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Abstract

We introduce a prototype tool strategFTO addressing the verification of a security property in critical
software. We consider a recent definition of timed opacity where an attacker aims to deduce some secret
while having access only to the total execution time. The system, here modelled by timed automata, is
deemed opaque if for any execution time, there are either no corresponding runs, or both public and private
corresponding runs. We focus on the untimed control problem: exhibiting a controller, i. e., a set of allowed
actions, such that the system restricted to those actions is fully timed-opaque. We first show that this
problem is not more complex than the full timed opacity problem, and then we propose an algorithm,
implemented and evaluated in practice.
Keywords— opacity, timing leak, timed automata, security, control, IMITATOR

1 Introduction

We address here the control of timed systems to avoid
timing leaks, i. e., the leakage of private information

∗This manuscript is the author (and slightly extended) ver-
sion of the manuscript of the same name published in the pro-
ceedings of the 8th International Workshop on Formal Tech-
niques for Safety-Critical Systems (FTSCS 2022). The final
authenticated version is available at dl.acm.org. This work
is partially supported by the ANR-NRF French-Singaporean
research program ProMiS (ANR-19-CE25-0015 / 2019 ANR
NRF 0092) and the ANR research program BisoUS.

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several universities as well as other organizations (see
https://www.grid5000.fr).

that can be deduced from time. We use as underlying
model timed automata (TAs) [AD94], an extension of
finite-state automata with real-valued clocks.

Context Opacity is a key security property requir-
ing that an external user should not be able to de-
duce whether the execution of a system contains a
secret behavior through its observation. This prop-
erty was first formalized for labeled transition sys-
tems [Bry+08], by specifying a subset of secret paths
and requiring that, for any secret path, there is a
non-secret one with the same observation. Opacity
raises challenging research issues such as

1. specifying formally opacity in various frame-
works [HS04; Bry+08],
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2. verifying opacity properties [Maz04; Bry+08],
and

3. developing mechanisms to design a system satis-
fying opacity while preserving functionality and
performance [Bar+12; BHL17].

Franck Cassez proposed in [Cas09] a first defini-
tion of timed opacity asking whether an attacker can
deduce a secret by observing a set of observable ac-
tions together with their timestamp. He proved that
opacity is undecidable for TAs, mainly from the un-
decidability of the language inclusion problem for
TAs [AD94]. The opacity problem is also undecid-
able for the restricted subclass of event-recording au-
tomata [AFH99]. Based on this definition of opacity,
some decidable subclasses were proposed, for real-
time automata [WZ18; WZA18] (a severely restricted
subclass of TAs with a single clock), or over bounded-
time [Amm+21].
In [And+22], we proposed a definition of opacity

where the attacker only has access (in addition to
the model knowledge) to the system execution time,
i. e., the time from the initial location to a given loca-
tion. The timed opacity problem therefore asks “for
which execution times is the attacker unable to de-
duce whether a private location was visited?” The
full timed opacity problem asks whether the system
is timed-opaque for all execution times, i. e., the at-
tacker is never able to deduce whether the private
location was visited by an execution. We proved
in [And+22] that this latter problem is decidable (in
3EXPTIME), and we proposed a practical algorithm
using a parametric version of TAs [AHV93], imple-
mented in IMITATOR [And21].

Contribution If a system is not fully timed-
opaque, there may be ways to tune it to enforce opac-
ity. For instance, one could change internal delays,
or add some sleep() or Wait() statements in the
program (see e. g., [And+22]). In this paper, we con-
sider a static (untimed) form of control of the system.
This indicates whether there is a way of restricting
the behavior of users to ensure full timed opacity.
With that mindset, we assume the set of actions of
the TA is partitioned into a set of controllable ac-

tions (that can be disabled) and a set of uncontrol-
lable actions (that cannot be disabled). We address
the following goal: exhibit a controller (i. e., a subset
of the system controllable actions to be kept in ad-
dition to the uncontrollable actions, while other con-
trollable actions are disabled) guaranteeing the sys-
tem to be fully timed-opaque. We propose an algo-
rithm exhibiting a set of controllers ensuring opacity,
implemented into a tool strategFTO, calling IMITA-

TOR [And21] for computing suitable opaque execu-
tion times, and PolyOp [BHZ08] for additional poly-
hedra operations.

Related works It is well known that observing the
time taken by a system to finish some operation is a
potential way to get information out of it (see e. g.,
[Koc96]). As such, identifying which information is
released by the timing of a system has been studied
both from a security and a safety perspective.

From the security point of view, beyond the works
related to timed opacity and TAs [Cas09; WZ18;
WZA18; Amm+21; And+22], the notion of non-
interference has been widely studied. A first def-
inition of timed non-interference was proposed for
TAs in [Bar+02; BT03]. This notion is extended
to PTAs in [AK20], with a semi-algorithm imple-
mented using IMITATOR [And21]. In [GMR07], an-
other notion of timed interference called timed strong
non-deterministic non-interference (SNNI) which was
based on timed language equivalence between the au-
tomaton with hidden low-level actions and the au-
tomaton with removed low-level actions was devel-
oped. This notion is in some aspects stronger than
the opacity notion we consider, and is undecidable.
SNNI was adapted in [VNN18] to allow some in-
tentional information leakage and a form of con-
trol aimed at ensuring it was presented in [Ben+15].
Their framework gives to the attacker more informa-
tion than the total execution time, and their control
differs from ours to include that knowledge.

The diagnosis of TAs is one of the dominant
research directions aimed at analysing information
leakage from a safety perspective. Its goal is to de-
tect, by observing the system, whether some faulty
behavior occurred. As such, it is some form of dual
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to opacity. Diagnosis was first introduced for TAs
in [Tri02]. Diagnosability of a system is shown there
to be decidable, though the actual diagnoser may be
quite complex (see [BCD05] for subclasses of TAs al-
lowing simpler diagnoser, see also [CT13] for a sum-
mary of the main results on the diagnosis of TAs
and [Cas10] for a diagnosability focused control of
TAs).

2 Preliminaries

We assume a setX = {x1, . . . , xH} of clocks, i. e., real-
valued variables that all evolve over time at the same
rate. A clock valuation is a function µ : X → R≥0.

We write ~0 for the clock valuation assigning 0 to all
clocks. Given d ∈ R≥0, µ + d denotes the valuation
s.t. (µ+d)(x) = µ(x)+d, for all x ∈ X. Given R ⊆ X,
we define the reset of a valuation µ, denoted by [µ]R,
as follows: [µ]R(x) = 0 if x ∈ R, and [µ]R(x) = µ(x)
otherwise.
A clock guard g is a constraint over X defined

by a conjunction of inequalities of the form x ⊲⊳ d,
with d ∈ Z and ⊲⊳ ∈ {<,≤,=,≥, >}. Given g, we
write µ |= g if the expression obtained by replacing
each x with µ(x) in g evaluates to true.

Definition 1 (TA [AD94]). A TA A is a tuple
A = (Σ, L, ℓ0, ℓpriv , ℓf ,X, I, E), where:

1. Σ is a finite set of actions,

2. L is a finite set of locations,

3. ℓ0 ∈ L is the initial location,

4. ℓpriv ∈ L is the private location,

5. ℓf ∈ L is the final location,

6. X is a finite set of clocks,

7. I is the invariant, assigning to every ℓ ∈ L a
clock guard I(ℓ),

8. E is a finite set of edges e = (ℓ, g, a, R, ℓ′)
where ℓ, ℓ′ ∈ L are the source and target loca-
tions, a ∈ Σ, R ⊆ X is a set of clocks to be reset,
and g is a clock guard.

Example 1. Consider the TA in Fig. 1a, using one
clock x. ℓ1 is the initial location, while we assume
that ℓf is the final location, i. e., a location in which
an attacker can measure the execution time from the
initial location. ℓ2 is the private location, i. e., a se-
cret to be preserved: the attacker should not be able
to deduce whether it was visited or not. ℓ2 has an
invariant x ≤ 3 (boxed); other locations invariants
are true.

Definition 2 (Semantics of a TA [AD94]). Given
a TA A = (Σ, L, ℓ0, ℓpriv , ℓf ,X, I, E), the semantics
of A is given by the timed transition system (TTS)
TA = (S, s0,→), with

• S = {(ℓ, µ) ∈ L× R
H
≥0 | µ |= I(ℓ)}, s0 = (ℓ0,~0),

• → consists of the discrete and (continuous) delay
transition relations:

1. discrete transitions: (ℓ, µ)
e
7→ (ℓ′, µ′),

if (ℓ, µ), (ℓ′, µ′) ∈ S, and there exists
e = (ℓ, g, a, R, ℓ′) ∈ E, such that µ′ =
[µ]R |= I(ℓ′), and µ |= g.

2. delay transitions: (ℓ, µ)
d
7→ (ℓ, µ + d), with

d ∈ R≥0, if ∀d′ ∈ [0, d], (ℓ, µ+ d′) ∈ S.

Moreover we write (ℓ, µ)
(d,e)
−→ (ℓ′, µ′) for a combina-

tion of a delay and discrete transition if ∃µ′′ : (ℓ, µ)
d
7→

(ℓ, µ′′)
e
7→ (ℓ′, µ′).

Given a TAA with semantics (S, s0,→), a run ofA
is an alternating sequence of states of TA and pairs
of delays and edges starting from the initial state s0
of the form s0, (d0, e0), s1, · · · where for all i, ei ∈

E, di ∈ R≥0 and si
(di,ei)
−→ si+1. The duration of a

finite run ρ : s0, (d0, e0), s1, · · · , (di−1, ei−1), (ℓi, µi)
is dur(ρ) =

∑
0≤j≤i−1 dj .

2.1 Timed opacity definitions

We recall here the notion of timed opacity defined
in [And+22].1

1We slightly modify the definitions from [And+22] by
incorporating ℓpriv within the definition of A, and re-
moving ℓpriv and ℓf from the definition of DReachpriv (A)

and DReach¬priv (A) to simplify the reading.
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Figure 1: Running example

Given A = (Σ, L, ℓ0, ℓpriv , ℓf ,X, I, E), and a run ρ,
we say that ℓpriv is reached on the way to ℓf
in ρ if ρ is of the form (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · ,
(ℓm, µm), (dm, em), · · · (ℓn, µn) for some m,n ∈ N

such that ℓm = ℓpriv , ℓn = ℓf and ∀0 ≤ i ≤ m−1, ℓi 6=

ℓf . We denote by ReachAℓpriv (ℓf ) the set of those runs,
and refer to them as private runs. Conversely, we
say that ℓpriv is avoided on the way to ℓf in ρ if
ρ is of the form (ℓ0, µ0), (d0, e0), (ℓ1, µ1), · · · , (ℓn, µn)
with ℓn = ℓf and ∀0 ≤ i < n, ℓi 6∈ {ℓpriv , ℓf}. We

denote the set of those runs by ReachA¬ℓpriv (ℓf ), and
refer to them as public runs.

While we model the secret behavior of the system
using a private location ℓpriv here, note that one could
easily adapt these definitions if the secret is, for ex-
ample, a set of locations, an action (this will be the
case in our case study) or the value of a variable.

DReachpriv (A) (resp. DReach¬priv (A)) is the
set of all the durations of the runs for which
ℓpriv is reached (resp. avoided) on the way
to ℓf . Formally: DReachpriv (A) = {d ∈

R≥0 | ∃ρ ∈ ReachAℓpriv (ℓf ) such that d = dur(ρ)}

and DReach¬priv (A) = {d ∈ R≥0 | ∃ρ ∈

ReachA¬ℓpriv (ℓf ) such that d = dur(ρ)}.

Definition 3 (full timed opacity). Given a TA A, we
say that A is fully timed-opaque if DReachpriv (A) =
DReach¬priv (A).

That is, a system is fully timed-opaque if, for any
execution time d, there exists a run of duration d that
reaches ℓf after going through ℓpriv iff there exists an-
other run of duration d that reaches ℓf without go-
ing through ℓpriv . Hence, the attacker cannot deduce
from the execution time whether ℓpriv was visited or
not.

Example 2. Consider again the TA in Fig. 1a.
Recall that ℓ2 is the private location. We have
DReachpriv (A) = [1, 5] and DReach¬priv (A) =
[1, 3] ∪ [4, 4] ∪ (5,+∞). Since DReachpriv (A) 6=
DReach¬priv (A), the system is not fully timed-
opaque.

3 Untimed control for full

timed opacity

In this section, we introduce an untimed control for
controlling timed opacity. We assume Σ = Σc ⊎ Σu

where Σc (resp. Σu) denote controllable (resp. uncon-
trollable) actions.
A (static, untimed) strategy of a TA A is a set of

actions σ ⊆ Σ that contains at least all uncontrol-
lable actions (i. e., Σu ⊆ σ ⊆ Σ). A strategy induces
a restriction of A where only the edges labeled by
actions of σ are allowed:

4



Definition 4 (Controlled TA). Given
A = (Σ, L, ℓ0, ℓpriv , ℓf ,X, I, E) with Σ = Σu ⊎ Σc

and a strategy σ ⊆ Σ, the control of A using σ is the
TA A′ = Control(A, σ) = (σ, L, ℓ0, ℓpriv , ℓf ,X, I, E

′)
where E′ = {(ℓ, g, a, R, ℓ′) ∈ E | a ∈ σ}.

Example 3. Consider again the TA A in Fig. 1a.
Fix σ = {u, a}. Then Control(A, σ) is in Fig. 1b.

Strategies represent some modifications of the sys-
tem that can be implemented to ensure full timed
opacity.

Definition 5 (fully timed-opaque strategy). A strat-
egy σ is fully timed-opaque if Control(A, σ) is fully
timed-opaque.

A strategy (even a maximal one) might achieve full
timed opacity by blocking all runs (both private or
public) from reaching the target. If reaching the tar-
get means completing a task, this might not be some-
thing one would desire. We call a strategy allowing
to reach the target for at least some durations an
effective strategy.
We define two slightly different problems: taking a

TA A as input, the full timed (resp. effective full

time) opacity control emptiness problem asks
whether the set of fully (resp. effective fully) timed-
opaque strategies for A is empty.

Full timed opacity control emptiness prob-

lem:

Input: A TA A
Problem: is the set of fully timed-opaque strate-
gies for A empty?

Effective full timed opacity control empti-

ness problem:

Input: A TA A
Problem: is the set of effective fully timed-
opaque strategies for A empty?

Note that, due to the presence of uncontrollable
actions, the first problem (full timed opacity control
emptiness) is not trivial. (If uncontrollable actions
were not part of our definitions, choosing σ = ∅ would
always yield an acceptable fully timed-opaque strat-
egy.)

We will also refine those problems by considering
a notion of maximal (i. e., most permissive) strat-
egy w.r.t. full timed opacity based on the num-
ber of actions belonging to the strategy: given A,
a fully timed-opaque strategy σ is maximal if ∀σ′,
if σ′ is fully timed-opaque then |σ′| ≤ |σ|. We de-
fine similarly minimal strategies (least permissive,
i. e., disabling as many actions as possible) as well as
maximal (resp. minimal) effective fully timed-opaque
strategies, i. e., the set of largest (resp. smallest) ef-
fective fully timed-opaque strategies.

Example 4. Consider again the TAA in Fig. 1a. As-
sume Σu = {u} and Σc = {a, b, c, d, e, f}. Fix σ1 =
{u, b, c}. We have DReachpriv (Control(A, σ1)) =
[2, 5] while DReach¬priv (Control(A, σ1)) = [4, 4];
therefore, σ1 is not fully timed-opaque. Now fix σ2 =
{u, a, f}. We have DReachpriv (Control(A, σ2)) =
DReach¬priv (Control(A, σ2)) = [1, 3]; therefore, σ2

is fully timed-opaque.

In fact, it can be shown that the set of ef-
fective fully timed-opaque strategies for A is
{{u, a}, {u, a, e}, {u, a, f}}; therefore, {u, a} is the
only minimal strategy, while {u, a, e}, {u, a, f} are
the two maximal strategies. In addition, {u, f} is
an example of a strategy that is not effective, as ℓf is
always unreachable, whether ℓpriv is visited or not.

3.1 Complexity

Proposition 1 (complexity). One can compute the

set of fully timed-opaque strategies over a TA A in

3EXPTIME.

Proof. The full timed opacity decision problem (i. e.,
checking if a given TA is fully timed-opaque) is de-
cidable for TAs in (at most) 3EXPTIME [And+22].
Moreover, reachability of the final state can be de-
cided in PSPACE [AD94]. Thus, for any given strat-
egy, one can check in triple exponential time whether
it is (effective) fully timed-opaque.

Computing the list of (effective) fully timed-opaque
strategies can be done naively by testing each possible
strategy one by one and keeping the ones that sat-
isfy the property we want. As there is an exponential
number of possible strategies and repeating exponen-
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tially many times a 3EXPTIME algorithm remains in
3EXPTIME, this algorithm is in 3EXPTIME.

As a corollary of the above, the (effective) full
timed opacity control emptiness problem is in 3EXP-

TIME as well. More precisely, the above proof estab-
lishes that the complexity class of the (effective) full
timed opacity control emptiness problem is the max-
imum between PSPACE and the complexity of the
full timed opacity problem. As the latter is PSPACE-
hard (being trivially harder than reachability), the
two problems lie in the same complexity class. From
a theoretical point of view, one thus cannot do better
than the naive enumeration approach described here
to solve the control problem.
Finding the maximal (resp. minimal) strategies

can be done slightly more efficiently by starting from
the set with every (resp. no) controllable action and
enumerating the potential strategies by decreasing
(resp. increasing) order as one could then potentially
stop before full enumeration. In the worst case, this
will however have the same complexity as the full
enumeration.

4 Implementation and experi-

ments

4.1 Implementation in strategFTO

We implemented our strategy generation in
strategFTO, an entirely automated open-source
tool written in Java.2 Our tool iteratively constructs
strategies, then checks full timed opacity following
Algorithm 1.
We give our strategy synthesis algorithm in Al-

gorithm 1. The exhibition of these execution
times (DReach¬priv (A) and DReachpriv (A), line 4)
is done in our implementation by an automated
model modification (following the procedure de-
scribed in [And+22], but which was not entirely auto-
mated in [And+22]) followed by a synthesis problem

2Source code is available at
https://github.com/DylanMarinho/Controlling-TA.
Models and experiment results are available at
10.5281/zenodo.7181848.

Algorithm 1: synthCtrl(A) Exhibit all timed-
opaque strategies

1 S ← ∅
2 foreach s ⊆ Σc do

3 σ ← s ∪ Σu

/* Compute execution times */

4 λ1 ← DReach¬priv (Control(A, σ))

5 λ2 ← DReachpriv (Control(A, σ))
/* Check for full timed opacity */

6 if λ1 = λ2 then S ← S ∪ {σ} ;

7 return S

using a parametric extension of TAs [AHV93]. The
synthesis of the execution times itself is done by a call
to an external tool—IMITATOR 3.3 “Cheese Caramel

au beurre salé” [And21].
strategFTO then checks whether both sets of execu-

tion times are equal; this is done by a call to another
external tool—PolyOp 1.23, that performs polyhe-
dral operations as a simple interface for the Parma
polyhedra library [BHZ08].

Algorithms We implement not only the exhi-
bition of all timed-opaque strategies (denoted by
synthCtrl(A), in Algorithm 1), but also the following
variants:

1. synthMaxCtrl(A): synthesize all maximal strate-
gies for A;

2. synthMinCtrl(A): synthesize all minimal strate-
gies;

3. witnessMaxCtrl(A): witness one maximal strat-
egy;

4. witnessMinCtrl(A): witness one minimal strat-
egy.

We implemented these other algorithms by chang-
ing the exploration order of the strategies, and/or by
triggering immediate termination upon the first ex-
hibition of a strategy.

3https://github.com/etienneandre/PolyOp
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Input model The input TA model is given in the
IMITATOR input syntax; while we presented a re-
stricted setting in this paper for sake of clarity, our
implementation in strategFTO is much more permis-
sive, by allowing significant extensions of TAs with
global (integer or Boolean) variables, multiple au-
tomata with synchronization, multi-rate clocks (in-
cluding stopwatches), etc.

4.2 Proof of concept benchmark

As a proof of concept, we consider the TA model of
an ATM (given in Fig. 2). The idea is that (as per
our definition of timed opacity) the attacker only has
access to the execution time, i. e., the time from the
beginning of the program to reaching the end state.
The secret is whether the ATM user has actually ob-
tained cash (action takeCash).4 The TA uses two
clocks: x for “local” actions, and y for a global time
measurement. First, the user starts the process (ac-
tion start), then the ATM displays a welcome screen
for 3 time units, followed by another screen request-
ing the password (action askPwd ). Then, the user
can submit a correct (action correctPwd) or incor-
rect (incorrectPwd) password; if no password is in-
put within 10 time units, the system moves to a can-
celling phase. The same happens if 3 incorrect pass-
word have been input. After inputting the correct
password, the user has the choice between a fixed-
amount quick withdrawal (quickWithdraw ), a normal
withdrawal (normalWithdraw ) or a balance request
(reqBalance).

The quick withdrawal triggers a 15-time unit
preparation followed by the availability of the
money, which the user can take immediately (action
takeCash), thus terminating the procedure. If the
user does not take the money, the system moves to
the cancelling phase.

The normal withdrawal asks the user to input the
desired amount; similar to the password, after 3
wrong amounts (action incorrectAmount), or upon
timeout, the system moves to cancelling phase. Af-
ter the user retrieves cash (action takeCash), they are

4strategFTO allows not only private locations, but also ac-
tions.

asked whether they would like to perform another op-
eration; if so (action restart), the system goes back to
the choice location. Otherwise (action pressFinish),
or unless a 10-time unit timeout is reached, the sys-
tem moves to the terminating location. The balance
request triggers the balance display, from which the
user can immediately terminate the process (action
pressOK ), or go back to the choice menu.
The rationale is that, in the regular terminating

and cancelling phases, the ATM terminates after con-
stant time (invariant y ≤ 100), avoiding leaking infor-
mation. However, some actions may lead to quicker
termination (quick withdrawal) or slower termination
(multiple choices).
The uncontrollable actions are most of the user ac-

tions: correctAmount , incorrectAmount , correctPwd ,
incorrectPwd , pressFinish , takeCash . The con-
trollable actions are the system actions (askPwd ,
start , finish) and some of the users actions that
can be controlled by disabling the associated choice
(reqBalance , pressOK , quickWithdraw , restart).

4.3 Experiments

We first exhibit in Table 1 controllers for our bench-
mark from Fig. 2 as computed by strategFTO, for all
our algorithms. For space concern, we tabulate the
actions to disable; the strategy is therefore Σ minus
these actions. Also note that, for witnessMaxCtrl and
witnessMinCtrl, the order in which we compute the
subsets of Σ in Algorithm 1 has an impact on the
result, as the algorithm stops as soon as one strat-
egy is found. According to Table 1, the maximal
strategies (i. e., the most permissive, disabling the
least number of actions) are to disable either restart
and pressOK , or restart and reqBalance . This is nat-
ural, as restart allows the user to restart a second
operation, thus violating the constant-time nature of
Fig. 2, while pressOK and reqBalance, if enabled to-
gether, allow a quick exit, shorter than a cash with-
drawal operation—thus giving hint to the attacker
that the takeCash secret did not occur.

Scalability Then, we test the scalability of
strategFTO w.r.t. the number of actions. We mod-
ify Fig. 2 by adding an increasingly large numbers
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T : terminating
W : waiting
WA : waiting for amount
WC : waiting for choice
WP : waiting for password

Figure 2: ATM benchmark

Table 1: Strategy synthesis for Fig. 2

Actions to disable synthMinCtrl witnessMinCtrl synthMaxCtrl witnessMaxCtrl synthCtrl
restart, pressOK

√ √ √

restart, reqBalance
√ √

restart, pressOK , quickWithdraw
√

restart, pressOK , reqBalance
√

restart, quickWithdraw , reqBalance
√

restart, pressOK , quickWithdraw , reqBalance
√ √ √

of controllable actions; these actions do not play a
role in the control (we basically add unguarded self-
loops) but they will impact the computation time,
as we will need to consider an increasingly (and
exponentially) larger number of subsets of actions,
from Algorithm 1. We add from 1 to 40 such ac-
tions, resulting (by adding the actions in Fig. 2) in
a model with a number of controllable actions from
11 to 50. We plot these results in Fig. 3. (Raw re-
sults are in Table 2 in Appendix A.) From our results
in Fig. 3, we see that, without surprise, the execu-
tion time for synthCtrl is exponential in the number
of actions. However, synthMaxCtrl and synthMinCtrl

behave much better, by remaining respectively be-
low 15 minutes and three minutes, even for up to 50
controllable actions. In addition, it is important to
notice that witnessMaxCtrl and witnessMinCtrl do not
decrease the time very much compared to the full
versions synthMaxCtrl and synthMinCtrl. This is be-
cause, at a given size, the number of strategies to be
tested remains relatively small.
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Figure 3: Execution times for scalability (in seconds; TO set at 1,800 s)

5 Conclusion

We introduced a prototype tool strategFTO imple-
menting an algorithm to exhibit strategies to guar-
antee the full timed opacity of a system modeled
by a timed automaton where the attacker only has
access to the computation time. Even though rely-
ing on a simple enumeration of the subsets, our tool
strategFTO shows good performance for synthesizing
maximal or minimal strategies, with very reasonable
times, even for several dozens of controllable actions.

Future works We plan to further optimize our im-
plementation by maintaining a set of non-effective
strategies, i. e., for which ℓf is unreachable: any strat-
egy strictly included into a known non-effective strat-
egy will necessarily be non-effective too, and therefore
no full timed-opacity analysis is needed for this strat-
egy. An option to efficiently represent this strategies
set could be to store it using BDDs.
We also plan to strengthen strategies so that their

choice may depend on how long has passed since the
start of the execution. As these strategies still need a
finite representation to be handled, this requires es-
tablishing exactly what strategies need to remember
to chose optimally.
Our ultimate goal will be to extend timed au-

tomata to parametric timed automata [AHV93], and

use automated parameter synthesis techniques (e. g.,
[JLR15; And+21; AMP21]), with a parametric timed
controller [JLR19; Gol21].
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[And+21] Étienne André, Jaime Arias, Laure Petrucci,
and Jaco van de Pol. “Iterative Bounded Syn-
thesis for Efficient Cycle Detection in Paramet-
ric Timed Automata”. In: TACAS (Mar. 27–
Apr. 1, 2021). Ed. by Jan Friso Groote and Kim
G. Larsen. Vol. 12651. Lecture Notes in Com-
puter Science. Virtual: Springer, 2021, pp. 311–
329. doi: 10.1007/978-3-030-72016-2_17 (cit.
on p. 9).
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Appendix

A Experiments: scalability test

We performed a sample scalability test on our bench-
mark. The plot is given in Fig. 3.
We tabulate our full results in Table 2.
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Table 2: Execution times for scalability (in seconds; TO set at 1,800 s)

Number of synthMinCtrl witnessMinCtrl synthMaxCtrl witnessMaxCtrl synthCtrl
added actions -find min -find min -witness -find max -find max -witness -find all

1 2.89 2.04 12.61 5.92 22.98
2 3.19 2.44 17.81 11.30 44.68
3 3.84 2.74 23.99 17.58 87.07
4 4.43 2.85 31.15 24.92 172.26
5 4.90 3.77 39.69 10.34 342.95
6 6.07 4.09 48.78 11.12 683.77
7 7.02 4.54 59.14 12.35 1,362.48
8 8.34 4.69 70.09 13.46 TO
9 9.32 5.63 82.45 14.52 TO
10 10.51 5.91 95.86 15.65 TO
11 12.04 7.66 111.16 30.49 TO
12 13.99 9.43 126.11 46.00 TO
13 15.54 10.94 143.15 62.50 TO
14 17.58 12.83 160.41 80.32 TO
15 19.88 15.03 180.24 85.64 TO
16 21.94 17.38 199.34 105.15 TO
17 24.39 17.63 221.04 146.98 TO
18 27.64 20.53 241.70 168.79 TO
19 30.49 23.65 264.72 191.16 TO
20 33.43 26.59 287.85 215.33 TO
21 36.58 28.60 313.34 239.52 TO
22 40.46 30.92 339.24 265.90 TO
23 44.31 33.92 366.07 292.51 TO
24 48.52 36.43 395.95 322.16 TO
25 53.21 38.30 423.86 350.92 TO
26 58.02 41.21 453.59 368.86 TO
27 62.36 43.57 484.28 400.39 TO
28 68.56 46.60 517.03 419.43 TO
29 74.39 49.74 551.58 436.35 TO
30 80.64 53.15 586.03 453.37 TO
31 86.89 55.72 621.83 472.63 TO
32 92.91 59.14 656.75 492.10 TO
33 100.67 67.00 693.82 528.71 TO
34 111.66 76.17 730.93 564.68 TO
35 120.37 85.48 768.87 604.42 TO
36 128.35 94.59 809.36 645.01 TO
37 137.28 102.77 856.98 685.03 TO
38 147.68 112.83 897.39 728.48 TO
39 157.42 121.77 940.98 771.68 TO
40 168.74 132.45 984.65 818.25 TO
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