right-hand side

x ′[(j∗,a∗)] =
∑

ac ∈A(j∗)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
r [a∗] +

�����

λ(j∗,ac )q(j∗,ac )[(j∗,a∗)] +

�����

1 −

∑
σ̂ ∈Σ(i )∗

σ̂ �(j∗,ac )

λσ̂

������
1{a∗=ac }

������
x[σp ]

⎤⎥⎥⎥⎥⎥⎥⎥⎦
b[ac ]

= r [a∗] +
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �(j∗,a∗)

λσ̂

����x ′[(j∗,a∗)] +
∑

ac ∈A(j∗)
λ(j∗,ac )q(j∗,ac )[(j∗,a∗)]x ′[(j∗,ac )],

where in the second equality we used the fact that b ∈ ΔA(j∗), and the fact that x ′[(j∗,a)] =
x[σp ]b[a] for all a ∈ A(j∗) (Line 11). Expanding the definition of r (Line 2),

x ′[(j∗,a∗)] =
∑

j′ �σp

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[(j∗,a∗)]x[(j ′,a′)] +
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �(j∗,a∗)

λσ̂

����x ′[(j∗,a∗)]
+

∑
ac ∈A(j∗)

λ(j∗,ac )q(j∗,ac )[(j∗,a∗)]x ′[(j∗,ac )]

=
���
1 −

∑
σ̂ ∈Σ(i )∗ , σ̂ �(j∗,a∗)

λσ̂

����x ′[(j∗,a∗)] +
∑

j′ �(j∗,a∗)

∑
a′ ∈A(j′)

λ(j′,a′)q(j′,a′)[(j∗,a∗)]x ′[(j ′,a′)]

= ϕ(x ′)[(j∗,a∗)],

where the fact that {j ′ ∈ J(i) : j ′ � (j∗,a∗)} is equal to the disjoint union {j ′ ∈ J(i) : j ′ �
σp } ∪ {j∗} in the second equality, and Lemma 4.13 in the third equality.

Part 4: Complexity analysis. In this part, we bound the number of operations required by Algo-
rithm 3.

• Line 2: Each entry r [a] can be trivially computed inO(|Σ(i) |) time by traversing all predeces-
sors of j∗. So, the vector r requires O(|Σ(i) | |A(j∗)|) operations to be computed.
• Line 3: If ar = ac , then the number of operations required to computeW [ar ,ac ] is dominated
by the computation of

∑
σ̂ �(j∗,ac ) λσ̂ , which requires O(|Σ(i) |) operations. Otherwise, if ar �

ac , then the computation ofW [ar ,ac ] can be carried out in a constant number of operations.
Hence, the computation ofW [ar ,ac ] for all ar ,ac ∈ A(j∗) requiresO(|Σ(i) | |A(j∗)|+ |A(j∗)|2)
time. Since |A(j∗)| ≤ |Σ(i) |, the total number of operations required to compute all entries of
W is O(|Σ(i) | |A(j∗)|).
• Lines 4 to 8: If x[σp ] = 0, then the computation of w requires O(|A(j∗)|) operations. If,
however, x[σp ] � 0, then the computation of w requires O(FP(|A(j∗)|) + |A(j∗)|) operation.
Since clearly any fixed point oracle for a square matrix of order |A(j∗)| needs to spend time
at least Ω(|A(j∗)|) time writing the output,O(FP(|A(j∗)|) + |A(j∗)|) = O(FP(|A(j∗)|)). So, no
matter the value of x[σp ], the number of iterations is bounded by O(FP(|A(j∗)|)).
• Line 11: finally, the algorithm spends O(|A(j∗)|) operations to set entries of x .

Summing the number of operations of each of the different steps of the algorithm, we conclude
that each call to Extend(ϕ, J , j∗,x) requires at most O(|Σ(i) | |A(j∗)| + FP(|A(j∗)|)) operations. �

A fixed point for ϕ ∈ co(Ψ(i)) can be computed by repeatedly invoking Extend to grow the
trunk J one information set at a time, until J = J(i), starting from the ∅-partial fixed point
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ALGORITHM 4: FixedPoint(ϕ)

Input : • ϕ =
∑

σ̂ ∈Σ(i )∗
λσ̂ϕ

(i)
σ̂→qσ̂

∈ co(Ψ(i)) transformation for a player i ∈ [n]
Output: • q ∈ Q(i) such that q = ϕ(q)

1 q ← 0 ∈ RΣ(i ) , q[�] ← 1

2 J ← ∅
3 for j ∈ J(i) in top-down order13 do

4 q ← Extend(ϕ, J , j,q) [� Algorithm 3]

5 J ← J ∪ {j}
6 return q

x0 ∈ RΣ(i )
≥0 introduced in Lemma 4.11. This leads to Algorithm 4, whose correctness and com-

putational complexity is a straightforward corollary of Proposition 4.14.

Corollary 4.15. Let i ∈ [n] be a player, and let ϕ =
∑

σ̂ ∈Σ(i )∗
λσ̂ϕ

(i)
σ̂→qσ̂

be a transformation in

co(Ψ(i)) expressed as in (28). Then, Algorithm 4 computes a fixed point Q(i) � q = ϕ(q) in time upper

bounded as O(|Σ(i) |2 +
∑

j ∈J(i ) FP(|A(j)|)).

ALGORITHM 5: co(Ψ(i))-regret minimizer R̄(i) for the set Q(i)

Data: • i ∈ [n] player
• R̃(i) regret minimizer for Ψ(i), defined in Algorithm 2

1 function NextElement()

2 ϕt =
∑

σ̂ ∈Σ(i )∗
λt

σ̂
ϕ
(i)
σ̂→qt

σ̂

∈ co(Ψ(i)) ← R̃(i).NextElement() [� Algorithm 2]

3 qt ∈ Q(i) ← FixedPoint(ϕt ) [� Algorithm 4]

4 return qt

5 function ObserveUtility(�t )
6 Lt ← linear utility function ϕ 	→ �t (ϕ(qt ))
7 R̃(i).ObserveUtility(Lt ) [� Algorithm 2]

4.5 The Complete Algorithm

In this subsection, we put together all the pieces we constructed in the previous subsections to
build a Ψ(i)-regret minimizer that satisfies all requirements of Problem 1.

First, we provide in Algorithm 5 our co(Ψ(i))-regret minimizer. Its correctness follows from
the correctness of the construction by Gordon et al. [20], described in Section 2.4, and by using
Theorem 4.6 and Corollary 4.15.

Theorem 4.16. Let i ∈ [n] be any player. R̄(i), defined in Algorithm 5, is a co(Ψ(i))-regret min-

imizer for the set of sequence-form strategies Q(i), whose cumulative regret upon observing linear
utility functions �1, . . . , �T satisfies

RT ≤ 2D |Σ(i) |
√
T ,

where D is any constant such that maxq,q′ {�t (q) − �t (q′)} ≤ D for all t = 1, . . . ,T . Furthermore, the

ObserveUtility operation requires time O(|Σ(i) |2), and the NextElement operation requires time

O(|Σ(i) |2 +
∑

j ∈J(i ) FP(|A(j)|)) at all t .

13That is, according to a pre-order tree traversal: If j ≺ j′, then j appears before j′ in the iteration order.

Journal of the ACM, Vol. 69, No. 6, Article 41. Publication date: November 2022.

fn:13


41:38 G. Farina et al.

ALGORITHM 6: Ψ(i)-regret minimizer R(i) for the set Π(i)

Data: • i ∈ [n] player
• R̄(i), co(Ψ(i))-regret minimizer for Q(i), defined in Algorithm 5

1 function NextElement()
2 qt ∈ Q(i) ← R̄(i).NextElement() [� Algorithm 5]

3 Sample14 a deterministic sequence-form strategy π t ∈ Π(i) so it is an unbiased estimator of qt ,

using the natural sampling scheme described in Section 2.2

4 return π t

5 function ObserveUtility(�t )
6 R̄(i).ObserveUtility(�t ) [� Algorithm 5]

Proof. From the properties of Gordon et al.’s construction [20] (Section 2.4), the cumulative Ψ(i)-
regret incurred by R̄(i) is equal, at all times, to the cumulative regret incurred by the underlying
regret minimizer R̃(i) for the set of deviations Ψ(i). So, the regret bound follows from the regret
analysis of Theorem 4.6.

Similarly, the complexity analysis follows from combining the analysis of R̃(i) and of Fixed-
Point (Algorithm 4), together with the observation that the canonical representation 〈Lt 〉 of the
linear utility function co(Ψ(i)) � ϕ 	→ �t (ϕ(qt )) is the matrix 〈�t 〉(qt )�, which can be trivially
computed in O(|Σ(i) |2) time. �

Since co(Ψ(i)) ⊇ Ψ(i), Algorithm 5 is in particular also a Ψ(i)-regret minimizer for the set Q(i),
and thus Theorem 4.16 establishes that Algorithm 5 provides a solution to Problem 2.

To obtain our Ψ(i)-regret minimizer for the set of pure sequence-form strategies Π(i) from Algo-
rithm 5, we apply the construction described in Section 4.2. The resulting regret minimizer, R(i),
is given in Algorithm 6. Applying Lemma 4.1 immediately yields the following corollary:

Corollary 4.17. Let i ∈ [n] be any player. R(i), defined in Algorithm 6, is a Ψ(i)-regret minimizer

for the set Π(i), whose cumulative regret RT upon observing linear utility functions �1, . . . , �T satisfies

RT ≤ 2D |Σ(i) |
√
T + 4D

√
T |Σ(i) | log(1/δ ) with probability at least 1 − δ ,

for any δ ∈ (0, 1), where D is any constant such that maxq,q′ {�t (q)−�t (q′)} ≤ D for all t = 1, . . . ,T .

Furthermore, the ObserveUtility operation runs inO(|Σ(i) |2) time, and the NextElement operation

runs in O(|Σ(i) |2 +
∑

j ∈J(i ) FP(|A(j)|)) time at all t .

Therefore, Algorithm 6 provides a regret minimizer that satisfies all requirements of Problem 1.

5 CONVERGENCE TO EFCE

Theorem 3.8 implies that if all players i ∈ [n] play the game repeatedly according to the outputs
of a Ψ(i)-regret minimizer for Π(i) that observes, at each time t , the linear utility function given
in (10), then the empirical frequency of play is a ( 1

T
maxi R

(i), T )-EFCE, where R(i), T is the regret

cumulated by the Ψ(i)-regret minimizer for Player i .
In particular, when all players play according to the strategies recommended by Algorithm 6,

the following can be shown by combining Theorem 4.17 and Theorem 3.8:

14As discussed in Lemma 4.1, in principle, any unbiased sampling scheme will work. For the purposes of analyzing the
complexity of Algorithm 6, however, we will assume that the natural sampling scheme described in Section 2.2 is used.
That sampling scheme runs in linear time in |Σ(i ) |.
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Theorem 5.1. When all players i = 1, . . . ,n play according to the outputs of the regret minimizer

R(i) defined in Algorithm 6, receiving as feedback at all times t the linear utility functions �(i), t defined
in (10), the empirical frequency of play after T repetitions of the game is a(

D
2|H| + 4

√
|H| log(n/δ )
√
T

)
-EFCE with probability at least 1 − δ ,

for any δ ∈ (0, 1), where D is the difference between the maximum and minimum payoff of the game,
and |H| is the number of nodes in the game tree.

Proof. LetR(i), T be the regret cumulated byR(i) (Algorithm 6) up to timeT . FromTheorem 4.17,
we have that for all δ ′ ∈ (0, 1),

P

[
R(i), T ≤ 2D |H|

√
T + 4D

√
T |H| log(1/δ ′)

]
≥ P

[
R(i), T ≤ 2D |Σ(i) |

√
T + 4D

√
T |Σ(i) | log(1/δ ′)

]
≥ 1 − δ ′,

where the first inequality follows from the fact that |Σ(i) | =
∑

j ∈J(i ) |A(j)| ≤
∑

h∈H |A(h)| ≤ |H|
(the number of edges in a tree is always less than the number of nodes). So,

P

[
max

i
R(i), T ≤ 2D |H|

√
T + 4D

√
T |H| log(1/δ ′)

]
= P

[⋂
i

{
R(i), T ≤ 2D |H|

√
T + 4D

√
T |H| log(1/δ ′)

}]
≥ 1 − nδ ′,

where the inequality follows from the union bound. Substituting δ � nδ ′ and using Theorem 3.8
yields the result. �

A standard application of the Borel-Cantelli lemma enables us tomove from the high-probability
guarantees at finite time of Theorem 5.1 to almost-sure guarantees in the limit.

Corollary 5.2. When all players i = 1, . . . ,n play infinitely many repetitions of the game ac-

cording to the outputs of the regret minimizer R(i) defined in Algorithm 6, receiving as feedback at

all times t the linear utility functions �(i), t defined in (10), the empirical frequency of play converges,
almost surely, to the set of EFCEs.
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