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ABSTRACT

We construct a new explicit family of good quantum low-density

parity-check codes which additionally have linear time decoders.

Our codes are based on a three-term chain (F<×<2 )+ X0−−→ (F<2 )
�

X1−−→ F
�
2 where + (- -checks) are the vertices, � (qubits) are the

edges, and � (/ -checks) are the squares of a left-right Cayley com-

plex, and where the maps are de�ned based on a pair of constant-

size random codes ��,�� : F<2 → F
Δ

2 where Δ is the regularity of

the underlying Cayley graphs.

One of the main ingredients in the analysis is a proof of an

essentially-optimal robustness property for the tensor product of

two random codes.
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1 INTRODUCTION

Quantum error correction is an essential ingredient to achieve fault-

tolerant quantum computation. An important class of quantum
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codes relevant to fault-tolerance are quantum low-density parity-

check (qLDPC) codes [26]. These are codes whose checks act only

on a constant number of qubits, and further each qubit is acted

on only by a constant number of checks. This low connectivity is

desirable because it reduces the chance for errors to spread when

checks are being measured for error correction.

Several families of qLDPC codes have been studied starting from

Kitaev’s toric code [39], with increasing rate and distance [10, 23, 24,

30, 38, 51, 55]. Recently Panteleev and Kalachev [50] gave the �rst

construction of good qLDPC codes, i.e. qLDPC codes with constant

rate and constant relative distance. A subsequent variation on their

construction was given in [44]. The construction in [50] falls into

the class of balanced product codes introduced in [10].

A natural question left open by the recent constructions of good

qLDPC codes is the existence of e�cient decoders for them. In

this work, we give a new construction of qLDPC, which borrows

many of the ingredients from [50] as well as ideas from the recent

classical locally testable codes by [16], and show that our codes

have linear time decoders. Our codes are balanced product codes,

but (informally) place the qubits and checks on di�erent cells of

the underlying complex.

Theorem 1.1. For every A ∈ (0, 1/2), there exist constants X > 0,

F ∈ N and an explicit in�nite family of quantum LDPC codes with

maximum weightF , rate A , and relative distance X . Furthermore these

codes are equipped with a linear time decoder that decodes up to linear

distance.

After the completion of this work, two independent papers ob-

tained a similar result on qLDPC codes with e�cient decoders [28,

42]. We �rst give an overview of our construction and proof tech-

niques, compare our result with the related ones, and �nally discuss

further directions.

1.1 Overview of the Construction and Analysis

Our codes are based on a three-term chain complex

(F<×<2 )+ X0−−→ (F<2 )
� X1−−→ F

�
2 . (1)

In contrast to other recent constructions of qLDPC this chain com-

plex is ordered “geometrically” by dimension, so that + are the

vertices, � are the edges, and � are the faces (squares) of a left-right

Cayley complex. Informally, this complex has vertices labeled by

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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elements 6 of a �nite group � , edges labeled by two sets of gen-

erators �, � as (6, 06) and (6,61) for 6 ∈ � , 0 ∈ � and 1 ∈ �, and
squares (6, 06, 61, 061) labeled by pairs (0, 1) ∈ � × �. The maps

X0, X1 in (1) are de�ned via a pair of base codes ��,�� : F<2 → F
Δ

2

where Δ = |�| = |� |. 1 An advantage of the geometric ordering

is that it may facilitate extending the chain to having more than

three terms by going to higher dimensional geometric complexes.

A drawback is that this kind of chain is asymmetric and therefore

separate arguments are required for the analysis of the chain and

co-chain (namely, - -distance and / -distance).

Let us give an informal description of the chain map. Given a

0-chain 20 ∈ (F<×<2 )+ , such that 20 (E) is an< ×< bit matrix for

each E ∈ + , let us compute X0 (20) assuming that 20 is supported on

a single vertex E (and this is extended linearly). We �rst apply the

encoding �� to each row of 20 (E) separately to get a rectangular

< × Δ matrix, whose columns are now distributed among the �-

edges neighboring E . Namely, each neighboring�-edge gets a single

column from this matrix. Next, we apply the code�� to each column

of 20 (E) separately to get a rectangular Δ×<matrix whose rows we

distribute among the �-edges neighboring E . The result is naturally

interpreted as an element 21 = X0 (20) ∈ (F<2 )
� .

Now given an arbitrary 1-chain 21 ∈ (F<2 )
� , such that 21 (4)

is an <-bit vector for each edge 4 ∈ �, let us compute X1 (21)
assuming 21 is supported on a single edge 4 (and this is extended

linearly). If 4 is an �-edge then we compute the �� encoding of

21 (4), getting a vector of |� | = Δ bits, which we distribute one

per square containing 4 . If 4 is a �-edge then we compute the ��
encoding of 21 (4) and proceed similarly, adding the bits distributed

to the same face modulo 2. This completes the description of our

chain. The actual construction uses a 4-fold cover of a left-right

complex, so we have four types of vertices and edges, see details in

Section 3.1.

The linear time decoding algorithm is based on local bit-�ips or

small-set �ips, which were �rst used in the quantum setting in [41].

The analysis of the distance of the code as well as of the decoding

algorithm has two main components: expansion and robustness.

The expansion arguments resemble previous works [16, 40, 50].

Technically, the key is analyzing the expansion of chains with a

certain “local minimality" condition. The second ingredient is a

robustness property for the pair of base codes (��,��) (and their

duals (�⊥
�
,�⊥

�
)). Our second contribution in this work is a proof

that two random codes are optimally robust. Interestingly, while

our proof of linear distance and decoder construction are rather

direct for the co-chain ordering (1), the analysis for the reverse

ordering proceeds by a reduction to the co-chain. In this sense, the

asymmetry induced by the geometric ordering we choose does not

introduce substantial complications in the analysis.

We now discuss the robustness property. A pair (��,��) of
codes, ��,�� ⊂ F=2 , is said to be 32-robust if for every pair of

= × = matrices "�, "� such that the rows of "� are in �� and

the columns of "� are in �� , if the matrix " = "� + "� has

low weight, then it can be decomposed into a sum of only a few

rows in�� and a few columns in�� , such that the number of rows

1This over-simpli�cation has 0 rate. To get positive rate, the base codes have di�erent

dimensions in the actual construction, �� : F
<0
2 → FΔ2 and �� : F

<1
2 → FΔ2 with

<0 ≠<1 .

and columns required is at most the weight of " divided by the

robustness parameter 32. (See Section 2.6 for formal de�nitions.)

Whereas previous works [44, 50] showed that random codes have

robustness that is 32 = =
1
2 −n , we show robustness with 32 = Θ(=).

This is clearly best possible (up to multiplicative constants) since

the weight of" is quadratic in = and the number of rows/columns

is linear in =.

Our second main result is the following.

Theorem 1.2 (Random Tensor Codes are Robust (Informal The-

orem 2.10)). For every d0, d1 ∈ (0, 1), there exist constants X1, X2
such that for ��,�� sampled from the uniform distribution of linear

codes of length = and dimensions d0=, d1=, for large =, with high

probability, ��,�� have distance X1= and (��,��) is X2= robust.

Since the theorem is about random linear codes, it follows di-

rectly that robustness holds simultaneously for both (��,��) as
well as (�⊥

�
,�⊥

�
), with high probability. The same result on optimal

robust codes is also obtained in [35].

The proof follows a counting argument similar to the proof of

the Gilbert–Varshamov bound. One de�nes certain words as ‘bad’

and then shows that with high probability none of these ‘bad’ words

is a codeword through a union bound. The main additional idea

compared to the weaker result shown in [50] is that in the analysis

we separate cases based on the rank of the matrix" . See Section 5

for details.

1.2 Related Work

Quantum LDPC Codes and LTCs. Our work �ts into a line of

recent works on quantum LDPC codes and LTCs [16, 44, 45, 50].

The constructions for qLDPC codes and LTCs turn out to be quite

similar because both problems utilize 3-term chain complexes with

expansion properties. We focus on the history of quantum LDPC

codes. The historical development of LTCs can be found in [25] and

a more recent development can be found in [16]. More discussion

of qLDPC can be found in [11].

The earliest family of qLDPC codes are Kitaev’s toric codes

and surface codes [39] with dimension : = Θ(1) and distance

3 = Θ(
√
=). Over time, better codes with increasing rate [55]

: = Θ(=) and distance [23, 24, 38] 3 = Θ(polylog(=)
√
=) have been

discovered. Only recently did [30] and following works [10, 51] sig-

ni�cantly break the square root barrier and achieve 3 = Θ(=/log=).
Finally, [50] showed the existence of good quantum LDPC codes

with : = Θ(=) and 3 = Θ(=). More recently, [44] provide another

construction of good quantum LDPC codes.

We now compare our qLDPC codes with two previous construc-

tions [44, 50] in more detail. All of these qLDPC code constructions

rely on Tanner codes which combine a 2-dimensional graph (left-

right Cayley complex) with a 2-dimensional code (tensor code). The

di�erence between the variants is on how one de�nes the 3-term

chain complex from the 2-dimensional geometric complex.

Our construction has the advantage of being ordered by dimen-

sion (from vertices to edges to faces) which may be easier to gener-

alize to higher dimensional complexes. Additionally, our proof uses

tensor codes with better robustness which allows a simpler aver-

aging argument, whereas earlier proofs required a more detailed

study of the local structure and the resistance to puncturing for the

tensor code. A similar simpli�cation is also leveraged in [43].
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Decoders for Quantum LDPC Codes. Finding an e�cient decoder

is the natural next question after obtaining the qLDPC code. If one

does not worry about the e�ciency, in exponential time, it is known

that one can decode up to (3 − 1)/2 errors by �nding the closest

codeword. Practically, it is more desirable to have a polynomial

time or even a linear time decoder.

Existing decoders can be broadly separated into two families

that focus on di�erent type of qLDPC codes. The �rst family mainly

decodes the surface codes, while the second family mainly decodes

expander codes. Because the code structure is di�erent, the corre-

sponding decoding strategy is also very di�erent. The �rst family

includes minimum-weight perfect matching [13], union-�nd [12],

and variants of belief propagation decoders [21, 49]. A more com-

plete discussion can be found in [11].

We now focus on the second family, which the decoder of this

paper belongs to. When the underlying graph has good expansion

properties, often the greedy algorithm that �ips the bits locally

will work. This includes the classical expander codes [53] and the

corresponding small set �ip decoder in [41] for quantum codes. The

same decoder was also applied to [23, 46]. In this work, we use the

small set �ip decoder to decode the direction of the co-chain com-

plex (i.e. decode / errors), and additionally use a “reconstruction”

procedure to decode the direction of the chain complex (i.e. decode

- errors).

Finally, we compare our result with the recent papers on the

linear time sequential decoders [28, 42] and the parallel decoder [43].

In [28, 42], they show that the two previous qLDPC codes [44, 50]

have linear time sequential decoders. Like our decoder, the decoder

in [28] is a variant of the small-set-�ip decoder. The decoder in

[42] requires an additional exceptional mode. This di�erence is due

to the fact that both [28] and our proof utilize tensor codes with

better robustness, while [42] only uses the tensor code with weaker

robustness. More recently, the better robust code is used in [43] to

show the existence of a log time parallel decoder.

High Dimensional Expanders. Our work can be case as a study of

notions of expansion in chain complexes. This relates to the study

of high dimensional expanders (HDX), which is about notions of

expansion for high-dimensional objects. The study of the HDX

was introduced by Linial and Meshulam [47] to study random

simplicial complexes and independently by Gromov [27] to study

the topological overlapping principle. These natural questions have

led to impressive results across areas including coding theory [16,

34, 45, 50], approximate sampling [3, 5, 6, 37], analysis of Boolean

functions [8, 15, 29], agreement testing [14, 19], and sum-of-square

lower bounds [17, 33].

The most studied type of HDX are called simplicial complexes.

On the other hand, the recent development of qLDPC codes is more

related to the cubical complexes. It would be interesting to see if

one can translate the results from one to the other. One recent

success is the application of qLDPC codes to sum-of-square lower

bounds [33].

1.3 Further Directions

Towards Quantum LTCs. A notion that is related to qLDPC codes

and LTCs is that of quantum locally testable codes (qLTCs) [2]. A

natural way to go about this is to extend the 3-chain to a 5-chain.

It seems that if each consecutive three terms are themselves su�-

ciently “expanding” then the entire chain would give a quantum

LTC. Our proof technique may extend to the analysis of such higher-

length chain complexes. Even if this were achieved, an important

remaining challenge would be to �nd a higher dimensional robust

code. Namely, there is a natural way to generalize the notion of

robustness of a tensor product of three or more codes [35], how-

ever we do not currently know whether there are codes that are

su�ciently robust. Indeed, even for two-dimensional tensors the

current proofs only provide robustness via a probabilistic argument.

It could be useful to have a direct, explicit construction as this may

generalize more easily to higher dimensions than the probabilistic

argument which seems inherently limited to two dimensions.

PCPs and Quantum PCPs. Probabilistically checkable proofs

(PCPs) and locally testable codes are closely, though not formally,

related. (See [25] for a survey.) In the quantum complexity literature

there is a quantum version of PCPs [1], the existence of which re-

mains open. It would be interesting to see if one can make progress

on this question by leveraging the recent works on qLDPCs. A

positive, though certainly not conclusive, indication that this is a

viable path is provided by the recent resolution of the NLTS con-

jecture [7], which crucially relies not only on the existence of good

LDPC but on speci�c properties of the existing constructions which

were discovered in the construction of the linear time decoders for

them.

2 PRELIMINARIES

2.1 Chain Complexes

Chain complexes provide a way to connect the study of quantum

codes with high dimensional expanders.

De�nition 2.1 (Chain complex). A chain complex- is a sequence of

vector spaces F
- (8 )
2 generated by sets - (8) together with linear maps

m8 : F
- (8 )
2 → F- (8−1)2 called the boundary operators. These boundary

operators satisfy

m8−1m8 = 0 .

Because F
- (8 )
2 has a canonical choice of basis corresponding to

the elements of - (8), one can de�ne the associated co-boundary

operators X8 ≔ m)8+1 : F
- (8 )
2 → F- (8+1)2 , where (·)) denotes the

matrix transpose. The co-boundary operators automatically satisfy

X8+1X8 = 0 .

We introduce some standard terminology. Elements of the kernel

of the (co)-boundary operators are called (co)-cycles

/8 ≔ ker m8 = {28 ∈ F- (8 )2 : m828 = 0} ,

/ 8
≔ kerX8 = {28 ∈ F- (8 )2 : X828 = 0} .

Elements of the image of the (co)-boundary operators are called

(co)-boundaries

�8 ≔ im m8+1 = {m8+128+1 : 28+1 ∈ F- (8+1)2 } ,

�8 ≔ imX8−1 = {X8−128−1 : 28−1 ∈ F- (8−1)2 } .
Since m8 m8+1 = 0 it follows that �8 ⊂ /8 . When �8 = /8 the chain

complex is said to be exact at 8 .
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2.2 Classical and Quantum Error Correcting
Codes

A classical linear code is speci�ed by a :-dimensional linear sub-

space� ⊂ F=2 . Here, = is called the length, : is called the dimension,

and 3 ≔ min2∈� |2 | is called the distance, where |·| is the Hamming

weight, i.e. the number of non-zero entries. We call A = :/= the rate

and X = 3/= the relative distance of the code. A more explicit way

of describing a classical linear code is by specifying a parity-check

matrix � : F=2 → F
<
2 where< = = − : and � = ker� is the kernel

of the matrix.

A quantum CSS code is speci�ed by two classical codes �I =

ker�I ⊂ F=2 and�G = ker�G ⊂ F=2 such that�
⊥
G ⊂ �I , i.e.�G�

)
I =

0. This condition allows us to associate a 3-term chain complex to

the quantum code,

- : F
<I

2

�)
I−−−→ F=2

�G−−→ F<G

2 .

Here are the relevant quantities associated with the quantum code.

Elements of �G = / 1 (resp. �I = /1) are called - (resp. / )-logical

operators. Elements of �⊥G = �1 (resp. �
⊥
I = �1) are called / (resp.

- )-stabilizers. The dimension of the code is : = dim/1 − dim�1.

The distance is 3 = min(3G , 3I) where

3G = min
21∈/ 1−�1

|21 | , 3I = min
21∈/1−�1

|21 |

and 3G , 3I are called the - -distance and / -distance of the code

respectively. The code is called a quantum low-density parity-check

code (qLDPC) if �G and �I have a bounded number of nonzero

entries in each column and row.

Having de�ned a quantum code, we now describe the task of de-

coding. The goal of the decoder is to recover the error pattern from

the syndrome. Under the stabilizer formalism, one can express any

error pattern as a pair (21, 21) where 21 ∈ F=2 indicates coordinates

with an - -error and 21 ∈ F=2 indicates coordinates with a / -error.

The decoder is given the syndrome (X121, m121) and is required to

return a correction (2̃1, 2̃1) such that the di�erence from the actual

error is a stabilizer, i.e. 2̃1 − 21 ∈ �1 and 2̃1 − 21 ∈ �1. This task

can be divided into two independent tasks where one recovers 2̃1

from X121 (- -error decoding) and the other recovers 2̃1 from m121
(/ -error decoding).

2.3 Expander Graphs

Expander graphs are used to obtain various important results in

theoretical computer science. The most important one in our con-

text is the expander codes [53]. We refer the reader to [32] for other

applications of expander graphs.

De�nition 2.2 (Spectral Expander Graphs and Ramanujan Graphs).

Let G = (+ , �) be an undirected, Δ-regular graph on = vertices, and

de�ne _(G) ≔ max{|_2 |, |_= |} where Δ = _1 ≥ _2 ≥ ... ≥ _= are

the eigenvalues of the adjacency matrix of G. We say that G is a

_-spectral expander if _(G) ≤ _.

Weuse spectral expanders for two reasons. First, there are known

explicit in�nite families of spectral expanders [52]. Second, spec-

tral expansion implies edge expansion which is a key ingredient

to obtain our results. This property is captured in the following

expander mixing lemma which �rst appeared in [4].

+00

+10

+01

+11

�∗0

�0∗

�∗1

�1∗

6

06

61

061
∋

∋

∋

∋

Figure 1: 4-fold left-right Cayley complex.

Lemma 2.3 (Expander Mixing Lemma). Let G be a Δ-regular graph

with _-spectral expansion. Then for any subset (,) ⊂ + , we have

|� ((,) ) | ≤ Δ

|+ | |( | |) | + _
√

|( | |) | .

Moreover, for any vectors G,~ ∈ R+ we have

G)"~ ≤ Δ

|+ | ∥G ∥1∥~∥1 + _∥G ∥2∥~∥2 ,

where" is the adjacency matrix of G and for I ∈ R= , ∥I∥1 =
∑

8 |I8 |
and ∥I∥2 = (

∑

8 |I8 |2)1/2 denote the !1 and !2 norm respectively.

2.4 Left-Right Cayley Complexes

Our code construction is based on the left-right Cayley complex

introduced in [16]. A similar structure also appeared in [10, 50].

The 4-fold left-right Cayley complex G2 (�,�, �) is speci�ed by a

�nite group� and two sets of generators � and � which are closed

under inverse. The complex is illustrated in Figure 1. It consists of

vertices, edges, and faces as follows:

• The vertices are+ = +00∪+10∪+01∪+11 where+00 � +10 �

+01 � +11 � � .

• The edges are � = � | ∪�− = (�∗0∪�∗1) ∪ (�0∗∪�1∗) where
�∗0 = {(6, 06) : 6 ∈ �, 0 ∈ �} ⊂ +00 ×+10 ,
�∗1 = {(61, 061) : 61 ∈ �, 0 ∈ �} ⊂ +01 ×+11 ,
�0∗ = {(6,61) : 6 ∈ �,1 ∈ �} ⊂ +00 ×+01 ,
�1∗ = {(06, 061) : 06 ∈ �,1 ∈ �} ⊂ +10 ×+11 .

• The faces are � = {(6, 06, 61, 061) : 6 ∈ �, 0 ∈ �,1 ∈ �} ⊂
+00 ×+10 ×+01 ×+11 .

To clarify which vertex set,+00,+01, etc. a given vertex 6 belongs

to, we sometimes write the vertex as (6, 00) or (6, 01), etc. The same

convention applies to edges. For example, ((6, 06), ∗0) is an edge

in �∗0. Note that the edges and faces are labeled by ordered tuples

instead of sets. Elements of � | are referred to as vertical edges, and

elements of �− as horizontal edges. The appearance of faces crucially
relies on the fact that the left action commutes with the right action,

e.g. 0(61) = (06)1.
We introduce the following important notation to describe the

neighborhood relation between the vertices, edges and faces. For

E00 ∈ +00 we de�ne +10 (E00) as the set of vertices in +10 neighbor
to E00 and +11 (E00) as the set of vertices in +11 “neighbor” to E00

908



Good�antum LDPC Codes with Linear Time Decoders STOC ’23, June 20–23, 2023, Orlando, FL, USA

by going through a horizontal edge and a vertical edge. Similarly

we de�ne �∗0 (E00) as the set of edges in �∗0 incident to E00 and

�1∗ (E00) as the set of edges accessible by E00 by �rst going through

a vertical edge then choosing an adjacent horizontal edge.

More precisely, given E00 = (6, 00) we de�ne the following neigh-
borhoods.

• +10 (E00) = {(06, 10) : 0 ∈ �}, +01 (E00) = {(61, 01) : 1 ∈ �},
+11 (E00) = {(061, 11) : 0 ∈ �,1 ∈ �},
• �∗0 (E00) = {((6, 06), ∗0) : 0 ∈ �}, �0∗ (E00) = {((6,61), 0∗) :
1 ∈ �},
• �∗1 (E00) = {((61, 061), ∗1) : 0 ∈ �,1 ∈ �}, �1∗ (E00) =

{((06, 061), 1∗) : 0 ∈ �,1 ∈ �},
• � | (E00) = �∗0 (E00), �− (E00) = �0∗ (E00), � (E00) = � | (E00) ∪
�− (E00),
• � (E00) = {(6, 06, 61, 061) : 0 ∈ �,1 ∈ �}.

Given 4∗0 = ((6, 06), ∗0), we de�ne the following neighborhoods.

• �∗1 (4∗0) = {((61, 061), ∗1) : 1 ∈ �},
• �0∗ (4∗0) = {((6,61), 0∗) : 1 ∈ �},
�1∗ (4∗0) = {((06, 061), 1∗) : 1 ∈ �},
• � (4∗0) = {(6, 06, 61, 061) : 1 ∈ �}.

E00

+10 (E00)

+01 (E00)

+11 (E00)

�∗0 (E00)

�0∗ (E00)

�∗1 (E00)

�1∗ (E00)

� (E00)

E00

E10

4∗0 �∗1 (4∗0)

�0∗ (4∗0)

�1∗ (4∗0)

� (4∗0)

Figure 2: (Left) The neighboring sets of a vertex E00. (Right)

The neighboring sets of an edge 4∗0.

Finally we introduce subgraphs of the complex that will be used

to de�ne Tanner codes in Section 2.6. G(� | , � ) is the bipartite graph
that has � | = �∗0∪�∗1 as vertices and � as the edges between them.

More precisely, the edges are � � {((6, 06), (61, 061)) : 6 ∈ �, 0 ∈
�,1 ∈ �} ⊂ �∗0 × �∗1. The bipartite graph G(�−, � ) is de�ned
similarly. G(+ , � | ) is the bipartite graph that has+ = (+00 ∪+01) ∪
(+10 ∪ +11) as vertices and � | as the edges between them. More

precisely, the edges are � | = �∗0 ∪ �∗1 where �∗0 � {(6, 06) : 6 ∈
�, 0 ∈ �} ⊂ +00×+10 and �∗1 � {(6, 06) : 6 ∈ �, 0 ∈ �} ⊂ +01×+11.
One de�nes the bipartite graph G(+ , �−) similarly.

We conclude by discussing an explicit instance that is used in

our construction. We use the Ramanujan graph constructed in [52].

Let ? and @ be unequal primes ≡ 1 mod 4 and
( @
?

)

= 1 where
( @
?

)

is the Legendre symbol. Let � = PSL(2,Z/@Z) and ( = (−1 be the
set of size Δ = ? + 1 as de�ned in the paper. The paper above shows

that the Cayley graph �0~ (�, () with vertex set � and edge set

{{6, 06} : 6 ∈ �, 0 ∈ (} is a Ramanujan graph. Finally, the 4-fold

left-right Cayley complex we consider is G2 (�,� = (, � = ().

2.5 Expansion Properties of Left-Right Cayley
Complexes

We give three lemma that state expansion properties of operators

de�ned on graphs obtained from the left-right Cayley complex. The

�rst two lemma show expansion properties of two di�erent random

walks on the edges of G2 (�,�, �).

Lemma 2.4. Let "1 ∈ R�×� be the adjacency matrix between

opposing edges of the same face in G2 (�,�, �), i.e. the adjacency
matrix of the graph

((6, 06), ∗0) ∼ ((61, 061), ∗1) , ((6,61), 0∗) ∼ ((06, 061), 1∗) .
Suppose that Cay(�,�) and Cay(�, �) are _-spectral expanders.

Then for any subset ( ⊂ � it holds that

1)("11( ≤ _ |( | + Δ

2|� | |( |
2 . (2)

Proof. "1 is the disjoint union of |� | copies of Cay1 (�,�) and
|� | copies of Cay1 (�, �) where Cay1 (�,�) and Cay1 (�, �) are the
double covers of the _-spectral expander graphs Cay(�,�) and
Cay(�, �). Let ( = ∪8 ((08 ∪ (18 ) be a partition of ( according to

each disjoint graph and their two vertex sets. Each disjoint graph

satis�es,

1)
(08
"11(18

≤ _

√

|(08 | |(
1
8 | +

Δ

|� | |(
0
8 | |(

1
8 |.

So

1)("11( = 2
∑

8

1)
(08
"11(18

≤ _ |( | + Δ

2|� | |( |
2 .

□

Lemma 2.5. Let "0 ∈ R�×� be the adjacency matrix where two

edges of G2 (�,�, �) are connected if one of their endpoints are con-
nected through an edge, i.e. "0 = *"′0� where � ∈ R+ ×� and

* ∈ R�×+ are the incidence matrices between the edges and the

vertices and"′0 is the adjacency matrix of the graph

(6, 00) ∼ (06, 10), (6, 00) ∼ (61, 01),
(06, 10) ∼ (061, 11), (61, 01) ∼ (061, 11).

Suppose that Cay(�,�) and Cay(�, �) are _-spectral expanders.

Then for any subset ( ⊂ � it holds that

1)("01( ≤ 8_Δ|( | + 2Δ

|� | |( |
2 . (3)

Note that we allow multi-edges, so some entries of"0 could be

greater than 1 when there are degeneracies.

Proof. "′0 is the union of two copies of Cay1 (�,�) and two

copies of Cay1 (�, �). Let V00 ⊂ +00, V10 ⊂ +10, V10 ⊂ +10 and

V11 ⊂ +11 be the vertices incident on E. Because each edge is

connected to two vertices,

∥V00∥1 + ∥V10∥1 + ∥V01∥1 + ∥V11∥1 ≤ 2|E |.
Because each vertex is connected by at most 2Δ edges, ∥V00∥∞ ≤
2Δ, so

∥V00∥22 + ∥V10∥22 + ∥V01∥22 + ∥V11∥22 ≤ 2|E | · 2Δ.
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The expander subgraph Cay1 (�,�) betweenV00 andV10 gives

1)V00
"′01V10

≤ _∥V00∥2∥V10∥2 +
Δ

|� | ∥V00∥1∥V10∥1

≤ _
∥V00∥22 + ∥V10∥22

2
+ Δ

|� | ∥V00∥1∥V10∥1 .

By combining with other expander subgraphs, we have

1)E"01E = 2(1)V00
"′01V10

+ 1)V00
"′01V01

+ 1)V10
"′01V11

+ 1)V01
"′01V11

)

≤ 2_(∥V00∥22 + ∥V10∥22 + ∥V01∥22 + ∥V11∥22)

+ 2Δ

|� | (∥V00∥1∥V10∥1 + ∥V00∥1∥V01∥1

+ ∥V10∥1∥V11∥1 + ∥V01∥1∥V11∥1)

≤ 8_Δ|E | + 2Δ

|� | |E |
2 .

□

The third lemma shows co-expansion of an associated graph.

Lemma 2.6 (Co-Expansion F
- (1)
2 ← F

- (0)
2 ). Given Δ-regular

_-spectral expander graphs Cay(�,�), Cay(�, �) and linear codes

�⊥
�
,�⊥

�
of length Δ with distance 31.

Then the map

(F<0

2 )
�− × (F<1

2 )
� | X0←−− (F<0×<1

2 )+

satis�es

∥X020∥� ≥ 2(31 − _)∥20∥+ −
Δ

2

∥20∥2
+

|� | .

Proof. To show the expansion, one consider each component

21 (�∗0) = X020 (+00) + X020 (+10) separately. Because of code dis-

tance, each non-zero vertices in+00 contribute to at least 31 distinct

non-zero edges in X020 (+00). Same for X020 (+10). What is left is to

bound the number of cancellations in X020 (+00) + X020 (+10). Be-
cause (+00,+10, �∗0) is the double cover of the _-spectral expander
Cay(�,�), the number of cancellation is at most

_
√

∥20 (+00)∥+ ∥20 (+10)∥+ + Δ

|� | ∥2
0 (+00)∥+ ∥20 (+10)∥+ . So

∥21 (�∗0)∥� ≥ 31 (∥20 (+00)∥+ + ∥20 (+10)∥+ )

− 2(_
√

∥20 (+00)∥+ ∥20 (+10)∥+

+ Δ

|� | ∥2
0 (+00)∥+ ∥20 (+10)∥+ )

≥ (31 − _) (∥20 (+00)∥+ + ∥20 (+10)∥+ )

− 2Δ

|� | ∥2
0 (+00)∥+ ∥20 (+10)∥+ .

Now we combine the four contributions and use AM-GM in-

equality to obtain

∥X020∥� = ∥21 (�∗0)∥� + ∥21 (�∗0)∥� + ∥21 (�∗0)∥� + ∥21 (�∗0)∥�

≥ 2(31 − _)∥20∥+ −
Δ

2

∥20∥2
+

|� | .

□

2.6 Tensor Codes and Robustness

Robust codes were �rst studied in [9] and [20] in the context of

locally testable codes (LTC). Similar variants are applied to the

construction LTC and qLDPC in [16, 44, 50]. In this paper, the

de�nition of robustness is identical to agreement testability up to a

normalization constant. We �rst give the de�nition, then discuss

its equivalence to agreement testability, and �nally state our result

stating robustness of the tensor product of random tensor codes.

Given 2 linear codes ��,�� of length =0, =1 let �� ⊗ �� be the

set of =0×=1 matrices where each column vector belongs to�� and

each row vector belongs to�� . Let O (��,��) ≔ ��⊗F=12 +F
=0
2 ⊗��

be the set of matrices that can be expressed as a sum of two =0 ×=1
matrices, where the �rst has each column in�� and the second has

each row in �� . We introduce convenient notation for measuring

di�erent variations on the Hamming weight of a matrix: by entries,

by rows, or by columns.

De�nition 2.7. Given a matrix 5 ∈ F=0×=12 , we let

∥ 5 ∥ [=0×=1 ] = |{(8, 9) : 58, 9 ≠ 0}| ,
∥ 5 ∥ [=1 ] = |{ 9 : 5·, 9 ≠ 0}| ,
∥ 5 ∥ [=0 ] = |{8 : 58,· ≠ 0}| ,

This de�nition allows us to introduce the notion of robustness

we make use of.

De�nition 2.8 (Robustness of Tensor Codes). Let ��,�� be linear

codes of length =0, =1 respectively and 32 ∈ R+. We say that (��,��)
is 32-robust if for all 2 ∈ O (��,��) ⊂ F=0×=12 , there exists 20 ∈
�� ⊗ F=12 and 21 ∈ F=02 ⊗ �� such that 2 = 20 + 21 and

∥2 ∥ [=0 ]×[=1 ] ≥ 32 (∥20 ∥ [=1 ] + ∥21 ∥ [=0 ] ) .

The notion of robustness can be understood as boundary expan-

sion for a chain complex naturally associated with the pair of codes

(��,��). To see this de�ne a 3-term chain complex

. (��, ��) : F=0×=12

m2−−→ F=0×<1+<0×=1
2

m1−−→ F<0×<1

2 (4)

through the maps

m2 (22) = ((� [=0 ] ⊗ ��)22, (�� ⊗ � [=1 ] )22)
and

m1 (21 = (20, 21 )) = (�� ⊗ � [<1 ] )20 + (� [<0 ] ⊗ ��)21 ,

where for an integer : ≥ 1, � [: ] denotes the identity map of F:2 .

Then it follows easily from the Künneth formula (see e.g. [31, Sec-

tion 3.B]) that . (��, ��) is exact, i.e. any element in the kernel of

m1 is in the image of m2.

Now consider the co-chain

. (�⊥� , �
⊥
� ) : F

=0×=1
2

X1←−− F=0×:1+:0×=12

X0←−− F:0×:12 ,

where �⊥
�
: F

=0
2 → F

:0
2 is the parity check matrix of the dual

code �⊥
�
. Using this complex, De�nition 2.8 can be reformulated

as saying that for all 22 ∈ O (��,��) = imX1, there exists 21 ∈
F
=0×<1+<0×=1
2 such that 22 = X121 and

∥22∥ [=0 ]×[=1 ] ≥ 32∥21∥ [=0 ]∪[=1 ]
where the variables 2, 20, 21 from De�nition 2.8 correspond to the

new variables 22, ((�⊥
�
)) ⊗ � [=1 ] )210, (� [=1 ] ⊗ (�⊥� )

) )21
1
where 21 =
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(210, 211 ) ∈ F
<0×=1
2 ⊕F=0×<1

2 . Here we used the fact that ∥210 ∥ [=1 ] =
∥((�⊥

�
)) ⊗ � [=1 ] )210 ∥ [=1 ] because (�⊥� )

) is injective.

The perspective through chain complexes allows us to make

the connection with agreement testability. Note that the de�nition

below di�ers from [16, De�nition 2.8] by a normalization factor.

De�nition 2.9 (Agreement Testability). Let ��,�� be linear codes

of length =0, =1 respectively and 3′2 ∈ R+. We say that �� ⊗ �� is

3′2-agreement testable if for all 20 ∈ �� ⊗ F=12 , 21 ∈ F=02 ⊗ �� , there

exists 2 ∈ �� ⊗ �� such that

∥20 + 21 ∥ [=0 ]×[=1 ] ≥ 3′2 (∥2 + 20 ∥ [=1 ] + ∥2 + 21 ∥ [=0 ] ) .

Using the same notation as above, De�nition 2.9 is saying that

for all 21 ∈ F=0×<1+<0×=1
2 there exists 20 ∈ F<0×<1

2 such that

∥X121∥ [=0 ]×[=1 ] ≥ 3′2∥2
1 + X020∥ [=0 ]∪[=1 ] ,

where now 2 in De�nition 2.9 corresponds to ((�⊥
�
)) ⊗ (�⊥

�
)) )20

and 20, 21 are as before. Because the chain complex . is exact, the

two de�nitions are identical with 32 = 3′2.
Finally, we state our result on the robustness of random tensor

codes. We consider the case when =0 and =1 are equal, =0 = =1 = Δ.

In [44] it is shown that for for arbitrary n > 0 and�� and�� chosen

uniformly at random, the pair (��,��) is Ω(Δ1/2−n )-robust with
high probability. Using a di�erent counting argument we show

that a uniformly random pair of codes is Θ(Δ)-robust with high

probability.

Theorem 2.10 (Random codes are robust). Fix d0, d1 ∈ (0, 1), let
X1 ∈ (0, 1/2), X2 ∈ (0, X1 (1 − X1/2)/8) satisfy

2ℎ(X1/2) + 2(1 − X1/2)ℎ(
4X2

X1 (1 − X1/2)
)

<

3

4

(1 − X1/2 − d0) (1 − X1/2 − d1 )
1 − X1/2

(5)

where ℎ(?) = −? log2 (?) − (1 − ?) log2 (1 − ?).2 Let ��,�� be

random codes sampled from the uniform distribution with length Δ

and dimensions d0Δ, d1Δ. Then as Δ goes to in�nity, with probability

tending to 1,�� ,�� have distance31 = X1Δ and (��,��) is32 = X2Δ-

robust.

The theorem is shown in Section 5. When �� is sampled uni-

formly among codes of dimension d0Δ, �
⊥
�
is sampled uniformly

among codes of dimension (1 − d0)Δ. So the same theorem applies

to �⊥
�
and �⊥

�
and through a union bound we obtain the following

corollary.

Corollary 2.11. Fix d0, d1 ∈ (0, 1). There exist constants X1 and X2
such that for large enough Δ there exist codes �� and �� of length Δ

where

(1) dim�� = d0Δ and dim�� = d1Δ,

(2) ��,��,�
⊥
�
,�⊥

�
have distance 31 = X1Δ,

(3) (��,��) and (�⊥� ,�
⊥
�
) are both 32 = X2Δ-robust.

2The allowed range for X2 is chosen such that the argument in ℎ ( ·) is valued between
(0, 1/2) .

2.7 Tanner Codes

The Tanner construction [54] is a method to obtain ‘large’ code by

combining a ‘large’ graph and a ‘small’ local code. This allows one

to �nd an in�nite family of codes by combining an in�nite family

of graphs with a �xed local code. As long as the graphs are explicit,

the Tanner codes are also explicit, even if �nding the desired local

code requires brute force search. When the underlying graph is an

expander, the Tanner code often inherits desireable properties from

the small code. Later, we will not only be interested in the code but

also in the parity-check matrix that generates the code, since the

LDPC property is de�ned on the parity-check matrix. Therefore,

we sometimes abuse language and refer to the code and the linear

map (parity-check matrix) interchangeably.

We consider a Δ-regular bipartite graph G = (+0,+1, �) with the

1−1 identi�cation �× [2] � + × [Δ], where the additional index on
the edge indicates whether it is asking for the vertex on the side of+0
or+1, and the additional index on the vertex gives an ordering to the

edges incident to the vertex. For example, for the double cover of the

Cayley graph with +0 � +1 � � and � = {(6, 06) : 6 ∈ �, 0 ∈ �}, a
choice of the identi�cation is (4 = (6, 06), 0) ↔ (E0 = (6, 0), 0) and
(4 = (6, 06), 1) ↔ (E1 = (06, 1), 0).

Given a Δ-regular bipartite graph G and a local code � with

parity-checkmatrix� : FΔ2 → F
<
2 , the Tanner codeT (G, � ) : F�2 →

(F<2 )
+ is de�ned through the composition

F
�
2 → (F

Δ

2 )
+ → (F<2 )

+

where the �rst map copies the value on the edge to the vertices inci-

dent to the edge and the secondmap applies� toFΔ2 � F
{ (E,0) :0∈[Δ] }
2

for each vertex E .

Another way to think about the map is though its submatrices.

This description will be helpful to prove that the construction in

Section 3 is a chain complex. Given an edge 4 ∈ � and a vertex

E ∈ + , consider the submatrix T (G, � )E4 : F2 → F<2 which is the

restriction where the input vector is supported on 4 and the out-

put vector is restricted to E . Describing T (G, � ) is the same as

describing T (G, � )E4 for each 4 ∈ � and E ∈ + . When E and 4 are

not incident, T (G, � )E4 is simply 0. When E and 4 are incident, and

suppose (4, 8) ↔ (E, 0), then T (G, � )E4 = � (0̄) : F2 → F<2 , where
0̄ is the basis vector of FΔ2 corresponding to the element 0 ∈ [Δ].

2.8 Expansion Properties of Chain Complexes

The distance of a quantum code falls into a broader category of

expansion properties of chain complexes. This includes (co)-systolic

distance (the one equivalent to quantum code distance), small set

(co)-boundary expansion [33], and (co)-locally minimal expansion

[22, 36]. We discuss them together because heuristically they are

of similar di�culty, that is a proof that works for one often implies

the other. On the other hand, in certain scenario they can be distin-

guished. For example, locally testable code does not follow directly

from systolic distance, but does follow from small set boundary

expansion. This is one of the motivations for considering small set

boundary expansion. See [48] for the history and more discussions

on the study of these expansion properties.

We �rst de�ne the di�erent notions of expansion, thenwe discuss

relations between them andwith code properties. As wewill discuss

more precisely in Section 3, we consider a weight on elements of
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a complex that is di�erent from the Hamming weight, and which

counts the number of non-zero geometric objects instead of non-

zero bits. This weight is denoted as ∥·∥ and di�ers from the usual

Hamming weight by a constant factor, i.e. ∥·∥ = Θ( |·|) (because the
chain complex we consider has bounded degree). Note that ∥·∥ is
similar to the block weight de�ned in [50].

De�nition 2.12 ((Co)-Systolic Distance). We say that- : F
- (2)
2

m2−−→
F
- (1)
2

m1−−→ F- (0)2 has systolic distance U if

∀21 ∈ /1 − �1 : ∥21∥ ≥ U |- (1) |.
Similarly, - has co-systolic distance U if

∀21 ∈ / 1 − �1 : ∥21∥ ≥ U |- (1) |.

It is not hard to see and well-known that constant (co)-systolic

distance of a chain complex is equivalent to linear - -distance and

/ -distance of the corresponding quantum CSS code.

De�nition 2.13 (Small-Set (Co)-Boundary Expansion). We say that

- : F
- (2)
2

m2−−→ F- (1)2

m1−−→ F- (0)2 is a (U, V,W)-small-set boundary

expander if

∀21 ∈ F- (1)2 , ∥21∥ < U |- (1) | :

∃22 ∈ F- (2)2 , ∥m121∥ ≥ V ∥21 + m222∥, ∥22∥ ≤ W ∥21∥.
Similarly, - is a (U, V,W)-small-set co-boundary expander if

∀21 ∈ F- (1)2 , ∥21∥ < U |- (1) | :

∃20 ∈ F- (0)2 , ∥X121∥ ≥ V ∥21 + X020∥, ∥20∥ ≤ W ∥21∥.

We made a modi�cation from [33] by including a bound on ∥22∥
and ∥20∥. This additional bound is needed to show local testability.

De�nition 2.14 ((Co)-Locally Minimal). We say that 21 ∈ F- (1)2 is

locally minimal if

∀42 ∈ F- (2)2 , ∥42∥ = 1 : ∥21∥ ≤ ∥21 + m242∥ .

Similarly, we say 21 ∈ F- (1)2 is co-locally minimal if

∀40 ∈ F- (0)2 , ∥40∥ = 1 : ∥21∥ ≤ ∥21 + X040∥.

De�nition 2.15 (Small-Set (Co)-Locally-Minimal Expansion). We

say that - : F
- (2)
2

m2−−→ F- (1)2

m1−−→ F- (0)2 is a (U, V)-small-set locally-

minimal expander if

∀21 ∈ F- (1)2 s.t. 21 is locally minimal and ∥21∥ < U |- (1) | :
∥m121∥ ≥ V ∥21∥.

Similarly, - is an (U, V)-small-set co-locally-minimal expander if

∀21 ∈ F- (1)2 s.t. 21 is locally minimal and ∥21∥ < U |- (1) | :
∥X121∥ ≥ V ∥21∥ .

For our construction in Section 3 we will show that the chain

complex has small-set co-locally-minimal expansion but not small-

set locally-minimal expansion. This is roughly because in our con-

struction - (2), - (1), and - (0) correspond to the faces, edges, and

vertices. So 42 corresponds to a face and 40 corresponds to a ver-

tex. Flipping m242 only a�ects the four edges incident to the face,

whereas X040 a�ects the 2Δ edges incident to the vertex. Roughly,

this means there are more freedom when �ipping using X040 than

m242. This is the rationale for why the chain complex does not (seem

to) have small-set locally-minimal expansion.

Given the de�nitions, we now discuss their relations. The �rst

lemma is between the expanders. The second and third lemma show

that small-set boundary expansion implies systolic distance and

local testability.

Lemma 2.16 (Small-Set (Co)-Locally-Minimal Expansion→ Smal-

l-Set (Co)-Boundary Expansion). Let 22 ∈ F- (2)2 be such that

∥m222∥ ≤ `∥22∥. Assume the gap between the possible values that

∥21∥ can take, for 21 ∈ F- (1)2 , is at least a (i.e. | ∥21∥ − ∥2′1∥| ≥ a for

any 21, 2
′
1 such that ∥21∥ ≠ ∥2′1∥.)

If - has (U, V)-small-set locally-minimal expansion, then - has

(U/(1 + `/a), V, 1/a)-small-set boundary expansion.

The assumptions in the lemma often hold when the chain com-

plex has bounded degree.

Proof. Given 21, consider the local �ipping process of the de-

coder of the expander code [53] which outputs 22.

Algorithm 1: Local �ip decoder. (Input: 21 ∈ F- (1)2 )

(1) (Initialization) 201 ≔ 21.

(2) (Main loop) In the 8-th iteration, if there is 482 with ∥4
8
2∥

= 1 such that ∥281 + m24
8
2∥ < ∥2

8
1∥, set 2

8+1
1 ≔ 281 + m24

8
2

and repeat.

(3) (End) Output 22 ≔
∑

482.

We show that 22 satis�es the desired properties: ∥m121∥ ≥ V ∥21 +
m222∥ and ∥22∥ ≤ W ∥21∥.

We �rst show ∥22∥ ≤ W ∥21∥. Because ∥22∥ ≤
∑∥482∥ is bounded

by the number of iterations, and each iteration reduces ∥281∥ by at

least a , we have ∥22∥ ≤ 1/a ∥21∥.
We now show ∥m121∥ ≥ V ∥21+m222∥ Because the decoder cannot

�nd 42 and stops at 21 + m222, that means 21 + m222 is locally minimal.

To apply small set locally minimal expansion, we su�ce to show

21 + m222 has small size. Because ∥21 + m222∥ ≤ ∥21∥ + ∥m222∥ ≤
∥21∥ + `∥22∥ ≤ (1 + `/a)∥21∥, when ∥21∥ <

U
1+`/a |- (1) |, ∥21 +

m222∥ satis�es the small set condition. Therefore, ∥m121∥ ≥ V ∥21 +
m222∥. □

Lemma 2.17 (Small-Set (Co)-Boundary Expansion→ (Co)-Systolic

Distance). If - has (U, V,W)-small-set boundary expansion, then -

has systolic distance U .

When the chain complex has bounded degree, this is equivalent

to linear distance.

Proof. Suppose 21 ∈ /1 and ∥21∥ < U |- (1) |. Then by small

set boundary expansion, there exists 22, such that 0 = ∥m121∥ ≥
V ∥21+m222∥. This means 21 = m222 ∈ �1. Therefore, for 21 ∈ /1−�1
we have ∥21∥ ≥ U |- (1) |. □

Lemma 2.18 (Small-Set (Co)-Boundary Expansion→ (Co)-Locally

Testable Code). If- has (U, V,W)-small-set boundary expansion, then
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the classical code� with parity checkmatrix� = m2 : F
- (2)
2 → F- (1)2

satis�es

∥�E ∥ ≥ min
( 1

W
,
U |- (1) |
|- (2) |

)

min
2∈�
∥E − 2 ∥.

When the chain complex has bounded degree, this is equivalent

to the condition for local testability.

Proof. Denote 22 = E . Let 21 = m222 ∈ /1. When ∥21∥ <

U |- (1) |, by small set boundary expansion, there exists 2′2, such that

0 = ∥m121∥ ≥ V ∥21 + m22′2∥ and ∥2
′
2∥ ≤ W ∥21∥. This means m22

′
2 = 21

and m2 (22 + 2′2) = 0. That is 2 ≔ 22 + 2′2 ∈ � and W ∥21∥ ≥ ∥22 − 2 ∥.
When ∥21∥ ≥ U |- (1) |, we set 2 = 0, and we have

∥21∥ ≥ (U |- (1) |/|- (2) |)∥22∥. Overall, we have
∥21∥ ≥ min(1/W, U |- (1) |/|- (2) |)min2∈� ∥22 − 2 ∥. □

3 LINEAR DIMENSION AND LINEAR
DISTANCE

We give our construction of a quantum code and show that it leads

to a family of quantum LDPC codes with linear dimension and

distance. Additionally, we show that the associated chain complexes

have various kinds of good expansion properties.

3.1 Construction

Let � be a �nite group and � and � sets of generators for � that

are closed under inverse and have cardinality |�| = =0 , |� | = =� .

Throughout we assume that =� = =� and write Δ = =� = =� . The

construction uses Tanner codes over the 4-fold left-right Cayley

complex G2 (�,�, �) with |�| = |� | = Δ and local tensor codes

��,�� with parity-check matrices �� : FΔ2 → F
<0

2 , �� : F
Δ

2 →
F
<1

2 . The idea is to construct four Tanner codes and then combine

them into a chain complex. We use the graphs G(�−, � ), G(� | , � ),
G(+ , �−), G(+ , � | ) induced from the left-right Cayley complex de-

�ned in Section 2.4 and the Tanner code construction in Section 2.7.

The four Tanner codes we make use of are

T (G(�−, � ), ��) : F�2 → (F
<0

2 )
�− ,

T (G(� | , � ), ��) : F�2 → (F
<1

2 )
� | ,

T (G(+ , �−), ��) : (F<0

2 )
�− → (F<0×<1

2 )+ ,

T (G(+ , � | ), ��) : (F<1

2 )
� | → (F<0×<1

2 )+ .
To clarify the notation we explicitly spell out the map

T (G(�−, � ), ��). By the de�nition of the Tanner construction, this
map is the composition

F
�
2 → (F

Δ

2 )
�− → (F<0

2 )
�−

where the �rst map copies the value on the face to the horizontal

edges incident to the face (each horizontal edge is incident to |�| =
Δ faces, so each horizontal edge is valued in FΔ2 ) and the second

map applies �� to FΔ2 for each horizontal edge.

The resulting chain complex is

- : F�2
m2−−→ (F<0

2 )
�− ⊕ (F<1

2 )
� | m1−−→ (F<0×<1

2 )+ , (6)

where

m2 (22) = (T (G(�−, � ), ��) (22),T (G(� | , � ), ��) (22))

F
�
2 (F<1

2 )
� |

(F<0

2 )
�− (F<0×<1

2 )+

T (G(�−, � ), ��)

T (G(� | , � ), ��)

T (G(+ , �−), ��)

T (G(+ , � | ), ��)

Figure 3: The chain complex as a composition of the Tanner

codes.

and

m1 (2−1 , 2
|
1) = T (G(+ , �

−), ��) (2−1 ) + T (G(+ , �
| ), ��) (2 |1)

where 22 ∈ F�2 , 2
−
1 ∈ F

�−
2 , 2

|
1 ∈ F

� |
2 .

We denote this chain complex as - (G2,��,��), where G2 is a
shorthand for G2 (�,�, �). (Later in the analysis we also consider

the chain complex - (G2,�⊥� ,�
⊥
�
) with the same graph but a dif-

ferent local code.) We use C(G2,��,��) to denote the associated
quantum CSS code (see Section 2.2), and often write only C for

simplicity.

We end this section by commenting on the way to obtain an

explicit family of groups and generating sets that satisfy all the

expansion properties required for the quantum code C to have

linear distance and linear-time decoding, as shown in the following

sections. This relies on having an explicit construction of large

Ramanujan graphs [52] and the existence of (at least) one good

local code pair Corollary 2.11. First, we discuss the graph. The

graphs depend on the group � and generators �, �. The group

� belongs to an in�nite family of groups with generators �, �

of �xed size Δ such that Cay(�,�), Cay(�, �) are _ = 2
√
Δ − 1-

spectral expanders. Second, we discuss the base codes. As shown

in Section 3.4, to show constant systolic and co-systolic distance

we need (��,��) and its dual code (�⊥
�
,�⊥

�
) to have distance 31

and robustness 32 satisfying 3132 − _32 − 8_Δ > 0. From Corol-

lary 2.11 we know that for �xed d0, d1 there exist constants X1, X2
such that for large enough Δ, ��,��,�

⊥
�
,�⊥

�
have distance X1Δ

and (��,��), (�⊥� ,�
⊥
�
) have robustness X2Δ. Because of the scaling

_ = Θ(Δ1/2), 31 = Θ(Δ), 32 = Θ(Δ), for some large but �xed Δ,

there exists a good local code pair (��,��). This good code pair

can be found by brute forcing all the possible code pairs. Because

Δ is �xed, the family of chain complexes remains explicit.

3.2 Notation

The following important notations are used for the analysis. First,

we describe the notation that extracts the local structure. Given

22 ∈ F�2 , we denote 22 (5 ) ∈ F2 as the value of 22 at 5 ∈ � . Similarly,

for 21 ∈ (F<0

2 )
�− ⊕(F<1

2 )
� | and 20 ∈ (F<0×<1

2 )+ , one has 21 (4−) ∈
F
<0

2 for 4− ∈ �− , 21 (4 | ) ∈ F<1

2 for 4 | ∈ � | , and 20 (E) ∈ F<0×<1

2 for

E ∈ + . We also write 21 (�∗0 (+00)) ∈ F<0×=0
2 to denote the entries

on �∗0 (+00), where recall that this set is de�ned in Section 2.4.

Notice that �∗0 (+00) contains =0 edges and each edge gives a vector

of size<0 .

Second, we describe notation for measuring the size, or norm,

of elements of the complex - . The norm is de�ned as the number
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of non-zero geometric objects, i.e. ∥22∥� = | {5 ∈ � : 22 (5 ) ≠ 0} |,
∥21∥� = | {4 ∈ � : 21 (4) ≠ 0} |, ∥20∥+ = | {E ∈ + : 20 (E) ≠ 0} |. We

also write ∥21 (�∗0 (E00))∥� = | {4 ∈ �∗0 (E00) : 21 (4) ≠ 0} |.
An element 22 ∈ F�2 is usually indexed by � , leading to the norm

∥22∥� as de�ned above, it can also naturally be indexed by �∗0
through 22 (4∗0) = 22 (� (4∗0)). This allows us to de�ne ∥22∥�∗0 . The
di�erence between the two norms is analogous to the di�erence

between the di�erent variants of the Hamming norm introduced

in De�nition 2.7. Similarly, an element B2 ∈ (F=02 )
�− × (F=12 )

� |

is indexed by �, but notice that for any 4∗0 ∈ �∗0, B2 (4∗0) can
be indexed by � (4∗0). This allows us to write B2 (4∗0, 5 ) ∈ F2
for 5 ∈ � (4∗0). This leads to the de�nition �� = �−� ∪ � |� =

{(4, 5 ) ∈ � × � : 5 ∈ � (4)}, where �−� and � |� specialize to hori-

zontal and vertical edges. So B2 can be indexed by �� and this leads

to the norm ∥B2∥�� = |
{

(4, 5 ) ∈ �� : B2 (4, 5 ) ≠ 0
}

|. We will also

write ∥B2 (�∗0)∥� for ∥B2 (�∗0)∥�� ; this is because when the edges

are restricted to �∗0 we have �∗0� � � . One can similarly de�ne

+�, +� and their corresponding norms.

Finally, the last notation we discuss is with regard to �� and

�� . By thinking of � as being indexed by �0∗, we have �
↑
�
: F�2 �

(F=02 )
�0∗ → (F<0

2 )
�0∗ . Similarly, by thinking of � as being indexed

by �1∗, we have �
↓
�
: F�2 � (F

=0
2 )

�1∗ → (F<0

2 )
�1∗ . We can also

de�ne �←
�

and �→
�
. When the context is clear, we sometime hide

the arrows.

3.3 Dimension and Low Density

Before measuring the dimension of the quantum code based on

- , we verify that - is a well-de�ned chain complex. For this it

su�ces to show that for each 5 ∈ � and E ∈ + , the restriction

(m1m2)E5 : F2 → F
<0×<1

2 is 0. To do so, we �rst recall the submatri-

ces of the Tanner code described in Section 2.7.

Given elements 4− ∈ �− and 5 ∈ � , the submatrix

T (G(�−, � ), ��)4
−
5

: F2 → F<0

2 is 0 when 4− and 5 are not in-

cident. When 4− and 5 are incident, say 4− = ((6,61), 0∗), 5 =

(6, 06, 61, 061), we have

T (G(�−, � ), ��)4
−
5

= �� (0̄) : F2 → F<0

2

where 0̄ is the basis vector of F�2 � F
Δ

2 corresponding to the element

0 ∈ �.
Similarly, given elements E ∈ + and 4− ∈ �− , the subma-

trix T (G(+ , �−), ��)E4− : F
<0

2 → F
<0×<1

2 is 0 when E and 4−

are not incident. When E and 4− are incident, say E = (6, 00),
4− = ((6,61), 0∗), we have

T (G(+ , �−), ��)E4− = − ⊗ �� (1̄) : F<0

2 → F<0×<1

2

where 1̄ is the basis vector of F�2 � F
Δ

2 and − is the placeholder

where − ⊗ �� (1̄) : E ↦→ E ⊗ �� (1̄).

Lemma 3.1. - is a well-de�ned chain complex, i.e.

(m1m2)E5 : F2 → F
<0×<1

2 = 0 .

Proof. Because m1m2 = T (G(+ , �−), ��)T (G(�−, � ), ��) +
T (G(+ , � | ), ��)T (G(� | , � ), ��) it su�ces to compute

(T (G(+ , �−), ��)T (G(�−, � ), ��))E5 and

(T (G(+ , � | ), ��)T (G(� | , � ), ��))E5 . Now, by matrix multiplica-

tion, (T (G(+ , �−), ��)T (G(�−, � ), ��))E5 =

∑

4−∈�− T (G(+ , �−), ��)4
−
5
T (G(�−, � ), ��)E4− . We consider the

following two cases.

When E and 5 are not incident, there is no 4− for both

T (G(+ , �−), ��)4
−
5

and T (G(�−, � ), ��)E4− to be non-zero, so

(T (G(+ , �−), ��)T (G(�−, � ), ��))E5 = 0. Similarly,

(T (G(+ , � | ), ��)T (G(� | , � ), ��))E5 = 0. So (m1m2)E5 = 0 in the

case when E and 5 are not incident.

When E and 5 are incident, suppose E = (6, 00) and 5 =

(6, 06, 61, 061). We de�ne 4− = ((6,61), 0∗) and 4 | = ((6, 06), ∗0).
Because 4− is the only edge in �− that is incident to both E and 5 ,

we have

(T (G(+ , �−), ��)T (G(�−, � ), ��))E5
= T (G(+ , �−), ��)E4−T (G(�−, � ), ��)4

−
5

= �� (0̄) ⊗ �� (1̄) .
Similarly,

(T (G(+ , � | ), ��)T (G(� | , � ), ��))E5
= T (G(+ , � | ), ��)E4 |T (G(�

| , � ), ��)4
|
5

= �� (0̄) ⊗ �� (1̄) .
This implies (m1m2)E5 = 0 and implies - is a chain complex. □

We now check that the boundary maps m2 and m1 have bounded

number of non-zero entries in each column and row.

Lemma 3.2. The code C is low density, i.e. the maps m2 and m1 have

at most 4Δ nonzero entries in each row and column.

Proof. The result follows because the left-right Cayley graph

has bounded degree and the non-zero entry appears only when

there is an incident relation. We call � , �− × [<0] ∪ � | × [<1 ], and
+ × [<0] × [<1 ] the face bits, the edge bits, and the vertex bits. And
we say that a face bit is incident to an edge bit if the corresponding

entry in the boundary map is non-zero.

We �rst consider m2. Each face is incident to 4 edges and each

edge is incident to Δ faces. Now

T (G(�−, � ), ��)4
−
5

: F2 → F
<0

2 and T (G(� | , � ), ��)4
|
5
: F2 →

F
<1

2 have ≤ 1 non-zero entry in each row and ≤ max(<0,<1 )
non-zero entries in each column. So each face bit is incident to

≤ 4max(<0,<1 ) edge bits and each edge bit is incident to ≤ Δ

face bits.

We now consider m1. Each edge is incident to 2 vertices and each

vertex is incident to 2Δ edges. Now T (G(+ , �−), ��)E4− : F
<0

2 →
F
<0×<1

2 and T (G(+ , � | ), ��)E4 | : F
<1

2 → F<0×<1

2 have ≤ 1 non-

zero entry in each row and ≤ max(<0,<1 ) non-zero entries in each
column. So each edge bit is incident to ≤ 2max(<0,<1 ) vertex bits
and each vertex bit is incident to ≤ 2Δ edge bits. □

It is easy to check that the quantum code has linear dimension.

Lemma 3.3. The code C has rate at least

−(2d0 − 1) (2d1 − 1)
2(2 − d0 − d1 )

.
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Proof. The rate is at least

|- (1) | − |- (2) | − |- (0) |
|- (1) | =

−(Δ − 2<0) (Δ − 2<0) |� |
2(<0 +<1 )Δ|� |

=
−(2d0 − 1) (2d1 − 1)

2(2 − d0 − d1 )
.

□

Note that one can achieve any rate in (0, 1/2) by choosing corre-

sponding d0 and d1 .

3.4 Distance

A quantumCSS code has linear distance if and only if the chain com-

plex - has constant systolic and co-systolic distance. We start with

a general theorem, Theorem 3.4 that shows a certain co-expansion

property of the complex - (G2,��,��) de�ned in (6). The property

of having linear - -distance for C, i.e. linear co-systolic distance
of - , follows almost immediately and is shown in Corollary 3.5.

The argument for showing linear / -distance for C, i.e. linear sys-
tolic distance for - , is more involved and proceeds by reduction to

the co-systolic distance. This is shown in Theorem 3.8. After hav-

ing shown the distance properties, we show that the co-expansion

property shown in Theorem 3.4 also implies small-set expansion

properties for - .

3.4.1 Co-expansion and co-systolic distance. We start with themain

theorem on co-expansion.

Theorem 3.4 (Co-Expansion). Given Δ-regular _-spectral expander

graphs Cay(�,�), Cay(�, �) and linear codes �⊥
�
,�⊥

�
of length Δ

with distance 31 and (�⊥� ,�
⊥
�
) with robustness 32. If 2

1 ∈ F- (1)2 is

co-locally minimal, then

∥X121∥� ≥
3132 − _32 − 8_Δ

432 + 8Δ
∥21∥� −

Δ32/2 + 2Δ
432 + 8Δ

∥21∥2
�

|� | . (7)

Corollary 3.5. Under the same assumptions as Theorem 3.4, suppose

further that 3132 −_32 − 8_Δ > 0. Then the co-chain complex (6) has

co-systolic distance at least
[

2Δ(<0+<1 ) , where [ ≔
3132−_32−8_Δ

Δ32/2+2Δ .

Proof. When 21 is a non-zero co-cycle 21 ∈ / 1 − 0, (7) implies

Δ32/2 + 2Δ
432 + 8Δ

∥21∥2
�

|� | ≥
3132 − _32 − 8_Δ

432 + 8Δ
∥21∥� ,

which gives

∥21∥� ≥
3132 − _32 − 8_Δ

Δ32/2 + 2Δ
|� | ≔ [ |� | = [

2Δ(<0 +<1 )
|- (1) | .

□

We now move on to prove the theorem.

Proof of Theorem 3.4. Let 21 be co-locally minimal and 22 =

X121. Let E ⊂ � be the support of 21, i.e. E =

{

4 ∈ � : 21 (4) ≠ 0
}

.

(Recall that 21 (4∗0), 21 (4∗1) ∈ F<1

2 and 21 (40∗), 21 (41∗) ∈ F<0

2 .) The

proof strategy is to count the number of “neighbors” between E,
for some appropriate neighborhood structure. The expansion of the

graph gives an upper bound on the number of “neighbors” and the

distance and the robustness of the local code give a lower bound.

Comparing the two bounds gives Equation (7).

Step 1: De�ne “neighbors” " . Recall the adjacency matrices"0

and "1 de�ned in Lemma 2.5 and Lemma 2.4 respectively. We

describe the neighborhood structure through the matrix

" = 32"1 +"0 ∈ R�×� .

Let 1E ∈ F�2 be the indicator vector for E.

Step 2: Upper bound from expansion. Combining Lemma 2.5 and

Lemma 2.4,

1)E"1E ≤ _(32 + 8Δ) |E | +
Δ

|� |
(32

2
+ 2

)

|E |2 . (8)

Step 3: Lower bound from distance and robustness. We show a

lower bound on 1)E"1E using the distance and the robustness of

the local tensor code. We start with two claims. The �rst claim uses

the distance property of �⊥
�
.

Claim 3.6. For any edge 4∗0 ∈ �∗0 it holds that

∥22 (� (4∗0))∥� + ∥21 (�∗1 (4∗0))∥�
+ ∥21 (�0∗ (4∗0))∥� + ∥21 (�1∗ (4∗0))∥� ≥ 31∥21 (4∗0)∥� . (9)

Proof. The distance property of �⊥
�
immediately implies that

∥B2 (4∗0)∥� ≥ 31∥21 (4∗0)∥� . (10)

Recall that

22 = B2 (�∗0) + B2 (�∗1) + B2 (�0∗) + B2 (�1∗) . (11)

Thus each non-zero entry 5 = (6, 06, 61, 061) of B2 (4∗0), where
4∗0 = (6, 06), is either a non-zero entry in 22 or is canceled by a

term in B2 (�∗1), B2 (�0∗), or B2 (�1∗) that contributes to the entry at

5 . Such a term, say B2 (4∗1) ≠ 0, must have its edge 4∗1 incident to
the face 5 which is incident to 4∗0, i.e. 4∗1 ∈ �∗1 (4∗0). Therefore,
each cancellation contributes to ∥B2 (�∗1 (4∗0))∥� , ∥B2 (�0∗ (4∗0))∥� ,
or ∥B2 (�1∗ (4∗0))∥� . Notice that B2 (4∗1) ≠ 0 ⇐⇒ 21 (4∗1) ≠ 0.

Thus from (11) we get that

∥22 (� (4∗0))∥� + ∥21 (�∗1 (4∗0))∥�
+ ∥21 (�0∗ (4∗0))∥� + ∥21 (�1∗ (4∗0))∥� ≥ ∥21 (�∗0 (4∗0))∥� .

Combined with (10), this shows the claim. □

The second claim uses the robustness property of Σ(�)
�
,�)

�
).

Claim 3.7. For any vertex E00 ∈ +00 it holds that

∥22 (� (E00))∥� + ∥21 (�∗1 (E00))∥� + ∥21 (�1∗ (E00))∥�
≥ 32 (∥21 (�∗0 (E00))∥� + ∥21 (�0∗ (E00))∥� ) . (12)

Similarly, for any vertex E10 ∈ +10 it holds that

∥22 (� (E10))∥� + ∥21 (�∗1 (E10))∥� + ∥21 (�0∗ (E10))∥�
≥ 32 (∥21 (�∗0 (E10))∥� + ∥21 (�1∗ (E10))∥� ) . (13)

Proof. The proof is similar to the previous claim, using the

robustness property of (�⊥
�
,�⊥

�
) instead of the distance property

of �� . □
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Let 4∗0 ∈ �∗0 have endpoints E00 ∈ +00 and E10 ∈ +10. Using the

de�nition of" = 32"1 +"0,

1)E"14∗0

= 1)E
(

32"1 +"0
)

14∗0

= 32∥21 (�∗1 (4∗0))∥� + ∥21 (�∗1 (E00))∥� + ∥21 (�1∗ (E00))∥�
+ ∥21 (�∗1 (E10))∥� + ∥21 (�0∗ (E10))∥�

≥ 32∥21 (�∗1 (4∗0))∥� + 32∥21 (�∗0 (E00))∥� + 32∥21 (�0∗ (E00))∥�
+ 32∥21 (�∗0 (E10))∥� + 32∥21 (�1∗ (E10))∥�
− |22 (� (E00)) | − |22 (� (E10)) |

≥ 32∥21 (�∗1 (4∗0))∥� + 32∥21 (�0∗ (E00))∥� + 32∥21 (�1∗ (E10))∥�
− ∥22 (� (E00))∥� − ∥22 (� (E10))∥�

= 32∥21 (�∗1 (4∗0))∥� + 32∥21 (�0∗ (4∗0))∥� + 32∥21 (�1∗ (4∗0))∥�
− ∥22 (� (E00))∥� − ∥22 (� (E10))∥�

≥ 3132∥21 (4∗0)∥� − 32∥22 (� (4∗0))∥�
− ∥22 (� (E00))∥� − ∥22 (� (E10))∥� .

Here, the �rst inequality uses (12) and (13), the second inequality

drops non-negative terms, and the last inequality follows from (9).

Summing over all edges 4∗0 and analogous inequalities shown for

edges 4∗1, 40∗ and 41∗ we obtain

1)E"1E ≥ 3132∥21∥� − 432∥22∥� − 8Δ∥22∥� , (14)

where the factor of 4 is because each face is counted 4 times by

the 4 edges incident to the face, and the factor of 8Δ because each

vertex is summed over 2Δ times by the 2Δ edges incident to the

vertex and each face is incident to 4 vertices.

Step 4: Combine the upper and lower bounds. Combining (8) and (14),

3132∥21∥� − (432 + 8Δ)∥22∥� ≤ 1)E"1E

≤ _(32 + 8Δ)∥21∥� +
Δ

|� | (
32

2
+ 2)∥21∥2� ,

which implies

∥22∥� ≥
3132 − _32 − 8_Δ

432 + 8Δ
∥21∥� −

Δ32/2 + 2Δ
432 + 8Δ

∥21∥2
�

|� | .

This concludes the proof of (7). □

3.4.2 Expansion and systolic distance. The second main theorem

for this section shows that systolic distance follows from cp-systolic

distance. In fact, we will prove a stronger statement which also

shows that expansion follows from co-expansion.

Theorem 3.8 (Co-Expansion→ Expansion). If - (G2,�⊥� ,�
⊥
�
) has

co-systolic distance
[

2Δ(:0+:1 ) , then - (G2,��,��) has systolic dis-
tance

[
2Δ(<0+<1 ) .

Furthermore, if - (G2,�⊥� ,�
⊥
�
) is a ( [

4Δ(:0+:1 ) , V, W)-small-set co-

boundary expander, then - (G2,��,��) is a
( [
4Δ(<0+<1 ) ,

1

Δ2+Δ+ Δ3

V

,Δ + Δ2W)-small-set boundary expander.

We now have all the ingredients to state the property of linear

distance for our quantum code.

Corollary 3.9. Assume that Cay(�,�),Cay(�, �) are _ = Θ(
√
Δ)-

spectral expanders and that��,�� have distance31, 32 = Θ(Δ). Then
the quantum code C has linear distance.

Proof. The assumptions made in the corollary imply that for

large enoughΔ,3132−_32−8_Δ > 0. By Theorem 3.4,- (G2,��,��)
and- (G2,�⊥� ,�

⊥
�
) have linear co-systolic distance. By Theorem 3.8,

- (G2,��,��) has linear systolic distance. Therefore,C has distance
3132−_32−8_Δ

Δ2 (<0+<1 ) (32+4) =. □

The proof of Theorem 3.8 can be found in [18].

4 LINEAR TIME DECODER

In this section we construct a linear time decoder for the quantum

code C introduced in Section 3.1. As discussed in the introduction,

one can separate the task of decoding into two. We call one of them

the decoder and the other the co-decoder: the decoder recovers 2̃1
given the syndrome m121 such that 2̃1 ∈ 21 + �1; the co-decoder
recovers 2̃1 given the syndrome X121 such that 2̃1 ∈ 21 + �1.

This section parallels the section on distance with similar proof

techniques. We �rst show the existence of a linear time co-decoder.

Then we use the linear time co-decoder to obtain a linear time

decoder.

Theorem 4.1 (Co-Decoder). - (G2,��,��) has a linear time co-

decoder up to distance ^
2Δ(<0+<1 ) |- (1) | where ^ =

Δ32/2+2Δ
8Δ32+16Δ2 [

′[,

[ =
3132−_32−8_Δ

Δ32/2+2Δ , [′ = 3132/4−_32/2−8_Δ
Δ32/4+2Δ .

Theorem 4.2 (Co-Decoder→ Decoder). If - (G2,�⊥� ,�
⊥
�
) has a

linear time co-decoder up to distance [′′ |� |, then - (G2,��,��) has
a linear time decoder up to distance

[′′

6+4Δ/32 |� |.

Together we obtain a linear time decoder for C(G2,��,��) up
to distance ^

4Δ(<0+<1 ) (6+4Δ/32 ) |- (1) |. The full proof can be found

in [18].

4.1 Co-Decoder

Theorem 4.1 is the main theorem we will show in this subsection.

We discuss the construction, the correctness, and the running time

of the decoder which together proves the theorem.

Construction: The co-decoder in the direction of the co-chain

complex F
- (2)
2 ← F- (1)2 ← F- (0)2 is the small-set-�ip decoder

introduced in [41]. The small-set-�ip decoder is a generalization

of the local-�ip decoder for the expander codes [53] where the

decoder observes a local region and make local changes that reduce

the weight of the syndrome.

Algorithm 2: Simple small-set-�ip decoder. (Input: 22 ∈
F
- (2)
2 )

(1) (Initialization) 220 ≔ 22.

(2) (Main loop) In the 8-th iteration, if there is a vertex E8
with 418 supported on � (E8 ) such that |228 + X

1418 | < |2
2
8 |,

set 228+1 ≔ 228 + X
1418 and repeat.

(3) (End) Output 2̃1 ≔
∑

418 .
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Besides these variables, we de�ne other variables not directly

known by the decoder. Let 210 be the minimal chain in 21 + �1 and
218+1 be the minimal chain in 218 + 4

1
8 + �

1. One can interpret 218 as

the error at the 8-th iteration and 228 as corresponding syndrome.

Note that the decoder knows the syndrome 228 but not the error 218 .

Recall that the �nal syndrome of a local-�ip decoder is locally

minimal. Similarly, the �nal syndrome of a small-set-�ip decoder

satis�es a similar property which we call extended local minimality.

De�nition 4.3 (Extended Co-Locally Minimal). We say 22 ∈ F- (2)2
is co-locally minimal from - (0) if

∀E ∈ + , 21 ∈ F- (1)2 , supp(21) ⊂ � (E) : ∥22∥� ≤ ∥22 + X121∥� ,
where � (E) ⊂ � are the edges incident to E .

The analysis for correctness and time complexity of the co-

decoder can be found in [18].

5 OPTIMAL ROBUST TENSOR CODES

This section shows that random codes have linear robustness with

high probability. We improve on the result in [44, 50] by using the

idea of puncturing and a new counting argument.

Recall that �� and �� are linear codes of length =0 and =1 with

rate d0 and d1 . For simplicity we assume that =0 = =1 = Δ. An

B-punctured code of �� is obtained by �rst choosing B coordinates

�0 ⊂ [=0] then consider the codewords of�� restricted to [=0] − �0 .
Notice that ∥2 ∥ [=0 ]×[=1 ] = |2 | is identical to the Hamming weight,

so we will mostly use |2 | in this section to simplify the notation.

We now recall Theorem 2.10, which is the main theorem to prove

in this section.

Theorem 2.10 (Random codes are robust). Fix d0, d1 ∈ (0, 1), let
X1 ∈ (0, 1/2), X2 ∈ (0, X1 (1 − X1/2)/8) satisfy

2ℎ(X1/2) + 2(1 − X1/2)ℎ(
4X2

X1 (1 − X1/2)
)

<

3

4

(1 − X1/2 − d0) (1 − X1/2 − d1 )
1 − X1/2

(5)

where ℎ(?) = −? log2 (?) − (1 − ?) log2 (1 − ?).3 Let ��,�� be

random codes sampled from the uniform distribution with length Δ

and dimensions d0Δ, d1Δ. Then as Δ goes to in�nity, with probability

tending to 1,�� ,�� have distance31 = X1Δ and (��,��) is32 = X2Δ-

robust.

The proof follows a similar strategy in [44, 50], where the key

is to show that a codeword with a small weight |2 | < F = Θ(Δ2)
is “structured”, i.e. 2 is only supported on a few columns and a few

rows, with high probability.

To show codewords with small weights are “structured”, we show

all non-zero codewords in a random code have some column or row

with large weight with high probability. Because the punctured

code of a random code is still roughly a random code, the same

property also applies to its punctured codes. Now, since we assumed

the codeword 2 ∈ O (��,��) has small weight, we can remove a

few columns and rows with large weights, such that the rest have

small weight in all columns and rows. We then apply the property

3The allowed range for X2 is chosen such that the argument in ℎ ( ·) is valued between
(0, 1/2) .

of the punctured code above which implies the rest is 0, so 2 is only

supported on those removed columns and rows, i.e. 2 is “structured”.

When 2 is “structured”, one can then �nd 20 supported on the few

columns and 21 supported on the few rows. This means the cancella-

tion in 20+21 could only happen in the intersection of those columns

and rows which is small. Since each column of 20 is a codeword,

when the distance is large, |20 | ≥ 31∥20 ∥ [=1 ] = Θ(Δ)∥20 ∥ [=1 ] .
This implies codewords with small weight satisfy the inequality

for robustness |2 | = |20 | + |21 | − small number of cancellations ≥
Θ(Δ) (∥20 ∥ [=1 ] + ∥21 ∥ [=0 ] ).

When 2 has large weight |2 | ≥ F = Θ(Δ2), because ∥20 ∥ [=1 ] +
∥21 ∥ [=0 ] ≤ 2Δ, the inequality for robustness |2 | ≥ 32 (∥20 ∥ [=1 ] +
∥21 ∥ [=0 ] ) is easily satis�ed by setting 32 = F/(2Δ) = Θ(Δ).

We state the two lemmas. The proof of the theorem and the two

lemmas can be found in [18]. The �rst lemma says each non-zero

codeword has at least one row or column with large weight (which

implies codewords with small weight are “structured”). The second

lemma says “structured” codewords satisfy robustness.

Lemma 5.1. Fix d0, d1 ∈ (0, 1), let f ∈ (0, 1), g ∈ (0, (1 − f)/2)
satisfy

2ℎ(f) + 2(1 − f)ℎ( g

1 − f ) <
3

4

(1 − f − d0) (1 − f − d1 )
1 − f .

Let ��,�� be random codes sampled from the uniform distribution

with length Δ and dimensions :0 = d0Δ, :1 = d1Δ. Then as Δ goes

to in�nity, with probability tending to 1, the following holds: for any

B = fΔ-punctured code �′
�
,�′

�
, all non-zero codewords in O (�′

�
,�′

�
)

have at least one row or one column with weight ≥ C = gΔ. In other

words, if a codeword in O (�′
�
,�′

�
) has all its rows and columns with

weight < C , then the codeword is 0.

Lemma 5.2 (Modi�cation of [50, Lemma 8] or [44, Lemma 30]).

Suppose�� and�� have distance31. If 2 ∈ O (��,��) is supported on
�0×[=1 ]∪[=0]×�1 and |�0 |, |�1 | < 31, then there exists 20 ∈ ��⊗F=12
supported on [=0] × �1 and 21 ∈ F=02 ⊗ �� supported on �0 × [=1 ]
such that 2 = 20 + 21 .

Furthermore, if |�0 |, |�1 | < 31/2, we have

|2 | ≥ 31

2
(∥20 ∥ [=1 ] + ∥21 ∥ [=0 ] ) .
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