
Forest: Structural Code Editing with Multiple Cursors
Philippe Voinov

philippevoinov@gmail.com
ETH Zurich
Switzerland

Manuel Rigger
rigger@nus.edu.sg

National University of Singapore
Singapore

Zhendong Su
zhendong.su@inf.ethz.ch

ETH Zurich
Switzerland

Abstract
Software developers frequently refactor code. Often, a single
logical refactoring change involves changingmultiple related
components in a source base such as renaming each occur-
rence of a variable or function. While many code editors
can perform such common and generic refactorings, they
do not support more complex refactorings or those that are
specific to a given code base. For those, as a flexible—albeit
less interactive—alternative, developers can write refactor-
ing scripts that can implement arbitrarily complex logic by
manipulating the program’s tree representation. In this work,
we present Forest, a structural code editor that aims to bridge
the gap between the interactiveness of code editors and the
expressiveness of refactoring scripts. While structural edi-
tors have occupied a niche as general code editors, the key
insight of this work is that they enable a novel structural
multi-cursor design that allows Forest to reach a similar ex-
pressiveness as refactoring scripts; Forest allows to perform
a single action simultaneously in multiple program locations
and thus support complex refactorings. To support interac-
tivity, Forest provides features typical for text code editors
such as writing and displaying the program through its tex-
tual representation. Our evaluation demonstrates that Forest
allows performing edits similar to those from refactoring
scripts, while still being interactive. We attempted to per-
form edits from 48 real-world refactoring scripts using Forest
and found that 11 were possible, while another 17 would be
possible with added features. We believe that a multi-cursor
setting plays to the strengths of structural editing, since it
benefits from reliable and expressive commands. Our results
suggest that multi-cursor structural editors could be practical
for performing small-scale specialized refactorings.

CCS Concepts: • Software and its engineering → Inte-
grated and visual development environments; Software
evolution; Software maintenance tools.

Keywords: Structural editing, refactoring, multi-cursor

Onward! ’22, December 8–10, 2022, Auckland, New Zealand
© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 2022 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!
’22), December 8–10, 2022, Auckland, New Zealand, https://doi.org/10.1145/
3563835.3567663.

ACM Reference Format:
Philippe Voinov, Manuel Rigger, and Zhendong Su. 2022. Forest:
Structural Code Editing with Multiple Cursors. In Proceedings of
the 2022 ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software (Onward!
’22), December 8–10, 2022, Auckland, New Zealand. ACM, New York,
NY, USA, 19 pages. https://doi.org/10.1145/3563835.3567663

1 Introduction
When maintaining and extending software, developers are
often forced to make repetitive edits. For example, when a
developer introduces a new required parameter to a function,
a corresponding argument has to be added at every call site.
Similarly, changes such as splitting a large module or class
into multiple parts require repetitive adjustments at most
usage sites. If the changes affect systems that are used in
many locations in a codebase, such as logging or database
access, refactoring can be especially time-consuming.

Various approaches have been proposed to support repet-
itive refactoring on both textual and structural level (see
Figure 1). These tools differ in terms of interactivity and
whether they can be classified as textual or structural. We
consider a tool more interactive when it provides a workflow
similar to conventional single location code editing and im-
mediately shows results in all locations. While textual tools
work with characters in a text file, without an understanding
of the programming language in question, structural tools
parse the program and operate on its Abstract Syntax Tree

Figure 1. The design space of tools for performing similar
code edits in multiple locations. Forest is the first tool in the
category of multi-cursor structural editors (underlined).

ar
X

iv
:2

21
0.

11
12

4v
1

 [
cs

.S
E

]
 2

0
O

ct
 2

02
2

https://doi.org/10.1145/3563835.3567663
https://doi.org/10.1145/3563835.3567663
https://doi.org/10.1145/3563835.3567663

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

(AST). For some common edits, such as renaming a vari-
able and all usages, Integrated Development Environments
(IDEs) contain built-in refactorings that operate structurally.
Existing tools are discussed in detail in Section 6.
Textual tools (left half of Figure 1), such as multi-cursor

text editors or regular expressions, have many advantages
over structural tools. They use familiar concepts from single-
location text editing. Since these tools do not inspect the
syntax of a program, they work with any programming lan-
guage and in programs with invalid syntax. However, this
lack of syntactic understanding makes it complex or im-
possible to perform certain edits in multiple locations. For
example, since many operations in textual tools depend on
the way that a program is formatted, they require the user
to make adjustments to match their code style. Attempting
to use find-replace with regular expressions to swap the
order of two arguments in every call to a function high-
lights these limitations: If the function calls are always on a
single line and the arguments themselves are syntactically
simple (e.g. numeric literals), then the regular expression is
simple. However, in the general case where a function call
spans multiple lines and its arguments may themselves be
function calls, correctly performing the edit would require
parsing the code. Multi-cursor text editors, editors where ev-
ery movement and text edit is replayed in multiple locations
simultaneously, provide an interactive editing experience
for multiple locations. They allow users to edit multiple lo-
cations using the same commands as for a single location,
letting users apply familiar concepts from conventional text
editors. However, the edits that they can express are limited.
Typically, only commands such as inserting text or moving
in whole words or lines are supported.

Structural tools (right half of Figure 1) can perform more
complex edits than textual tools, and provide commands
which can be reliably applied in many locations. However,
they only work with valid syntax and require explicit sup-
port for each programming language. AST-based refactoring
scripts are programs in a general purpose programming lan-
guage that directly manipulate an AST. They are used to
perform repetitive edits in large scale code bases. At this
scale, operating on an AST is significantly more reliably
than textual operations. Additionally, since such scripts use
a general purpose programming language, they can encode
more complex editing logic than other tools. However, the
process of developing such scripts is completely different to
conventional code editing (the user must write a program to
edit their code, instead of editing it directly), making them
impractical for small-scale repetitive edits. Structural find-
replace tools are the structural equivalent of find-replace
with regular expressions. They are more reliable than textual
find-replace, but require an understanding of the AST and
use a separate set of concepts than conventional text editing.
Additionally, both textual and structural find-replace have

limited support for encoding logic, such as filtering which
locations should be edited.

At a high level, we propose to combine multi-cursor edit-
ing with structural editing commands. This preserves the
key advantages of multi-cursor text editors: multiple loca-
tions are edited in the same way as a single location and
results are immediately shown. However, by using structural
commands instead of textual commands, more complex edits
are supported, and edits can be performed reliably in many
locations regardless of formatting and nested syntax.
Our prototype editor, Forest, is a multi-cursor structural

editor for TypeScript. In Forest, cursors point to AST nodes.
The user navigates within the AST by using structural oper-
ations like “move to parent”. These operations work reliably
in situations where textual tools are ineffective, such as with
complex nested syntax. To retain the strengths and familiar-
ity of text editors, insertions are performed by parsing typed
text. A cursor can be split (e.g., for each child of the selected
AST node) to create multiple cursors that handle editing
commands simultaneously. This allows users to perform
repetitive edits the same way as they would when editing a
single location. A novel hierarchy of cursors concept makes it
practical to work with cursors that were split multiple times.
To understand the strengths and weaknesses of multi-

cursor structural editing, we collected real-world AST-based
refactoring scripts and attempted to perform the correspond-
ing edits interactively in Forest. Of the 48 edits, 11 could
be performed without any significant issues, and a further
17 would likely become practical with improvements to the
editor. This shows that developers could avoidwriting some—
but not all—refactoring scripts and instead use a multi-cursor
structural editor to perform their edit interactively.

We make three main contributions:

• We built Forest1 — a structural editor prototype for
TypeScript. Forest is one of very few structural editors
for modern languages with complex syntax.

• We extended Forest to support multiple cursors, with
special integration between multi-cursor editing and
structural editing. This is the only multi-cursor struc-
tural editor with such integration.

• We evaluated how Forest compares to refactoring
scripts, showing that Forest can be used to perform
edits from some real-world refactoring scripts.

1Online version of Forest with interactive examples:
https://forestonward2022.walr.is/
GitHub: https://github.com/tehwalris/forest
Archive: https://doi.org/10.5281/zenodo.7225442

https://forestonward2022.walr.is/
https://github.com/tehwalris/forest
https://doi.org/10.5281/zenodo.7225442

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

H

H

Figure 2. A repetitive code edit where the user starts with the code in the top left and wishes to arrive at the code in the top
right. Each circled letter describes a step of this edit as performed in Forest. Each grey box of code marked by a letter shows
the state after the described edit was performed. The black outlines are cursors (multiple cursors can exist simultaneously in
one step). Steps C through G only show two of the cursors for brevity.

2 Motivating Example
Figure 2 shows a repetitive code edit which we will use to
motivate and demonstrate multi-cursor structural editing.
This is an edit to TypeScript code in an old version of Forest’s
own codebase. We wanted to wrap every property value (the
expressions to the right of :within the object literal { ... })
in a function call (warnOnError) directly, rather than using a
loop to wrap the values at run time. We made this change to
subsequently add a new property which, unlike the others,
had to be wrapped in ignoreError.

Textual approaches cannot reliably perform such a refac-
toring, because the task is inherently not textual. Selecting
every property is especially difficult, because they span vary-
ing numbers of lines and the property separator comma
appears deep inside the values of some properties. In or-
der to perform the task using textual find-replace, a regular
expression that captures the property names and values is
required. A reasonable attempt might be:

(".*?"): (.*?) ,\n(?= "|})

However, such a regular expression relies on the exact num-
ber of spaces used for indention in order to discern which
commas separate properties and which are part of deeply
nested expressions. A different or inconsistently applied code
style would break this approach. The same issue occurs in
multi-cursor text editors when the user creates multiple cur-
sors by splitting an existing cursor (marked A in Figure
2) using a regular expression that describes the separator
(,(?=\n ")).

Structural tools can perform this refactoring reliably, avoid-
ing text-related issues like identifying separators. However,
there are reasons that discourage the use of existing struc-
tural tools for such a task. The developer could write a refac-
toring script [3] that transforms the Abstract Syntax Tree
(AST) of the program. However, writing a refactoring script
is unreasonably heavyweight for an edit that is required in
so few locations. This edit is also too program-specific to

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

be available as a built-in refactor in an Integrated Develop-
ment Environment (IDE). Programming-by-demonstration
tools [16] [23] [16], which infer a structural edit based on
an example in one location, are a more lightweight solu-
tion than writing a custom refactoring script. However, such
tools may not always perform the desired edit, since the
inference process may either fail or may misinterpret the
given examples.

Forest allows the user to perform the example refactoring
with the same reliability as other structural tools, while re-
taining the interactivity of multi-cursor text editing. Using
Forest in Figure 2, the user starts their edit by moving their
cursor to the object literal containing all the properties that
they want to modify. This cursor is shown as a black outline
in step A of Figure 2. This cursor points to the AST node
that represents the object literal, but is shown to the user as
a selected text range (see Section 3.2 for details).
The user then applies Forest’s "split cursors" command,

which replaces the single cursor pointing to the object literal
by multiple cursors — one cursor for every node in the AST
that is a child of the object literal. The new cursors are shown
as black outlines in step B of Figure 2. The operation of find-
ing the boundaries between properties is the key operation
in this example refactoring that structural tools can easily
perform, but that textual tools will struggle with.

In steps C throughG,multiple cursors are used. For brevity,
we only show two of the six cursors. Each command issued
by the user is processed by all cursors simultaneously. This al-
lows the user to perform their edit exactly the same way as if
they were editing a single location. This is a major advantage
of multi-cursor editing in general (not just of multi-cursor
structural editing) over tools like refactoring scripts, regu-
lar expressions, and structural find-replace, which are very
different from tools for editing single locations.
In step C, the user moves the selection (of each cursor)

from the object property to its last child in the AST. This is a
structural navigation operation, which would work reliably
even if the left hand side of the property had more compli-
cated content (e.g., a computed property name in TypeScript).
Steps C through G use structural navigation, placeholders,
copy-paste, and continuous pretty printing. These are com-
mon operations in Forest. They are described in Section 3.1.

This example mostly benefited from the structural nature
of Forest to split the cursors. Most of the edits in steps C
through G could be performed as easily in a multi-cursor
text editor as in Forest. In Section 4 we discuss operations in
Forest that are unique to multi-cursor structural editors and
that are useful once the cursor has already been split.

3 Forest
This section describes Forest, but without any of its features
related to multi-cursor editing. Our main conceptual con-
tributions are concerned with multi-cursor editing, which

is discussed separately in Section 4. The section establishes
the necessary context to understand our core contribution.
We have recorded a short supplementary video (part of our
archived artifacts — see Footnote 1) to give an intuition of
how Forest’s basic features can be used.

3.1 Overview of Design
Source files in Forest are shown as pretty-printed text. This
text is synchronized with a Forest-specific AST (referred to as
“tree” from now on) which the user can interact with. Forest
is a modal editor — it has a normal mode for navigating and
issuing commands and an insert mode for inserting text. A
full list of available commands is given in the appendix.

Navigation. The user controls a cursor that always has
part of the source file selected. This selection must corre-
spond to a contiguous selection of siblings in the tree. Forest
provides structural navigation commands (e.g., “go to parent”
or “select next leaf node”) for changing the selection. The
navigation commands treat every node in the tree as a list
of children in text order. This makes it possible to navigate
through any node using the same commands.

Insertion. To add to the source file, the user enters insert
mode at the text location at the start (or end) of their selection,
types normal source code, and exits insert mode. It is only
possible to exit insert mode when the source file has valid
syntax. This restriction simplifies implementation and is
common in structural editors.

Modification. Existing code can be modified using the
delete, copy and paste commands. These commands are struc-
tural: they modify the tree (not the text) directly, after which
the modified tree is pretty-printed and shown to the user.
Deleting a node may result in a tree that does not correspond
to a valid TypeScript AST (e.g., deleting b in a + b). In this
case, Forest adds a placeholder (effectively a hole) instead of
the deleted item.

AST. Most nodes in the Forest tree correspond exactly to
the equivalent TypeScript AST node. However, for nodes
where the TypeScript AST is inconvenient to edit, Forest
uses a different structure. For example, chains of property
accesses and calls (this.data.filter(...).map(...)) are a
left-associative tree in TypeScript, but a single flat list in
Forest (this, data, filter, (...), map, (...)).

3.2 Selections
The behavior of selections in Forest has been significantly
influenced by the ABC editor [17]. A selection (the focus)
is one or more nodes in the tree, which must be contigu-
ous siblings. Any selections with the same text range are
considered equivalent. Note that although the selection of a
single cursor must consist of continuous siblings, there is no
restriction that multiple cursors must have selections that
are adjacent to each other.

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Equivalent Selections. We will use the
TypeReferenceNode from the TypeScript AST to demonstrate
equivalent selections. This node is used to refer to a
previously declared type. It contains an Identifier (the
referenced type) and an optional list of type parame-
ters. Depending on whether the type parameter list is
used, a TypeReferenceNode looks like MyGenericType<T> or
MyNonGenericType. Note that when the type parameter list is
not used, selecting the TypeReferenceNode would have the
same text range as selecting its inner Identifier. Forest
treats selections with equal text range as one, meaning it
is ambiguous which AST node is selected. However, any
command that is applied will effectively disambiguate
the selection. In our example, if “move to parent” is
performed, then the selection will move to the parent of
the TypeReferenceNode, but if “rename” is performed, then
the command will affect the Identifier. By not allowing
the user to make two different selections with the same
text range, we hope to minimize confusion about what
is selected. This also eases navigation, since the tree (as
perceived by the user) is less deep.

Selections and Text Insertion. The design of equivalent
selections in Forest is closely tied to text insertion, since
text insertion effectively disambiguates equivalent selections.
Consider the function call f(x.y) with the argument x.y
focused. It is ambiguous whether the argument x.y itself
(containing x and y) or the list of arguments to f (containing
the single argument x.y) is focused. If we had used a non-
text-based command for inserting list items (like “append
item to list” followed by a menu selection), we would need a
way to disambiguate which list the user wishes to append
to. However, a text insertion naturally disambiguates this:
If the user chooses to append .z (beginning with a period),
it is clear that they are appending a property access to the
argument itself. If they choose to append ,z (beginning with
a comma), it is clear that they are appending a new argument
to the argument list of f.

3.3 Flatter AST
Most types of syntax are represented in the Forest tree the
same way as in the TypeScript AST. However, some struc-
tures which are represented by binary trees in the TypeScript
AST are represented as flat lists in Forest. We believe that it
is difficult for users to imagine the underlying binary tree
when looking at textual code.

Loose andTight Expressions. We convert typical expres-
sions to two levels of flat lists, which we call loose expres-
sions (whose elements are generally separated by spaces) and
tight expressions (generally printed without whitespace). For
example, a.x() + f.g * c is a loose expression containing
a.x(), +, f.g, *, and c. Similarly, a.x() is a tight expression
containing a, x, and (). The separation of loose and tight

expressions seems intuitive and predictable to us, but we
have not investigated this design choice with users.

Operator Precedence. Forest’s adjusted tree with flat-
tened lists loses precedence information. This is done in-
tentionally to simplify navigation. It also allows replacing
operators in a way that ignores precedence, like in a text ed-
itor. The ABC editor also flattens expressions around binary
operators and ignores precedence.

Typical TypeScript Edits. Having expressions flattened
at the level of tight expressions is helpful for edits that com-
monly appear when writing TypeScript. For example, con-
sider the following expression:
myArray.map(x => x + 1). filter(x => x < 0)

Since Forest interprets this expression with a flat structure
(myArray, map, (x => ...), filter, (x => ...)) the user can
easily perform the following operations:

• Navigate through the chained calls (without imagining
the binary tree),

• remove calls (even from the middle of the chain, e.g.,
map(...)),

• add new identifiers to form property accesses (e.g.,
prepend this. to the whole chain),

• add or remove the function calls themselves (e.g., add
join to the end of the expression, resulting in an un-
evaluated function, then later add the missing (), re-
sulting in a string),

• add inline operators like ?. (optional chaining) (e.g.,
add ?. after myArray in case it is undefined).

3.4 Navigation
Forest has a small set of navigation commands, most of which
are directional in a tree sense (e.g., going up towards the
parent, or going to the next sibling). None of the navigation
commands depend on the way the code is formatted.

Dependency on Formatting. In text editors (e.g. Vim),
the user must issue different editing commands depending
on how the code was pretty-printed. For example, to delete
a function argument one would use “delete up to including
comma” (not last argument), “delete to closing parenthe-
sis” (last argument), or “delete line” (formatting with one
argument per line). Forest makes navigation be completely
independent of pretty-printing, which is only possible in
a structural editor. This requires limitations (e.g., moving
down by a few lines is not possible in general), but it also
allows for special integration with the pretty-printer.

Continuous Pretty-Printing. The textual code dis-
played in Forest is pretty-printed after every single edit.
This frees the user from thinking about minor details of code
formatting, since it is not possible—not even temporarily—to
change the style of their code. Since Forest’s navigation does
not depend on how code is pretty-printed, it is possible to

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

run the pretty-printer asynchronously. For example, the user
could perform an insertion and then start navigating, while
the editor performs a pretty-print in the background (with-
out blocking the user’s navigation), and eventually shows
the new print. This would not be possible if Forest had com-
mands like “delete line”, because if the user issues this com-
mand right before the editor switches to a new print, the
meaning of the command would change and might not do
what the user intended.

Empty Selections. Forest does not allow empty selec-
tions, except in the following case: Consider the function
call f(x, y) and a selection inside the argument list (cov-
ering x, y). The user can append a function argument us-
ing the “insert text after cursor” command. However, if the
function call had no arguments, then the user could not fo-
cus the argument list, since it would be an empty selection.
To make the situation the same with no arguments as with
some arguments, we allow selecting the content of the empty
parenthesized lists.

3.5 Deletion and Placeholders
As the tree that the user edits in Forest is slightly different
from the TypeScript AST, deleting a node may make Forest’s
tree no longer correspond to a valid TypeScript AST. For
example, f() is a tight expression consisting of f and () in
Forest. Deleting f is reasonable (e.g., to replace it with an-
other identifier), but the remainder () does not correspond
to a valid TypeScript AST for an expression. In this case, For-
est inserts the identifier placeholder in place of the deleted
identifier. This allows all existing tooling (the TypeScript
parser and any pretty-printers) to work normally. Forest
tracks the fact that this node is a placeholder across edits
and pretty-printing, so that special highlighting and behav-
ior can be provided for placeholders. Forest’s placeholders
are effectively holes.

4 Multi-Cursor Editing
Forest is the first structural editor that is specifically de-
signed for multi-cursor editing. We introduce multiple novel
features including a hierarchy of cursors, switchable multi-
cursor modes, and marks that track AST nodes. In this sec-
tion, we describe the features of Forest which are either
specific to multi-cursor editing or are especially useful with
multiple cursors. A full list of multi-cursor editing commands
is given in the appendix.

4.1 Relaxed Mode
When multiple cursors exist in Forest, each movement or
editing command performed by the user is executed by every
cursor simultaneously. The clipboard and some other editor
state is stored per cursor. If some cursor can not handle a com-
mand (e.g., move one character to the right, but the cursor
is already at the end of the document), no special handling

is performed. The single failing cursor will simply do noth-
ing, while the other cursors will still process the command.
This “broadcast command and ignore failures” approach is
called relaxed mode in Forest. Unlike other multi-cursor edi-
tors, Forest has alternative multi-cursor modes, which give
different behavior (Section 4.5).

4.2 Creating Multiple Cursors
Manually. The most direct way to obtain multiple cur-

sors is to manually mark where they should be created. In
Forest, the user moves the cursor to the desired selection
and issues a command to queue it. After all desired locations
have been queued, the user can switch to the queued set of
cursors.

Splitting. In Forest, a selection containing multiple nodes
can be split using a single command. Forest will create a new
cursor for every child of the AST node that is currently se-
lected. In contrast to other editors, the user does not need
to supply any further information (e.g., regular expressions
describing separators in Kakoune [9]). The AST naturally de-
fines how the cursor should be split. This is especially useful
for splitting complex nested expressions, since separators in
the inner expressions are perfectly ignored by the structural
split operation, but would be difficult to ignore using regular
expressions or similar approaches.

With Search. It is possible to create a cursor at each re-
sult of a structural search. This is often part of a multi-step
filtering process described in Section 4.5.

4.3 Hierarchy of Cursors
After creating multiple cursors, it is eventually necessary to
switch back to a single cursor. In most text editors one of
the cursors is designated as the primary cursor and there is
a command to delete all other cursors. Forest instead has a
command to reduce to the first/last cursor by location in the
document (remove all cursors except this one). This com-
mand interacts in a special way with Forest’s novel concept
of a hierarchy of cursors.

Motivation. In Figure 3, the user wants to add type an-
notations (e.g. : number) at each location that is marked by
a diamond (each function argument and the functions them-
selves). If they only wanted to do this for one function, they
could split the cursor to have one cursor per function param-
eter, annotate the parameter types (locations 1 to 3), reduce
to the first cursor (location 1), and finally annotate the func-
tion return type (location 4; using cursor from location 1).
A natural way to perform this task for both functions is to
first split the cursor to have one cursor per function, then
perform the rest of the steps as for a single function. How-
ever, this does not work if reduce to first cursor would truly
leave only the first cursor, since then only the first function
would get a return type annotation.

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

export function f(a 1 , b 2 , c 3) 4 {
 return a * b * c;
}
export function g(a 5 , b 6 , c 7) 8 {
 return a + b + c;
}

1 2 3

4

5 6 7

8 1 2 3 5 6 7
4 8

Figure 3. Insertion locations (numbered diamonds) for type
annotations shown in code (top), grouped by their location
in the AST (left), and grouped by the cursor which would
potentially perform the insertion in the hierarchy of cursors
(right). The hierarchy is shown assuming that locations 1
and 4 and locations 5 and 8 are edited by the same cursor.

Principle. Forest’s hierarchy of cursors solves the issue
presented above. To the best of our knowledge, this concept
is novel. When a user splits a cursor into new cursors, the
lineage of these cursors is tracked, effectively organizing
them into a tree (right tree in Figure 3). When the user per-
forms an operation like reduce to first cursor, the operation
is performed per group of cursors, where all cursors with the
same parent (cursor which was split to create these cursors)
are part of the same group. In Figure 3, assuming that the
cursor was split once for each function and then once for
each argument (giving locations 1 to 3 and 5 to 7), reduce
to first cursor would leave the cursors on the first function
argument of each function (locations 1 and 5).

Multiple Levels. The hierarchy of cursors can be arbitrar-
ily deep. The above example could be extended to split at
three levels (classes, methods, and parameters). Then the first
invocation of reduce to first cursor would leave the first cur-
sor per method and class and the second invocation would
leave the first cursor per class.

4.4 Marks
While working in Forest, the user can mark the current cur-
sor position and later jump back to this mark. Figure 5 shows
how marks are typically used in Forest. Forest stores marks
as a selection of AST nodes and performs novel handling
to ensure that marks reliably point to the same AST nodes
across edits and pretty printing. Since other editors (e.g. Vim)
track marks using character ranges, they lose track of marks
in cases where Forest can track them reliably.

Motivation. Marks are useful, but not necessary with a
single cursor, since it is always possible tomanually move the
cursor back to its old location. With multiple cursors, it is not
always possible to manually move all cursors back to their

old locations, since each cursor might need slightly different
commands to move there, but commands are broadcast to
all cursors. However, using marks, all cursors can be moved
back at once, since they all require the same jump back to
mark command.

Persistence. Marks in Forest persist across edits and
pretty-printing, always remaining on the same AST nodes.
Each operation that modifies Forest’s AST provides a func-
tion to adjust selections in the AST accordingly. This is ap-
plied to all marks to ensure that they point to equivalent
AST nodes after each edit. This allows marks to be used
extensively during editing, which is common in practice. No
existing text editors or structural editors that we know of
have marks that track AST nodes.

Separating Cursors. Each cursor has its own set of
marks. The fact that marks are part of a cursor’s state is
what allows cursors to have equal selections, but still be
separated later.

4.5 Filtering Cursors
For some tasks, exactly selecting the locations to edit is
complicated. In Figure 4, the user must find all calls to
Object.assign where the first argument is an object literal
and none of the other arguments are spread elements (...x).
Many structural search systems cannot capture this in a
single query, especially not in an easy-to-understand way.

Overview. In Forest, the user performs queries like this
using multiple search and navigation steps in sequence. First,
a structural search or direct cursor split gives all calls to
Object.assign. The user then navigates to the first argument
(left cursors in Figure 4) and drops any cursors where this
argument is not an object literal (dotted outlines). Finally,
the user selects all arguments except the first and drops any
calls where these arguments contain spread elements (solid
outlines). The concrete mechanisms which are available to
the user to perform such filtering are explained in the rest
of this section.

Drop Mode. An implicit way to filter cursors in Forest
is the multi-cursor drop mode. After issuing a command in
this mode, any failed cursors (those which can not execute
the command) are deleted. Examples of failing commands
are a structural search with no results, jump to surrounding
parentheses when none exist, and reduce to first list item
when the selection is an empty list. In the Object.assign

example, navigating to the first argument in multi-cursor
drop mode would be enough to remove any cursors where
Object.assign is called with no arguments, since reduce to
first list item would fail.

Shallow Search. Multi-cursor dropmode can also be used
to handle the condition “where the first argument is an ob-
ject literal” by using structural search. However, selecting

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

Object.assign({}, { a: 1 }, { b: 2 });
Object.assign({}, a);
Object.assign({ a: 1 }, b, { c: 3 });
Object.assign(a, b);
Object.assign({}, ...b);
Object.assign({ a: 1 }, { b: 2 }, c, d);

Figure 4. Various calls to Object.assign where only those
with tick marks should be selected. Solid outlines are suc-
ceeding cursors and dotted outlines are failing cursors. The
user creates the cursors in the left column, drops the failing
ones (e.g. using drop mode), navigates to get the cursors in
the right column, and keeps the failing ones (e.g. via explicit
branching in strict mode).

the first argument, searching for an object literal, and drop-
ping failed cursors does not precisely capture this condition.
This method would keep cursors that contain an object lit-
eral somewhere deep inside the first argument, for example,
Object.assign(f({})). Forest has an option to use structural
search to checkwhether the top level of the selectionmatches
a query, without searching deeply within the selection. With
this option, the check in this example is precise. If the se-
lection matches, the command succeeds without moving
the cursor. Otherwise, the command fails—which causes the
cursor to be deleted in multi-cursor drop mode.

Limitation of Drop Mode. The main limitation of multi-
cursor dropmode is that the conditionwhich it checks cannot
be inverted. For example, the condition “none of the other
arguments are spread elements” can be expressed by keeping
all cursors where a search for spread elements fails. This is
the opposite of the behavior that multi-cursor drop mode has.
Conditions like this can be expressed with Forest’s explicit
branching command which is typically used in multi-cursor
strict mode.

Strict Mode. When a command is issued in multi-cursor
strict mode, if any cursor would fail the command, then
the command will not be performed at all—even for cur-
sors where it would be possible—and each cursor will be
marked succeeded or failed (visualized as solid and dotted
outlines in Figure 4). Using the explicit branching command
the user can now either keep the cursors that would have
succeeded (solid outlines) or the ones that would have failed
(dotted outlines). Keeping successful cursors is equivalent
to using multi-cursor drop mode. Keeping failed cursors is
only possible using this explicit branching command.

4.6 Overlapping Cursors
It is not immediately clear what the benefits of allowing
overlapping cursors are. In this section, we will consider
different kinds of overlap, show how Forest handles them,
and discuss when they can be useful.

var foo = true, bar;
const baz = 1,
 fiz = "2";

var foo = true, bar;
const baz = 1,
 fiz = "2";

var foo = true, bar;
const baz = 1,
 fiz = "2";

var foo = true, bar;
const baz = 1,
 fiz = "2";

var foo = true;
var bar;
var foo = true, bar;
const baz = 1;
const fiz = "2";
const baz = 1,
 fiz = "2";

var foo = true;
var bar;
var foo = true, bar;
const baz = 1;
const fiz = "2";
const baz = 1,
 fiz = "2";

var x; var x;
var foo = true, bar;
var x; var x;
const baz = 1,
 fiz = "2";

var foo = true;
var bar;
var foo = true, bar;
var baz = 1;
var fiz = "2";
const baz = 1,
 fiz = "2";

var foo = true;
var bar;
var foo = true, bar;
var baz = 1;
var fiz = "2";
const baz = 1,
 fiz = "2";

var foo = true;
var bar;
var foo = true, bar;
var baz = 1;
var fiz = "2";
const baz = 1,
 fiz = "2";

var foo = true;
var bar;
var foo = true, bar;
var baz = 1;
var fiz = "2";
const baz = 1,
 fiz = "2";

var foo = true;
var bar;
const baz = 1;
const fiz = "2";

var foo = true;
var bar;
var foo = true, bar;
var baz = 1;
var fiz = "2";
const baz = 1,
 fiz = "2";

A

B

C

D

E

F

G

H

I

J

K

L

M

Initial stateA

Split cursorB

Navigate, split cursor, and copyC

Navigate and set markDD

Insert "var x;"E

Navigate, paste, and set mark 2F

Jump to mark 1G

Navigate and copyH

Jump to mark 2I

NavigateJ

PasteK

Jump to mark 1L

DeleteM

Figure 5. An edit where variable declaration statements
containing multiple declarations are flattened so that each
declaration is in its own statement. This example demon-
strates marks and overlapping cursors. The black outlines
represent cursors. Starting from step C, each of the four
cursors is marked with a different color. Rectangles with
multiple colors represent overlapping cursors.

Nested Cursors. Consider the code snippet f(g(x)) with
one cursor selecting the whole call to f and another select-
ing the whole call to g. These cursors are nested (one strictly
contains the other). This kind of overlap is discussed in Sec-
tion 4.7. We call all other arrangements of cursors non-nested.

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Duplicate Cursors. A special case of non-nested cursors
is duplicate cursors. This is the situation where multiple cur-
sors have the same selection range, for example, when two
cursors both have the whole call to f selected in f(g(x)).
Duplicate cursors can be separated by jumping to marks.
However, duplicate cursors can also be used directly to per-
form insertions, in which case the typed text is inserted once
for each cursor. Duplicate cursors are ordered against each
other based on the order they had before they became dupli-
cate. This makes it predictable which instance of the newly
inserted text belongs to which duplicate cursor.

Example with Duplicate Cursors. Both interactions
with duplicate cursors (separate using marks and insert) are
demonstrated in Figure 5. The user creates a cursor for each
variable declaration and then performs move to parent (Step
D), which results in duplicate cursors on each variable decla-
ration list. They now perform an insertion (Step E), which
creates a new statement for each duplicate cursor, thereby
also separating them. Subsequently in the example (Step H),
the user has duplicate cursors on the var/const keyword,
which they separate using marks.

Non-nested Non-duplicate Cursors. The arrangement
of overlapping cursors that remains to discuss is non-nested
non-duplicate cursors, as in the following example: Given
the snippet [a, b, c], one cursor selects a, b and one cur-
sor selects b, c. Cursors in this arrangement are generally
not useful. Commands like paste (a replacement) would be
ambiguous. The only non-movement command that Forest
supports in this arrangement is delete, which is done by re-
moving a node exactly when it is contained in at least one
selection.

4.7 Nested Cursors
Nested cursors are a special case of overlapping cursors. They
are typically created by searching for structures that can be
nested (e.g., functions or object literals). Nested cursors are
uniquely challenging for multi-cursor structural editing.

Nested Copy-Paste Problem. Forest supports all com-
mands (e.g., insert, paste, delete) with nested cursors. Even
with this support, it is still not possible to perform certain
edits with nested cursors as shown in Figure 6. To convert
an individual function expression to an arrow function, the
user could copy the function body, insert an arrow func-
tion, paste over its body, and delete the function expression.
When editing multiple non-nested functions using multiple
non-overlapping cursors, the procedure is exactly the same.
However, this approach does not work with nested cursors.
Since the copy command copies the function bodies before
any edit operations (Step A of Figure 6), the final result is
a converted version of the outer function, but all function
expressions contained within are still unconverted (Step C).
While the inner cursors (second cursor in Step B) do still

describe("describe", function () {
 it("should be happy", function () {
 console.log("actually forwards body");
 });
});

describe(
 "describe",
 () => {
 it("should be happy", function () {
 console.log("actually forwards body");
 });
 },
 function () {
 it(
 "should be happy",
 () => {
 console.log("actually forwards body");
 },
 function () {
 console.log("actually forwards body");
 },
);
 },
)

describe("describe", () => {
 it("should be happy", function () {
 console.log("actually forwards body");
 });
});

A

B

C

Select body of function expression and copyA

Create arrow function, select body, and pasteB

Delete function expressionC

Figure 6. An attempt at converting function expressions to
arrow functions by copying and pasting the function body.
The inner function is not correctly converted due to the
nested copy-paste problem.

exist and make edits, they remain in the body of the old
outer function expression that eventually gets deleted. The
core problem is that if a cursor copies a region containing
other cursors, any future edits made by those cursors will
not affect the copy.

Workaround. Tomanually work around the problem, the
user could first edit with the innermost cursors, then repeat
the process with the next level of surrounding cursors. This
requires repeating the whole edit as many times as the deep-
est level of nesting (2 in our example). Forest provides a com-
mand to remove all cursors except the outermost/innermost
ones, so that at least the user does not have to manually select
the cursors for each level.

5 Evaluation
We propose multi-cursor structural editors as an interactive
equivalent to refactoring scripts based on AST transforma-
tion. In order to investigate whether multi-cursor structural
editors are capable of performing edits for which refactor-
ing scripts are typically used, we collected real refactoring

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

scripts from GitHub and attempted to perform their edits
interactively in Forest.

5.1 Method
Script Framework. We considered only scripts written

with the jscodeshift [3] framework. It is the de-facto stan-
dard for scripts that refactor JavaScript and TypeScript code.
Although scripts that use the TypeScript compiler API in-
stead of jscodeshift exist, we did not consider them, since
jscodeshift is more widely used and has been available for
longer. Generally, scripts that use the TypeScript compiler
API are similar to those which use jscodeshift.

Finding Scripts. Since there is no official collection of
representative jscodeshift scripts, we considered those in the
most-starred list of jscodeshift scripts on GitHub [26]. The
original scripts are contained in our archived artifact. There
is also a longer list [6] which we did not use, although we
expect that using it would give qualitatively similar results.
We ignored 4 repositories from the list. These repositories
and the reasons for ignoring them are described in appendix
A.3.We ignored individual 12 refactoring scripts. The reasons
for ignoring individual scripts (e.g. not having example code
or being unrealistically simple) are given in appendix A.4.

Classification. Most repositories in the list contained
multiple refactoring scripts. We considered each script sep-
arately. We inspected the scripts themselves, as well as the
before/after example programs that were used as test cases.
Each script was classified based on whether we could repro-
duce its edits in Forest using a best-effort approach:

• No: From reading the code it is clear that this or a
similar refactor would not be possible in Forest for a
major reason.

• Maybe: This refactor or something similar would likely
be possible, but would require a new feature, extra
manual work, or a trade-off in the result.

• Yes: This refactor is clearly possible. The same kinds of
limitations as for Maybe are acceptable, but they must
be quite minor.

Editing Attempts. For scripts that were classified as
Maybe or Yes, we tried performing their edits in Forest. Some
of these edits can be viewed step-by-step in Forest (Footnote
1). We wrote down any unforeseen issues and limitations of
our solution. Since Forest is a prototype, it lacks support for
certain language constructs. We approximated unsupported
constructs using existing supported syntax. For example,
import { render } from "react-dom" was written as
fakeImport([render], "react-dom"). These cases still count
towards the “unsupported syntax” issue in our results.

Previously Used Examples. Prior to conducting this
evaluation, we had already tried to reproduce the edits of
some refactoring scripts in Forest and added new features

accordingly. Three of the scripts [22] included in our eval-
uation were previously used. Each of these scripts has a
corresponding example (Figures 5, 4, and 6).

5.2 Results
We used a total of 48 refactoring scripts in our evaluation
(not counting ignored scripts). We classified them as follows:
20 No, 17 Maybe, and 11 Yes. Table 1 lists the issues that we
encountered during our editing attempts. The rest of this sec-
tion describes those issues. We focus on commonly occurring
issues that are not clear from the name alone. Additionally,
we describe some less common issues that we consider es-
pecially important. Appendix A.4 contains a detailed listing
which describes the functionality of each script and gives
our evaluation result, including a list of encountered issues.

“Unsupported syntax”. The most common issue in our
evaluation was “unsupported syntax”. However, this was
almost never the issue that caused a script to be classified No
— it just happened to be a common issue overall. The only
exception was a script that required template literals, which
are not similar to any supported syntax in Forest and would
require extensive work to accommodate.

“Nested copy-paste would be an issue”. This issue is dis-
cussed extensively in Section 4.7, since it was known to us
before this evaluation.

“Have to recreate cursor multiple times”. Consider the
cursors on the left side of Figure 4. It is possible to keep
only the cursors containing object literals and perform an
edit with them. It is also possible to keep only the cursors
containing identifiers and perform a different edit with them.
However, it is not possible to perform these two edits in
sequence, without manually recreating some cursors. Once
all cursors except those containing object literals have been
deleted, there is no command to restore them (“undo selec-
tion change” does not work across edits; marks are saved per
cursor, so they cannot recreate deleted cursors). By deleting
cursors before an edit, Forest can represent edits with pseu-
docode of the form:
if (cursor.matchesCondition(conditionA)) {

cursor.performEdit(editA)

}

// no further edits

However, since checking the condition is done by deleting
cursors, edits of the following form can not be represented:
if (cursor.matchesCondition(conditionA)) {

cursor.performEdit(editA)

}

cursor.performEdit(editB)

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Table 1. Issues encountered while performing the edits of real-world refactoring scripts (Section 5). The numbers in each row
indicate the number of scripts where we encountered the given issue. The Total column counts scripts regardless of how we
classified them. The other columns only count scripts that had the corresponding classification. For example, we encountered
the issue “Have to recreate cursors multiple times” with 8 scripts, 2 of which were classified No. Note that each script may
have multiple issues. Scripts classified Yes often had no issues. The issues (rows in italics) are grouped into categories (rows in
bold). The ellipsis (· · ·) indicates that some issues were omitted for brevity. See Table 2 for a full table.

Total No Maybe Yes Category or Specific Issue
27 7 17 3 Missing features that require conceptual changes
8 2 5 1 Have to recreate cursors multiple times
6 2 4 0 Cannot handle separately found locations together
2 1 1 0 None-one-many issue

· · ·
21 12 9 0 Missing features that do not require conceptual changes
5 2 3 0 No strict “find usages of variable”
2 2 0 0 Cannot remove duplicate items

· · ·
11 11 0 0 Edit is too complicated for multi-cursor structural editing
3 3 0 0 Lookup tables are possible but impractical

· · ·
11 6 4 1 Unsupported syntax
11 6 4 1 Unsupported syntax

“Cannot handle separately found locations together”.
Consider a program containing multiple object literals, each
with a similar set of fields. A user would like to edit some of
these object literals simultaneously using multiple cursors.
Specifically, they would like to edit object literals which are
arguments in a call to the function f (f({ ... })), as well as
object literals used in return statements (return { ... }).
In Forest, the user can find object literals used in a call
to f, edit those, then delete all cursors except one, find
all object literals used in return statements, and edit those.
However, there is no way for the user to find object liter-
als used either in a call to f or in a return statement, then
edit all of them simultaneously (regardless of which of the
two conditions they matched). The following pseudocode
describes such an edit (which is not possible in Forest):
if (

cursor.matchesCondition(conditionA) ||

cursor.matchesCondition(conditionB)

) {

cursor.performEdit(editA)

}

“None-one-many issue”. Some commands in Forest
work differently depending on whether a list contains no
items, one item, or more than one item. Consider three cur-
sors focused on the argument lists (excluding parentheses)
of a(), b(x.y) and c(x.y, z). If the user executes the “split
cursor” command (in relaxed multi cursor mode), they would

get one cursor in the argument list of a (unchanged, since
the command failed), a cursor on x in b, a cursor on y in b, a
cursor on x.y in c, and a cursor on z in c. The differences be-
tween one item and more than one item are typically caused
by Forest’s handling of equivalent cursors. The differences
between no items and some items are typically caused by
commands requiring at least one item to function.

6 Related Work
This section gives an overview of existing structural code edi-
tors, as well as existing approaches for performing repetitive
code edits which were shown in Figure 1.

Early Structural Editors. Structural code editors (also
called structure editors or projectional editors) are editors in
which the navigation and editing commands operate on a
tree representation of a program, rather than allowing the
user to arbitrarily modify the text of a source file. Struc-
tural editors have a long history, with some created as early
as the 1970s (Emily [15]), and many more created around
the 1980s (Mentor [10], Cornell program synthesizer [28],
GANDALF [11], Syned [13], Lispedit [20], Poe [12]). These
projects made some assumptions that no longer hold in to-
day’s environment. Many older structural editors were de-
signed for Pascal, which has a simpler syntax compared to
TypeScript and other modern languages. We believe that
complex syntax makes some designs impractical, such as
dropdown menus to select the type of AST node to insert,

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

or hints showing possible locations for optional children,
because the user may be overwhelmed by the number of
choices and hints. Designing for acceptable performance
was a major constraint for old editors, but today’s more pow-
erful computers require much less focus on performance and
make new designs possible. Additionally, many features that
motivated old structural editors are now commonplace in our
structure-aware text editors. Some examples are scope-aware
auto-completion, jump-to-definition, refactors for extracting
and moving code, and continuous type checking.

Newer Structural Editors. Since the 1980s there has
been less active development of structural editors. Some
notable newer projects are MPS [2] (usually Java as base
language; language workbench), Envision [1] (a subset of
Java; focus on visualization), Hazel [24] (custom functional
language), Lamdu [7] (custom functional language), and Gop-
Caml [14] (OCaml; plugin for Emacs). MPS is by far the most
widely used structural editor, yet it is almost completely
unknown compared to text editors. The fact that MPS is a
language workbench can add complexity for users, for ex-
ample when working with variable references [5]. GopCaml
is the closest to our work in that it fully supports OCaml,
which is a widely known language with complex syntax.

Multi-cursor Editing. Multi-cursor editing (also called
multiple selection or simultaneous editing) is a feature in text
editors which lets the user create more than one cursor/s-
election in a document. In response to a user’s command
(e.g., pressing backspace) every cursor moves and edits si-
multaneously. It was first described by Miller [21]. Sublime
Text (2008) seems to be the first widely used editor with a
multi-cursor feature. Since its release, this has become a stan-
dard feature in most common code editors (e.g., Ace, VScode,
emacs with a plugin, IntelliJ, and Notepad++). However, no
designs for multi-cursor structural code editors have been
proposed.We believe that multi-cursor editing and structural
editing have not been investigated in combination, because
multi-cursor editing became widespread much later than
the peak of interest in structural editors. Note that although
GopCaml [14] can be combined with multiple-cursors for
Emacs [27], there is almost no special handling or discussion
for this combination.

Kakoune. Kakoune [9] is a unique editor which combines
multi-cursor as a central primitive with a large set of text ma-
nipulation commands. It has some similarities to structural
editors while still being a text editor. In Kakoune, the user
always has at least one selection. Selections are always a text
range, not a text location. The user can widen, narrow or
split the selection, often using regular expressions. This can
be used to navigate in a similar way to moving up and down
a tree in a structural editor. Although, since Kakoune itself
has no understanding of programming language syntax, it is
not a structural editor. The rich set of commands in Kakoune

allows much more complex edits than in other multi-cursor
text editors. By issuing multiple commands that include reg-
ular expressions, a Kakoune user can achieve similar edits
to structural regular expressions [25].

Macros. Macros are either recordings of keypresses that
trigger editor commands or programs in a scripting language
that can control the editor. They can be used to achieve sim-
ilar results to multi-cursor editing. Although multi-cursor
editing is relatively new, macros are a feature even in older
text editors like Emacs and Vi. Some structural editors have
macro support (e.g., Mentor procedures [18]). The main ad-
vantage of multi-cursor editing compared to recordedmacros
is that multi-cursor editing shows the effect of every edit in
every location simultaneously, but a recorded macro only
shows edits in one location while recording.

AST Transformation Scripts. To perform precise large-
scale code changes it is possible to write scripts that oper-
ate on abstract syntax trees. This can either be done using
specialized transformation languages such as TXL [8], or
using general-purpose languages with compiler libraries for
parsing and printing. JavaScript developers generally use
jscodeshift [3] or the TypeScript compiler API for creating
such scripts. An example of such transformation scripts are
the React codemod scripts [4]. Such AST transformation
scripts are a heavyweight approach — they require special-
ized knowledge and are not created in an interactive editor.
We believe that writing such scripts is tedious, and may take
longer than performing the edits manually if the number of
edited locations is small.

Programming by Demonstration. Programming by
demonstration tools are another option for performing repet-
itive code changes. The user performs the desired change in
a few locations and the system finds more similar changes
and recommends equivalent edits. Examples of such systems
are Sydit [19] and reCode [23]. Programming by demonstra-
tion systems abstract edits from concrete examples, while in
multi-cursor systems the user directly performs edits with
sufficiently abstract commands.

Scripts vs Editors. Tomake large scale repetitive changes
to text files, a programmer may choose to write a small pro-
gram to perform the changes. Such text editing scripts are of-
ten written in scripting languages (e.g., Bash or Python) and
contain operations like regular expression searches, string
splitting, or loops. However, for most editing tasks, program-
mers will perform these edits in a normal text editor instead
of writing scripts. Some text editors (e.g., vim) can perform
many of the operations used in text editing scripts, espe-
cially when combined with macros. Such text editors could
be seen as the interactive equivalent of text editing scripts.
Analogously, we believe that multi-cursor structural editors
are the interactive equivalent of AST transformation scripts.
This idea is investigated in Section 5.

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

7 Discussion
In Section 5, we successfully used Forest to perform the
edits from 11 of the 48 refactoring scripts which we tested.
However, during this process, we discovered various issues
that limited the possible edits of 17 further scripts. Most of
these issues are related to multi-cursor editing.

Current Scope of Forest. In our evaluation, we found that
Forest can be used to perform a variety of common edits.
Examples of such edits are “swap two arguments in all calls
to a function with a specific name” or “replace selected func-
tion calls by their first argument”. The various features of
Forest can often be composed to achieve complex edits. Con-
sider the edit “move the selected property to the start of the
containing object literal”, which is possible in Forest. By per-
forming that edit in conjunction with Forest’s multi-cursor
and structural search features, the edit “in every object literal
containing a specific property, move that property to the start
of the object literal” also becomes possible. Further examples
of complex edits achieved by combining Forest’s features
are: “add an extra argument to every function call whose name
matches a regular expression”, “add a type annotation to every
variable declaration which does not have a type annotation, is
contained in a specific function, and whose name matches a
regular expression”, “find all array literals which are assigned
as values in const variable declarations”, and “add a print at
the start of every function that contains throw statements”.

Future Scope of Forest. Our evaluation highlighted mul-
tiple limitations in the current design of Forest. In order to
expand the set refactorings that are possible in Forest, we
plan to address the issues listed under “Missing features that
do not require conceptual changes” in Table 2. The refac-
torings that this makes possible are generally stricter or
larger-scale versions of the currently supported ones. Exam-
ples are “wrap every usage of a specific variable in a function
call” and “add a type annotation to every variable declara-
tion whose variable is used as the first argument in calls to a
specific function” (currently not possible since variables can
be found by name, but not by strict reference), as well as
“add an extra argument to every function call where the called
function is declared in a specific file” (requires both following
references and working with multiple files). We believe that
many of the issues listed under “Missing features that require
conceptual changes” could also be addressed, although their
design will require careful consideration.

Out-of-Scope Edits. We believe that certain edits will
never be performed in a multi-cursor structural editor such
as Forest. For example, refactoringswheremany special cases
must be handled are not practical to describe by interactively
issuing commands. Any edits with specialized logic, such
as dead code detection or parsing string literals, are not
possible in Forest, since theywould require a general purpose
programming interface. However, such tasks are handled

well by refactoring scripts. Additionally, since Forest works
with an abstract syntax tree representation of code, it can
not be used to adjust how code is formatted as text or to
work with files containing syntax errors.

Adoption. We envision Forest being adopted by users
of existing specialized developer tools, such as multi-cursor
editing, command based editors such as Vim, advanced refac-
torings in IDEs, or refactoring scripts. However, we believe
that Forest will only be adopted by a narrow expert audience,
since many developers do not use any of the previously listed
tools, which have comparable complexity to Forest. Under-
standing how difficult it is for developers to learn to use a
multi-cursor structural editor like Forest productively is an
interesting direction for future study. Other than the steep
learning curve, the are two major limitations that we expect
in a production version of Forest. First, non-standard syntax
is not allowed in source files. Second, all edited files must
be automatically pretty-printed, since Forest provides no
control over code formatting. Many projects already enforce
automatic pretty printing in their codebase.

Combining with Refactoring Scripts. Based on our
evaluation in Section 5, we believe that multi-cursor struc-
tural editing could become a viable alternative to writing
refactoring scripts in simple cases, but that such editors can-
not replace refactoring scripts in general. Based on our us-
age of Forest, we think that interactivity is a major strength
of multi-cursor editing. It may be possible to combine the
expressiveness of refactoring scripts with the interactivity
of multi-cursor editing. For example, consider a hypothet-
ical IDE where the user writes refactoring scripts, but can
interactively inspect intermediate search results and trans-
formations. By treating the intermediate search results as
cursors in a multi-cursor editor, the user would be able to
define transformations by performing them interactively. We
think that this is an interesting direction for future research.

Relationship to Textual Multi-cursor. Multi-cursor
editing in a structural editor is not fundamentally different
than multi-cursor editing in a text editor, but it is arguably
more powerful, because the power of multi-cursor editing
depends on the available single cursor editing commands.

Consider a minimal text editor where the only operations
are move cursor by one character, delete character, and insert
character. It would generally only be possible to edit two code
snippets using multi-cursor in such an editor if the code had
the same structure, the code was formatted identically, and
matching literals had the same length. Since most text editors
extend this minimal model with commands like move cursor
by one word and move cursor to end of line, matching literals
generally do not need to have the same length and minor
code formatting differences can be tolerated. Since structural
editors add structural movement and editing commands, they
can tolerate most formatting differences.

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

8 Conclusion
We have presented Forest, an editor with unique integra-
tion between structural editing and multi-cursor editing. We
have introduced the novel concept of a hierarchy of cur-
sors, which allows multi-cursor edits to be reused as part
of other multi-cursor edits. Additionally, we have designed
an interactive filtering system by introducing alternative
multi-cursor modes. We attempted to perform edits from
real-world refactoring scripts, and showed that Forest could
perform the edits comparably well to the scripts in 11 of the
48 cases. With improvements to our prototype, we expect
that a further 17 refactoring scripts from our evaluation to
be replaced. We believe that multi-cursor structural editors
could be useful for performing a wide range of specialized
ad-hoc refactorings.

Acknowledgments
This research was supported by a Ministry of Education
(MOE) Academic Research Fund (AcRF) Tier 1 grant.

References
[1] [n.d.]. Envision: A fast and flexible visual code editor with fluid inter-

actions (Overview). Melbourne, Australia.
[2] [n.d.]. MPS: The Domain-Specific Language Creator by JetBrains.

https://www.jetbrains.com/mps/
[3] 2021. jscodeshift. https://github.com/facebook/jscodeshift original-

date: 2015-03-07T00:32:16Z.
[4] 2021. reactjs/react-codemod. https://github.com/reactjs/react-

codemod original-date: 2015-10-19T20:47:22Z.
[5] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dang-

prasert, and Janet Siegmund. 2016. Efficiency of projectional editing:
a controlled experiment. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE
2016). Association for Computing Machinery, New York, NY, USA,
763–774. https://doi.org/10.1145/2950290.2950315

[6] Rajasegar Chandran. 2021. Awesome Codemods. https://github.com/
rajasegar/awesome-codemods original-date: 2019-12-11T00:38:56Z.

[7] Yair Chuchem and Eyal Lotem. [n.d.]. Lamdu. https://www.lamdu.org/
[8] James R. Cordy. 2006. The TXL source transformation language. Science

of Computer Programming 61, 3 (Aug. 2006), 190–210. https://doi.org/
10.1016/j.scico.2006.04.002

[9] Maxime Coste. [n.d.]. Kakoune - Official site. https://kakoune.org/
[10] Véronique Donzeau-Gouge, Gérard Huet, Bernard Lang, and Gilles

Kahn. 1980. Programming environments based on structured editors: the
Mentor experience. Technical Report. INRIA.

[11] Robert J. Ellison and Barbara J. Staudt. 1985. The evolution of the
GANDALF system. Journal of Systems and Software 5, 2 (May 1985),
107–119. https://doi.org/10.1016/0164-1212(85)90012-3

[12] C. N. Fischer, Gregory F. Johnson, Jon Mauney, Anil Pal, and Daniel L.
Stock. 1984. The Poe language-based editor project. In Proceedings of
the first ACM SIGSOFT/SIGPLAN software engineering symposium on

Practical software development environments (SDE 1). Association for
Computing Machinery, New York, NY, USA, 21–29. https://doi.org/
10.1145/800020.808245

[13] E. Gansner, J. R. Horgan, D. J. Moore, P. Surko, D. Swartwout, and
J. Reppy. 1983. Syned – A Language-Based Editor for an Interactive
Programming Environment. Technical Report.

[14] Kiran Gopinathan. 2021. GopCaml: A Structural Editor for
OCaml. https://icfp21.sigplan.org/details/ocaml-2021-papers/11/
GopCaml-A-Structural-Editor-for-OCaml

[15] Wilfred J. Hansen. 1971. User engineering principles for interactive
systems. In Proceedings of the May 16-18, 1972, spring joint computer
conference on - AFIPS ’72 (Spring). ACM Press, Atlantic City, New Jersey,
523. https://doi.org/10.1145/1479064.1479159

[16] Miryung Kim and Na Meng. 2014. Recommending Program Trans-
formations. In Recommendation Systems in Software Engineering,
Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas
Zimmermann (Eds.). Springer, Berlin, Heidelberg, 421–453. https:
//doi.org/10.1007/978-3-642-45135-5_16

[17] L. Meertens, S. Pemberton, and G. Rossum. 1992. The ABC structure
editor – Structure-based editing for the ABC programming environment.
Technical Report.

[18] B Melese, V Migot, and D Verove. 1985. The Mentor-V5 documentation.
Technical Report. INRIA.

[19] Na Meng, Miryung Kim, and Kathryn S. McKinley. 2011. System-
atic editing: generating program transformations from an example.
In Proceedings of the 32nd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI ’11). Association
for Computing Machinery, New York, NY, USA, 329–342. https:
//doi.org/10.1145/1993498.1993537

[20] Martin Mikelsons. 1983. Interactive program execution in Lispedit. In
Proceedings of the symposium on High-level debugging (SIGSOFT ’83).
Association for Computing Machinery, New York, NY, USA, 71–80.
https://doi.org/10.1145/1006147.1006164

[21] Robert C. Miller and B. Myers. 2001. Interactive Simultaneous Editing
of Multiple Text Regions. In USENIX Annual Technical Conference,
General Track.

[22] Christoph Nakazawa. 2022. cpojer/js-codemod. https://github.com/
cpojer/js-codemod original-date: 2015-03-23T04:45:13Z.

[23] Wode Ni, Joshua Sunshine, Vu Le, Sumit Gulwani, and Titus Barik.
2021. reCode : A Lightweight Find-and-Replace Interaction in the
IDE for Transforming Code by Example. In The 34th Annual ACM
Symposium on User Interface Software and Technology. ACM, Virtual
Event USA, 258–269. https://doi.org/10.1145/3472749.3474748

[24] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019.
Live functional programming with typed holes. Proceedings of the ACM
on Programming Languages 3, POPL (Jan. 2019), 14:1–14:32. https:
//doi.org/10.1145/3290327

[25] Rob Pike. 1987. Structural Regular Expressions. Technical Report. AT&T
Bell Laboratories.

[26] Yevgen Safronov. 2021. awesome jscodeshift. https://github.com/
sejoker/awesome-jscodeshift original-date: 2016-03-05T21:07:18Z.

[27] Magnar Sveen. 2021. multiple-cursors.el. https://github.com/magnars/
multiple-cursors.el original-date: 2012-01-24T08:45:50Z.

[28] Tim Teitelbaum and Thomas Reps. 1981. The Cornell program synthe-
sizer: a syntax-directed programming environment. Commun. ACM
24, 9 (Sept. 1981), 563–573. https://doi.org/10.1145/358746.358755

https://www.jetbrains.com/mps/
https://github.com/facebook/jscodeshift
https://github.com/reactjs/react-codemod
https://github.com/reactjs/react-codemod
https://doi.org/10.1145/2950290.2950315
https://github.com/rajasegar/awesome-codemods
https://github.com/rajasegar/awesome-codemods
https://www.lamdu.org/
https://doi.org/10.1016/j.scico.2006.04.002
https://doi.org/10.1016/j.scico.2006.04.002
https://kakoune.org/
https://doi.org/10.1016/0164-1212(85)90012-3
https://doi.org/10.1145/800020.808245
https://doi.org/10.1145/800020.808245
https://icfp21.sigplan.org/details/ocaml-2021-papers/11/GopCaml-A-Structural-Editor-for-OCaml
https://icfp21.sigplan.org/details/ocaml-2021-papers/11/GopCaml-A-Structural-Editor-for-OCaml
https://doi.org/10.1145/1479064.1479159
https://doi.org/10.1007/978-3-642-45135-5_16
https://doi.org/10.1007/978-3-642-45135-5_16
https://doi.org/10.1145/1993498.1993537
https://doi.org/10.1145/1993498.1993537
https://doi.org/10.1145/1006147.1006164
https://github.com/cpojer/js-codemod
https://github.com/cpojer/js-codemod
https://doi.org/10.1145/3472749.3474748
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3290327
https://github.com/sejoker/awesome-jscodeshift
https://github.com/sejoker/awesome-jscodeshift
https://github.com/magnars/multiple-cursors.el
https://github.com/magnars/multiple-cursors.el
https://doi.org/10.1145/358746.358755

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

A Appendix
A.1 Basic Commands in Forest
The following commands are used for both single-cursor
and multi-cursor editing in Forest. Section 3 describes the
general behavior of Forest, as well as the design decisions
concerning some of the following commands.

Move to parent
/ Move to previous/next leaf node
+ / Extend selection to previous/next leaf node
Space Reduce selection to element just added by

extend
Alt + / Reduce selection to first/last element
(, [, { , < Select contents of first list delimited by

this matching pair (descendant of current selection)
Select contents of first list delimited by any matching

pair (descendant of current selection)
) ,] , } , > Select closest list delimited by this

matching pair (ancestor of current selection)
+ Select closest list delimited by any matching pair

(ancestor of current selection)
z , + z Undo or redo selection change
Ctrl + + / Remove last/first element from selection
i , a Insert text before/after cursor
d Delete selected nodes
c , p Copy and paste

A.2 Multi-Cursor Commands in Forest
The following commands are used for performing multi-
cursor editing. Their behavior is described in Section 4.

s Split cursor by creating cursors for each selected list
item
q Queue selection to later create a cursor with

+ q Create cursors from each queued selection
(replaces existing cursor)

+ s / / / Remove all cursors except the
first/last/outermost/innermost ones
m letter Save current selection as mark (named by letter)

+ m letter Jump to selection that was saved as mark
(named by letter)
r Rename all selected identifiers using JavaScript

expression
/ Open structural search
y r / d / s Change multi-cursor mode to relaxed/drop/

strict
+ y s / f / a Restore state before failure and keep

successful/failed/all cursors (branching)
+ y i Ignore failure (keep current state and cursors)

A.3 Listing of Ignored Repositories
AMD Transformer. The scripts in this repository modify
a codebase to use the AMD module system. We were not
familiar enough with the AMD module system to work with
these scripts.

coffee-to-es2015-codemod. This repository contains a de-
compiler written in the form of refactoring scripts. The
scripts read the output of the CoffeeScript compiler, guess
the high-level constructs which were likely used in the orig-
inal CoffeeScript code, and replace them by their JavaScript
equivalent.

lodash-to-lodash-amd-codemods. The scripts in this
repository modify the way that functions from a specific li-
brary are imported and called, in order for the final program
to be efficiently processed by a build system. The repository
did not contain sufficient examples to understand the scripts
without knowledge of this specific module loading system.

react-codemod. The scripts in this repository perform
changes which are helpful when migrating applications to
newer versions of the React framework. To ensure that they
work robustly in large codebases, most of the scripts handle
multiple special cases and contain extensive checks. Han-
dling this many special cases and checks is out of scope for
our system.

A.4 Listing of Refactoring Scripts
5to6-codemod.

amd.
Result: no; Issues: A9, D1
Compile AMD modules to ES6 modules.

cjs.
Result: no; Issues: C1, D1
Compile CommonJS modules to ES6 modules (imports
only).

exports.
Result: no; Issues: C1
Compile CommonJS modules to ES6 modules (exports
only).

let.
Result: yes; Issues: none
Replace var with let, independent of how the variable is
used.

named-export-generation.
Result: no; Issues: C1
Generate a named export for every property of a default-
exported object literal.

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

no-strict.
Result: yes; Issues: none
Delete a specific statement.

simple-arrow.
Result: maybe; Issues: A3
Replace function expressions with a single return by arrow
functions with shorthand returns.

es5-function-to-class-codemod.

func-to-class.
Result: no; Issues: B7, D1
Convert classes declared with functions and prototypes
to ES6 classes.

js-codemod.

arrow-function.
Result: maybe; Issues: A1, A2, B2
Replace normal functions with arrow functions with some
exceptions. The functions must be unbound when or
bound only with this. The body of unbound functions
must not reference this.

arrow-function-arguments.
Result: no; Issues: A1, B7, C1
Create an array expression which represents all the argu-
ments to an arrow function. Add a spread to the param-
eter list if necessary. Replace all usages of the variable
arguments by that expression.

expect.
Result: no; Issues: C2
Switch every assertion from one assertion library to an-
other. Replace certain function names. Sometimes replace
the whole expression and copy over parts.

flow-bool-to-boolean.
This script was ignored
Replace references to one type by references to another
type. Only modify references that are type position. This
script uses non-standard syntax.

invalid-requires.
This script was ignored
Same as unchain-variables, but limited to statements
that contain require. This script was ignored, because it
is too similar to the other script.

jest-11-update.
This script was ignored
No example code.

jest-arrow.
Result: maybe; Issues: A3
Replace normal functions with arrow functions with some
exceptions. Only modify function that are used as argu-
ments to calls to a specific library.

jest-remove-describe.
Result: maybe; Issues: B4, B9
Replace function calls by their body with some exceptions.
Only modify functions that have a specific name. Only
modify functions that are at the top level of the program.

jest-remove-disable-automock.
Result: yes; Issues: none
Remove calls to a specific function. Preserve any calls that
are chained from the removed call.

jest-rm-mock.
This script was ignored
No example code.

jest-update.
This script was ignored
No example code.

no-reassign-params.
This script was ignored
No example code.

no-vars.
Result: no; Issues: C1
Replace var with let or const depending on usage.

object-shorthand.
Result: no; Issues: B6
Convert properties where both sides are the same to short-
hand syntax. Convert properties whose value is a function
to method syntax.

outline-require.
This script was ignored
No example code.

rm-copyProperties.
Result: no; Issues: C1
Replace calls to a library function with Object.assign or
object literals. This script has many checks and exceptions.

rm-merge.
Result: yes; Issues: A1, A4
Replace calls to library function with object literals.

rm-object-assign.
Result: maybe; Issues: A5
Replace calls to ‘Object.assign‘ with object literals. Only
modify calls where the first argument is a literal. Do not
modify calls where any argument is spread.

rm-requires.
Result: no; Issues: B1, B5
Remove calls to specific function if their result is never
used. Remove duplicate function calls and update refer-
ences to their results.

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

template-literals.
Result: no; Issues: D1
Replace additions of strings with template literals.

touchable.
Result: no; Issues: D1
Replace JSX element by its children. Only replace elements
that have a specific kind of parent. Only replace elements
that are the only child of their parent.

trailing-commas.
This script was ignored
This script only affects code formatting.

unchain-variables.
Result: yes; Issues: none
Flatten variable declarations into multiple statements.

underscore-to-lodash-native.
Result: no; Issues: C2
Replace calls to library with calls to other library or built
in functions. This script affects calls to many different
functions.

unquote-properties.
This script was ignored
Remove quotes from property names if they are not nec-
essary. Quoted properties are not supported by our proto-
type.

updated-computed-props.
This script was ignored
No example code.

use-strict.
Result: maybe; Issues: B3
Add a specific statement to the start of each file.

js-transforms.

bind-this-to-bind-expression.
This script was ignored
Replace specific function calls by non-standard syntax.

call-expression-bind-...-function-expression.
Result: maybe; Issues: A1, A3, A4, A8
Replace function expressions by arrow functions. Replace
arrow function bodies containing single return by short-
hand. Only modify functions that are directly used with
.bind(this).

function-expression-...-function-expression.
Result: maybe; Issues: none
Replace function expressions by arrow functions. Replace
arrow function bodies containing single return by short-
hand. Only modify functions whose body does not contain
this.

props-to-destructuring.
Result: no; Issues: B5, B7, C1, C2
Replace property accesses by destructuring and variable
references. Do not add a destructure if the variable already
exits. Do not use any reserved words.

pure-to-composite-component.
Result: maybe; Issues: A1, A3, B2, D1
Replace an expression and copy over some parts. Only
modify expressions that contain specific syntax. Replace
references to a specific variable by property access.

mocha2ava-codemod.

add-pass-test.
Result: maybe; Issues: A2, A2, B1
Modify functions that are used as arguments to a specific
function. Applies to arrow functions, normal functions
and functions wrapped in a call. Append a statement to
the end of the function. Only modify functions if a specific
variable is never used inside their body.

extractDescribes.
Result: no; Issues: A7, C3
Flatten a set of nested functions and function calls. Con-
catenate strings used as arguments in each flattened level.

insertRequires.
Result: no; Issues: A1, D1
Add an import statement or a variable declaration with a
function call. Do not add the statement if it already exists.
Use an import statement if there are any other import
statements in the file.

it2test.
Result: maybe; Issues: none
Add a property access before a function call. Add an ar-
gument to the callback (arrow function or function ex-
pression). Only modify calls to a specific set of functions.
Replace calls to a specific function by calls to a different
function.

this2context.
Result: yes; Issues: none
Replace the left hand side of a property access by another
property access. Only modify property accesses whose
left hand side is this.

preact-codemod.

component.
Result: maybe; Issues: A1
Apply one of two other refactorings to calls to a specific
function.

component-class.
Result: maybe; Issues: D1
Replace a function call with an object literal with functions
by a class with methods.

Onward! ’22, December 8–10, 2022, Auckland, New Zealand Philippe Voinov, Manuel Rigger, and Zhendong Su

component-sfc.
Result: yes; Issues: none
Replace a function call by a function expression from one
of the arguments. Only modify function calls whose argu-
ment is an object with certain properties.

import-declarations.
Result: maybe; Issues: A1, B3
Replace a specific import by another import. Add an im-
port if a specific function is used.

props.
Result: yes; Issues: A3, D1
Replace property accesses by variable references. Add an
argument to the containing function. Only modify the
containing function if it has no arguments.

removePropTypes.
Result: yes; Issues: none
Remove a specific import. Remove assignments to a spe-
cific property.

state.
Result: yes; Issues: none
Replace property accesses by variable references. Add an
argument to the containing function. Only modify the
containing function if it has no arguments. Add another
argument to the containing function if it has one argu-
ment.

rackt-codemod.

deprecate-createPath-createHref-query.
Result: yes; Issues: none
Replace arguments to a specific function by named argu-
ments in an object literal. Replace strings by expressions
created by parsing the strings.

deprecate-isActive-query.
Result: no; Issues: A2, A5, B8
Replace arguments to a specific function by named argu-
ments in an object literal. Different handling depending
on number of arguments.

deprecate-pushState-replaceState.
This script was ignored
Replace arguments to specific function by named argu-
ments in an object literal. Replace strings by expressions
created by parsing the strings.

react-router/deprecate-Link-location-props.
Result: no; Issues: D1
Modify a JSX prop if another prop from a specific set is
present. Copy over expressions and delete old props.

react-router/deprecate-context-history.
Result: maybe; Issues: A2
Multiple different structural find-replaces.

rm-debugger.

rm-debugger.
This script was ignored
Remove a specific statement. This script is unrealistically
simple.

undecorate-codemod.

undecorate.
Result: no; Issues: D1
Remove decorators from class declarations and wrap them
in a corresponding function call. Create a temporary vari-
able and export statement if the class was not default-
exported.

vue-codemods.

extract_non_instance_methods.
Result: maybe; Issues: B1, B1, D1
Replace methods in an object literal by functions at the
top level of the file.

sort_keys.
Result: no; Issues: B11
Sort properties within an object literal according to mul-
tiple rules. Sort certain properties according to a lookup
table.

uppercase_constants.
Result: no; Issues: A2, B1, B10, B4, B6
Rename variable names to upper case in const declara-
tions. Rename all references to the renamed variable. Re-
place string constants by identifiers and create variable
declarations if the same constant appears multiple times.

webpack-babel-codemod.

dynamic-require-import.
Result: maybe; Issues: A6, D1
Replace properties whose value is a function call by short-
hand properties. Hoist function calls to the top of the file.

Forest: Structural Code Editing with Multiple Cursors Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Table 2. Issues encountered while performing the edits of real-world refactoring scripts (Section 5). This is a full version of
Table 1 with no issues omitted. The numbers in each row indicate the number of scripts where we encountered the given issue.
The Total column counts scripts regardless of how they were classified. The other columns only count scripts that had the
corresponding classification. For example, we encountered the issue “Have to recreate cursors multiple times” with 8 scripts, 2
of which were classified No. Note that each script may have multiple issues. Scripts classified Yes often had no issues. The
issues (rows in italics) are grouped into categories (rows in bold).

Affected Scripts
ID Total No Maybe Yes Category or Specific Issue

27 7 17 3 Missing features that require conceptual changes
A1 8 2 5 1 Have to recreate cursors multiple times
A2 6 2 4 0 Cannot handle separately found locations together
A3 5 0 4 1 Nested copy-paste would be an issue
A4 2 0 1 1 Manual parenthesizing required
A5 2 1 1 0 None-one-many issue
A6 1 0 1 0 Adding after first import or as first statement if no imports doesn’t work
A7 1 1 0 0 Can do the flatten sometimes, but not in the general case
A8 1 0 1 0 Matching is different because of search in flattened AST
A9 1 1 0 0 No support for zipping lists of cursors

21 12 9 0 Missing features that do not require conceptual changes
B1 5 2 3 0 No strict “find usages of variable”
B2 2 0 2 0 Bug in paste
B3 2 0 2 0 Cannot edit multiple files
B4 2 1 1 0 Cannot filter top-level statements
B5 2 2 0 0 Cannot remove duplicate items
B6 2 2 0 0 Cannot search for dynamic query
B7 2 2 0 0 No strict “find declarations of variable”
B8 1 1 0 0 Cannot filter for exactly one item in list
B9 1 0 1 0 Cannot filter for exactly one search match
B10 1 1 0 0 Cannot search up
B11 1 1 0 0 No sort feature

11 11 0 0 Edit is too complicated for multi-cursor structural editing
C1 7 7 0 0 Too complicated
C2 3 3 0 0 Lookup tables are possible but impractical
C3 1 1 0 0 Cannot create AST by parsing arbitrary string using JS

11 6 4 1 Unsupported syntax
D1 11 6 4 1 Unsupported syntax

	Abstract
	1 Introduction
	2 Motivating Example
	3 Forest
	3.1 Overview of Design
	3.2 Selections
	3.3 Flatter AST
	3.4 Navigation
	3.5 Deletion and Placeholders

	4 Multi-Cursor Editing
	4.1 Relaxed Mode
	4.2 Creating Multiple Cursors
	4.3 Hierarchy of Cursors
	4.4 Marks
	4.5 Filtering Cursors
	4.6 Overlapping Cursors
	4.7 Nested Cursors

	5 Evaluation
	5.1 Method
	5.2 Results

	6 Related Work
	7 Discussion
	8 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Basic Commands in Forest
	A.2 Multi-Cursor Commands in Forest
	A.3 Listing of Ignored Repositories
	A.4 Listing of Refactoring Scripts

