University of

"1l Kent Academic Repository

Ugawa, Tomoharu, Marr, Stefan and Jones, Richard (2022) Profile Guided
Offline Optimization of Hidden Class Graphs for JavaScript VMs in Embedded
Systems. ACM Computer Surveys . ISSN 0360-0300.

Downloaded from
https://kar.kent.ac.uk/97523/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1145/1122445.1122456

This document version
Author's Accepted Manuscript

DOI for this version
https://doi.org/10.22024/UniKent/01.02.97523.3281161

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts

If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title

of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries

If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see

our Take Down policy (available from https://www.kent.ac.uk/quides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/97523/
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.22024/UniKent/01.02.97523.3281161
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

Profile Guided Offline Optimization of Hidden Class
Graphs for JavaScript VMs in Embedded Systems

Tomoharu Ugawa Stefan Marr Richard Jones
tugawa@acm.org s.marr@kent.ac.uk R.E.Jones@kent.ac.uk
University of Tokyo University of Kent University of Kent
Japan United Kingdom United Kingdom

Abstract

JavaScript is increasingly used for the Internet of Things
(IoT) on embedded systems. However, JavaScript’s memory
footprint is a challenge, because normal JavaScript virtual
machines (VMs) do not fit into the small memory of IoT
devices. In part this is because a significant amount of mem-
ory is used by hidden classes, which are used to represent
JavaScript’s dynamic objects efficiently.

In this research, we optimize the hidden class graph to
minimize their memory use. Our solution collects the hidden
class graph and related information for an application in a
profiling run, and optimizes the graph offline. We reduce the
number of hidden classes by avoiding introducing interme-
diate ones, for instance when properties are added one after
another. Our optimizations allow the VM to assign the most
likely final hidden class to an object at its creation. They also
minimize re-allocation of storage for property values, and
reduce the polymorphism of inline caches.

We implemented these optimizations in a JavaScript VM,
€JSVM, and found that offline optimization can eliminate
61.9% of the hidden classes on average. It also improves
execution speed by minimizing the number of hidden class
transitions for an object and reducing inline cache misses.

CCS Concepts: « Software and its engineering — Virtual
machines.

Keywords: JavaScript, virtual machine, embedded systems,
hidden class, inline caching, profiling, offline optimization,
IoT

ACM Reference Format:

Tomoharu Ugawa, Stefan Marr, and Richard Jones. 2022. Profile
Guided Offline Optimization of Hidden Class Graphs for JavaScript
VMs in Embedded Systems. In Proceedings of the 14th ACM SIG-
PLAN International Workshop on Virtual Machines and Intermediate
Languages (VMIL °22), December 05, 2022, Auckland, New Zealand.

VMIL °22, December 05, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual
Machines and Intermediate Languages (VMIL °22), December 05, 2022, Auck-
land, New Zealand, https://doi.org/10.1145/3563838.3567678.

ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3563838.
3567678

1 Introduction

Traditionally, JavaScript has been used for web applications.
However, its event-driven programming style and support
for rapid program development has led to interest in de-
ploying JavaScript for Internet of Things (IoT) applications
on embedded systems. Notable examples include Espruino,’
IoT.js,> and Moddable® [8]. Unfortunately the huge memory
footprint of modern JavaScript virtual machines (VMs) pre-
cludes their use in resource constrained embedded systems.
The Raspberry Pi Pico micro controller, a typical micro con-
troller for IoT, has only 256KB SRAM 4 Thus, embedded
systems require a specialized JavaScript VM that represents
objects and their associated data structures in a space effi-
cient form.

Fortunately, such JavaScript VMs specialized for a prede-
termined program are practical for embedded systems. In
contrast, JavaScript VMs for browsers must be able to exe-
cute any JavaScript program found in the web pages users
access. Some JavaScript VMs already do this specialization
in embedded systems 8, 17] and even Java server applica-
tions have started to adopt support for such closed-world
approaches with GraalVM’s native-image compilation [18].
The closed-world assumption brings the opportunity to ap-
ply offline profile-guided optimization (PGO) to the VM. We
can execute the program with a profiling VM to collect in-
formation about its behaviour and then optimize the VM for
this particular program.

Modern JavaScript VMs usually use an optimization re-
ferred to as hidden classes or maps [3], which represent
JavaScript’s dynamic objects efficiently. The hidden classes
are meta-objects that represent objects’ layout information,
i.e., property names and offsets to their values. Hidden classes
are created on-demand and cached, forming a state transi-
tion graph called the hidden class graph, whose nodes are
hidden classes representing a state of the object. Whenever a
property is added to an object, a new hidden class is allocated

Thttps://espruino.com

Zhttps://iotjs.net

Shttps://www.moddable.com/
4https://www.raspberrypi.com/products/raspberry-pi-pico/

https://orcid.org/0000-0002-3849-8639
https://orcid.org/0000-0001-9059-5180
https://orcid.org/0000-0002-8159-0297
https://doi.org/10.1145/3563838.3567678
https://doi.org/10.1145/3563838.3567678
https://doi.org/10.1145/3563838.3567678

VMIL 22, December 05, 2022, Auckland, New Zealand

(unless one already exists) and added to the graph, and the
state of the object transitioned to use this hidden class.

Although hidden classes represent objects efficiently, they
come at some cost. First, they are cached and occupy memory,
enlarging an application’s memory footprint. Second, hidden
class transitions may need to allocate new hidden classes
and to re-allocate the storage for property values.

In this research, we are the first to apply offline PGO to
hidden classes. More specifically, we collect the hidden class
graph and related information for each allocation site in a
profiling run. Based on the profiling results, we construct an
optimized hidden class tree offline, with the following novel
optimizations:

e We compute the hidden class that most objects allo-
cated at a site will have.

e We eliminate intermediate hidden classes and transi-
tions, which are common when properties are added
one after another.

e We bias the chains of hidden class transitions to favor
the most frequently used case.

The optimized hidden class graphs are loaded in the actual
run, and installed at allocation sites. Thanks to the optimized
graph, objects can be created pretransitioned to the first hid-
den class in the optimized graph and with sufficient storage
for property values, avoiding the need for re-allocation. Fur-
thermore, eliminating intermediate hidden classes reduces
the variation of hidden classes, thus helping to reduce the
polymorphism of the inline caches.

We implemented these offline optimizations of the hidden
class graph in eJ]SVM [17], a JavaScript VM for embedded
systems. These optimizations improved the memory foot-
print of all our benchmark programs, reducing the volume
of hidden classes by 61.9% on average and overall footprint
by 3-30%. Execution speed improved for all benchmarks, in
the best cases by 11.6-17.6%. This improvement came from
not only avoiding re-allocations but also improvements in
the inline cache hit ratio.

The contributions of this work are as follows:

e We demonstrate that the hidden class graph is reusable
across program runs.

e We propose offline optimizations for hidden class graphs.

e We implement and evaluate several offline optimiza-
tions in a JavaScript VM for embedded systems and
demonstrate that the memory footprint is reduced
while execution speed is improved.

2 Background

JavaScript. JavaScript is a dynamic programming lan-
guage. Non-primitive data in JavaScript are called objects,
which correspond to mutable mappings from property names
to their values. Thus, a JavaScript program can add arbitrary
properties to objects after they are created. For example, the

Tomoharu Ugawa, Stefan Marr, and Richard Jones

program in Figure 1 creates an object without properties.
Then, it adds properties x and y one after another.

In addition to properties, JavaScript’s objects have proto-
type objects. When a program tries to read from a property
that the object does not have, it looks up the prototype object
for the property value. Prototype objects have in turn their
own prototype objects. A read request for a property that the
prototype object does not have is forwarded to its prototype
object. In this way, prototype objects form a chain, called
the prototype chain.

For example, the program in Figure 2 creates an object a
with the prototype {x: @, y:03}, which is set to the prototype
property of the constructor function Point. Then, the pro-
gram adds a property x to the object. When reading from
the property x subsequently, the value is obtained from the
a’s own property. In contrast, reading from the property y
yields the value of the prototype object’s property, because
the object a does not have its own property y. Neither a nor
its prototype have the property z, and there is no further pro-
totype object above a’s direct prototype, so z is undefined.

Hidden Classes. In a straightforward implementation,
JavaScript’s objects could be represented by association lists
or hash tables. Such an implementation would allow each
object to have a different set of properties at the same cost as
when all objects have the same set of properties. However,
realistic JavaScript programs tend to give the same properties
to multiple objects. For example, objects initialized with
the same constructor function are likely to have the same
properties. This brings an opportunity for objects to share
layout information.

The hidden classes are meta-objects that represent layout
information of objects. With hidden classes, an object has a
pointer to its hidden class and an array of property values
called the property array. A hidden class has a mapping from
property names to their indexes in the array. Figure 3 shows
the object a in Figure 1 represented using a hidden class.

a={};
a.x = 10;
a.y = 20;

Figure 1. A JavaScript object a is created without properties;
x and y are then added afterwards.

Point.prototype = {x:
a = new Point();

a.x = 10;

// a.x =10, a.y = 0, a.z = undefined

0, y: 03};

Figure 2. Property accesses may be delegated to a prototype.
Here x and y are defined in the prototype object of a. Then,
a new property x is defined directly on a.

Profile Guided Offline Optimization of Hidden Class Graphs for JavaScript VMs in Embedded... VMIL *22, December 05, 2022, Auckland, New Zealand

hidden class
. .)
object / name| index
HC] X 0
PA 1
= 1
\\\\\\‘ [0 [
10 | 20
property array

Figure 3. Object a with its hidden class and the property
array for its property values.

hidden class graph
HCO HC1 HC2
1.
G]ame‘inde)a X ﬁame indeq y name | index
X 0 X
. ;y y‘l
object a
HC| HCo HC| HC1 HC| HC2
PA PA ° PA »
v ¥
10 10 | 20
[0] [o] 1

Figure 4. Hidden class graph for object a, with the hidden
class first empty, and then with property x, and finally with
the property y added.

Hidden classes are shared by objects with the same layout.
Thus, hidden classes are immutable. Whenever a new prop-
erty is added to an object, the runtime must find the next
hidden class that has the added property. If such a hidden
class has not been created, the runtime creates and caches it.

To find next hidden class quickly, the hidden classes are
organized as a state transition graph. The directed edges of
the hidden class graph are labelled with property names, each
of which leads to the next hidden class when the property
with that name is added.

Figure 4 shows the hidden class graph for the program
in Figure 1 along with the evolution of the form of object a.
Because object a is created with no properties, initially it has
an empty hidden class HCO and no property array. When
property x is added, the object is given a new hidden class
HC1, or transitions to HC1. At the same time, a property
array with one slot is allocated to store the value for x. Then,
when property y is added, it further transitions to HC2, and
expands the property array to store the value for y. In the rest
of this paper, we denote a hidden class like an object with a
mapping. For example, we denote HC2 as {x:0, y:13.

Hidden class graphs for larger programs usually have
branches. Figure 6 shows the hidden class graph created
after executing the function figure in Figure 5 multiple

function figure(is_circle) {

s = {3} // s.HC: {3}
s.x = 10; // s.HC: {x: @}
S.y = 20; // s.HC: {x: @, y: 1}
if (is_circle) {
s.r = 5; // s.HC: {x: @, y: 1, r: 2}
} else {
s.w=20; // s.HC: {x: 0, y: 1, w: 2}
s.h = 15; // s.HC: {x: @, y: 1: w: 2, h: 3}
3
s.c = "red"; // s.HC: {x: @, y: 1, r: 2, c: 3} or
// {x: 0, y: 1: w: 2, h: 3, c: 4}

return s;

3

Figure 5. A program yielding a branching hidden class graph
as different properties are added as figure is invoked with
different values of is_circle.

times with different is_circle flags. In this figure, s.HC:
in comments indicates the mapping of the hidden class of
s on this line. Suppose that figure is called with true in
the first invocation. In this invocation, an empty object s is
created, and properties X, y, r, and c are added one by one.
As properties are added, the hidden classes HC0, HC1, HC2,
HC3, HC4 are created and the object transitions along the
path in the hidden class graph. Also suppose that is_circle
is false in the second invocation. This time, properties w
and h are added instead of r. The object transitions from
HCO to HC1 and HC2 using the cached hidden classes. When
property w is added, the runtime fails to find the next hidden
class. Thus, HC5 is created and attached to HC2 in the hidden
class graph, creating a branch.

In this example, property c is added as the last property
regardless of is_circle. However, HC4 and HC7 are dif-
ferent because properties in the middle are different. Even
if two hidden classes had the same set of properties names,
their offsets might differ. Thus, they cannot generally be
combined into a single hidden class.

Problem with Hidden Classes. The first problem is that
the hidden classes may occupy a non-negligible fraction of
the heap. Furthermore, hidden classes are often kept cached
for future use. For example, we observed 21-49KB of hidden-
class-related data in eJ]SVM for the Are We Fast Yet bench-
marks [13] (see Figure 13). Compared to the 256KB of SRAM
in embedded systems, these numbers are not negligible.

To mitigate this problem, the V8 engine implements hid-
den classes with association lists. This allows hidden classes
to share common mappings with their predecessors. For ex-
ample, the mapping x: @ can be shared among HC1 to HC7 in
Figure 6. Truffle creates the mapping part of hidden classes
lazily; it creates a hidden class without mapping, and only
constructs the mapping, by collecting mapping information

VMIL 22, December 05, 2022, Auckland, New Zealand

HCO HC1 HC2

X (name index] mindex /

>G> Lo

Tomoharu Ugawa, Stefan Marr, and Richard Jones

HC3 HC4
name| index c name| index
X 0 —» X 0
y 1 y 1
r 2 2
r
3
NG
HC5 HC6 HC7
name| index name| index name| index
X 0 h. X 0 C X 0
y 1 y 1 y 1
w 2 w 2 w 2
h 3 h 3
N
NG

Figure 6. The hidden class graph for the code in Figure 5. The branch in the graph comes from different properties being

added depending on the value of the is_circle flag.

from the edge labels on the path to the hidden class, when
the mapping is used for the first time [20].

The second problem is that the property arrays are re-
allocated whenever a new property is added to an object, as
shown in Figure 4. When an object is created, we do not know
how many properties are eventually added to the object.
Thus, we have to expand the storage of property values on
demand. This requires the storage of property values to be
separated from the object in a property array so that we can
re-allocate it. Frequent re-allocation degrades performance
because it requires copying memory and increases garbage
collection (GC) frequency. We could speculatively allocate
space for future properties, but allocating too much space
enlarges the memory footprint. Truffle reserves space for a
fixed number of properties when an object is created.

V8 mitigates this problem by a technique called slack track-
ing,’ which guesses the final size of the object being allocated
from past behaviour of the program. V8 first allocates a large
amount of extra space for an object. Objects are assumed to
reach their stable state after executing for a while. Then, it
memorizes the number of properties of stable objects so that
objects created by the same constructor can be created with
storage to contain exactly the same number of properties as
objects in their stable state. If stable state objects created by
the same constructor have different numbers of properties,
the larger number is used, trading space for speed.

Clifford et al. also mentioned pretransitioning for V8 [6].
They collect stable states of objects and relate them to their
allocation sites. To do so, they attach mementos to objects.
Mementos are short-lived objects that keep track of alloca-
tion sites until the attached objects are promoted to the old
space by the GC.

Shttps://v8.dev/blog/slack-tracking

The property storage can be allocated in the object if its
size is known when the object is created. Properties placed
in the objects are called in-object properties. If more prop-
erties than the storage for in-object properties are added,
overflowing properties are placed in the property array.

Inline Caching. When a program accesses a property
of an object, the runtime first resolves the property name
to obtain the index corresponding to that name from the
hidden class. Then, it accesses the slot in the property array.
Accessing the property array by an index is efficient. How-
ever, resolving the name is not; typically it involves a hash
table or an association list look up.

Inline caching [7] is a common optimization that acceler-
ates property accesses. An inline cache stores the resolved
index at the program location where the property is accessed,
i.e., the access site. When the runtime resolves a name for the
first time at an access site, it caches the hidden class and the
index. For later accesses at the same access site, the runtime
then merely checks that the same name and hidden class are
used and then uses the cached index.

In JavaScript, access sites tend to be polymorphic; objects
reaching the same access site tend to have various hidden
classes. This is because, first, hidden classes change as prop-
erties are added. Second, the hidden class graph may branch
as shown in Figure 6; objects with hidden class HC4 and HC7
may come to the same access site accessing x, for example.
Thus, performance-oriented VMs employ polymorphic in-
line caching [10], where each access site has multiple cache
entries. An access site has a mapping from hidden classes
to indexes, and the runtime looks up the index by the hid-
den class of the incoming object. Polymorphic inline caching
specialized to class base inheritance of TypeScript is also pro-
posed [19]. eJSVM does not currently support polymorphic
inline caching.

https://v8.dev/blog/slack-tracking

Profile Guided Offline Optimization of Hidden Class Graphs for JavaScript VMs in Embedded. . .

pl = {y: 33}; // pl1.HC: {y: 0}

p2 = {x: 4, y: 7}; // p2.HC: {x: @, y: 1}
Cl.prototype = p1;

C2.prototype = p2;

a =new C10; // a.HC: {}

a.u=10; a.v = 20; // a.HC: {u: 0, v: 1}
b = new C2(); // b.HC: {3}

b.u=5; b.v=10; // b.HC: {u: 0, v: 1}
f(a) // f accesses a.y

f(b) // f accesses b.y

Figure 7. Objects with different prototype chains may have
the same hidden class, as long as the prototype is not con-
sidered part of the hidden class. Thus, here a and b have the
same hidden class, although a’s prototype is p1 and b’s is p2.

Inline Caching for Prototype Properties. Inline caching
for properties on the prototype chain requires caching the
prototype object owning the property as well as the index.
In addition, it requires a different guard. An inline cache
for a prototype property is valid only if the prototype chain
between the incoming object and the owner object of the
property is the same. For example, a and b in Figure 7 obtain
properties u and v in the same order. Thus, they have the
same layout. Suppose that function f has a site accessing
property y of the f’s argument. In the invocation with a,
y is found in its prototype p1, and its index is 0. Thus, the
pair of owner and index, (p1, 0), is cached. However, in the
invocation with b, y should be found in p2, and its index
should be 1. Thus, the cache is invalid even if a and b have
the same hidden class.

To quickly confirm that the prototype chain is the required
one, we can put the pointer to the prototype object in the
hidden class rather than in the object itself. Figure 8 shows
objects a and b with their hidden classes having prototypes.
As shown in this figure, objects with different prototypes
have different hidden classes. Thus, we can guarantee the
validity of the cache by testing the hidden class, as long
as prototype objects on the chain do not change, i.e., no
properties are added or removed and the prototype relation
is not altered.

When a prototype object changes, the related inline caches
need to be invalidated. V8 maintains the prototype relation-
ship by organizing a tree of hidden classes to minimize the
number of caches to be invalidated®. eJSVM invalidates all
inline caches whenever a prototype object changes.

3 Optimizing the Hidden Class Graph

As previously outlined, when targeting an embedded system
we can make strong assumptions about applications, for
instance assuming a closed world. For these types of system,

Shttps://mathiasbynens.be/notes/prototypes

VMIL ’22, December 05, 2022, Auckland, New Zealand

proto
proto name | index
pl / name|index| P2 / X 0
HC[o o HC[o y | 1
17 A
A \ A \
proto / proto[™e proto 1 / proto[™~®
% He o name|index| HC o name | index
u 0 u 0
v 1 \ 1
~— 1 ~— 1 J

Figure 8. Final states of objects in Figure 7 in an implemen-
tation that puts prototype pointers in hidden classes. Dotted
lines represent prototype relationships while solid lines rep-
resent actual pointers.

we can optimize the hidden class graph offline based on the
object behaviour observed in a profiling run.

Pretransitioning. In practice, object shapes tend to be
predictable for specific allocation sites and allocation sites in
turn are often layout-monomorphic, i.e., all objects allocated
at a particular site eventually have the same layout. The
allocation site in Figure 1 is an example.

By knowing the final layout for a layout-monomorphic
allocation site, we can allocate a sufficiently large in-object
property area and pretransition the newly created object to
the hidden class representing its final layout. We can also
eliminate the intermediate steps in the hidden class graph,
keeping only the final hidden class in the graph for a specific
allocation site. For example, the allocation site in Figure 1
only needs HC2 in Figure 4, optimizing out HC0 and HCI1.

Elimination of Intermediate Hidden Classes. Even for
layout-polymorphic allocation sites, although objects allo-
cated there eventually have different hidden classes, objects
often share a common path in the hidden class graph.

For example, objects created in Figure 5 will eventually be
of either hidden class HC4 or HC7. The chains of transitions
leading to these final hidden classes share the same prefix,
HC0—HC1—HC2 (see Figure 6). Furthermore, once the next
property is added to an object in HC2, we can determine the
final hidden class for the object. For example, if property r
is added, the object will eventually transition to HC4.

With an optimized hidden class graph, we pretransition
newly created objects HC2. Then, when either property r or
w is added, we transition the object to HC4 or HC7, skipping
the intermediate hidden classes HC3, or HC5 and HCé6.

In general, for layout-polymorphic allocation sites we can
construct the optimized hidden class graph by removing
intermediate steps, except for branching nodes. This opti-
mization reduces the number of transitions, and hence the
number of re-allocations of property arrays.

https://mathiasbynens.be/notes/prototypes

VMIL 22, December 05, 2022, Auckland, New Zealand

HC4
el

name | index

X

HC2

=S| <

“ N Y

name | index

X 0

1

g
)

IS

N L

Figure 9. Optimized version of the hidden class graph of
Figure 6.

In summary, these optimizations eliminate intermediate
hidden classes (defined as those that have exactly one out-
going edge). After eliminating intermediate hidden classes,
the hidden class graph in Figure 6 becomes the one shown
in Figure 9.

Preserving Hot Hidden Classes. Eliminating all interme-
diate nodes may yield suboptimal memory footprint in the
following two cases. First, a large number of objects created
at an allocation site may die before all properties are added.
In this case, aggressive pretransitioning results in increased
memory use, since memory is allocated for properties that
will not be used.

Second, aggressive pretransitioning may result in mem-
ory being allocated too eagerly, possibly interfering with
memory-intensive tasks. For example, the 10,000 objects
created in Figure 10 eventually have the properties x, y, u,
and v. However, initially only x and y are added and then
memory_intensive_task is called. When creating these ob-
jects pretransitioned to their final hidden class {x:0, y:1,
u:2, v:3}, memory is allocated for properties u and v, which
are unused at this point, unduly inflating memory use, poten-
tially increasing the maximum footprint and GC pressure.

For both cases, pretransitioning can increase memory use
significantly depending on the number of objects and usage
characteristics of slots, reducing the available memory for
other tasks.

To address this issue, we identify hot hidden classes based
on usage counts (see Section 4.1) and preserve them regard-
less of whether they are an intermediate hidden class or not.
For the program in Figure 10, the hidden class {x:0, y:1}
has a single transition, but is hot. Thus, we should preserve it
to avoid wasting memory at the time when the peak memory
usage is reached.

Moving Branches. Programs may have a cold hidden
class that is very similarity to a hot one. Here, it may be
beneficial to merge them by moving branches in the hidden
class graph to linearize the path to a hot hidden class.

Tomoharu Ugawa, Stefan Marr, and Richard Jones

ary = []

for (i = @; i < 10000; i++) {
a={x: ..., y: ... };
ary.push(a);

3

memory_intensive_task(); // peak usage
for (i = 0; i < 10000; i++) {

ary[il.u = ...;

ary[il.v = ...;

3

Figure 10. Peak of memory usage is marked in
memory_consuming_task. Objects in ary are yet to
have properties u and v at the peak. If their areas are
allocated speculatively, the peak rises.

For the program in Figure 5, suppose that is_circle is
very likely to be true. In this case, we speculatively create
objects with hidden class HC4 rather than HC2. This is done
by moving the branch with property w from HC2 to HC4, as
shown in Figure 11. Then, we can avoid all transitions for
the objects that eventually have HC4. The drawback is that
we must give the storage for property r to those objects that
have w and h rather than r, yielding a hidden class HC7’,
different to HC7. Because we cannot guarantee that r and w
are exclusively used in the general case, we cannot assign
the storage for property r to property w. However, assuming
that almost all objects have r, this optimization is practical.
Note that because HC4 has property c, it is not added on the
transition from HC4 to HC7'.

In general, we can optimize the hidden class graph to fa-
vor hot transition chains, which most objects take. More
specifically, we can push cold branches towards the final
hidden class of the hot transition chain, thus straightening
the trunk of the chain. This branch moving involves reorder-
ing of properties of the hidden classes that appear after the
moved branches; the transition on the moved branch and
any further transitions must add properties that have not
been added in the hot chain.

4 Implementation

Our hidden class graph optimizations are part of the offline
optimizer of eJSVM. The optimization process consists of
two steps. First, a profiling VM executes the target program
to collect the hidden class graph and related information.
Second, the hidden class graph optimizer uses this profile to
construct an optimized hidden class graph and a list of alloca-
tion sites and their entry points in the graph, i.e., the hidden
classes to be used to create objects. This optimized hidden
class graph can then be loaded by the VM together with the
target program for a more memory efficient execution.

Allocation Sites. Since eJSVM is a bytecode interpreter,
a JavaScript program is first compiled into bytecodes before

Profile Guided Offline Optimization of Hidden Class Graphs for JavaScript VMs in Embedded. . .

X'
)
3
D
=
o
‘x"J

NG B HC7

Figure 11. The optimized hidden class of Figure 9 after mov-
ing branches.

execution starts. Allocation sites are the new bytecodes that
create empty objects. They correspond to JavaScript’s new
keyword and the use of object literals. Object literals are
compiled into bytecode sequences including new and the
operations to add the initial properties one by one.
Although some builtin functions allocate objects (e.g.,
Object.create and Array.concat), we do not currently
consider them as allocation sites. Builtin functions may allo-
cate multiple objects, each of which requires a hidden classes
graph. Because allocation sites are related to bytecodes, the
call bytecode is considered as the site allocating all objects
in a builtin function. However, our current implementation
can only associate at most one hidden class graph with each
allocation site. Thus, we do not apply our optimization to
builtin functions. These functions will create hidden classes
dynamically as they would without our optimization.

4.1 Profiling

The profiling VM executes the target program and creates the
hidden class graph dynamically, with a hidden class graph
for each allocation site. These hidden class graphs are output
as the result of profiling.

In addition to the graphs, the profiling VM collects infor-
mation to identify hot hidden classes. We define the hotness
of a hidden class by the maximum number of objects simul-
taneously alive that have the hidden class during a GC. At
every GC in the profiling run, we count, for each hidden class,
the objects with this hidden class and update its hotness.

As we mentioned in Section 2, hidden classes hold pointers
to prototype objects to enable inline caching for prototype
properties. However, prototype objects are first-class objects
created dynamically. In the profiling run, we do not collect
the contents of prototype objects, but collect their addresses
as identifiers of prototypes. They are only used to judge
whether two hidden classes have the same prototype or not.

VMIL ’22, December 05, 2022, Auckland, New Zealand

4.2 Hidden Class Optimization

Based on the profiled graph and allocation sites, we construct
an optimized hidden class graph as follows:

1. For each input hidden class graph, move branches to
optimize to the hot transition chains.

2. For each hidden class graph, eliminate cold intermedi-
ate hidden classes.

3. Merge the hidden class graphs of allocation sites with
identical hidden class graphs.

Moving Branches. The optimizer moves branches to lin-
earize the paths to hot hidden classes. It searches for the
hidden classes that have two or more transitions from the
root. When it finds such a hidden class, it computes the
weight of each transition—the sum of the hotness values of
the hidden classes in the subtree connected by the transi-
tions (the hidden class graph is a tree). If the vast majority
(e.g. 80%) of the weight is held by one transition, the step
moves the other transitions down the tree, leaving the major
transition, as shown in Figure 11.

Elimination of Cold Intermediate Hidden Classes. The
optimizer eliminates hidden classes if they are cold and inter-
mediate ones. It preserves hot hidden classes as explained in
Section 3. It also preserves hidden classes that have multiple
transitions. Because it previously moved the minor branches,
the remaining ones are worth preserving.

Merging Graphs. The hidden class graphs for different
allocation sites may be identical, that is, they may have the
same transitions and the same prototype. For example, if ob-
ject literals with the same initial properties occur in multiple
places in the program, and if objects created there do not
have any additional property, the hidden class graphs for the
object literal allocation sites become identical. For allocation
sites with identical hidden class graphs, the optimizer makes
sure they share the same hidden class graph.

4.3 Execution with Optimized Hidden Class Graph

After all optimizations are applied, the VM can load the opti-
mized hidden class graph when executing the corresponding
program. It installs the entry points of the graph at the al-
location sites. When an allocation site is executed, the VM
creates an object directly with the optimized hidden class.
For hidden classes with properties, the VM allocates space
for the properties directly in the object instead of in a sep-
arate property array. The properties are initialized with
JS_EMPTY We use JS_EMPTY to distinguish properties with
undefined values from properties that an object does not
(yet) have. Where an object transitions to another hidden
class with additional properties, a property array is allocated
and installed in the last slot used for the in-object properties,
with the last in-object property moved into the property
array. Thus the property array has one more slot than the

VMIL 22, December 05, 2022, Auckland, New Zealand

number of added properties. If the object transitions fur-
ther, the property array is re-allocated to add space for new
properties.

Filling The Prototype Object Field. As mentioned in
Section 2, eJSVM stores the pointer to the prototype in the
hidden class. However, the loaded hidden classes do not hold
pointers to prototype objects as these are created dynami-
cally. Instead, the prototype pointer is installed when the
allocation site is executed for the first time. When an alloca-
tion site is executed, the prototype object for the new object
is provided. If the installed hidden class does not yet have a
pointer to a prototype object, the runtime installs the pointer
in the prototype object in all hidden classes in the hidden
class graph installed at the allocation site.

We do this assuming that the prototype object for the
objects allocated at the same allocation site remains the same
across executions, i.e., in the profiling run and the actual
run. However, when this assumption does not hold, or the
program explicitly calls setPrototypeOf, the object departs
from the loaded graph and a new hidden class is created,
as if for unoptimized execution. This is needed when the
prototype object is different because they object may behave
different to any transitions in the loaded hidden class graph.
This also means that the profiling was insufficient.

4.4 Prototype Polymorphic Allocation Sites

Because hidden classes have pointers to prototypes, new
hidden classes must be created for objects with different
prototypes. However, a program may create objects with
different prototypes at the same allocation site. We call such
an allocation site prototype-polymorphic.

We currently do not optimize prototype-polymorphic al-
location sites. This is because, in the actual run, we have no
way to select the right hidden class from multiple hidden
classes associated with a prototype-polymorphic allocation
site, since the hidden classes loaded at the actual run do not
yet have prototypes.

5 Evaluation

We evaluated the proposed offline hidden class optimization
using the Are We Fast Yet benchmarks [13]. In addition, we
created variants of the CD and Json benchmarks, in which
objects behave more dynamically than the original ones.

CD simulates an aircraft collision detector and relies heav-
ily on a red-black tree. Because it is ported from Java [11],
it initializes all properties of tree node objects eagerly with
null. This includes the left and right properties, which
hold child nodes, if any. As a result, properties may take up
space unnecessarily. We created a modified CD-dyn which
does not initialize properties of node objects eagerly, more
in keeping with common JavaScript style.

The Json benchmark parses JSON input and constructs
an object tree representing the JSON objects with objects

Tomoharu Ugawa, Stefan Marr, and Richard Jones

1 EEE baseline
3 optimized HCG

[el wv O N < < Ouv [045]
T2 ZILP2L35 35 Fgg dTFP%
e 7 & o} g o g © © o 2 2 o
S 2 92 3 8 2 & 3 a ° ? &5 F 8
2 a g 2 % 2 2 g b @ ¥ o 3
® T 5 ° & 3 g ° s 8

S o 3

Figure 12. Memory footprint normalized to the original
eJSVM. 1t is reduced by 3-30% across all benchmarks.

that use for instance two arrays, one for the property names
and one for the values, instead of using object properties
directly. As a consequence, the parsed objects have the same
hidden class. Again, since the benchmark originates from a
JSON parser written in Java, it does not utilize JavaScript’s
objects fully. We created the Json-obj variant to use object
properties directly so that the parsed objects have a variety
of hidden classes.

We ran each benchmark five times on a workstation with a
Xeon W-2235 processor whose clock frequency was fixed to
3.80GHz by turning off turbo boost and hyperthreading, and
using the performance governor. We used the Ubuntu Linux
20.04.5 TLS operating system and GCC 9.4.0 compiler to com-
pile eJSVM. eJSVM was configured for a 64-bit environment
and uses the Fusuma sliding compaction GC [14].

5.1 Memory Footprint

Since our primary goal is to reduce memory footprint, we
start by assessing memory usage. We measure the total vol-
ume of live objects periodically, and used the largest volume
as an approximation of the memory footprint. We modified
eJSVM so that a GC happens after every 10KB of allocation
to measure memory usage.

Figure 12 shows the memory footprint normalized to the
original eJSVM for each program. Our offline hidden class
graph optimizations reduced memory footprint for all pro-
grams. Part of the reduction comes from the reduced memory
footprint for the hidden classes themselves. As shown in Fig-
ure 13, this was reduced by more than 50% for all programs,
and by 61.9% on average.

Hidden classes are similar to class objects in other lan-
guages, and thus, their number tends to be stable regard-
less of the number of normal objects used in the program.
Therefore, the memory footprint reduction ratio tends to

Profile Guided Offline Optimization of Hidden Class Graphs for JavaScript VMs in Embedded. . .

60000 | EEEE baseline
3 optimized HCG

WL 200 XY 400 % v T o e
jm D Y T @
gmmwﬁcnmgooooaggg
5 238 3 8 g & 3 L
a o o g o o} 2 T &
& ®© < 5 7 4 @ E} SS® =~ B3
o o @ L=A 5
a (]

Figure 13. Memory used for hidden-class-related data. Aver-
ages of the numbers collected after all GC cycles. All bench-
marks see at least a 50% reduction, with 61.9% on average.

be large for programs with small footprints. For example,
Richards uses only few objects and the footprint was reduced
by 28KB, from 95KB to 67KB (29.5%). For Storage, which allo-
cates many arrays, the footprint was reduced by 17KB, from
583KB to 566KB (3%).

CD, CD-dyn, Json, and Json-obj had similar memory foot-
prints to Storage. DeltaBlue had a much larger one with
7.5MB for the original VM. However, these benchmarks ex-
hibit a larger footprint reduction than Storage. This indicates
that normal objects have became smaller as pretransitioning
allows properties to be allocated in-object, eliminating the
memory cost of an external property array. In eJSVM, this
saves two words per object: the object’s property pointer
field (which can be repurposed for an in-object property)
and the external property array’s header.

5.2 Execution Speed

Figure 14 shows the elapsed times for each benchmark pro-
gram normalized to the original VM. Black bars indicate time
spent in stop-the-world GC. As shown in the figure, execu-
tion speed improved by around 15% (11.6-17.6%) for some
benchmarks and did not change significantly for the others.
We emphasize that it did not degrade for any program, ex-
cept Richards, for which the execution time was 0.3% slower
than the original VM. Overall, execution speeds improved
by 6.3% on average.

Eliminating intermediate hidden classes can improve exe-
cution time because it reduces reallocation of the property
arrays at each hidden class transition. The reduction in GC
time for CD, CD-dyn, and Havlak may be cause by a reduc-
tion of property array reallocations.

For DeltaBlue, execution time reduced by 13.2% while GC
time did not. To investigate the reason, we measured the

VMIL ’22, December 05, 2022, Auckland, New Zealand

1.0 A
) Iill
061 B baseline

[optimized HCG
0.4 1
0.2 1
0.0 -

uosf

[
@
&

sounog
101qJopuepy
Apogn
nuRy
suaang)
spaeydry
analg
Ssiamo)

a

ukp-ad
[qo-uosf
a3el015
Jejney
anigeyg
ueaw 0ag

Figure 14. Execution time normalized to the original VM.
Black parts indicate GC times. Execution speeds improve by
6.3% on average. Only Richards sees a 0.3% slowdown. Error
bars indicate quartiles.

miss ratios of inline caches. As Figure 15 shows, VMs with
optimized hidden class graphs exhibited lower cache miss
ratios for most of the programs that had noticeable miss
ratios in the original VM. For CD, Havlak, and DeltaBlue,
around 3.1-8.1% of property accesses missed inline caches
for the original VM, and almost all accesses hit inline caches
for the VM with optimized hidden class graphs.

For CD-dyn, even with the optimized hidden class graph,
some inline cache misses remained. This is because there
were five variations of hidden classes for the node objects of
the red-black tree. The node objects were created without
properties for child nodes, left or right. This hidden class
was hot because some of them remained leaf nodes until the
end. They became internal nodes when a property left or
right was added. The hidden classes with one of left or
right were also hot. Some objects then obtained the other
property, transitioning to the final hidden classes. Note that
the final hidden classes could not be combined because left
and right were added in different order, and hence have
different offsets.

Mandelbrot has very few property accesses, only 232 in
total. Most property accesses were the first access at the
site, and hence needed to initialize the inline caches. For
comparison, CD has more than one million accesses.

6 Related Work

Reusing Profiling Information. Using profiling infor-
mation for optimization decisions across runs of a VM has
been studied for Java and JavaScript JIT compilation. For in-
stance, Arnold et al. [1] kept profiling information collected
in a persistent repository. They computed the optimization
level to be applied to each method in the next run from

VMIL 22, December 05, 2022, Auckland, New Zealand

1.0 I baseline
3 optimized HCG
0.8
0.6 1
0.4
0.2 4
0.0+ ‘,—,—,—,—!:l—,—._l]_§F,—.—-—;

2ounog
s
joiqopuely
ApogN
aInuiag
suvand)
spaeyory
anvIg
SI9MO |

a
ukp-ad
uos[
[qo-uosf
a3ei01g
Yejaeq
an|geiRg

Figure 15. Inline cache miss ratio. They remain the same or
are reduced by 3.1-8.1%.

the collected profiling information. Majo et al. [12] also pro-
posed to reuse profiling information collected in previous
runs for the JIT compilations in following runs. They mainly
focused on the reduction of time to the peak performance,
i.e. warmup time. Park et al. [16] even keep the compiled
code from previous runs and solve issues for code relocation
and validating speculations.

In contrast, we profile the hidden classes graph and opti-
mize it to improve performance in terms of memory use and
execution time.

Choi et al. [5] reuse inline caches in the V8 JavaScript VM.
Inline caches depend on the hidden classes. Although the
hidden classes are created dynamically, they assumed static
behaviour in practical programs, i.e., that property access
sites see the same hidden classes across different runs. With
this assumption, they group the property access sites by
hidden classes. When one of the access sites in a group is
executed, they constructed inline caches for all access sites in
the group. In our proposal, hidden classes are also static but
prototype objects are dynamically created. Thus, we install
prototype objects when an allocation site is executed for the
first time.

Offline Optimization. Ottoni and Liu [15] optimize ob-
jects’ layout offline using profiling information. They apply it
to Hack and PHP, which are executed as dynamic languages.
They reorder the fields of structures to improve access local-
ity. They collect property access counts in the profiling run,
and arrange fields in the order of their access counts. Their
workflow is similar to ours, but our target is the hidden class
graph. In addition, we focus on reducing memory footprint.

Hidden Classes and Inline Caching. Wuetal. [19] lever-
age the class hierarchy provided by the programmer in Type-
Script and create subtype polymorphic inline caching. We

10

Tomoharu Ugawa, Stefan Marr, and Richard Jones

improve inline cache hit ratios by reducing the variation of
the hidden classes, eliminating cold hidden classes.

While the original idea of maps, or hidden classes as they
are called today, originated in Self [3], others such as W68
et al. [20] refined the ideas, for instance by constructing the
mapping information lazily by reconstructing it on the first
access from the transitions in the hidden class graph. Since
we optimize offline, we can eliminate intermediate hidden
classes, which gives a similar gain with the added benefit of
avoiding the intermediate transitions.

Another aspect of the work by W68 et al. [20] is that it
encodes type information in hidden classes. Cheng et al. [4]
take a similar approach. For eJ]SVM, we currently do not
capture types in hidden classes.

In addition to optimizations for objects and their hidden
classes, it could be beneficial to optimize arrays and other
builtin collections [2, 6, 9]. Storage strategies benefit from
communicating usage details to the allocation sites, for which
we could use our approach in the future.

7 Conclusion and Future Work

We presented the offline optimization of hidden class graphs
for JavaScript VMs targeting memory constrained embedded
systems. Based on a closed-world assumption, we harvested
the hidden class graph and the usage of each hidden class
from the profiling run, and constructed the optimized hid-
den class graph for the actual run. The primary goal of the
optimization is to reduce memory footprint. We reduced it
by eliminating most intermediate hidden classes and placing
properties in objects, thus eliminating property arrays. As
a result, we reduced the memory used by the hidden class
graph by 61.9% on average and overall footprint by 3-30%.
Execution speed was also improved by reducing reallocation
of the property arrays and reducing the polymorphism of
the inline caches. The improvements were 11.6-17.6% in the
best cases.

One of our future goals is to place the optimized hidden
class graph in read-only flash memory rather than loading
them into SRAM on actual execution. Employing techniques
to reduce memory footprint, such as storage strategies, is
another goal for the future.

Acknowledgments

We are grateful for the support of the JSPS through KAKENHI
grant number JP18KK0315. This work was also supported
by the Engineering and Physical Sciences Research Coun-
cil (EP/V007165/1) and a Royal Society Industry Fellowship
(INF\R1\211001).

References

[1] Matthew Arnold, Adam Welc, and V. T. Rajan. 2005. Improving virtual
machine performance using a cross-run profile repository. In Proceed-
ings of the 20th Annual ACM SIGPLAN Conference on Object-Oriented

Profile Guided Offline Optimization of Hidden Class Graphs for JavaScript VMs in Embedded. . .

[10

[11

[12

[13

—

—_

=

—

—

—

=

—

[t}

—

—

[t

Programming, Systems, Languages, and Applications, OOPSLA 2005, Oc-
tober 16-20, 2005, San Diego, CA, USA, Ralph E. Johnson and Richard P.
Gabriel (Eds.). ACM, 297-311. https://doi.org/10.1145/1094811.1094835
Carl Friedrich Bolz, Lukas Diekmann, and Laurence Tratt. 2013. Stor-
age Strategies for Collections in Dynamically Typed Languages. In
Proceedings of the 2013 ACM SIGPLAN International Conference on
Object Oriented Programming Systems Languages & Applications (In-
dianapolis, Indiana, USA) (OOPSLA ’13). ACM, 167-182. https:
//doi.org/10.1145/2509136.2509531

Craig Chambers, David Ungar, and Elgin Lee. 1989. An Efficient
Implementation of SELF a Dynamically-Typed Object-Oriented Lan-
guage Based on Prototypes. In Proceedings on Object-Oriented Program-
ming Systems, Languages and Applications (OOPSLA). ACM, 49-70.
https://doi.org/10.1145/74878.74884

Lin Cheng, Berkin Ilbeyi, Carl Friedrich Bolz-Tereick, and Christopher
Batten. 2020. Type Freezing: Exploiting Attribute Type Monomorphism
in Tracing JIT Compilers. In Proceedings of the 18th ACM/IEEE Inter-
national Symposium on Code Generation and Optimization (CGO’20).
ACM. https://doi.org/10.1145/3368826.3377907

Jiho Choi, Thomas Shull, and Josep Torrellas. 2019. Reusable inline
caching for JavaScript performance. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S.
McKinley and Kathleen Fisher (Eds.). ACM, 889-901. https://doi.org/
10.1145/3314221.3314587

Daniel Clifford, Hannes Payer, Michael Stanton, and Ben L. Titzer.
2015. Memento mori: dynamic allocation-site-based optimizations.
In Proceedings of the 2015 ACM SIGPLAN International Symposium
on Memory Management, ISMM 2015, Portland, OR, USA, June 13-14,
2015, Antony L. Hosking and Michael D. Bond (Eds.). ACM, 105-117.
https://doi.org/10.1145/2754169.2754181

L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implemen-
tation of the Smalltalk-80 System. In POPL ’84: Proceedings of the
11th ACM SIGACT-SIGPLAN symposium on Principles of program-
ming languages (Salt Lake City, Utah, United States). ACM, 297-302.
https://doi.org/10.1145/800017.800542

Kai Grunert. 2020. Overview of JavaScript Engines for Resource-
Constrained Microcontrollers. In 2020 5th International Conference on
Smart and Sustainable Technologies (SpliTech). 1-7. https://doi.org/10.
23919/SpliTech49282.2020.9243749

Johannes Henning, Tim Felgentreff, Fabio Niephaus, and Robert
Hirschfeld. 2020. Toward presizing and pretransitioning strategies for
GraalPython. In Programming’20: 4th International Conference on the
Art, Science, and Engineering of Programming, Porto, Portugal, March
23-26, 2020, Ademar Aguiar, Shigeru Chiba, and Elisa Gonzalez Boix
(Eds.). ACM, 41-45. https://doi.org/10.1145/3397537.3397564

Urs Holzle, Craig Chambers, and David Ungar. 1991. Optimizing
Dynamically-Typed Object-Oriented Languages With Polymorphic
Inline Caches. In ECOOP °91: European Conference on Object-Oriented
Programming (LNCS, Vol. 512). Springer, 21-38. https://doi.org/10.
1007/BFb0057013

Tomas Kalibera, Jeff Hagelberg, Petr Maj, Filip Pizlo, Ben Titzer, and
Jan Vitek. 2011. A family of real-time Java benchmarks. Concurrency
and Computation: Practice and Experience 23, 14 (2011), 1679-1700.
https://doi.org/10.1002/cpe.1677

Zoltan Majo, Tobias Hartmann, Marcel Mohler, and Thomas R. Gross.
2017. Integrating Profile Caching into the HotSpot Multi-Tier Com-
pilation System. In Proceedings of the 14th International Conference
on Managed Languages and Runtimes, ManLang 2017, Prague, Czech
Republic, September 27 - 29, 2017. ACM, 105-118. https://doi.org/10.
1145/3132190.3132210

Stefan Marr, Benoit Daloze, and Hanspeter Mossenbock. 2016. Cross-
Language Compiler Benchmarking—Are We Fast Yet?. In Proceedings of
the 12th Symposium on Dynamic Languages (Amsterdam, Netherlands)

11

[14]

[15]

[16]

[17]

[18]

[19]

[20]

VMIL ’22, December 05, 2022, Auckland, New Zealand

(DLS’16). ACM, 120-131. https://doi.org/10.1145/2989225.2989232
Hiro Onozawa, Tomoharu Ugawa, and Hideya Iwasaki. 2021. Fusuma:
double-ended threaded compaction. In ISMM ’21: 2021 ACM SIG-
PLAN International Symposium on Memory Management, Virtual Event,
Canada, 22 June 2021, Zhenlin Wang and Tobias Wrigstad (Eds.). ACM,
94-106. https://doi.org/10.1145/3459898.3463903

Guilherme Ottoni and Bin Liu. 2021. HHVM Jump-Start: Boosting Both
Warmup and Steady-State Performance at Scale. In IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO 2021,
Seoul, South Korea, February 27 - March 3, 2021, Jae W. Lee, Mary Lou
Soffa, and Ayal Zaks (Eds.). IEEE, 340-350. https://doi.org/10.1109/
CG051591.2021.9370314

Hyukwoo Park, Sungkook Kim, Jung-Geun Park, and Soo-Mook Moon.
2019. Reusing the Optimized Code for JavaScript Ahead-of-Time
Compilation. ACM Transactions on Architecture and Code Optimization
15, 4 (Jan. 2019), 1-20. https://doi.org/10.1145/3291056

Tomoharu Ugawa, Hideya Iwasaki, and Takafumi Kataoka. 2019.
eJSTK: Building JavaScript virtual machines with customized datatypes
for embedded systems. Journal of Computer Languages 51 (2019), 261
279. https://doi.org/10.1016/j.cola.2019.01.003

Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul
Waogerer, Peter B. Kessler, Oleg Pliss, and Thomas Wirthinger. 2019.
Initialize Once, Start Fast: Application Initialization at Build Time.
Proceedings of the ACM on Programming Languages 3, OOPSLA (Oct.
2019), 1-29. https://doi.org/10.1145/3360610

Zhefeng Wu, Zhe Sun, Kai Gong, Lingyun Chen, Bin Liao, and Yihua
Jin. 2020. Hidden Inheritance: An Inline Caching Design for TypeScript
Performance. Proceedings of the ACM on Programming Languages 4,
OOPSLA (Nov. 2020), 1-29. https://doi.org/10.1145/3428242

Andreas Wo6f3, Christian Wirth, Daniele Bonetta, Chris Seaton, Chris-
tian Humer, and Hanspeter Mossenbock. 2014. An Object Storage
Model for the Truffle Language Implementation Framework. In Pro-
ceedings of the 2014 International Conference on Principles and Prac-
tices of Programming on the Java Platform: Virtual Machines, Lan-
guages, and Tools (Cracow, Poland) (PPPJ '14). ACM, 133-144. https:
//doi.org/10.1145/2647508.2647517

Received 2022-09-18; accepted 2022-10-05

https://doi.org/10.1145/1094811.1094835
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1145/2509136.2509531
https://doi.org/10.1145/74878.74884
https://doi.org/10.1145/3368826.3377907
https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1145/3314221.3314587
https://doi.org/10.1145/2754169.2754181
https://doi.org/10.1145/800017.800542
https://doi.org/10.23919/SpliTech49282.2020.9243749
https://doi.org/10.23919/SpliTech49282.2020.9243749
https://doi.org/10.1145/3397537.3397564
https://doi.org/10.1007/BFb0057013
https://doi.org/10.1007/BFb0057013
https://doi.org/10.1002/cpe.1677
https://doi.org/10.1145/3132190.3132210
https://doi.org/10.1145/3132190.3132210
https://doi.org/10.1145/2989225.2989232
https://doi.org/10.1145/3459898.3463903
https://doi.org/10.1109/CGO51591.2021.9370314
https://doi.org/10.1109/CGO51591.2021.9370314
https://doi.org/10.1145/3291056
https://doi.org/10.1016/j.cola.2019.01.003
https://doi.org/10.1145/3360610
https://doi.org/10.1145/3428242
https://doi.org/10.1145/2647508.2647517
https://doi.org/10.1145/2647508.2647517

