
The Principles of the Flix Programming Language
Magnus Madsen
magnusm@cs.au.dk

Department of Computer Science
Aarhus University
Aarhus, Denmark

Abstract
We present the design values and design principles of the Flix
programming language, a functional-first, imperative, and
logic programming language. We explain how these values
and principles came into being and how they have influenced
the design of Flix over the last several years.

The principles cover most facets of the Flix language and
its ecosystem, including its syntax, semantics, static type
and effect system, and standard library. We present each
principle in detail, including its origin, rationale, and how it
has shaped Flix.

We believe that codifying a language’s design values and
principles can serve as a powerful medium for discussing
and comparing programming language designs and we hope
our presentation will inspire future language designers to
document their languages’ design values and principles.

CCS Concepts: • Software and its engineering→ Gen-
eral programming languages.

Keywords: Flix, programming language design, design val-
ues and principles

ACM Reference Format:
Magnus Madsen. 2022. The Principles of the Flix Programming
Language. In Proceedings of the 2022 ACM SIGPLAN International
Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software (Onward! ’22), December 8–10, 2022, Auck-
land, New Zealand. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3563835.3567661

1 Introduction
Flix1 is a functional-first, imperative, and logic program-
ming language that supports algebraic data types, pattern
matching, higher-order functions, parametric polymorphism,

1https://flix.dev/ and https://github.com/flix/flix/

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
Onward! ’22, December 8–10, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3567661

type classes, higher-kinded types, polymorphic effects, first-
class Datalog constraints, channel and process-based concur-
rency, and tail call elimination. Flix compiles to JVM byte-
code and runs on the Java Virtual Machine. Flix is developed
by researchers at Aarhus University in collaboration with
researchers at the University of Waterloo and Universität
Tübingen, and by a community of open source contributors.

Flix has an extensive standard library and a rich ecosys-
tem, including online documentation, API documentation,
an online playground, and a fully-featured Visual Studio
Code Extension. The Flix compiler project spans more than
190,000 lines of code written by more than 50 contributors.

In this paper, we discuss the principled design of the Flix
programming language. In the programming language re-
search literature, it is standard to present minimal calculi,
including semantics and type systems, which focus on a
particularly interesting aspect of a programming language.
Various aspects of Flix has been described this way, including
its support for first-class Datalog constraints [37, 40] and
its polymorphic type and effect system [38]. But until now,
there has not been a written account that tries to describe
how the entire language is put together; how it is designed.
Every programming language designer faces a myriad

of design choices. However, we argue that most of these
choices are poorly understood andmore rarely studied. Much
research, including our own, has focused on “ensuring that
well-typed programs do not go wrong” and less on “should
unused local variables be allowed?” or “how does one design
a good standard library?”.
Programming language researchers and designers some-

times talk about a language being “opinionated” (or “unopin-
ionated”). For example, Martin Odersky, the lead designer of
Scala, has said that one of the goals of Scala 3 was for the lan-
guage “to becomemore opinionated” [49].We agree with this
sentiment; programming languages should be opinionated.

But, what does it mean for a language to be opinionated?
We think it means that it is the job of the language designer
to make informed choices on behalf of the programmer. An
opinionated designer should not throw every feature into a
language and let the programmer sort it out. Instead, the lan-
guage designer should establish a common way to structure
and think about programs written in their language.
In this paper, we present a collection of values and prin-

ciples that govern the design of the Flix. We do not claim
that these values or principles are inherently good and bad;

112

https://doi.org/10.1145/3563835.3567661
https://doi.org/10.1145/3563835.3567661
https://flix.dev/
https://github.com/flix/flix/
https://doi.org/10.1145/3563835.3567661
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563835.3567661&domain=pdf&date_stamp=2022-12-01

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

instead, we aim to use them to build a coherent, opinionated,
and well-designed programming language. We think of val-
ues as aspirations toward some abstract goals and principles
as actionable and decidable criteria for achieving those goals.

We believe that the idea of explicitly codifying the values
and principles of a programming language may offer a more
systematic method for the softer aspects of programming
language design. In this methodology, we should not view
the values and principles as set in stone but rather as a living
document of design choices that are collected and published.
Today, it seems that few programming languages have

anything resembling the values and principles outlined in
this paper. We hope to be part of an impetus to change that.
We can now state what we mean by values and principles:
Definition 1.1 (Value). A value, in the broadest sense, is a
subscription to a particular view on how programs should
be written. A value, in a more concrete sense, is a property
of a programming language that its designers consider to be
important, worthy, or useful.
Definition 1.2 (Principle). A principle is a design guideline;
it expresses a particular property or collection of design
choices about how something should work.
A principle should be actionable and decidable; i.e., it

should be possible to look at a programming language and
determine if it satisfies the principle.

To give an analogy: Imagine an organizationwithmembers.
A specific value of the organization could be that “everyone
should have their voice heard.” A principle, inspired by that
value, could be that “at every meeting, everyone gets to speak
for two minutes”. We may find it difficult to determine if the
organization is living up to its values. But, it is much more
straightforward to determine if it satisfies its principles and
if other organizations satisfy the same principles.
Every principle comes with a rationale: an explanation

of why the principle exists and is worthwhile. For some
principles, the rationale is grounded in the research literature.
For others, it comes from hard-earned lessons from other
programming languages. Sometimes, a principle rests solely
on a rhetorical argument or simply instinct. In these cases,
we have tried to outline hypotheses that can serve as a guide
for future empirical programming language research.

We like to think of the Flix values and principles as a social
contract: A codification of what programmers can expect
from us, the language designers, and what we, as language
designers, expect from the programmers. We believe that by
explicitly stating the Flix values and principles, programmers
can more easily determine whether Flix is the right choice
for their programming task. We also think that our values
and principles are an effective way of communicating our
perspectives on language design and to indicate in what
direction Flix is headed.
The Flix values and principles came into being over sev-

eral years. In the beginning, they were informal and not

written down. Later, we started writing them down and pub-
lishing them on the Flix website to keep us honest and solicit
feedback. Over these years, the principles arose out of: (i) dis-
cussions on GitHub, (ii) discussions on other programming
language forums, and (iii) from the perceived mistakes of
other programming languages. Later, we came to an informal
process where when a design discussion ended in agreement,
we would ask ourselves: is there a principle here that should
be codified and put on the website? This paper is the culmi-
nation of that process; it is not merely the outcome of several
weeks of writing but the result of six years of discussions on
programming language design.

The Flix values and principles are essential to consensus-
building among the Flix developers. It is much easier to
collaborate when there is a shared written agreement on
many aspects of the language design. For example, in our
experience, principles help reduce tension during code re-
view because reviewers can offer constructive criticism by
pointing to pre-established principles. When no principle
exists, yet the language designers agree that a pull request or
design choice is "wrong", tensions can be defused by saying
that there should have been such a principle and discussing
it with the contributor. Thus the designers have a chance
to act less autocratic, and the contributor is included in a
positive way that does not attack his or her work.

Flix has often been discussed on the internet with multiple
posts on websites such as HackerNews, Reddit, and Lambda
the Ultimate. Surprisingly – at least to us – these discussions
have often focused on the Flix values and principles rather
than the technical merits of the language or the scientific
contributions of Flix. We speculate that this is because the
values and principles communicate what Flix is and aspires
to be, which facilitates more productive discussions on pro-
gramming language design.

As of today, Flix has more than 60 values and principles2.
We cannot cover all of them in this paper, hence we focus on
the ones we think are the most important or have had the
biggest impact on the language.
We organize the principles into the following categories:

Syntax (Section 4.1), Static Semantics (Section 4.2), Correct-
ness and Safety (Section 4.3), Compiler Messages (Section 4.4),
Standard Library (Section 4.5), Miscellaneous (Section 4.6),
and finally Abandoned Principles (Section 5).
This paper contains more than rhetorical arguments; we

present the values and principles and discuss their success
and failure in shaping Flix. It is our goal to illustrate how
each principle has influenced the design of Flix. We also
discuss some surprising results. For example, principles that
were thought straightforward but applying them uncritically
led to non-sensical design choices. As often said, the devil
is in the details. Lastly, we also discuss some principles that
we had to modify or abandon over the years.

2https://flix.dev/principles/

113

https://flix.dev/principles/

The Principles of the Flix Programming Language Onward! ’22, December 8–10, 2022, Auckland, New Zealand

2 Background: A Taste of Flix
We begin with a brief introduction to Flix. Unfortunately, we
cannot cover the language in great detail, but we want to
give the reader a taste of the look and feel of the language.

2.1 A Brief Introduction to Flix
Flix is a functional-first, imperative, and logic programming
language. We illustrate each style of programming:

Functional-style. We can write programs in a functional
style using algebraic data types and pattern matching:

enum Shape {

case Circle(Int32),

case Rectangle(Int32 , Int32)

}

def area(s: Shape): Int32 = match s {

case Circle(r) => 3 * (r * r)

case Rectangle(h, w) => h * w

}

Here we define an algebraic data type named Shape with
two variants: Circle, and Rectangle, and a function area to
compute the area of a given shape.

Imperative-style. We can also write programs in an im-
perative style using mutable data and destructive operations:

def sort(l: List[a]): List[a] with Order[a] =

region r {

let arr = List.toArray(l, r);

Array.sort!(arr);

Array.toList(arr)

}

Here we implement the pure sort function by declaring a
new lexically scoped region r, converting the immutable
linked list l to a mutable array which belongs to that region,
destructively sorting the array in place, and converting it
back to an immutable linked list.

Declarative-style. And finally we can write programs in
a declarative style using first-class Datalog constraints:

def reach(g: List[(t, t)]): List[(t, t)] =

let db = inject g into Edge;

let pr = #{

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

};

query db , pr select (x, y) from Path(x, y)

Here the reach function computes the transitive closure of
the graph g using Datalog.

2.2 Type and Effect System
A unique feature of Flix is its polymorphic type and effect sys-
tem which separates pure and impure code [38]. In Flix, we
can express that a function is pure (i.e., has no side-effects):

def add(x: Int32 , y: Int32): Int32 \ { }

We can also express that a function is impure:

def sayHello(name: String): Unit \ { IO } =

println("Hello ${name}!")

And we can express that the effect of a higher-order function
depends on its argument (i.e., it is effect polymorphic):

def map(f: a -> b \ e, l: List[a]): List[b] \ e

Here the purity of the map function depends on the purity
of its function argument f.

2.3 Ecosystem and Tooling
Flix has a website that describes the language (flix.dev), on-
line documentation (doc.flix.dev), API documentation à la
Javadoc (api.flix.dev), an online playground (play.flix.dev),
and a fully-featured Visual Studio Code extension.

Flix comes with an extensive standard library that includes
common functional data structures such as Option, Result,
List, Set, andMap. The library also includes common type
classes, such as Eq, Order, Functors,Monads, Foldables, and
their standard instances. The Flix library spans more than
30,000 lines of code and offers more than 2,600 functions.
Flix also has a Java FFI making it possible to reuse large parts
of the Java Class Library.
Flix is ready for use, open source, and freely available at:

https://flix.dev/ and https://github.com/flix/flix/

2.4 A Brief History of Flix
Flix started as a functional and logic programming language,
essentially a Datalog dialect enriched with lattice seman-
tics [36, 40, 41]. Rather quickly, Flix turned into a full-blown
functional programming language, and Flix swallowed the
logic programming language by allowingDatalog constraints
as first-class values [37]. Next, a polymorphic type and effect
system, based on Boolean unification, was added to separate
pure and impure code [38]. Around the same time, higher-
kinded types and type classes were added to the language.
Recently, the effect system has been extended with regions
allowing a new style of functional imperative programming.
Today, six years later, development on Flix is fast-paced.

We recently passed 4,000 issues and pull requests on GitHub.
The Flix compiler project spans more than 190,000 lines of
code with contributions from more than 50 developers.

114

flix.dev
doc.flix.dev
api.flix.dev
play.flix.dev
https://flix.dev/
https://github.com/flix/flix/

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

3 The Flix Values
We anchor the Flix design principles in a collection of values.
Each value is a quality or trait we, as language designers,
find valuable and want Flix to have.

We now discuss the most important Flix design values:

Value 1 (Simple is Not Easy). Flix adopts Rich Hickey’s
maxim: “simple is not easy” [51]. That is, we prefer design
choices that get things right over ones that make things
easy.

Rationale. Rich Hickey’s maxim is really about necessary
complexity: whether to hide it (and hope for the best) or
whether to surface it (and force the user to deal with it).
What Hickey expresses, which we agree with, is that it is
fundamentally necessary to deal with inherent complexity.
For example, many programming languages have a null value.
If null is a member of every type then it is easy to represent
absent or uninitialized values, but it also makes it incredi-
ble difficult, i.e., not simple, to understand when a value is
guaranteed to be non-null.

Value 2 (Principle of Least Surprise). Flix should use safe
and predictable defaults. When no reasonable default is
apparent, there should not be a default; instead the pro-
grammer should make an explicit choice.

Rationale. This value, which we can describe as “explicit
is better than implicit”, says that a programming language
should never surprise the programmer. We give two counter-
examples: First, JavaScript supports implicit coercions that
silently convert one type into another following a complex
collection of rules. Programmers often struggle to under-
stand these rules leading to many bugs. Second, in Java ev-
ery class implicitly implements the equals and hashCode
methods even though not all objects may have a meaningful
equality relation (e.g. objects that represent closures).

Value 3 (Functional-First). Flix is a functional, imperative,
and logic programming language. But, Flix is foremost
a functional language, and if there is a conflict between
these paradigms, then it should be resolved in favor of the
functional aspects of the language.

Rationale. There is an inherent tension between functional–
and imperative programming. The value states that when
a trade-off is made, it should never be at the expense of
the functional language. For example, we have already seen
that Flix uses its type and effect system to separate pure
and impure code. Thus a functional programmer does not
lose the benefits of equational reasoning when writing pure
code.

Value 4 (One Language). Flix is one programming language.
Flix does not have feature flags, compiler plugins, or any
other means of changing the language.

Rationale. We want to avoid fragmentation of the nascent
Flix ecosystem.We do not want programswritten in different
dialects of Flix. There should be one Flix language. This is
about control; we should always have a clear mental model
of what is and what is not in the language.

Value 5 (Productivity Over Performance). Flix values
developer productivity over runtime performance. If there
is trade-off between development speed and runtime per-
formance, then it should resolved in favor of development
speed.

Rationale. Flix aims to support developer productivity; the
ability to get a lot done with little ceremony and boilerplate.
The fundamental value is that development time is a more
expensive resource than hardware. A carefully crafted C
program might run faster than a Flix program by default, but
it will not be as short, concise, or quick to write as the Flix
program. Flix aims to be a language with powerful constructs
and high-level abstractions. In Flix, programmers should be
able to write programs quickly, even if it may come at the cost
of performance. For example, functional data structures are
simpler to reason about than their imperative counterparts
but are often a logarithmic factor slower. A programmer
can still write blazingly fast Flix code (and the compiler still
optimizes code), but programmers should not be forced to
deal with performance aspects unless they choose to.

Value 6 (Correctness Over Performance). Flix values
program correctness over performance. If there is a trade-
off between correctness and performance, then it should be
resolved in favor of correctness.

Rationale. Low-level programming languages like C and
C++ often rely on undefined behavior to achieve stellar per-
formance. In contrast, higher-level languages like Haskell,
Java, and JavaScript try to avoid undefined behavior. Both
Java and Flix benefit from being hosted on the Java Virtual
Machine (JVM) which ensures memory safety. For example,
the JVM performs dynamic checks to ensure that every array
access is within bounds and safely aborts the execution if
an access is out-of-bounds. However, Flix goes further. For
example, Flix supports full tail call elimination3 to ensure
that tail calls never overflow the stack. Since the JVM lacks
native tail calls, Flix must emulate tail calls using trampo-
lines. This is an example where Flix trades performance for
correctness: A Flix programmer can safely write programs
using tail calls without worrying of the program crashing,
but it comes at a (small) price.

3Note that full tail call elimination [42, 53] is more powerful than simple
tail recursion optimization. In Flix, any call that is in tail position is guar-
anteed not to increase the stack height. Thus, a program in CPS can be
evaluated without blowing the stack, which is not necessarily the case in
other functional programming languages on the JVM (e.g. Scala).

115

The Principles of the Flix Programming Language Onward! ’22, December 8–10, 2022, Auckland, New Zealand

4 The Flix Principles
We now discuss the Flix design principles. A principle, unlike
a value, is a particular property of a programming language
design that is actionable and decidable, i.e., we should be
able to enforce it, and we should be able to assess whether a
language satisfies a specific principle.

4.1 Syntax Principles

Principle 1 (Syntax vs. Semantics). Syntax and semantics
are essential, but the two should not be confused.

Rationale. The essence of this principle is to avoid confu-
sion between syntactic and semantic issues: a syntactic issue
should not be solved with enrichment of semantics. We give
two counter-examples: extension methods [59] and implicit
classes [52]. Both techniques allow programmers to enrich
classes with new methods. For example, the String class
does not have a center method, but programmers can use
extension methods (or implicit classes) to add such a method
retroactively. Thus programmers can then write s.center(),
as if center was a method on String. The problem is that
extension methods and implicit classes come with a lot of
semantic baggage. For example, in Scala 2.x, using an im-
plicit class has the downside that, in certain circumstances,
the compiler cannot eliminate the construction of the im-
plicit object. Thus the ability to write s.center() instead of
center(s) may incur an unexpected performance penalty. In
summary, the purpose of this principle is to encourage a
strong separation between syntactic issues (which may be
solved by syntactic sugar) and semantic issues (which may
be solved by language extensions).

Discussion. As a functional language, Flix does not have
traditional for- or while-loops. However, we recently added
syntactic sugar for two kinds of “for-loops”; one is a foreach-
loop that is syntactic sugar for using an Iterable, and the
other is a monadic-do that is syntactic sugar for using the
map and flatMap functions. Importantly these additions are
purely syntactic and do not modify the semantics of Flix.

Principle 2 (Expression-based Syntax). Flix is primarily
a functional language and embraces the idea that every
construct should be an expression.

Rationale. The idea is that every programming construct
should reduce to a value that can be used for further compu-
tation. For example, Flix has no local variable declarations
or if-then-else statements, instead it has let-bindings and
if-then-else expressions.

Discussion. Flix does not take this idea as far as the Scheme
languages where every construct is an expression. Flix still
has namespaces declarations and type declarations, neither
of which are expressions. Flix also has statement expressions:
e1; e2 for working with expressions that are executed purely
for their side-effects.

Principle 3 (Keyword-based Syntax). The Flix syntax is
based on keywords. A keyword should be short, ideally
three letters, and visually help the programmer understand
the structure of a program.

Rationale. We make the following observations:
• We conjecture that keywords help programmers read
and understand the structure of code better than just
symbols and punctuation.

• Keywords enable basic syntax highlighting in most
IDEs and editors.

• The length of a keyword is essential to ensure a pleas-
ing visual alignment. Flix uses 4-space indentation,
which works well with three-letter keywords since
three letters and a space aligns with 4-spaces.

Discussion. Early versions of Flix used !, &&, and || as the
syntax for the standard Boolean operators. Inspired by this
principle, these operators were changed to the keywords:
not, and, and or. This design choice was supported by two
additional observations: First, a single ! symbol is easy to
overlook while scanning through or reading source code.
Second, unlike all other operators, the semantics of and and
or short-circuit. We felt that turning these operators into
keywords would also help highlight this aspect.

Hypothesis. We propose the hypothesis that keywords help
programmers understand the structure of their code better
than symbols and punctuation.

Principle 4 (Mirrored Term and Type Syntax). Flix
should have consistent term and type-level syntax.

Rationale. A Flix programmer should not have to learn and
remember two different syntaxes for every construct. Instead,
the syntax of an expression and the syntax of its correspond-
ing type should be similar. For example:

• A function application is written as f(a, b, c)whereas
a type application is written as f[a, b, c].

• A function expression is written as x -> x + 1 whereas
a function type is written as Int32 -> Int32.

• A tuple expression is written as (true, 12345) whereas
a tuple type is written as (Bool, Int32).

• A record expression is written as { x = 123 } whereas
a record type is written as { x = Int32 }.

• ADatalog expression is written as #{ A(123). }whereas
a Datalog type is written as #{ A(Int32) }.

Discussion. While revisiting this principle, we discovered
that the syntax for records and record types was inconsistent.
Without any particular reason, we had adopted the syntax
{ x :: Int32 } for records types. This has now been corrected.

Flix has infix function applications which allow a function
call sum(x, y) to be written as x ‘sum‘ y. We experimented
with allowing the same for types, i.e., Map[k, v] could be
written as k ‘Map‘ v, but ultimately we found this too strange
and unfamiliar, and it was removed.

116

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

4.2 Static Semantic Principles

Principle 5 (Separate Pure and ImpureCode). Flix should
separate pure and impure code. A programmer should know
when a function behaves as a mathematical function, i.e.,
returns the same output when given the same input(s) with-
out causing any side effects.

Rationale. An essential property of functional programming
is equational reasoning, i.e., the ability to reason about func-
tions based solely on their inputs. However, in a hybrid
programming language with side effects, such reasoning is
often lost. This principle, a cornerstone of the Flix language,
states that it should be possible to write functional code in
Flix and know that it supports equation reasoning.
Flix uses a powerful type and effect system to precisely

track the purity or impurity of every expression [38]. The
effect system enables programmers to enforce purity and to
know when a function behaves as a mathematical function.

Principle 6 (Separate Pure and Impure Data). Flix should
separate pure and impure data; i.e., data that is immutable
from data that is mutable.

Rationale. This principle, which is related to the previous,
states that all data should be divided into two categories:
immutable and mutable. Immutable data is unchanging and
functions that only operate immutable data, and which do
not access the outside world, are guaranteed to be pure.
Moreover, immutable data can freely be sent between threads,
whereas mutable data must never be shared to prevent data
races and race conditions. In Flix, all mutable data belongs to
a region and cannot escape the lifetime of the region. When
the region goes out of scope, any effects associated with the
region also vanish. Thus, pure functions can be implemented
using local mutable data, as shown in Section 2.

Principle 7 (Complete Local Type Inference). Flix should
be able to infer all types and effects within a function while
only requiring type signatures for top-level declarations.

Rationale. We believe that the rise of untyped programming
languages, such as Python and JavaScript, demonstrates that
type inference is essential for statically typed programming
languages to become successful. Consequently, Flix aims to
support local, but infallible, type inference.
In Flix, all top-level functions must have type signatures,

but within a function no type annotations are ever required;
not for nested functions nor for lambdas. This has three
distinct advantages:

• Type signatures are useful as documentation.
• Type signatures accurately assign blame.
• Type signatures enable parallel type inference.

Discussion. Broadly speaking, there are two classes of type
systems that support type inference: bi-directional type sys-
tems [15, 50] and Hindley-Milner-style systems [9, 22, 46, 60].

A bi-directional type system supports type inference but may
require annotations on function arguments (or risk incom-
pleteness). In contrast, a Hindley-Milner-style type system
has complete type inference but is typically less expressive
than a bi-directional system. The Flix type and effect system
is based on Hindley-Milner and the papers that describe it all
use Hindley-Milner as the formal framework [38, 39]. This is
reasonable since Hindley-Milner guarantees completeness of
type inference. However, Flix does not fully take advantage
of Hindley-Milner because of the requirement that top-level
declarations must have type signatures. In our experience,
this design is very effective: Programmers write top-level
signatures, as they would also do in Kotlin, Java, Scala, and
many other programming languages, but within a function,
type inference is infallible and cannot give spurious type
errors like in the aforementioned languages.

Principle 8 (Whole-Program Compilation). Flix requires
all code to be available at compile-time.

Rationale. The requirement that the compiler must have
access to the entire source code has several advantages, it:

• Enables monomorphization which increases inlining
opportunities and avoids the need to box primitives.

• Enables aggressive dead code elimination and tree
shaking which significantly reduces code size.

• Enables cross namespace/module optimizations.
• Ensures global uniqueness of type class instances [5].

In the past, requiring access to the entire source code of a
program may been impractical. Today, many programming
languages, including JavaScript, Python, PHP, and Rust have
ecosystems where packages include the entire source code.

Principle 9 (Single Entry Point). A Flix program has a
single entry point and no code is executed before it.

Rationale. Dijkstra, in his “Notes on Structured Program-
ming”, proposed that procedures should only have a single
entry- and single exit point [13]. In a similar spirit, this prin-
ciple states that an entire Flix program should have one entry
point: main. The rationale is simple: to enable programmers
to understand and control the execution flow from start to
finish. Today, this is not the case in many programming
languages. For example, in many scripting languages, like
JavaScript and Python, a program is just a script, and it may
be challenging to identify where the main entry point is.
Even in C# and Java, which have a designated main method,
it is not the first thing to be executed. For example, in Java,
static initializers, of all loaded classes, are executed before
entering main. Worse, such initializers are allowed to have
arbitrary side-effects. The existence of class loaders and over-
reliance on reflection only exacerbates this problem. Thus,
Flix enforces that main is the single entry-point and that it
is the first and only thing executed.

117

The Principles of the Flix Programming Language Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Principle 10 (Minimize Declarations). Flix should require
as few declarations as possible.

Rationale. Flix is statically typed but wants to emulate the
flexibility and ease of use of dynamically typed languages.
We believe one way to achieve that is by using structural
typing combined with complete type inference. Flix uses
structural types for tuples and extensible records [31], but
also for first-class Datalog values [37].

Discussion. Early versions of Flix also supported first-class
Datalog programs but required every predicate symbol and
the types of its terms to be explicitly and globally declared.
This design was inflexible and verbose, but fortunately, we
were able to switch to a structurally typed system later.

Principle 11 (Private by Default). In Flix, declarations
are private by default and cannot be accessed from outside
their namespace. A declaration must be explicitly marked
as public to be visible to the outside world.

Rationale. Flix embraces the principle of least privilege. We
believe that programmers must make a conscious choice
before a program construct is made publicly available, and
other programmers start depending on it.

Principle 12 (Timeless Design). The Flix compiler and
standard library should not add support for a technology
before it has matured and established its permanency.

Rationale. If Flix had been designed two decades ago, adding
language support for HTML and XML would have been
tempting. If Flix had been designed one decade ago, adding
language support for JSON would have been tempting. If Flix
had been designed five years ago, adding language support
for YAML would have been tempting. We are not saying
these technologies are necessarily dated or bad, but just ob-
serving that their popularity waxes and wanes. Today, most
programmers would probably be surprised and dissatisfied if
one designed a new programming language with comments
expressed in XML. This principle exists to ensure that the
Flix language and standard library remain timeless.

4.3 Correctness and Safety Principles

Principle 13 (No Warnings, Only Errors). Flix should
never emit warnings; only errors that abort compilation.

Rationale. Warnings occupy a gray zone where software
developers may not fully understand whether they are harm-
less and can be safely ignored or if they are dangerous and
should be fixed. Worse, software companies and developers
may have different standards; some may ignore all warnings,
while others may turn all warnings into hard errors. We
believe that it is the responsibility of the language designer
to determine if something is harmful and should be banned;
or if something is safe and should be permitted.

Principle 14 (No Global State). Flix has no global shared
state; there are no global constants or static fields. The only
global state is the external environment, i.e., the operating
system, the file system, and so on.

Rationale. Global state is the source of a plethora of issues,
including its anti-modular nature, issues with initialization,
and the threat of data races or race conditions in a multi-
threaded environment. A Flix programmer can still emulate
global state; he or she can create mutable memory in main
and pass it around, but must do so explicitly.

Discussion. Global state is, as the principle states, impossible
to avoid: the outside world is stateful. The operating system,
file system, network, remote services, and so forth are all
stateful. But, Flix programmers and the Flix compiler can
use the type and effect system to know when a computation
depends on the external environment, i.e., is impure.

Principle 15 (Share Memory by Communicating). Flix
follows the Go mantra: “Do not communicate by sharing
memory; instead, share memory by communicating” [2].
In other words: communicate using immutable messages,
not by sharing mutable memory.

Rationale. The Flix concurrency model is based on channels
and light-weight processes [23]. As discussed earlier, Flix
separates immutable and mutable data and uses the type and
effect system to enforce that only immutable values can be
sent over channels, i.e., between processes. This approach,
although heavy-handed, ensures the absence of data races,
except on channels and through interoperability with Java.
In the future, it may be possible to reduce this requirement by
exploiting regions to ensure that mutable memory is never
accessed by more than one thread.

Principle 16 (Concurrency vs. Parallism). Flix should
support both concurrency and parallelism but not confuse
the two. In particular, it should be possible to write parallel
programs without the inherent dangers of concurrency.

Rationale. Roughly speaking, concurrency is the ability for
two or more tasks to start, run, and complete in overlap-
ping time-periods, whereas parallelism is the ability for two
or more tasks to execute simultaneously. Concurrency can
lead to dangers due to unexpected thread interleavings (e.g.
race conditions) which can be prevented with proper us-
age of locks, but these can lead to deadlocks. This principle
captures that Flix should support (safe) parallelism allow-
ing programmers to execute two or more independent tasks
simultaneously.

Discussion. Flix supports safe parallelism via two constructs:
par– and par-yield-expressions. The par (exp1, exp2, exp3)

expression evaluates exp1, exp2, and exp3 in parallel to three
values 𝑣1, 𝑣2, and 𝑣3, and returns the tuple (𝑣1, 𝑣2, 𝑣3). The Flix
type and effect system enforces that the expressions must be
pure, hence they can be evaluated completely independently.

118

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

The par-yield construct is similar, but allows the program-
mer to bind the results to variables:

par (x <- exp1 , y <- exp2 , z <- exp3)

yield x + y + z

Here the expressions exp1, exp2, and exp3 are evaluated in
parallel, their results bound to the variables 𝑥 , 𝑦, and 𝑧, and
then the body expression is evaluated.

Principle 17 (Bugs are Not Recoverable). Flix follows the
Midori Error Model [14] which states that there are two
types of errors: (a) recoverable errors, and (b) program bugs.
Recoverable errors are things like illegal user input, network
errors, etc. Errors that can be anticipated and where there
is a chance of recovery. Program bugs, on the other hand,
are always unexpected and cannot be recovered.

Rationale. Inspired by both the Midori Error Model and the
Rust standard library, the Flix standard library goes to great
lengths to model every fallible operation as returning a value
of the Result data type, i.e., either Ok(v) or Err(v). Thus the
programmer is forced to consider the possibility of failure.
For example, the File.readLines function has the return type
Result[List[String], IOError] which forces the programmer
to handle both the happy path and the error path.

Discussion. Flix has been designed to minimize the way a
program can go wrong. For example, Flix defines division
by zero as returning zero [11]. Nevertheless, there are a few
ways a Flix program can crash:

• by running out of resources, e.g., stack or heap space.
• by indexing an array with an out-of-bounds index.
• by calling Java code that crashes.

For completeness, we also mention that a Flix program can
deadlock by waiting forever on a channel, e.g., waiting for a
message to arrive or to be sent.

Principle 18 (No Useless Expressions). Flix rejects pro-
grams that contain expressions that have no effect.

Rationale. Redundant or dead code is a code smell and is
correlated with program bugs [61]. Flix uses its powerful
type and effect system to reject such useless expressions. For
example, in the expression statement: e1; e2, Flix requires
that e1 must have a side-effect, i.e., if e1 is pure then the
program is rejected. Moreover, e1 must also have the Unit
type. If not, the programmer must insert an explicit discard
expression to inform the compiler that it is okay to throw
away the non-Unit value of e1.
We believe such simple checks may help programmers

avoid trivial mistakes. For example, a programmer might
write: checkPermission(...); sensitiveOperation(...) expect-
ing that the call to checkPermission will ensure that we
do not call sensitiveOperation unless we have permission.
But it is possible that checkPermission returns a Bool that
the programmer is supposed to inspect. Flix helps catch and
prevent such mistakes.

Principle 19 (No Unused Variables). Flix rejects programs
with unused local variables, whether they are introduced by
let-bindings, pattern matching, or as the formal parameters
of a function.

Rationale. While unused local variables are common during
the programming process, their existence in finished code
is a code smell. Moreover, research has shown that minor
mistakes are a common source of bugs, e.g., using the wrong
local variable. Disallowing unused local variables helps avoid
such mistakes [26, 61].

Discussion. As a practical convenience, Flix allows any vari-
able to be prefixed by an underscore to mark it as unused.
This removes the variable from its scope and allows the
program to compile and run.

Principle 20 (No Variable Shadowing). Flix rejects pro-
grams with variable shadowing.

Rationale. The rationale is the same as for unused variables;
local variable shadowing is a common source of bugs.

Principle 21 (No Unused Declarations). Flix rejects pro-
grams with unused declarations.

Rationale. While unused declarations are less likely to be a
source of bugs, they are nevertheless a code smell. By reject-
ing programs that contain unused declarations (functions,
types, type aliases, etcetera), Flix ensures that all source code
is actively in use.

Principle 22 (No Implicit Coercions). Flix never coerces a
value of one type into a value of another type.

Rationale. Programming languages with implicit type coer-
cions allow programmers to provide values of one typewhere
values of another type are expected. The compiler or run-
time automatically inserts code that re-interprets one value
as another, often according to a sophisticated set of rules.
For example, integer values may be promoted or truncated.
Likewise, strings may be coerced to integers and vice versa.
In some languages, all values may be coerced to Booleans.
Unfortunately, such implicit coercions are brittle and error-
prone. In some cases, information may be lost (e.g., when an
integer is truncated), and in other cases, coercions may lead
to unexpected results. JavaScript is notorious for its byzan-
tine coercion rules and developers often use non-coercive
operators to avoid such pitfalls. For these reasons, Flix never
performs any coercions, not even information preserving
promotions. Instead, programmers must manually and ex-
plicitly convert between types.

Discussion. While the Flix language does not support implicit
coercions, a form of structured and predictable “implicit
coercions” has snuck in using the backdoor. We might expect
the println function to have the signature:

def println(s: String): Unit

but in the Flix standard library it actually has the signature:

119

The Principles of the Flix Programming Language Onward! ’22, December 8–10, 2022, Auckland, New Zealand

def println(x: t): Unit with ToString[t]

which means that println can be called with any value of
type t as long as t implements the ToString type class. This
effectively works as an implicit coercion, except that:

• it is a very specific type of coercion,
• it is implemented using the type class system,
• it is clear from the signature of println that it makes
use of this form of coercion, and finally

• the coercion rules are defined by the programmer as
instances of the ToString type class.

Principle 23 (Declaration Monotonicity). Adding a new
declaration to a program should neither change its original
semantics nor render it illegal.

Rationale. It should always be safe to extend a program by
adding new declarations. For example, adding a new function
to a program should not make the original program behave
differently nor should it prevent the program from compiling.
(Of course, not every addition is safe; re-declaring the same
function has to be a compile-time error.)

Discussion. This principle is the reason why Flix does not
support wildcard imports. Imagine that we wrote:

use Foo.*

use Bar.*

qux()

where the namespace Foo contains the qux function. Now,
if we extend the namespace Bar with a qux function then
suddenly the use of qux becomes ambiguous. Worse, this
ambiguity may occur in an entirely different file from where
the namespace Bar is declared.

Principle 24 (No Null). Flix does not support the null value.

Rationale. Null — infamously dubbed the Billion Dollar Mis-
take by its inventor Sir Tony Hoare — is a special value that
is an inhabitant of (reference) every type [25]. Today, the null
value is widely considered a design mistake and languages
such as C#, Dart, Kotlin and Scala are scrambling to adopt
nullable type systems [16, 47, 48].
Flix, like other functional programming languages, does

not have a null value, but instead relies on the Option data
type to explicitly represents values that may be absent. This
solution is simple to understand, works well, and guarantees
the absence of the dreaded NullPointerExceptions.

Discussion. Unfortunately, this is not the entire story since
Flix still needs interoperability with Java. We require that
programmers explicitly check for null at the boundary be-
tween Flix and Java code. Sometimes it can be necessary to
call into Java code with a null value. To support this, Flix
does have a special null value of type Null, which is incom-
patible with any other type. Thus, to use the null value, the
programmer must explicitly cast it to the desired type.

Principle 25 (No Unprincipled Overloading). Flix does
not support function overloading, i.e., the ability to define
multiple functions that share the same name but have
different signatures.

Rationale. In programming languages like C++, C#, and
Java, programmers can define multiple functions with the
same name, as long as they take a different number of ar-
guments and/or arguments of a different type. The rela-
tion between the overloaded functions in these languages is
up to the programmer. Flix does not support such “unprin-
cipled” overloading. Instead, Flix encourages using mean-
ingful names for functions that share similar functionality.
For example, List.join and List.joinWith, or Map.filter and
Map.filterWithKey.
Flix does support principled overloading via type classes.

For example, the Eq type class defines a signature eq (i.e., ==)
which can be implemented by types that support equality.
We say such overloading is principled because each type class
lays out requirements for the overload (e.g., equality must
be reflexive, symmetric, and transitive), and each type class
can only be implemented once per type.

4.4 Compiler Messages

Principle 26 (The 80/20 Rule). A compiler message must
serve the programmer in two situations:
• as a minimally invasive hint to the programmer when
he or she has made a small mistake, and

• as an explanatory message with lots of contextual infor-
mation when the “hint” is insufficient for the program-
mer to understand what is wrong.

Rationale. We call this the 80/20 rule because that 80% of the
time, a software developer will have seen a specific compiler
message before and require minimal information to under-
stand and fix the underlying issue. But, 20% of the time, a
software developer will encounter a compiler message he or
she has not seen before and will require more information
to understand and fix the problem.

For example, themessage “Expected Int32, but found String”
may contain enough information for the programmer to un-
derstand and fix the issue. On the other hand, the message
“Unable to generalize a -> a to a -> b” may require more in-
formation for the programmer to understand what is wrong,
if he or she has not seen that message before. Flix tries to
achieve this with a message structure where the first sen-
tence gets to the root of the issue and rest of the message
provides more detail. Moreover, Flix has an –explain flag
which can be used to obtain even more information.

Principle 27 (Compiler Message Structure). A compiler
message should have three distinct parts:

• Summary: A one sentence summary.

120

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

• Message: A multi-line text that contains all relevant
details, including the program symbol(s) and fragment(s)
relevant for the message.

• Explanation: A description of why the problem occurs
and what can be done to fix it.

Rationale. Today’s compilers do not exist in isolation but are
always part of a broader ecosystem. Compiler messages are
not only consumed from the command line but also from
integrated development environments (IDEs) and continu-
ous integration (CI) pipelines. A compiler message must be
usable in all three environments. A single-sentence summary
is essential in IDEs and CIs to overview all the current mes-
sages. A full-length message is necessary to understand the
details of the identified problem. Finally, a long-form and
detailed explanation may be helpful for when a programmer
encounters a specific error for the first time.

Principle 28 (Straight to the Point). A compiler message
should be quick to scan. Ideally, the first sentence or even
the first word should contain the essence of the message.

Rationale. A programmer must be able to quickly scan a
compiler message. For example, a message like: “Duplicate
definition: ’foo’” is better than the message: “The definition
’foo’ is defined twice” because the programmer has to read
fewer words before he or she sees the word “duplicate” which
may be sufficient to understand the problem.

Discussion. Before we adopted this principle, Flix compiler
messages tended to be wordy and academic. For example, a
messagemight read “The type class ’foo’ contains a duplicate
definition of the signature ’bar’”.While such a sentence reads
nicely, it is too long. It is better to simply state the root cause:
“’bar’ is defined twice”.

Principle 29 (Style and Tone). A compiler message should
be crisp, clear, and concise. In addition, the language should
be friendly or at least neutral. Specifically, an error message
should not blame the programmer.

Rationale. A compiler should work as an assistant, not as
an adversary [3, 8]. Blaming the programmer for mistakes is
counter-productive. For example, the sentence “Unexpected
foo” is better than “Illegal foo” because it communicates the
same informationwithout scolding the programmer. The Elm
programming language goes further and tries to humanize
the compiler [7]. For example, it will report, “I see Foo but
was expecting to see Bar”.

Discussion. Early Flix compiler messages were direct and
blamed the programmer; they were a product of the way
compiler-writers think: “illegal this” and “invalid that”. It
took a while, and the process is still ongoing, for our view
to change in three significant ways:

• to ensure that compiler messages are friendly,
• to explain a problem from a programmer’s point of
view and not from the compiler’s point of view, and

• to have the compiler retell the information it has and
why it is problematic.

Principle 30 (Split Compiler Messages). When possible, a
compiler message should be broken down into several more
specific compiler messages.

Rationale. The idea is that instead of having a few generic
error messages that cover all cases, we should subdivide
errors into as specific messages as possible.

Discussion. Before this principle, Flix had only three type
error messages:MismatchedTypes, GeneralizationError, and
MissingInstance. We noticed that these three error messages
can be split into more specific and detailed ones. For example,

• MismatchedTypes now has two sub-cases: OverAp-
plied and UnderApplied for when a function is called
with too many or too few arguments.

• GeneralizationError now has two sub-cases: Impure-
DeclaredAsPure (an impure function is declared as
pure) and EffectPolymorphicDeclaredAsPure (an ef-
fect polymorphic function is declared as pure).

• MissingInstance now has several sub-cases, includ-
ing MissingEq, MissingOrder, and MissingToString.
For example, the MissingToString message hints that
a ToString instance can be automatically derived by
adding with ToString to the type declaration.

Hypothesis. Giving specific type errors is more useful to
programmers than giving general type errors.

Principle 31 (Relate to Other Languages). A compiler
message, when relevant, should explain how Flix relates to
and differs from other programming languages.

Rationale. Programmers learning Flix will likely be famil-
iar with other programming languages. Therefore, it seems
helpful to build on this knowledge by relating features and
compiler errors to other widely used languages. For example,
a compiler message can explain how the Flix type class sys-
tem differs from that of Haskell or Rust. As another example,
an error message related to purity or impurity can teach the
programmer how the Flix effect system works.

Discussion. We think it is a missed opportunity that every
programming language pretends no other languages exist!
We should build on and reuse the knowledge a programmer
may already have.

Hypothesis. We hypothesize that compiler messages that
relate concepts, constructs, and errors to other programming
languages are an effective communication form.

4.5 Standard Library

Principle 32 (Minimal Prelude). The Flix prelude should
be kept minimal and only include common functionality.

121

The Principles of the Flix Programming Language Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Rationale. The Flix Prelude contains common data types
and functions that are implicitly imported into the scope
of every Flix file. As the Flix standard library grows, there
has been a tendency for the Prelude to expand, becoming a
hodgepodge of functionality. This principle aims to arrest
that trend and avoid a situation like in Haskell where the
Prelude is notorious for being bloated and including unsafe
functions, which has led to multiple efforts to design a new
and safer prelude [12, 45].

Principle 33 (Layered Abstractions). Flix and the Flix
standard library should be useable without understanding
all of its features and abstractions.

Rationale. Flix has a rich collection of functional abstractions,
but a programmer should be able to gradually learn them.
We envision several “levels” of programming:

• Basic – At the basic level, a Flix programmer writes
code that uses algebraic data types, pattern matching,
and recursion. A programmer may also use mutable
data structures for a more imperative style of program-
ming. In both cases, basic knowledge of the type and
effect system is required4.

• Intermediate – At the intermediate level, a Flix pro-
grammer writes code that relies more on the standard
library. The Option, List, Set, andMap data structures
are readily used. At this level, knowledge of higher-
order functions and parametric polymorphism is re-
quired. Knowledge of basic type classes like Eq, Order,
and ToString is also required5.

• Advanced – At the advanced level, a Flix programmer
can use the entire standard library, including power-
ful functional abstractions such as Functors, Applica-
tives, Monads, Monoids, and Foldables. Knowledge
of higher-kinded types, type classes, and functional
abstractions is required.

What is important is that Flix “duplicates” functionality
to support the intermediate level. For example, Flix has both
List.map and Functor.map. Since List is a Functor there is
no reason to have List.map. However, by having List.map
programmers do not have to know about Functor and equally
important the signature of List.map is simpler and leads to
better error messages. As another example, Flix has List.sum
which simply computes the sum of a List[Int32]. But Flix
also has List.fold which reduces a list of List[a] to a single
a provided there is aMonoid instance of a. Thus, List.fold
could also be used to compute the sum, but a Flix programmer
is not required to know about that before they are ready.

4It is possible, if inelegant, to write Flix in a programming style where
every function is marked as Impure. This reduces Flix to an OCaml-like or
Standard ML-like language where side-effects are permitted everywhere.
5The Eq and Order type classes are required for Sets and Maps whereas
the ToString type class is used for printing. Helpfully to the intermediate
programmer, Flix supports automatic derivation of these type classes.

Principle 34 (NoDangerous Functions). The Flix standard
library should not include dangerous functions nor func-
tions that encourage dangerous programming patterns.

Rationale. We consider a function dangerous if it may lead
to a crash. Infamously, the Haskell Prelude contains many
functions that are dangerous due to their partiality, e.g. head,
tail, and ‼. These “functions” are not defined for all inputs
and may raise exceptions at runtime, e.g. when taking the
head of an empty list. Today, their inclusion in the standard
library is widely considered as mistake. In Flix, our goal is
that all functions in the standard library should be total. Thus
functions such as head and tail return Options. As of today,
the Flix standard library has 2,600 functions of which less
than ten are partial.
But Flix goes further: The standard library tries to avoid

functions that encourage dangerous programming patterns.
For example, Flix used to have the functions: Option.isNone
and Option.isSome, but such functions could mislead de-
velopers into writing code like if (isSome(o)) /*unpack o */)

which would potentially be dangerous.

Principle 35 (Subject-Last). Every function in the Flix stan-
dard library must accept its subject, i.e., the argument it
“acts on”, as its last argument.

Rationale. The idea is to ensure a uniform standard library
and to enable programmers to write pipelines. For example:

l |> List.map(x -> x + 123)

|> List.filter(x -> x < 100)

|> List.take (5)

The pipeline uses the |> operator which is really just infix
function application. More importantly, the pipeline pattern
works because of partial application and because the map,
filter, and take functions are subject-last. In particular, the
signature of List.map is:

def map(f: a -> b, l: List[a]): List[b]

where it is important that the list is the last argument.
In object-oriented programming, the this parameter is

(often implicitly) passed as the first argument to a method.
This principle expresses a similar sentiment but puts the
“this” last in the list of arguments. Of all the Flix standard
library principles, this principle has been one of the most
influential and impactful since it touches on every function
signature and requires us to identify its subject.

Discussion. Sometimes it can be hard to identify the subject
of a function. For example, which argument to List.append
is the subject? Or which argument to List.zip is the subject?
Perhaps, for this reason, it is uncommon for pipelines to use
these functions.

Principle 36 (Non-Commutative Functions). A non-
commutative function that accepts multiple arguments
of the same type should use records to explicitly force the
programmer to distinguish between the arguments.

122

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

Rationale. When a function takes two arguments of the
same type there is potential for confusion: which argument is
which? For example, in the call String.contains(s1, s2)which
argument is the haystack and which is the needle? Mistak-
enly swapping the two arguments looks innocuous and type
checks but is incorrect. Many programming languages at-
tempt to overcome the confusion with labelled arguments.
But labelled arguments, in their typical implementation, has
at least two downsides:

• they are optional; hence programmers may forget to
use them, and

• they are typically not part of the type system, hence
they do not work with first-class functions.

Flix overcomes both problems by using records to implement
labelled arguments. If a function requires a record argument,
it becomes part of its type, and every call site must pass a
record, making it explicit which arguments are which.

Discussion. We could give String.contains the signature:
def contains(args: {needle = String ,

haystack = String }): Bool =

which can be called as:
contains ({ needle = "a", haystack = "abc"})

Unfortunately, this signature does not work with pipelines:
"Hello" :: "Bonjour" :: "Guten Tag" :: Nil

|> List.map(String.toLowerCase)

|> List.map(String.contains(needle = "Hola"))

|> println

because the call to String.contains expects a record with two
fields: needle and haystack and cannot be partially applied
to a record with only one field. This situation is unacceptable
because it breaks support for pipelines. However, perhaps
surprisingly, there is a good solution: We require every ar-
gument except the last (i.e., the subject) to be a record. The
updated signature of String.contains is:

def contains(needle: { needle = String },

haystack: String): Bool =

The contains function now takes a singleton record as its
first argument and a regular string as its second argument.
The two arguments cannot be confused because a record and
a string are not the same type. We call the new contains as:

contains ({ needle = "a"}, "abc")

which, using syntactic sugar, can be shortened to:
contains(needle = "a", "abc")

We have achieved three objectives:
• We cannot mistakenly swap the arguments to contains
because one of them must be a record.

• At every call site, we can immediately identify which
string is the needle and which is the haystack because
the former is always explicitly named.

• We have retained the ability to use pipelines.

We have applied this principle to the Flix standard library.
In total 66 functions out of 2,600 functions use this principle.
Note that the principle only applies to non-commutative
functions, e.g. it does not apply to Set.union because the
order of its arguments is immaterial.

Limitations. An important question that arose during the
refactoring of the library was whether to apply this principle
indiscriminately. For example, Flix has a function List.append,
which is not commutative. Nevertheless, it seems intuitive
that the “left” argument is appended to the “right” argument.
Similarly, for List.zip. Consequently, we decided to apply
the principle on a case-by-case basis to the standard library.

Principle 37 (Symbolic Operators Must Have Names).
Flix supports symbolic operators, i.e., defining functions
with names such as +, ++, |+|, and so forth, but requires
that every symbolic function should also be given a “pro-
nounceable” ASCII name, e.g. “plus”, “append”, and so on.

Rationale. Flix tries to strike a balance between conciseness
and understandability. Expert programmers can define and
use symbolic operators when it makes their source code com-
pact and easy to understand (from an expert point-of-view).
However, at the same time, they must also provide human-
readable names accessible to non-expert programmers.
To give two examples, the List.append function can be

referred to as :::, and the SemiGroup.combine function can
be referred to as ++.

Principle 38 (Destructive Operations are Marked). In
Flix, every destructive operation is suffixed with “!”.

Rationale. Flix supports both destructive and non-destructive
operations on mutable data structures. For example, the
Array.reverse(a) function returns a copy of the array a with
the elements in reverse order, whereas Array.reverse!(a) de-
structively re-orders the elements of a. The purpose of this
principle is two-fold:

• to ensure that Flix programmers can readily deter-
mine whether they are using a destructive or non-
destructive operation on mutable data, and

• to provide a consistent naming scheme for operations
that exists in both destructive and non-destructive
flavours (e.g. reverse vs. reverse!).

Discussion. This principle, which is inspired by Scheme,
applies to destructive and non-destructive operations on
mutable data. In particular, it does not apply to all impure
functions nor to functions that modify the outside world. For
example, println and deleteFile do not end in an exclamation
mark, despite their impure behavior. Currently the Flix type
and effect system tracks reads and writes to mutable memory,
but it does not distinguish between them. There is on-going
discussion on whether to change that. If so, this principle
might become enforceable by the compiler.

123

The Principles of the Flix Programming Language Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Principle 39 (Mirrored Names of Destructive and non-
Destructive Operations). In Flix, non-destructive and
destructive operations that share similar behavior and sim-
ilar type signatures should share similar names.

Rationale. This principle aims to ensure that similarly named
operations have similar type signatures. For example, Ar-
ray.reverse and Array.reverse! share similar signatures, ex-
cept one returns a new array and the other destructively
updates the array. On the other hand, while there is a Ar-
ray.map there is no Array.map! because the signature of
Array.map is: (a -> b) -> Array[a] -> Array[b] but the signa-
ture of the destructive update cannot take a function from
a -> b because the type of an array cannot change once con-
structed. Instead, Flix offers a Array.transform! operation
with the signature: (a -> a) -> Array[a] -> Unit.

4.6 Miscellaneous Principles

Principle 40 (Annotation vs. Modifiers). Flix has annota-
tions and modifiers. We define an annotation as a specific
piece of meta-data associated with a specific construct (e.g.,
a function or type declaration). We define a modifier as a
keyword that affects the semantics of a program.

Rationale. In Flix, a modifier may impact both the semantics
and well-formedness of a program. For example, the pub
access modifier controls name resolution; marking a con-
struct as private (i.e., non-pub) may cause a program to no
longer compile. As another example, the override modifier
is required to make a type-class instance well-formed when
it overrides a function from the class. In Flix, annotations,
on the other hand, have no impact on semantics or well-
formedness. Instead, they are purely a mechanism to attach
meta-data to a programming construct.

Principle 41 (Annotations are Built-in). In Flix, annota-
tions are built-in; they cannot be user defined.

Rationale. Annotations typically have two use cases: (i) as
an ad-hoc mechanism to document program constructs (e.g.,
classes, methods), and (ii) as a mechanism to support reflec-
tive programming. Flix does not have reflection and does not
need annotations to support that use case. Flix does support
a small collection of built-in annotations for documentation.
The issue with user-defined annotations is that it is hard

to ensure they have well-defined semantics and are only
declared once. For example, Java has @Deprecated which
is defined in the Java standard library, has a well-defined
meaning, and is widely used. On the other hand, Java did
not define a @NonNull annotation with the consequence
that there are at least eight different variants in use, and
each has subtly different semantics. We want to avoid such a
situation by making annotations part of the language. If new
annotations are needed, they can be added after discussion.

5 Abandoned Principles
We conclude with a discussion of principles we had adopted
but that we later had to abandon. We do not believe these
principles are broken, but they did not work out for Flix.

Aban. Principle (No Blessed Library). The Flix program-
ming language and its compiler should be independent of
the Flix standard library.

Rationale. The idea behind this principle was to ensure a
clear separation between the Flix language and compiler,
and the Flix standard library. In particular, a programmer
should be able to write a program that does not depend on
the standard library and also to substitute his or her own
standard library, if so desired.

Discussion. Initially, while the standard library was small,
the separation between language and library was straight-
forward to enforce. But, as the language grew, the separation
became more and more challenging to enforce.
We will give a few examples. The type classes Eq, Order,

and ToString are declared in the library, but the compiler
needs to know about them for several reasons: (i) to support
translation of == into a call to Eq.eq, (ii) to support trans-
lation of string interpolators into calls to ToString, (iii) to
support automatic derivation of Eq,Order, and ToString, and
(iv) for the compiler to give more specific error messages
related to missing instances of these classes. As similar set of
dependencies arose between the logic part of the language
and dependencies on the type classes that define a lattice.

Over time it simply became “too convenient” for the com-
piler to know about the standard library; the upside is greatly
improved usability, but the downside is a hard dependence
between language and compiler.

Aban. Principle (Uniform Function Call Syntax). In
Flix, the syntax of a function call is f(a, b, c). With UFCS,
the same function call can be written with syntactic sugar
and in an object-oriented style as: a.f(b, c).

Rationale. The idea behind uniform function call syntax
(UFCS) [10, 55] is three-fold:

• to emulate the syntax of a method call, i.e., o.f(),
• to enable “auto-completion on the dot”, and
• to enable method chaining, i.e., x.f().g().

The latter is sometimes referred to as “fluent-style” [18] or
inaccurately as the “builder-pattern”. All three reasons seem
useful and we speculate that they may enable object-oriented
programmers to feel more at home in a functional program-
ming language.

Discussion. UFCS is good in that it does not confuse syntax
with semantics (Principle 1). D and Nim support UFCS, and
there is discussion of adding it to C++. Flix used to support
UFCS, but we had to abandon it for two reasons:
(a) It is ambiguous in the presence of records.
(b) It requires the subject to be the first argument.

124

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

For (a), the problem is that the expression a.f(b, c) can be
parsed as both: (i) (a.f)(b, c) (i.e., a field access of f which is
then invoked), and (ii) as the UFCS function call f(a, b, c).
Which is right? Which would the programmer expect? For
(b), the problem is that a call a.f(b, c) is only sensible if a is
the subject. But, if we have e.g. List.map(f: a -> b, l: List[a]),
where the function argument is first, then we cannot write
l.map(x -> x + 1) as we wanted. Thus we have to change
the signature to List.map(l: List[a], f: a -> b), but this now
prevents partial application like List.map(x -> x + 1).
The fundamental problem is a tension between subject-

first or subject-last. We cannot have both. We briefly con-
sidered whether to treat a UFCS call a.f(b, c) as f(c, b, a),
but this was quickly abandoned, and ultimately we dropped
UFCS support and settled on the principle of “subject-last”
to fully support pipelines.

6 Related Work
We conclude the paper by presenting related work that has
had a significant impact on the design of Flix.

Human-Computer Interaction. The inspiration for Flix’
principles on compiler error messages came partly from two
the influential blog posts: “Compiler Errors for Humans” [7]
and “Compilers as Assistants” [8] written by Evan Czaplicki,
the lead developer of the Elm programming language [17].
In these two posts, Evan lays out his vision for “compilers
as assistants, not as adversaries”. We were also inspired by a
recent study by [3] which discusses the use of a positive tone,
among many other aspects, in the design of error messages.

Type System. The Flix type and effect system is based on
Hindley-Damas-Milner, the same type system that powers
StandardML, OCaml, andHaskell [9, 22, 46, 60]. As discussed,
this system supports let-polymorphism and complete type in-
ference with Algorithm W [43]. Nevertheless, Flix has made
the design choice to require all top-level function to be an-
notated with type signatures. As stated in Principle 7, this
has three advantages: type signatures are useful as documen-
tation, to accurately assign blame, and they enable parallel
type inference.

Type Classes. Flix supports higher-kinded types and type
classes inspired by Haskell [58]. The current implementation
is close to that of Haskell 98 [29]. Every type class system
comes with a range of design choices and the paper “Type
classes: an exploration of the design space” [30] was instru-
mental in guiding our design. Even more fundamental was
the “Typing Haskell in Haskell” [28] paper which we have
used as the blueprint for the type inference algorithm in
Flix. This is probably the single most important paper that
has influenced the implementation of Flix. We wish there
were more papers like it; papers that go into great detail to
describe the implementation of complex compilers.

Effect System. Flix has a type and effect system based on
Boolean unification [4, 6, 38, 44]. The effect system supports
effect polymorphism [34], i.e., the effect(s) of a higher-order
function may depend on the effect(s) of its function argu-
ments. Unlike algebraic effect systems [32, 33], which allows
user-defined effects, the Flix effect system is focused on pre-
cise tracking of purity. In particular, as shown in Section 2,
the effect system supports a form of region-based memory
management [57]. In Flix regions are not used for static
garbage collection nor are they automatically inferred [56],
instead they are used by the programmer to delimit use ofmu-
table memory allowing pure functions to use an imperative-
style internally.

Retrospectives. Several of our principles were inspired
by the reflections of other programming language designers
on mistakes or design flaws in their languages. Famously,
Tony Hoare gave a talk on “Null references: The billion
dollar mistake” [25]. Graydon Hoare, the inventor of Rust,
wrote an influential blog post entitled “Things Rust Shipped
Without” [24] where he tried to enumerate all the design
mistakes that he believed Rust 1.0 had avoided (including
null pointers). More recently, Troels Henriksen, the designer
of Futhark [20, 21], wrote a blog post “Design Flaws in
Futhark” [19] which was widely discussed on the /r/pro-
gramminglanguages sub-Reddit and inspired several similar
posts by other language designers. We have used many of
these posts and discussions as a resource for design mistakes
that we do not want to repeat in Flix.

The Flix Programming Language. Flix itself has been
the subject of multiple research papers [35–41]. A line of re-
search has focused on the Datalog aspect of Flix, including its
support for first-class Datalog constraints and lattice seman-
tics [37, 40], and how to use these features to declaratively
express sound program analyses in Flix [36, 41]. Another line
of research has focused on the use of Boolean unification in
type inference with applications in effect systems [38] and
for relational nullable types [39]. Flix has also been covered
by the tech media, with articles in InfoQ [27], Version2 [1],
and ComputerWorld [54].

7 Conclusion
Wehave presented the values and principles that underpin the
design of the Flix programming language. We have described
the rationale for each principle and discussed how it has
shaped the development of Flix.
We that hope these principles will inspire programming

language designers and stimulate more discussion on the
‘softer’ aspects of programming language design.

Acknowledgments
The author would like to thank Matthew Lutze, Jonathan L.
Starup, and Jaco van de Pol for many useful discussions.

125

The Principles of the Flix Programming Language Onward! ’22, December 8–10, 2022, Auckland, New Zealand

References
[1] Tania Andersen. 2021. Flix: Nyt sprog fra Aarhus vil gøre programmørens

liv lettere med logik i tanken. https://www.version2.dk/artikel/flix-
nyt-sprog-fra-aarhus-vil-goere-programmoerens-liv-lettere-med-
logik-i-tanken

[2] Andrew Gerrand. 2022. Share Memory By Communicating. https:
//go.dev/blog/codelab-share

[3] Brett A Becker, Paul Denny, Raymond Pettit, Durell Bouchard, Den-
nis J Bouvier, Brian Harrington, Amir Kamil, Amey Karkare, Chris
McDonald, Peter-Michael Osera, et al. 2019. Compiler Error Mes-
sages Considered Unhelpful: The Landscape of Text-Based Program-
ming Error Message Research. In Proc. of the Working Group Re-
ports on Innovation and Technology in Computer Science Education.
https://doi.org/10.1145/3344429.3372508

[4] George Boole. 1847. The Mathematical Analysis of Logic.
[5] Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom Schrijvers.

2019. Coherence of Type Class Resolution. Proc. of the ACM on Pro-
gramming Languages 3, ICFP (2019). https://doi.org/10.1145/3341695

[6] Alexandre Boudet, Jean-Pierre Jouannaud, and Manfred Schmidt-
Schauß. 1989. Unification in Boolean Rings and Abelian Groups. Jour-
nal of Symbolic Computation (1989). https://doi.org/10.1016/S0747-
7171(89)80054-9

[7] Evan Czaplicki. 2015. Compiler Errors for Humans. https://elm-lang.
org/news/compiler-errors-for-humans

[8] Evan Czaplicki. 2015. Compilers as Assistants. https://elm-lang.org/
news/compilers-as-assistants

[9] Luis Damas. 1984. Type Assignment in Programming Languages. Ph. D.
Dissertation. The University of Edinburgh.

[10] D Language Developers. 2022. D Language Specification. https://dlang.
org/spec/function.html#pseudo-member

[11] The Pony Developers. 2021. Divide by Zero. https://tutorial.ponylang.
io/gotchas/divide-by-zero.html

[12] Stephen Diehl. 2016. relude: Safe, performant, user-friendly and light-
weight Haskell Standard Library. https://hackage.haskell.org/package/
relude

[13] Edsger Wybe Dijkstra et al. 1970. Notes on Structured Programming.
[14] Joe Duffy. 2018. The Error Model. http://joeduffyblog.com/2016/02/07/

the-error-model/
[15] Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing.

ACM Computing Surveys (CSUR) (2021). https://doi.org/10.1145/
3450952

[16] Manuel Fähndrich and K Rustan M Leino. 2003. Declaring and
Checking Non-Null Types in an Object-Oriented Language. In Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA).
https://doi.org/10.1145/949305.949332

[17] Richard Feldman. 2020. Elm in Action. Simon and Schuster.
[18] Martin Fowler. 2005. FluentInterface. https://martinfowler.com/bliki/

FluentInterface.html
[19] Troels Henriksen. 2019. Design Flaws in Futhark. https://futhark-

lang.org/blog/2019-12-18-design-flaws-in-futhark.html
[20] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein,

and Cosmin E Oancea. 2017. Futhark: Purely Functional GPU-
Programming with Nested Parallelism and In-Place Array Updates.
In Programming Language Design and Implementation (PLDI). https:
//doi.org/10.1145/3062341.3062354

[21] Troels Henriksen, Frederik Thorøe, Martin Elsman, and Cosmin
Oancea. 2019. Incremental Flattening for Nested Data Parallelism.
In Principles and Practice of Parallel Programming (PPoPP). https:
//doi.org/10.1145/3293883.3295707

[22] Roger Hindley. 1969. The Principal Type-Scheme of an Object in
Combinatory Logic. Transactions of the American Mathematical Society
(AMS) (1969).

[23] Charles Antony Richard Hoare. 1978. Communicating Sequential
Processes. Commun. ACM (1978).

[24] Graydon Hoare. 2015. Things Rust Shipped Without. https://graydon2.
dreamwidth.org/218040.html

[25] Tony Hoare. 2009. Null References: The Billion Dollar Mistake. Pre-
sentation at QCon London (2009).

[26] David Hovemeyer and William Pugh. 2004. Finding Bugs is Easy. In
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). https://doi.org/10.1145/1052883.1052895

[27] Johan Janssen. 2022. Interview with Magnus Madsen about the Flix
Programming Language. https://www.infoq.com/news/2022/02/flix-
programming-language/

[28] Mark P Jones. 1999. Typing Haskell in Haskell. In Haskell Workshop.
[29] Simon Peyton Jones. 2003. Haskell 98 Language and Libraries: The

Revised Report. Cambridge University Press.
[30] Simon Peyton Jones, Mark Jones, and Erik Meijer. 1997. Type classes:

an exploration of the design space. In Haskell Workshop.
[31] Daan Leijen. 2005. Extensible Records with Scoped Labels. Trends in

Functional Programming (2005).
[32] Daan Leijen. 2014. Koka: Programming with Row Polymorphic Effect

Types. arXiv (2014).
[33] Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic

Effects. In Principles of Programming Languages (POPL). https://doi.
org/10.1145/3093333.3009872

[34] John M Lucassen and David K Gifford. 1988. Polymorphic Effect
Systems. In Principles of Programming Languages (POPL).

[35] Magnus Madsen and Ondřej Lhoták. 2018. Implicit Parameters for
Logic Programming. In Principles and Practice of Declarative Program-
ming (PPDP). https://doi.org/10.1145/3236950.3236953

[36] Magnus Madsen and Ondřej Lhoták. 2018. Safe and Sound Program
Analysis with Flix. In International Symposium on Software Testing and
Analysis (ISSTA). https://doi.org/10.1145/3213846.3213847

[37] Magnus Madsen and Ondřej Lhoták. 2020. Fixpoints for the Masses:
Programming with First-Class Datalog Constraints. Proc. of the ACM
on Programming Languages 4, OOPSLA (2020). https://doi.org/10.1145/
3428193

[38] Magnus Madsen and Jaco van de Pol. 2020. Polymorphic Types and
Effects with Boolean Unification. Proc. of the ACM on Programming
Languages 4, OOPSLA (2020). https://doi.org/10.1145/3428222

[39] Magnus Madsen and Jaco van de Pol. 2021. Relational Nullable Types
with Boolean Unification. Proc. of the ACM on Programming Languages
5, OOPSLA (2021). https://doi.org/10.1145/3485487

[40] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From
Datalog to Flix: A Declarative Language for Fixed Points on Lat-
tices. In Programming Language Design and Implementation (PLDI).
https://doi.org/10.1145/2980983.2908096

[41] MagnusMadsen,Ming-Ho Yee, andOndřej Lhoták. 2016. Programming
a Dataflow Analysis in Flix. In Tools for Automatic Program Analysis
(TAPAS).

[42] Magnus Madsen, Ramin Zarifi, and Ondřej Lhoták. 2018. Tail Call
Elimination and Data Representation for Functional Languages on the
Java Virtual Machine. In Compiler Construction (CC). https://doi.org/
10.1145/3178372.3179499

[43] Alberto Martelli and Ugo Montanari. 1982. An Efficient Unification
Algorithm. ACM Transactions on Programming Languages and Systems
(TOPLAS) (1982).

[44] Urusula Martin and Tobias Nipkow. 1989. Boolean Unification - The
Story So Far. Journal of Symbolic Computation (1989).

[45] Daniel Mendler. 2022. intro: Safe and minimal prelude. https://hackage.
haskell.org/package/intro

[46] Robin Milner. 1978. A Theory of Type Polymorphism in Programming.
J. Comput. System Sci. (1978).

[47] Abel Nieto, Marianna Rapoport, Gregor Richards, and Ondřej Lhoták.
2020. Blame for Null. In European Conference on Object-Oriented Pro-
gramming (ECOOP 2020). https://doi.org/10.4230/LIPIcs.ECOOP.2020.
3

126

https://www.version2.dk/artikel/flix-nyt-sprog-fra-aarhus-vil-goere-programmoerens-liv-lettere-med-logik-i-tanken
https://www.version2.dk/artikel/flix-nyt-sprog-fra-aarhus-vil-goere-programmoerens-liv-lettere-med-logik-i-tanken
https://www.version2.dk/artikel/flix-nyt-sprog-fra-aarhus-vil-goere-programmoerens-liv-lettere-med-logik-i-tanken
https://go.dev/blog/codelab-share
https://go.dev/blog/codelab-share
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/3341695
https://doi.org/10.1016/S0747-7171(89)80054-9
https://doi.org/10.1016/S0747-7171(89)80054-9
https://elm-lang.org/news/compiler-errors-for-humans
https://elm-lang.org/news/compiler-errors-for-humans
https://elm-lang.org/news/compilers-as-assistants
https://elm-lang.org/news/compilers-as-assistants
https://dlang.org/spec/function.html#pseudo-member
https://dlang.org/spec/function.html#pseudo-member
https://tutorial.ponylang.io/gotchas/divide-by-zero.html
https://tutorial.ponylang.io/gotchas/divide-by-zero.html
https://hackage.haskell.org/package/relude
https://hackage.haskell.org/package/relude
http://joeduffyblog.com/2016/02/07/the-error-model/
http://joeduffyblog.com/2016/02/07/the-error-model/
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952
https://doi.org/10.1145/949305.949332
https://martinfowler.com/bliki/FluentInterface.html
https://martinfowler.com/bliki/FluentInterface.html
https://futhark-lang.org/blog/2019-12-18-design-flaws-in-futhark.html
https://futhark-lang.org/blog/2019-12-18-design-flaws-in-futhark.html
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3293883.3295707
https://doi.org/10.1145/3293883.3295707
https://graydon2.dreamwidth.org/218040.html
https://graydon2.dreamwidth.org/218040.html
https://doi.org/10.1145/1052883.1052895
https://www.infoq.com/news/2022/02/flix-programming-language/
https://www.infoq.com/news/2022/02/flix-programming-language/
https://doi.org/10.1145/3093333.3009872
https://doi.org/10.1145/3093333.3009872
https://doi.org/10.1145/3236950.3236953
https://doi.org/10.1145/3213846.3213847
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428193
https://doi.org/10.1145/3428222
https://doi.org/10.1145/3485487
https://doi.org/10.1145/2980983.2908096
https://doi.org/10.1145/3178372.3179499
https://doi.org/10.1145/3178372.3179499
https://hackage.haskell.org/package/intro
https://hackage.haskell.org/package/intro
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3
https://doi.org/10.4230/LIPIcs.ECOOP.2020.3

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Magnus Madsen

[48] Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin
Pu. 2020. Scala with Explicit Nulls. In European Conference on Object-
Oriented Programming (ECOOP 2020). https://doi.org/10.4230/LIPIcs.
ECOOP.2020.25

[49] Martin Odersky. 2018. Opening Keynote: Preparing for Scala 3 by Martin
Odersky and Adriaan Moors. https://www.youtube.com/watch?v=
1VDOhiFYW3Y

[50] Benjamin C Pierce and David N Turner. 2000. Local Type Inference.
ACM Transactions on Programming Languages and Systems (TOPLAS)
(2000). https://doi.org/10.1145/345099.345100

[51] Rich Hickey. 2022. Simple Made Easy. https://www.infoq.com/
presentations/Simple-Made-Easy

[52] Scala. 2022. Scala Documentation — Implicit Classes. https://docs.scala-
lang.org/overviews/core/implicit-classes.html

[53] Michel Schinz and Martin Odersky. 2001. Tail Call Elimination on the
Java Virtual Machine. Electronic Notes in Theoretical Computer Science
(2001). https://doi.org/10.1016/S1571-0661(05)80459-1

[54] Jakob Schjoldager. 2021. Datalogi-adjunkt Magnus Madsen har
opfundet et nyt programmeringssprog: Vi står over for et skifte
inden for programmeringssprog - her er ideen med det nye Flix.
https://www.computerworld.dk/art/257120/datalogi-adjunkt-
magnus-madsen-har-opfundet-et-nyt-programmeringssprog-vi-

staar-over-for-et-skifte-inden-for-programmeringssprog-her-er-
ideen-med-det-nye-flix

[55] Herb Sutter. 2014. Unified Call Syntax. https://isocpp.org/files/papers/
N4165.pdf

[56] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004.
A Retrospective on Region-based Memory Management. Higher-Order
and Symbolic Computation (2004).

[57] Mads Tofte and Jean-Pierre Talpin. 1997. Region-based Memory Man-
agement. Information and Computation (1997).

[58] Philip Wadler and Stephen Blott. 1989. How to make ad-hoc poly-
morphism less ad hoc. In Principles of Programming Languages (POPL).
https://doi.org/10.1145/75277.75283

[59] Wikipedia. 2022. Extension Method —Wikipedia, The Free Encyclopedia.
https://en.wikipedia.org/wiki/Extension_method

[60] Andrew K Wright and Matthias Felleisen. 1994. A Syntactic Approach
to Type Soundness. Information and Computation (1994). https:
//doi.org/10.1006/inco.1994.1093

[61] Yichen Xie and Dawson Engler. 2002. Using Redundancies to Find
Errors. In Foundations of Software Engineering (FSE). https://doi.org/
10.1145/587051.587060

Received 2022-07-12; accepted 2022-10-02

127

https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://doi.org/10.4230/LIPIcs.ECOOP.2020.25
https://www.youtube.com/watch?v=1VDOhiFYW3Y
https://www.youtube.com/watch?v=1VDOhiFYW3Y
https://doi.org/10.1145/345099.345100
https://www.infoq.com/presentations/Simple-Made-Easy
https://www.infoq.com/presentations/Simple-Made-Easy
https://docs.scala-lang.org/overviews/core/implicit-classes.html
https://docs.scala-lang.org/overviews/core/implicit-classes.html
https://doi.org/10.1016/S1571-0661(05)80459-1
https://www.computerworld.dk/art/257120/datalogi-adjunkt-magnus-madsen-har-opfundet-et-nyt-programmeringssprog-vi-staar-over-for-et-skifte-inden-for-programmeringssprog-her-er-ideen-med-det-nye-flix
https://www.computerworld.dk/art/257120/datalogi-adjunkt-magnus-madsen-har-opfundet-et-nyt-programmeringssprog-vi-staar-over-for-et-skifte-inden-for-programmeringssprog-her-er-ideen-med-det-nye-flix
https://www.computerworld.dk/art/257120/datalogi-adjunkt-magnus-madsen-har-opfundet-et-nyt-programmeringssprog-vi-staar-over-for-et-skifte-inden-for-programmeringssprog-her-er-ideen-med-det-nye-flix
https://www.computerworld.dk/art/257120/datalogi-adjunkt-magnus-madsen-har-opfundet-et-nyt-programmeringssprog-vi-staar-over-for-et-skifte-inden-for-programmeringssprog-her-er-ideen-med-det-nye-flix
https://isocpp.org/files/papers/N4165.pdf
https://isocpp.org/files/papers/N4165.pdf
https://doi.org/10.1145/75277.75283
https://en.wikipedia.org/wiki/Extension_method
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/587051.587060
https://doi.org/10.1145/587051.587060

	Abstract
	1 Introduction
	2 Background: A Taste of Flix
	2.1 A Brief Introduction to Flix
	2.2 Type and Effect System
	2.3 Ecosystem and Tooling
	2.4 A Brief History of Flix

	3 The Flix Values
	4 The Flix Principles
	4.1 Syntax Principles
	4.2 Static Semantic Principles
	4.3 Correctness and Safety Principles
	4.4 Compiler Messages
	4.5 Standard Library
	4.6 Miscellaneous Principles

	5 Abandoned Principles
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

