
8 COMMUNICATIONS OF THE ACM | NOVEMBER 2022 | VOL. 65 | NO. 11

letters to the editor

We cannot “trust the programmer”
or have faith the “programmer knows
what they are doing.” Buffer overruns
occur either because the programmer
does not know what they are doing—
a situation we are all in frequently, if
we admit it. If the programmer knows
what they are doing they are doing it
for malicious intent.

Foundations and checks are dis-
dained as “training wheels for begin-
ners.” Programming languages at all
levels should support modern devel-
opment in the modern connected
environment that needs security.
Programmer support, validity checks,
and secure bounds should stop be-
ing considered “crutches for weak
programmers,” “hand holding,” or
against “programmer freedom.” One
person’s freedom is another person’s
burden. We all pay for weak security.

As Poul-Henning Kamp rightly
points out the software industry is still
the problem. It is both in technology
and attitude. We continue to ignore
the elephant in the room, and indeed
many defend the elephant with tribal
brand loyalty and cult-like fervor.

The software industry often ignores
the problems of foundations, prefer-
ring to put lipstick on a pig. With that
elephant in the room, the woodpeck-
er’s job is indeed easy!

Too much teaching and training is
being done around the flaws of what
is, ancient compromises and con-
straints, rather than what computing
should and must be. Stop defending
the status quo. The software industry
must change—both its technology
and mentality—in profound ways.

Ian Joyner, Sydney, Australia

Author’s response:
Poul-Henning nods vigorously.

A Little More Precision
Would Be Nice
When I saw the title of the June 2022
Communications article “Challenges,
Experiments and Computational So-

R
EINHARD VON HANXLEDEN ends
his May 2022 Communica-
tions Viewpoint “Informa-
tion: ‘I’ vs. ‘We’ vs. ‘They’”
(p. 45) by pointing out the

unthinking application of uncondi-
tional criteria to privacy “seems like
a dead end in the long run.” It has al-
ready proven to be a “dead end” with
a Germanwings airliner crash into a
cliff in France caused by the copilot.
His doctor had given him a sick note,
which the copilot threw away, and the
doctor was prevented by strict legal
prohibitions from communicating
his findings of unfitness for flying
to the authorities or the airline. The
blood price was 199 lives, not includ-
ing the copilot.

This type of event is entirely fore-
seeable, as shown by legal require-
ments in other countries for doctors
to communicate their findings if they
find a pilot unfit to fly. It is not un-
reasonable to infer similar tragedies
have happened without coming to
light or because of a lack of imagina-
tion by monomaniacal zealots.

John C. Bauer, Ontario, Canada

Author’s response:
Thanks for that comment. The
Germanwings crash is indeed a tragic
case where the conflict between privacy
and other goods manifested itself. There
is, of course, the practical concern that
one does not want to deter pilots from
seeking treatment, but yes, a pilot’s
fitness to fly is not an entirely private
matter. Confidentiality of conversations
between patients and doctors is probably
one of the most established privacy
concepts, going back to the Hippocratic
Oath. However, societies have also
understood by now that there must be
limits to that confidentiality. Thus, there
is also a canon of exceptions that keeps
being renegotiated, in particular after
dramatic cases such as the Germanwings
tragedy. However, most of today’s
“digital privacy” concerns, such as which
technologies might be used in education,
seem to not have matured yet to that

stage of an informed, serious debate.
 Reinhard von Hanxleden,
Kiel, Germany

Could Not Make It Plainer
Poul-Henning Kamp’s June 2022 Com-
munications article “The Software In-
dustry Is Still The Problem” is a great
challenge. We have two problems—
shoddy technology and poor attitude
clinging to outdated technology.

We cannot trust our systems be-
cause they have weak security. Secu-
rity at all levels is to “define bound-
aries and enforce those boundaries.”
Boundaries must be enforced at all
levels.

We should keep strings and arrays
(contents) within the bounds of the
assigned memory blocks (container).
Where security is not built into the
lowest levels we have a weak founda-
tion and security and systems can be
undermined. Security is added only
as an afterthought with utilities and
other software—lipstick on a pig.

Pointer-based languages are weak,
and pointers unnecessary. Memory
blocks must be defined by more than
a base address, but length and oth-
er metadata as well. Programmers
should think of references to objects
(contents) not pointers to memory
locations (container)—too many pro-
grammers have been taught to think
about the container rather than the
contents.

Programming languages must de-
fine and enforce bounds. But we can-
not trust languages, compilers, and
runtimes. Hardware must check with
descriptor or capability-based archi-
tectures. And assembler in 2022? We
are still in the dark ages to which as-
sembler should be relegated.

We need separation of concerns
that clearly separates system pro-
gramming handling the container
from application programming about
the contents. While security is a cross-
cutting concern, it must be based on
security at the lowest layers of system
architecture.

The Blood Price of Unrestricted Privacy
DOI:10.1145/3563965

https://dx.doi.org/10.1145/3563965
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3563965&domain=pdf&date_stamp=2022-10-20

NOVEMBER 2022 | VOL. 65 | NO. 11 | COMMUNICATIONS OF THE ACM 9

letters to the editor

lutions in Peer Review,” I was excited
to see that you were going to address
one of the more important processes
in producing quality software code.
Even the subtitle, “Improving the
peer review process in a scientific
manner shows promise” encouraged
me into thinking that you were going
to introduce some rigor in expung-
ing bugs from software code under
review. Alas, my hopes were dashed
when I realized that this was really
an article about publishing scientific
papers for conferences. In my youth
(the 1970s) I campaigned against flow
charts and for software peer reviews,
and my attitude has not changed in
these regards.

 Warren Scheinin, Redondo Beach,
CA, USA

Voice for Users’ Full Control
Over Applications
Programs usually perform not what
users want but whatever develop-
ers consider being good for users.
Millions of users try to achieve from
programs what these users really
need and are involved in the ongo-
ing struggle with applications. The
situation was perfectly described in
preface to Lieberman.1 “So-called
“applications” software for end us-
ers comes with an impressive array of
capabilities and features. But it is up
to you, the user, to figure out how to
use each operation of the software to
meet your actual needs. … You have
to translate what you want to do into
a sequence of steps that the software
already knows how to perform, if in-
deed that is all possible.”

This conflict became obvious long
ago, so years ago the adaptive inter-
face was proposed as a solution. Af-
ter several decades and tons of sug-
gestions, there is no improvement.
Why? All achievements of adaptive
interface are aimed at softening the
conflict but never tackle the problem
source.

For possible solution, let’s look
at a similar situation. We have thou-
sands of items in our household, and
not all the time these things around
are organized in the best way. When-
ever needed, we move and rearrange
the surrounding items. Our ability to
organize our life in the most effective

way is based on two things:
 ˲ Everything is movable.
 ˲ We easily move anything at any

moment without asking permission
from anyone.

In programs, everything is con-
trolled by developers, while users can
perform only the allowed steps. His-
torically, and this started before the
era of personal computers, develop-
ers had absolute control over appli-
cations, and throughout years this
turned into axiom. But it is not! Give
full control to users, and we’ll have
different programming world.

What is needed to pass full control
to users? The mentioned example
gives a perfect answer: movability of
each and all. The movability of ele-
ments automatically sets new rules.
While users’ control over applica-
tions can be rejected as nonsense
and an impossible thing, this is not
a baseless theorizing. I applied mov-
ability to some of the most sophis-
ticated programs—scientific appli-
cations. On trying new programs,
scientists required further develop-
ment to be done only in such a way.

There is a book (User-Driven Appli-
cations for Research and Science) and
there are programs that demonstrate
the implementation and results with
many different examples (https://bit.
ly/3qWHVFY). Programs come with
codes, so they are for everyone to look
at, to try, and to see that any program
from the simplest to the most sophis-
ticated one can work under full users’
control and for users’ great advan-
tage.

Advantages of new design increase
with the unpredictability of users’ ac-
tions or requirements. Science and
engineering are areas where the full
control in users’ hands allows those
users to do and check things that no-
body before even thought about. This
is my understanding of a progress.

Reference
1. Lieberman, H. et al. End-User Development. Springer,

2006.

Sergey Andreyev, Moscow, Russia

Communications welcomes your opinion. To contribute a
Letter to the Editor, please limit your comments to 500
words or less, and send to letters@cacm.acm.org

Copyright held by authors.

Subfield Prestige and
Gender Inequality
among U.S. Computing
Faculty

Producing Competent
HPC Graduates

TURING LECTURE:
The Evolution of
Mathematical Software

Seeing Beneath
the Skin with
Computational
Photography

How Do Java Mutation
Tools Differ?

Global Perspectives
of Diversity, Equity,
and Inclusion

Can Universities
Combat the
‘Wrong Kind of AI’?

Building a
New Economy:
Data, AI, Web3

Plus, the latest news about
behavior and the swarm,
immersive technology apps,
and using quantum computing
to understand the universe.

 C
om

in
g

N
ex

t
M

on
th

 in
 C

O
M

M
U

N
IC

A
TI

O
N

S

