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Abstract
To create trustworthy programs, the ‘gold standard’ is speci-
fications at a high-enough level to clearly correspond to the
informal specifications, and also a refinement proof linking
these high-level specifications down to, in our case, exe-
cutable bytecode. The DeepSEA system demonstrates how
this can be done, in the context of smart contracts on the
Ethereum blockchain. A key component of this is the model
of the blockchain on which the smart contracts reside. When
doing proofs in DeepSEA, it is critical to have such a model,
which allows for the writing of specifications at a high-level
clearly corresponding to informal specifications. A candidate
model for doing so and its usefulness for carrying out proofs
is discussed in this paper.

CCS Concepts: • Security and privacy→ Logic and veri-
fication; •Computer systems organization→Distributed
architectures.
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1 Introduction
In all software projects one intention is to write correct soft-
ware, where “correct software” means “software that satisfies
its specification”. Some might say no approach exists that
can produce correct software. However, we believe such an
approach does exist, and this paper discusses one component
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in a system which demonstrates this – the DeepSEA (Deep
Simulation of Executable Abstractions) system.

1.1 DeepSEA
The DeepSEA system makes it possible to write software
where it is known with certainty that it is indeed correct
(with respect to a formal specification) and that this has been
shown with the utmost rigour. The DeepSEA compiler is
partly based upon the CompCert verified compiler [5]. The
CompCert verified compiler is a compiler for almost all of
the C language and generates code for ARM, PowerPC, RISC-
V and x86 processors. In contrast, DeepSEA as discussed
here is a compiler for the DeepSEA language and generates
bytecode for the Ethereum Virtual Machine (EVM).

1.2 Smart Contracts
On most blockchains, smart contracts cannot typically be
updated once deployed. This constraint has the benefit that if
one trusts a particular smart contract then that trust doesn’t
need to be reviewed again and again as the smart contract
cannot change. Smart contracts often handle large sums
of money or tokens representing power, so this makes it
especially important that we deploy smart contracts that are
guaranteed to be correct. Ideally the utmost rigour should
be used in all circumstances.

1.3 Motivation for the Blockchain Model
A critical component of taking a rigorous approach is having
an adequate model of a blockchain, and this is the focus of
this paper. The model should be sufficiently expressive, but
also abstract, to make the phrasing of lemmas related to the
behaviour of smart contracts straightforward.
Ideally, any high-level model of a blockchain should be

linked to a low-level model of that blockchain, such as Hi-
rai’s Lem formalization of the EVM [4]. The low-level model
should be shown to refine the high-level model. Lem [6] is
a system with a source language that has been designed to
be translated into a range of programming languages and
proof assistants, in particular, one target language is Coq.
Hirai’s Lem model has been tested against a standard test
suite for Ethereum implementations which gives further as-
surance that the model corresponds to the behaviour of the
real-world Ethereum network.
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In this paper we focus on the version of the DeepSEA
system that targets the Ethereum blockchain, and discuss
a model that was developed in order to help minimise the
required proof effort without compromising on correctness.

2 Refinement
The formal method refinement [2] formalises the informal
idea of what Wirth [9] called stepwise refinement, a useful
software engineering idea which centred around moving
from more abstract programs to more concrete ones by a
series of “clearly” correct steps which preserve the meaning
of the program as we move through levels of abstraction.
The motivation for this is that more abstract programs

are closer to an ideal statement of a solution (e.g. we might
talk about graphs if our problem is to do with networks,
even though graphs do not exist as a data type in most pro-
gramming languages) and then refine to a representation
of graphs in our target programming language. By solving
the problem at the abstract level of graphs we are less likely
to make errors in our solution since we will be writing the
solution at the level of abstraction most suited to it.

The formal method uses the idea of simulation to connect
the abstract and concrete levels at each step. A concrete
program correctly simulates an abstract program as follows:
if the abstract program 𝐴 starts in a state 𝑠𝐴 and moves to
a final state 𝑓𝐴 then the concrete program 𝐶 , when started
from any state 𝑠𝐶 which is in a relation 𝑅 with 𝑠𝐴, moves to
some final state 𝑓𝐶 which is in the same relation 𝑅 to 𝑓𝐴.
Put informally, if we want a program to act like 𝐴, then

we will accept as adequate a program that acts like 𝐶 .
Here the relation 𝑅, which allows us to simulate 𝐴 via 𝐶 ,

relates abstract states to more concrete ones, but ensures
that any properties that 𝐴 has will also be properties of𝐶 . In
that sense 𝐶 will meet 𝐴 thought of as a specification, and
typically is computable even if 𝐴 is not, so the refinement
allows us to move, perhaps, from abstract non-computable
to concrete computable.
An example of a simulation is a state that talks about

sets being related to, that is simulated by, a state that talks,
instead, in terms of lists. Lists are more concrete than sets,
and then a further simulation of lists by arrays (in most
languages, indeed, sets are not a data type, but lists might be,
and arrays almost certainly are). Also, a set takes no note of
ordering of its elements, whereas a list or an array does, so a
single set maps to many arrays, and hence a single abstract
state is simulated by many concrete states and refinement
typically removes this sort of non-determinism around state
as we move from abstract to concrete.

If the refinement is possible we end up with a computable
program that satisfies the specification, as we might think
of the abstract program being.

We note that refinement down to executable EVM byte-
code is possible in principle with the blockchain model dis-
cussed in this paper, and a proof of this is left for future
work. However, DeepSEA does already generate an all but
completed refinement proof for each individual function of a
smart contract written in DeepSEA, which forms a key part
of this blockchain model.

3 The Snapshot Approach
3.1 Motivation
The focus of this model of the blockchain is on the aspects
relevant to the correctness of the smart contract written
in the DeepSEA language. The model’s initial state corre-
sponds with the moment when the smart contract of interest
is deployed on the blockchain. The approach taken is a snap-
shot one. The model begins from an arbitrary state of the
blockchain and models possible actions from then on. This
helps guarantee the validity of the lemmas proven, regardless
of the actual state of the blockchain.

3.2 Overview
We implement the snapshot approach by universally quanti-
fying over all possible states the blockchain could be in at the
point that the smart contract in question is deployed. This is
done using a mechanism in Coq [8] called section variables,
so that the arbitrary variables can be referred to throughout
multiple definitions within the section.
This approach is used to define the reachability predi-

cate, ReachableFromBy, which captures the notion of which
states are reachable from an original state by a list of states
and actions leading from the original state to the state in
question. ReachableFromBy is used in the crowdfunding do-
nation_preserved lemma shown in Listing 1. Starting from
an arbitrary initial state in the proof helps us be sure that
the result applies to the real-world Ethereum blockchain.

Definition since_as_long (P : BlockchainState ->

Prop (Q : BlockchainState -> Prop) (R : Step

-> Prop) :=

forall sc st step ',

ReachableFromBy st step ' sc ->

P st ->

(forall sa, List.In sa sc -> R sa) ->

Q (Step_state step ').

Notation "Q `since ` P `as-long -as` R" :=

(since_as_long P Q R) (at level 1).

Definition donation_recorded (a : addr) (amount :

Z) (s : BlockchainState) :=

Int256Tree.get_default 0 a (Crowdfunding_backers

(contract_state s)) = amount

/\ amount > 0.

Definition no_claims_from (a : addr) (s : Step) :=

match Step_action s with

| (call_Crowdfunding_claim _ a _ _ _) => False

| _ => True
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end.

Lemma donation_preserved :

forall (a : addr) (d : Z),

(donation_recorded a d)

`since ` (donation_recorded a d)

`as -long -as` (no_claims_from a).

Listing 1. Statement of the donation_preserved lemma

3.3 Implementation
To implement1 the snapshot approach Coq’s section vari-
ables are used, as mentioned earlier. As shown in Listing 2,
the timestamp, block number, block hashes and balances are
taken to be section variables and in the context of the proofs
their actual values are arbitrary.
Context

(snapshot_timestamp : int256)

(snapshot_number : int256)

(snapshot_blockhash : int256 -> int256)

(snapshot_balances : addr -> wei).

Listing 2. Section variables for the model

The wei datatype is int256 which in DeepSEA is an un-
signed 256-bit integer and so this guarantees the balances
are non-negative.
It is possible to add additional assumptions to be used in

the model such as the address_accepts_funds_assumption in
Listing 3. Here we choose to assume that funds sent by the
smart contract are always accepted by the recipient. This
assumption is then used in the definition of Action (shown
later in Listing 5) by being passed tomake_machine_env and
then used in the function responsible for checking that a
transfer is successful.
Context (address_accepts_funds : option

ContractState -> addr -> addr -> wei -> bool).

Definition

address_accepts_funds_assumed_for_from_contract

d sender recipient amount :=

if sender =? contract_address then true

else address_accepts_funds d sender

recipient amount.

Definition address_accepts_funds_assumption :=

address_accepts_funds_assumed_for_from_contract.

Listing 3. Example of an assumption

Based on the snapshot information we define the ini-
tial_state of the blockchain as in our model (which is not to
be confused with the actual initial state of the blockchain
back at the genesis block). This is defined as shown in List-
ing 4 and contains all the information assumed about the
blockchain up to the point where the snapshot is taken.

1https://github.com/Coda-Coda/Crowdfunding/tree/FTSCS-2022.
See the README for the relevant files.

Definition initial_state :=

mkBlockchainState

snapshot_timestamp snapshot_number

snapshot_balances snapshot_blockhash

init_global_abstract_data.

Listing 4. Initial state of the model

The blockchain state recorded is focused on what is rele-
vant to the smart contract that is being verified. From this
perspective, there is no need to keep track of all of the
blockchain’s data, only what is in Listing 4. The init_global-
_abstract_data refers to the initial values of the storage vari-
ables of the smart contract.

4 The Successful-Calls Approach
4.1 Motivation
When calling a smart contract function it may ‘revert’ (i.e.
cancel) the current execution, which results in it returning
its state to as it was before the call. Here are some examples
of what may cause this.

• A runtime error in a smart contract call, such as an
array out of bounds exception;

• Execution reaching a point in the smart contract code
explicitly causing a revert. In DeepSEA this is done via
fail or assert(false);

• The gas cost of the transaction exceeding the gas that
is provided by the sender. Modelling this scenario in
DeepSEA is left for future work.

When a revert occurs, a transaction fee (gas fee) is still
charged to the caller as a charge for the partial computa-
tion that was carried out. The current model implemented
in DeepSEA ignores the transaction fee (and though fully
accounting for gas is feasible with DeepSEA, this is left for
future work). Ignoring the transaction fee means that a re-
vert results in no change at all to the modelled blockchain
state.

4.2 Overview
Typically, in a proof, the cases of interest are those where
the smart contract function call succeeds. However, it is
still important to model the scenario where the functions
revert. From a snapshot, we can model all possible further
actions. That is, we can consider the effect of all possible
calls to the smart contract and then model the outcome of
those calls. This is a satisfactory approach, but we can do
better. Bearing in mind that the successful calls are typically
the most relevant to consider, we can take a more elegant
approach with our model as we are using a proof assistant.
We require a proof that each call will not result in a revert
and then handle the revert case separately just once. This
novel approach allows us to focus the proof effort on the
successful calls, while still considering all scenarios.

https://github.com/Coda-Coda/Crowdfunding/tree/FTSCS-2022
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4.3 Implementation
The purpose of implementing2 the successful-calls approach
is to make the proofs shorter and more elegant by removing
the need to repeatedly prove the statements of lemmas for
the case where the state reverts over and over again.
Listing 5 defines the transitions (in a state-machine anal-

ogy) that can happen. There is one transition for each smart
contract function, a transition for balance transfers, a transi-
tion for time passing, and a transition for revert.

The subtlety is that the transitions for each smart contract
function require not only the arguments to the smart con-
tract function but also a proof that, with those arguments
and the current blockchain and contract state, the call to that
smart contract succeeds. This is shown in the step function
in Listing 6 with the inclusion of case_donate_prf being a re-
quired argument, and it is similar for the other smart contract
functions (though hidden by the ellipsis). case_donate_prf
guarantees that the modelled function call will not revert.
This highlights one strength of using this approach in

Coq rather than relying on tests of the smart contract: when
testing, we would need to set up the system so that we are
sure, without even running the test, that a particular test will
not cause a revert, but that is impossible in general.
Inductive Action (before : BlockchainState) :=

| call_Crowdfunding_donate (context :

CallContext)

(callvalue_prf :

noOverflowOrUnderflowInTransfer (caller

context) contract_address (callvalue

context) (balance before) = true)

r (* The return value of calling donate

successfully *)

contract_state_after (* The contract state

after calling donate successfully *)

(case_donate_prf :

runStateT (Crowdfunding_donate_opt (

make_machine_env contract_address

before context

address_accepts_funds_assumption)) (

contract_state before)

= Some (r, contract_state_after))

| call_Crowdfunding_getFunds ...

| call_Crowdfunding_claim ...

| externalBalanceTransfer ...

| timePassing ...

| revert.

Listing 5. Action dependent on the current blockchain state

The type of Action is BlockchainState -> Type, so it is a
type which depends upon one argument of type Blockchain-
State. In particular, it depends upon the blockchain state
prior to the action being executed, i.e. the argument before.
This argument is used by callvalue_prf and case_donate_prf

2https://github.com/Coda-Coda/Crowdfunding/tree/FTSCS-2022.
See the README for the relevant files.

(or the equivalent for each function of the smart contract).
The proof relating to callvalue ensures that the caller of the
smart contract has sufficient funds to send the callvalue and
that the smart contract’s balance does not overflow on re-
ceiving those funds. The statement of this proof can only be
phrased with the knowledge of the balances before the smart
contract is called, hence the need for the before variable.
The case_donate_prf statement relies much more heavily
upon the before variable because before contains the current
contract state including the value of the contract’s storage
variables. When ‘calling’ donate in the model, the ‘caller’ is
required to provide a proof that Some (r, contract_state_after)
is returned, i.e. that the contract does not revert by returning
None. The benefit of this approach is that the various situa-
tions where the contract reverts are handled once, leaving
only the cases which succeed to be proved – these typically
are the cases of interest in the proof.
Consider a contract where one of its functions always

reverts. For this function we would have a contradiction be-
tween the case_function_prf and that the function always
reverts. By the principle of explosion this fulfils the proof
obligation for that function’s branch regardless of the speci-
fication in question. This is appropriate because the proof
obligations related to when any function of the contract re-
verts are handled once and for all by the branch associated
with the final case revert shown in Listing 5 and Listing 6.

The state transition step function for the blockchain state
is defined as shown in Listing 6.
Fixpoint step

(before : BlockchainState) (action : Action

before) : BlockchainState :=

match action with

| call_Crowdfunding_donate context

callvalue_prf r d_after case_donate_prf =>

next_blockchain_state before d_after

| call_Crowdfunding_claim ...

| call_Crowdfunding_getFunds ...

| timePassing ...

| externalBalanceTransfer ...

| revert => before

end.

Listing 6. Step function

For a smart contract function, the required arguments for
an action include the state of the smart contract after the
call, its return value, and a proof that these are in fact the
result of executing the function - with the guarantee that
it does not revert. Given this, it is trivial to define the step
function for smart contract function calls. The step function
simply takes the resulting state of the smart contract and
wraps it, after processing the possible Ether transfer to an
external address which the smart contract may initiate.
As a side note, in our version of DeepSEA, a strict ver-

sion of the Checks-Effects-Interactions pattern is followed
as described in [1]. This means that the issue of re-entrancy

https://github.com/Coda-Coda/Crowdfunding/tree/FTSCS-2022
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has been handled adequately and that there is at most one
transfer to an external address.

5 Usage in a Crowdfunding Proof
By making use of the above approach to modelling the
blockchain, we proved a lemma relating to the preserva-
tion of records of donations in a Crowdfunding smart con-
tract. The proof is shorter than the original proof that it is
based upon an approach using Scilla [7] which used a sim-
pler system that is not compatible with a verified compiler.
This original proof serves as a useful benchmark, having
also been done in Coq. Our proof is structurally simpler
and shorter, while still being compatible with the DeepSEA
verified compiler. The full proof is shown in Listing 7 to
Listing 10.
The tactics (proof commands) in Listing 7 progress the

proof state to the goal being the left side of donation_recorded
(shown in Listing 1), having dismissed by assumption that d
> 0.
Lemma donation_preserved :

forall (a : addr) (d : Z),

(donation_recorded a d)

`since ` (donation_recorded a d)

`as -long -as` (no_claims_from a).

Proof.

(* Proof of a temporal property. *)

unfold since_as_long. intros.

induction H; [assumption |].

assert(donation_recorded a d prevSt) by (apply

IHReachableFromBy;

intros; apply H1; apply in_cons; assumption).

clear H0 IHReachableFromBy.

unfold donation_recorded in *. destruct_and.

split; [| assumption ].

Listing 7. donation_preserved proof (part 1)

The next tactics in Listing 8 split the goal into each of
the possible actions that can be taken in the model of the
blockchain. The trivial cases of handling external balance
transfers, time passing and reverts are dismissed by assump-
tion, leaving only the goals for the cases for calling the func-
tions donate and getFunds. This is appropriate because it is
only the smart contract functions directly relate to business
logic of handling donations and thus are relevant for the
donation_preserved lemma.
Hlinks. assert (no_claims_from a prev) by

(apply H1; destruct HL; subst; right; left; auto).

destruct prev; autounfold in *; simpl in *.

clear H1 H HL. unfold no_claims_from in H3.

unfold donation_recorded in *.

destruct Step_action0;

simpl in *;

rewrite <- HS in *;

try assumption.

Listing 8. donation_preserved proof (part 2)

In Listing 9 the case for the donate function is proven.
The two sub-cases relate to whether the arbitrarily chosen
address a is the person currently donating or not. The lem-
mas get_default_ss and get_default_so capture the notions
of getting the value with the same key just after it has been
set “get set same” (the value returned is the one just set) and
getting the value of a different key just after it has been set
“get set other” (the value returned is unchanged by the set).
- Transparent Crowdfunding_donate_opt.

unfold Crowdfunding_donate_opt in *. ds_inv;

subst; simpl; inv_FT.

destruct (a =? (caller context)) eqn:Case.

+ apply Int256eq_true in Case. rewrite <- Case.

rewrite get_default_ss. exfalso. subst. simpl

in *.

apply Z.eqb_eq in Heqb0. rewrite Heqb0 in H2.

lia.

+ apply Int256eq_false in Case. apply

get_default_so; assumption.

Listing 9. donation_preserved proof (part 3)

The final tactics in the proof (Listing 10) solve the case
of the getFunds and claim function. The function getFunds
does not alter the donation record, it simply sets the funded
flag to true to prevent later attempts to withdraw funds af-
ter the owner has withdrawn all funds. Since the donation
record is unchanged in all branches of getFunds the tactics
“subst; reflexivity” solve all the goals by substituting vari-
ables, and observing that the goal is of the form “a = a” after
simplification.
The case of calling the claim function (for the backers

to withdraw funds after the campaign fails to meet its goal)
gives rise to a trivial contradiction because of the “as-long-as”
clause in the statement of the lemma. This is evident from the
definition of no_claims_from in Listing 1, in particular that
the branch for claim is False (which is captures the notion of
a contradiction in Coq).
- Transparent Crowdfunding_getFunds_opt.

unfold Crowdfunding_getFunds_opt in *.

ds_inv; subst; reflexivity.

- contradiction.

Qed.

Listing 10. donation_preserved proof (part 4)

As shown in the listings above, the structure of the proof
is indicated by the bullets of - and +. As you can see, there
are only three main bullets and two sub-bullets. This gives
an indication that the proof itself does not require too many
branches. This simplicity is a direct result of the successful-
calls approach, because the trivial revert case only has to be
proved once.
Listing 11 shows the the proof state3 at the point of the

first bullet. As you can see case_donate_prf from the Action

3Generated with the aid of Coq Proof State Visualiser [3].



FTSCS ’22, December 07, 2022, Auckland, New Zealand Daniel Britten and Steve Reeves

Proof situation:
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑎 : 𝑎𝑑𝑑𝑟

𝑑 : 𝑍
𝑝𝑟𝑒𝑣𝑆𝑡 : 𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛𝑆𝑡𝑎𝑡𝑒
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 : 𝐶𝑎𝑙𝑙𝐶𝑜𝑛𝑡𝑒𝑥𝑡

𝒄𝒂𝒍 𝒍𝒗𝒂𝒍𝒖𝒆_𝒑𝒓𝒇 : 𝑛𝑜𝑂𝑣𝑒𝑟 𝑓 𝑙𝑜𝑤𝑂𝑟𝑈𝑛𝑑𝑒𝑟 𝑓 𝑙𝑜𝑤𝐼𝑛𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟

(𝑐𝑎𝑙𝑙𝑒𝑟 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 (𝑐𝑎𝑙𝑙𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
(𝑏𝑎𝑙𝑎𝑛𝑐𝑒 𝑝𝑟𝑒𝑣𝑆𝑡) = 𝑡𝑟𝑢𝑒

𝑟 : 𝑢𝑛𝑖𝑡
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑎𝑡𝑒_𝑎𝑓 𝑡𝑒𝑟 : 𝑔𝑙𝑜𝑏𝑎𝑙_𝑎𝑏𝑠𝑡𝑟𝑎𝑐𝑡_𝑑𝑎𝑡𝑎_𝑡𝑦𝑝𝑒

𝒄𝒂𝒔𝒆_𝒅𝒐𝒏𝒂𝒕𝒆_𝒑𝒓𝒇 : 𝑟𝑢𝑛𝑆𝑡𝑎𝑡𝑒𝑇
(𝐶𝑟𝑜𝑤𝑑𝑓 𝑢𝑛𝑑𝑖𝑛𝑔_𝑑𝑜𝑛𝑎𝑡𝑒_𝑜𝑝𝑡 (𝑚𝑎𝑘𝑒_𝑚𝑎𝑐ℎ𝑖𝑛𝑒_𝑒𝑛𝑣
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑎𝑑𝑑𝑟𝑒𝑠𝑠 𝑝𝑟𝑒𝑣𝑆𝑡 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)) (𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑎𝑡𝑒

𝑝𝑟𝑒𝑣𝑆𝑡) = 𝑆𝑜𝑚𝑒 (𝑟, 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑎𝑡𝑒_𝑎𝑓 𝑡𝑒𝑟 )

𝑔𝑒𝑡_𝑑𝑒 𝑓 𝑎𝑢𝑙𝑡 0 𝑎 (𝐶𝑟𝑜𝑤𝑑𝑓 𝑢𝑛𝑑𝑖𝑛𝑔_𝑏𝑎𝑐𝑘𝑒𝑟𝑠
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑎𝑡𝑒_𝑎𝑓 𝑡𝑒𝑟 ) = 𝑑

Listing 11. Simplified proof situation at the first bullet of
donation_preserved

type appears in the proof context. Since case_donate_prf
is of the form 𝑟𝑢𝑛𝑆𝑡𝑎𝑡𝑒𝑇 (𝐶𝑟𝑜𝑤𝑑𝑓 𝑢𝑛𝑑𝑖𝑛𝑔_𝑑𝑜𝑛𝑎𝑡𝑒_𝑜𝑝𝑡 ... =
𝑆𝑜𝑚𝑒 (𝑟, 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡_𝑠𝑡𝑎𝑡𝑒_𝑎𝑓 𝑡𝑒𝑟 ) we have in the proof context
that the donate function does not return None (i.e. does not
revert). We also have callvalue_prf in the proof context,
which guarantees no revert occurs as a result of insufficient
or an excess of funds related to the funds transferred by the
caller to the contract.

6 Discussion
A limitation of this model is that it does not (yet) handle gas
constraints. It implicitly assumes that the gas cost paid by the
sender is always sufficient for the transaction to complete.
DeepSEA does actually track gas usage but it does not yet
do so at the high-level of abstraction used in this model.
Although the purpose of the successful-calls approach is

to simplify the proof effort, there are some ways in which it
does make proofs slightly more complex. The complexities
arise from the use of the Action type depending on a value
of type BlockchainState. For example, an intuitive approach
as a part of modelling a blockchain is to have a separate type
for a list of states and a list of actions. However, to do this
with the Action type dependent on a BlockchainState it is
necessary to instead have a list of dependent records which
include both a state and action in each element of the list.

An additional challenge is that of ensuring the verification
system stays current. For example, there have been changes4

4Latest version of relevant tests for Hirai’s Lem model: https://github.com/
ethereum/tests/tree/develop/GeneralStateTests/VMTests.

to the test set which Hirai’s Lem model [4] was tested on5
but Hirai’s Lem model has not been updated since 2018.
Updating Hirai’s Lem model and any required changes in
DeepSEA would be important before the full benefits of the
DeepSEA system could be realised.

7 Conclusion
This paper discusses modelling the Ethereum blockchain in
Coq bymaking use of the ideas of a snapshot and a successful-
calls technique leveraging Hirai’s Lem model of the EVM
and the DeepSEA system. These ideas help simplify proofs
without compromising on correctness. The modelling is ex-
pressive enough that it can be used to express properties
about smart contracts at a high level.

Future work would involve demonstrating that the aspects
of the model which ‘glue’ the individual functions together
into a model of the contract (and blockchain) as a whole are
also refined by Hirai’s low-level Lem model [4]. In the mean-
time, careful inspection of the aspects which ‘glue’ the indi-
vidual functions together as a part of the high-level model is
required, with them being part of the trusted computing base
for now. Such careful inspection could involve examining
the model’s Coq source code to see if it corresponds with
common knowledge about how the Ethereum blockchain
functions, or perhaps comparison with the Ethereum Yellow
Paper [10]. The first of these has been done so far. The high-
level nature of the model lends itself to this kind of analysis.
Nevertheless, future work involving a refinement proof for
all aspects of the model would give greater assurance the
model is correct.
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