
Approximating Binary Longest Common Subsequence in
Almost-Linear Time∗

Xiaoyu He
xiaoyuh@princeton.edu
Princeton University

USA

Ray Li
rayyli@berkeley.edu

UC Berkeley
USA

ABSTRACT

The Longest Common Subsequence (LCS) is a fundamental string

similarity measure, and computing the LCS of two strings is a

classic algorithms question. A textbook dynamic programming al-

gorithm gives an exact algorithm in quadratic time, and this is

essentially best possible under plausible �ne-grained complexity

assumptions, so a natural problem is to �nd faster approximation

algorithms. When the inputs are two binary strings, there is a sim-

ple 1
2 -approximation in linear time: compute the longest common

all-0s or all-1s subsequence. It has been open whether a better ap-

proximation is possible even in truly subquadratic time. Rubinstein

and Song showed that the answer is yes under the assumption that

the two input strings have equal lengths. We settle the question,

generalizing their result to unequal length strings, proving that,

for any Y > 0, there exists X > 0 and a (12 + X)-approximation

algorithm for binary LCS that runs in =1+Y time. As a consequence

of our result and a result of Akmal and Vassilevska-Williams, for

any Y > 0, there exists a (1@ + X)-approximation for LCS over @-ary

strings in =1+Y time.

Our techniques build on the recent work of Guruswami, He, and

Li who proved new bounds for error-correcting codes tolerating

deletion errors. They prove a combinatorial “structure lemma” for

strings which classi�es them according to their oscillation patterns.

We prove and use an algorithmic generalization of this structure

lemma, which may be of independent interest.

CCS CONCEPTS

• Theory of computation → Design and analysis of algo-

rithms; Error-correcting codes.

KEYWORDS

longest common subsequence, approximation algorithms, almost-

linear time, deletion codes

ACM Reference Format:

Xiaoyu He and Ray Li. 2023. Approximating Binary Longest Common Sub-

sequence in Almost-Linear Time. In Proceedings of the 55th Annual ACM

Symposium on Theory of Computing (STOC ’23), June 20–23, 2023, Orlando, FL,

∗X. He was supported by the NSF Mathematical Sciences Postdoctoral Research Fellow-
ships Program under Grant DMS-2103154. R. Li was supported by the NSF Mathemati-
cal Sciences Postdoctoral Research Fellowships Program under Grant DMS-2203067.

STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585104

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3564246.

3585104

1 INTRODUCTION

In this paper, we give improved approximation algorithms for the

Longest Common Subsequence (LCS), a fundamental string simi-

larity measure that is of theoretical and practical interest. The LCS

of two strings, as the name suggests, is the length of the longest se-

quence that appears as a (not necessarily contiguous) subsequence

in both strings. The LCS is one of the most ubiquitous ways to quan-

tify the similarity of two strings, a task that appears in a variety of

contexts from spell checkers to DNA processing.

Computing the LCS is a classic algorithms question. A textbook

dynamic programming algorithm gives an exact algorithm in qua-

dratic time $ (=2), while the fastest known algorithm runs in time

$ (=2/log2 =) [27]. Whether we can improve these algorithms has

been a longstanding open question (see, for example, Problem 35

of [21]). Under �ne-grained complexity assumptions such as the

Strong Exponential Time Hypothesis [2, 5, 17] and even more plau-

sible hypotheses [3], there is no exact algorithm for LCS in time

$ (=2−Y) with Y > 0. Because of these barriers for exact algorithms,

it is natural to wonder whether there are faster approximation

algorithms.

When the inputs are two binary strings, the simple algorithm

that computes the longest all-0s or all-1s common subsequence

gives a 1
2 -approximation in linear time. Despite its simplicity, this

has been the best known approximation for binary LCS on arbitrary

inputs, even in truly subquadratic time (=2−Y for an absolute Y > 0).

This raises the following natural question.

Question 1.1. Do there exist X, Y > 0 and a (12 + X)-approximation

algorithm of the LCS of two binary strings of length at most = in

time $ (=2−Y)?
Towards Question 1.1, Rubinstein and Song [30] showed that,

if we assume the input strings have the same length, for all Y > 0,

there is a (12 + X)-approximation of the LCS in time $ (=1+Y) (X
depends on Y). However, for the general setting of unequal length

inputs remained open.

Our main result answers Question 1.1 in full, handling unequal

length strings.

Theorem 1.2. For all Y > 0, there exists an absolute constant

X = X (Y) > 0 and a deterministic algorithm that, given two binary

strings G and ~ of not-necessarily-equal length, outputs a (12 + X)-
approximation of the longest common subsequence in time $ (=1+Y)
where = = max(|G |, |~ |).1

1Our runtime is actually$ (= · min(|G |, |~ |)Y) , which is slightly better in the case ~
is much longer than G , but we state it as is for simplicity.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1145

http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-2958-6845
https://orcid.org/0000-0003-3441-2364
https://doi.org/10.1145/3564246.3585104
https://doi.org/10.1145/3564246.3585104
https://doi.org/10.1145/3564246.3585104
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585104&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu He and Ray Li

We note that our algorithm uses the equal-length LCS algorithm

of [30] as a black box, so any improvements in the equal-length

setting automatically yield improvements in the unequal-length

setting. In general, if there is an equal-length LCS algorithm running

in time) (=) giving a (12 + X)-approximation, our algorithm gives a

$ ((=+) (=)) log� =) time (12+X�)-approximation on unequal length

strings, for an absolute constant �. Furthermore, while we present

our algorithm as outputting the length of the longest common

subsequence, we can output the subsequence of the promised length

if the black-boxed equal-length LCS algorithm can.

Our work gets around a technical barrier for unequal length

strings, which was highlighted in [7]. The algorithms of [30] used

the intimate connection between LCS and Edit Distance, the number

of insertions, deletions, and substitutions needed to transform one

string to another. If we ignore substitutions, Edit Distance and LCS

are in fact equivalent to compute exactly. Similar to LCS, there is

no exact algorithm for Edit Distance in =2−Y time with Y > 0, under

plausible �ne-grained complexity assumptions [3, 13, 17]. Approxi-

mation algorithms for Edit Distance are well-studied, and a recent

line of work [8–10, 12, 14, 15, 19, 22, 25] culminated in a constant-

factor approximation of Edit Distance in almost-linear time [10].

Rubinstein and Song used these approximation algorithms for Edit

Distance to obtain their approximation for LCS. However, because

they rely on Edit Distance algorithms, they crucially use that the

strings are equal length: note that if one string has length = and the

other string has length 100=, their edit distance is always at least

99=, so even computing a 3-approximation of edit-distance of the

two input strings would be unhelpful for approximating LCS.

Our work gets around this problem by using di�erent techniques

to handle unequal length strings. Our techniques are adapted from

a recent work [23] that proves lower bounds for error-correcting

codes correcting deletions [26, 31] via the following combinatorial

result about LCS.

Theorem 1.3 ([23], deletion code limitation). There exists an ab-

solute constants �, X > 0 such that for any set � of binary strings

of length = with |� | ≥ 2log
� = , there exist two strings G and ~ with

LCS(G,~) ≥ (12 + X)=.

Intuitively, we may expect the techniques for Theorem 1.3 to be

useful here because it shares similarities with our main result, Theo-

rem 1.2. While Theorem 1.3 is a “negative result” for deletion codes,

it is a “positive result” in the algorithmic sense, as it shows that

among any small set of strings, two of them have a long common

subsequence. Furthermore, it has a similar �avor as Question 1.1,

as both consider “beating the trivial matching” for LCS in binary

strings. Thus, one might suspect then that these two problems are

related, and we show indeed they are. On the other hand, adapting

the techniques from [23] to our setting is nontrivial as we need to

(i) make the combinatorial techniques algorithmic and (ii) handle

unequal length strings (note in Theorem 1.3 all strings are of the

same length).

Computing LCS is also interesting over larger alphabets. Approx-

imating LCS when there is no restriction on the alphabet has been

well studied [11, 16, 24, 28, 29], and currently the best result [11, 28]

gives a randomized 1
=> (1)

-approximation in linear time. Over an

alphabet of a given size @ > 2, there is, similar to the binary case, a

trivial linear time 1
@ -approximation obtained by taking the longest

common constant subsequence. For �xed @, over general @-ary in-

puts, this was the best known approximation, even in subquadratic

time. For @-ary inputs where the two strings have the same length,

Akmal and Vassilevska-Williams [7] (see also [6]) generalized the

result of Rubinstein and Song, showing for all Y > 0 there is a

(1@ + X)-approximation in =1+Y time.

By the work of Akmal and Vassilevska-Williams [7], our main

result immediately implies improved approximation algorithms

over non-binary alphabets, for the general case of not-necessarily-

equal length strings. Akmal and Vassilevska-Williams showed that

if there is a (12 +X)-approximation for binary LCS (which we show),

there is a (1@ + X ′)-approximation for @-ary LCS in essentially the

same runtime. Hence, we have the following corollary.

Corollary 1.4 (Follows from Theorem 1.2 and Theorem 1 of [7]).

For all Y > 0 and integers @ ≥ 2, there exists an absolute constant

X = X (Y) > 0 and a deterministic algorithm that, given two @-ary

strings G and ~ of not-necessarily-equal length, outputs a (1@ + X)-
approximation of the longest common subsequence in time $ (=1+Y)
where = = max(|G |, |~ |).

2 PRELIMINARIES

For clarity of presentation, we sometimes drop �oors and ceilings

where they are not crucial.

Strings. For a string G , a subsequence of G is any string obtained

by deleting any number of bits of G . A substring is a subsequence

that appears as consecutive bits of G . Let 0(G) and 1(G) denote the
number of zeros and ones, respectively, in G . A property % of binary

strings is a set of binary strings. We say a string G satis�es/has a

property % if G is in the set % .

Intervals. We use interval notation similar to that of [19]. By

convention, an interval � = [0, 1] denotes the set {0+1, 0+2, . . . , 1},
and we write start � = 0 and end � = 1. Note that � and � ′ are disjoint
if and only if either end � ′ ≤ start � or end � ≤ start � ′. The length
of an interval � = [0, 1] is 1 − 0. For a string G , let G� denote the
contiguous substring G0+1G0+2 · · · G1 . By abuse of notation, when

the string G is understood, we may use � to refer to the substring

G� . For an integer F , we say interval � is F-aligned if start � and

end � are multiples ofF . An interval is aF-interval if it has length

F and is F-aligned. Let roundF (�) denote the largest F-aligned
subinterval of � . Note we always have |roundF (�) | > |� | − 2F .

For an interval � and integer F , let IF (�) be the collection of

F-intervals that are subintervals of � . When a string G is understood

(as it always will be), we write IF ≔ IF (|G |). Note that if |G | is a
multiple ofF , the intervals of IF partition [<].

A rectangle is a product � × � where � and � are intervals. A

square is a rectangle � × � with |� | = |� |. A certi�ed rectangle is a

pair (� × � , ^) where ^ is a positive number.

De�ne a partial ordering on intervals, where � < � ′ i� end � ≤
start � ′. That is, every element of � is less than every element of

� ′. Note that if two intervals have nonempty intersection, they

are incomparable. We also de�ne a partial ordering on rectangles,

where � × � < � ′ × � ′ i� � < � ′ and � < � ′. We say a collection of

1146

Approximating Binary Longest Common Subsequence in Almost-Linear Time STOC ’23, June 20–23, 2023, Orlando, FL, USA

(certi�ed) rectangles is ordered if any two (certi�ed) rectangles are

comparable under this partial order.

For any two strings G and ~, �x a canonical matching g = g (G,~)
between the bits of G and ~ that achieves the longest common

subsequence (g is not necessarily unique, but we can �x it to be, say,

the lexicographically earliest one). For � ⊂ [|G |], let �g
�
denote the

(unique) smallest interval such that the bits of G� are only matched

with bits in ~� g
�
in the matching g . Note that clearly if � ′ and � are

disjoint, then �g
�
and �g

� ′ are disjoint.

For any string G , we write 3 (G) for the density of G , i.e. the ratio

between the number of ones in G and the length of G . For W > 0, we

say an interval � is W-balanced in G if 3 (G�) ∈ [12 ± W], and we say �

is W-imbalanced in G otherwise. If G is understood (as it always will

be), we simply say W-balanced and W-imbalanced. A useful property

of balanced strings G is that we can �nd LCS close to |G |/2 with
any other string of the same length.

Lemma 2.1. If G and ~ are strings such that G is W-balanced and

|G | = |~ |, then LCS(G,~) ≥ (12 − W) |G |.

Proof. Suppose without loss of generality ~ has at least |~ |/2
ones. Then ~ has at least |G |/2 ones. Since G is W-balanced, then G

has at least (12 − W) |G | ones, so the LCS is at least (12 − W) |G |. □

Algorithms. Let Trivial(G,~) denote the output of the simple

algorithm that outputs the longest all-0s or all-1s subsequence.

Clearly Trivial(G,~) = max(min(0(G), 0(~)),min(1(G), 1(~)).
Rubinstein and Song showed that one can obtain a (12 + X)-

approximation of equal length LCS. Their result immediately ex-

tends to a (12 +X ′)-approximation for near-equal length LCS, which

we use.

Theorem 2.2 (Follows immediately from [30]). For any Y > 0, there

exists a X4@ = X4@ (Y) > 0 and a (12 + X4@)-approximation of the LCS

of two binary strings G and ~ with |G |, |~ | ∈ [(1 − X4@)=, (1 + X4@)=]
in time $ (=1+Y).

Let EqLCS(G,~) denote the output of the algorithm from Theo-

rem 2.2.

3 PROOF SKETCH

In this section we give a high-level overview of our almost-linear

time LCS approximation algorithm, Theorem 1.2. We start by de-

scribing the novel ingredient, our algorithmic structure lemma,

Lemma 4.1. It states, roughly speaking, that binary strings B of

lengthF can be classi�ed among one of $ (logF) oscillation types

or scales, such that for any two strings B, C with the same type,

there is a long subinterval B� in B with LCS(B� , C) > (1/2 + X) |B� |.
Moreover, the lemma is algorithmic in that both the type of B and

the long subinterval B� are computable from B in time nearly linear

inF .

To formally de�ne oscillation types, we �rst introduce the notion

of a �ag. In a string G , an ℓ-�ag is an index 8 such that between the

8th one and the (8 + ℓ)-th one, there are strictly more than 10(ℓ − 1)
zeros. In other words, an ℓ-�ag is a one-bit in B that is immediately

followed by a 0-dense interval of length on the order of ℓ . The

existence of many ℓ-�ags in G means that G “oscillates at scale ℓ .”

An ℓ+-�ag is an index 8 that is a C-�ag for some C ≥ ℓ , where C must

be a power of two. The oscillation types guaranteed by Lemma 4.1

are as follows.

De�nition 3.1 (De�nition 4.5 below). Let ℓ be a power of two,

ℓ ∈ [1,F], and G ∈ {0, 1}F .
(1) We say that G is ℓ-coarse if ℓ ≥ Y2F and there is a Y2-

imbalanced interval � in G of length ℓ . We say G is coarse

if it is ℓ-coarse for some ℓ ≥ Y2F .

(2) We say that G is ℓ-�ne if it is not coarse, ℓ < Y2F , the number

of ℓ+-�ags in G is at least YF , and G contains (0ℓ1ℓ)YF/ℓ as a
subsequence. We say G is �ne if it is ℓ-�ne for some ℓ < Y2F .

To a �rst approximation, this means that every string G either has a

long imbalanced subinterval or else behaves like the periodic string

(0ℓ1ℓ)F/2ℓ for some ℓ .

Now we return to summarizing the proof of Theorem 1.2. By

prior results [7, 30] (see also [6]), it su�ces to consider the “perfectly

balanced case,” where the shorter string G has an equal number of

zeros and ones.

Theorem 3.2. For all Y > 0, there exists an absolute constant X =

X (Y) > 0 and a deterministic algorithm that, on input strings G and ~

with 0(G) = 1(G) ≤ min(0(~), 1(~)), gives a (12 + X)-approximation

of the longest common subsequence in time $ (=1+Y).

Theorem 1.2 follows from Theorem 3.2 by prior work [7, 30]; for

completeness include the details in Section 6. In the rest of this

section, we sketch the proof of Theorem 3.2.

Our algorithm for Theorem 3.2, which is described in pseudocode

in Algorithms 1 and 2, is a modi�cation of the standard quadratric

time DP algorithm for LCS, which we formulate as follows. The

standard DP algorithm computes LCS(G,~) by computing the full

array DP[8] [9] ≔ LCS(G [8] , ~[9]), 0 ≤ 8 ≤ |G |, 0 ≤ 9 ≤ |~ | via the
recursion

DP[8] [9] =

max(DP[8] [9 − 1],
DP[8 − 1] [9],
DP[8 − 1] [9 − 1] + 1) if G8 = ~8

max(DP[8] [9 − 1],
DP[8 − 1] [9]) otherwise.

In total this takes$ (|G | · |~ |) applications of the recursion. To prove
Theorem 3.2, we don’t need to compute the exact value of LCS(G,~),
rather, we only need to output a value between (1/2 + X) LCS(G,~)
and LCS(G,~). To estimate the LCS e�ciently, we modify the DP

above by recursing over large subrectangles instead of one bit at

a time. We compute a collection of large rectangles � × � (where
� and � are long subintervals of [|G |] and [|~ |], respectively) and
estimates ^ (� × �) for their LCS (we call these certi�ed rectangles).

We guarantee that^ (�× �) ≤ LCS(G� , ~�) in every rectangle, and we
desire that many of these ^ (� × �) are good estimates of LCS(G� , ~�).
(For readers familiar with [19], �nding these rectangles is analogous

to their “Covering Phase”).

The large rectangles under consideration are \F-aligned sub-

rectangles of [|G |] × [|~ |], whereF ≈ |G |/log |G | is a typical length
of the G-intervals and \ is a small constant discretization parameter

(in the real proof, we use a coarser discretization for G-intervals

than for ~-intervals, but ignore that here for sake of illustration).

1147

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu He and Ray Li

Our modi�ed DP algorithm is then

DP[8] [9] = max
(
DP [start � − \F] [start �] ,
DP [start �] [start � − \F] ,
DP [start �] [start �] + ^ (� × �)

over � × � ∈ R s.t. end � = 8, end � = 9
)
,(1)

where ^ (� × �) denotes the lower bound for LCS(G� , ~�) guaranteed
by our certi�cation algorithm. Observe that by induction DP[8] [9]
is still a lower bound for LCS(G [8] , ~[9]). Because of our discretiza-
tion, we only need to consider 8 and 9 a multiple of \F , so the

number of dynamic programming states drops from $ (|G | · |~ |)
to $ (|G | · |~ |(\F)2) ≤ $̃ (

|~ |
|G |). Thus it remains to show we can quickly

certify a collection of rectangles for which the dynamic program

(1) outputs a (12 + X)-approximation.

The main step is �nd a signi�cant fraction of “good” rectangles

for which ^ (� × �) > (1/2 + W) LCS(G� , ~�). We look for good

rectangles in three di�erent ways, as shown in Algorithm 1. (1)

First, we check for the “trivial” rectangles where Trivial(G� , ~�) >
(1/2 + W) |G� | (W > 0 chosen very small). (2) Next, we black-box the

equal-length LCS algorithm of Rubinstein and Song, and e�ciently

check for squares �× � with |� | = |� | and LCS(G� , ~�) > (1/2+W) |G� |.
(3) Finally — and this is the main technical contribution of our work

— we use the algorithmic structure lemma, Lemma 4.1, to e�ciently

compute “oscillation frequencies” for the intervals � and � . For any

given rectangle � × � where |� | is longer than |� |, they can then be

certi�ed quickly by checking if � has the same oscillation frequency

as � . For technical reasons, for this last type of rectangle we are

unable to guarantee that LCS(G� , ~�) > (1/2 + W) |G� | as we did

for the other two types, but we can instead guarantee the weaker

assumption that � has a long subinterval � ′ for which LCS(G� ′ , ~�) >
(1/2 + W) |G� ′ |. Handling this technicality requires some care, but to

get across the main ideas we ignore this detail for the rest of this

sketch and imagine that all certi�ed rectangles satisfy LCS(G� , ~�) >
(1/2 + W) |G� |.

We also certify using the trivial algorithm aweaker set of “default”

rectangles � × � where Trivial(� , �) ≥ (1/2−W4) |� | (the constants are
chosen for illustration). These rectangles exist all over the place and

are used in the DP to �ll in the gaps between the e�cient ones above.

Wemay assume LCS(G,~) ≥ (1−X) |G |—or else the trivial matching,

which is always |G |/2 by the setup of Theorem 3.2, gets a (1+X2)-
approximation — and this assumption guarantees we can certify

many good rectangles and many default rectangles. We show that

while most of the ^ (� × �) are (1/2−W4) |� | coming from the default

rectangles, a signi�cant enough fraction of them are (1/2 + W) |� |
that for the �nal answer we get DP[|G |] [|~ |] > (1/2 + X) |G |.

Since we are going for an almost-linear time algorithm (and not

just subquadratic), we need to be careful to certify the rectangles

quickly. Note that, naively, there are roughly (|~ |
\F
)2 ∼ Θ̃(|~ ||G |)

2

possible � -intervals. If ~ is much longer than G (say |~ | = |G |3), then
we cannot simply try to certify every rectangle, or else the runtime

is super-linear in the input size, even if we can certify rectangles in

constant time. Instead, we restrict ourselves to certifying rectangles

� × � where � is “minimal”. That is, for each G-interval � and each

end(�), we look for the minimal � where we can certify ^ (� × �) ≥
(1/2 + W) |� |. We can �nd such � by binary search (the ability to

binary search depends on a technical property of the algorithmic

structure lemma), so that the number of rectangles we are checking

is now only $̃ (|~ ||G |), rather than $̃ (
|~ |
|G |)

2.

4 ALGORITHMIC STRUCTURE LEMMA

We now state and prove our algorithmic structure lemma. We note

that the �nal algorithm uses this lemma as a black-box, and can be

understood without the proof of this lemma. The interested reader

can skip to Section 5 after Section 4.1.

4.1 Algorithm Structure Lemma Statement

The following is the key technical lemma. It is inspired by and builds

upon the “Structure Lemma” of [23], which was used to prove new

deletion code bounds.

Lemma 4.1 (Algorithm Structure Lemma). There exists an absolute

constant X2>34 > 0 such that for all su�ciently largeF , there exists

) ≤ 2 logF and 2) string properties %1, . . . , %) , &1, . . . , &) such that:

(1) If string G has lengthF , then there exists a C ∈ [)] such that

G has property %C .

(2) If LCS(G,~) ≥ (1 − X2>34) |G | and G has property %C , then ~

(not necessarily of lengthF) has property &C .

(3) Property &C is hereditary, meaning that if ~ has &C and ~ is a

subsequence of ~′, then ~′ has &C .
(4) For every C ∈ [)], and strings G and ~, we can test if G satis�es

%C in time $ (F logF). We can also preprocess the string ~

in time $ (|~ | log |~ |), such that we can answer queries of the

form “does ~′ satisfy &C ,” for substrings ~′ of ~, in $ (F) time.

(5) If string G has length F and property %C and string ~ has

property &C , then there exists an interval � ⊂ [F] such that

LCS(G� , ~) ≥ |� |2 + X2>34F . Furthermore, given G and C , the

interval � and the promised common subsequence of G� and ~

can be chosen independent of ~, and both can be found in time

$ (F logF).

Remark 4.2. In item 5, it is easy to see that, if W ≤ X2>34/10, we
may additionally assume (by starting with X ′

2>34
= X2>34/2) that

the interval � is WF-aligned by taking � ′ ≔ roundWF (�). We do so

in the application in Section 5.

We now provide some more intuition for Lemma 4.1. First, we

describe the properties %C and &C that we actually use (based on

De�nition 3.1). For convenience, to de�ne the properties, we index

them as %ℓ,0, %ℓ,1, %ℓ for ℓ ≤ F a power of 2, for a total of roughly

) ∼ 3 logF properties.

• If ℓ ≥ Y2F and 1 ∈ {0, 1}, then %ℓ,1 is the property that G is ℓ-

coarse, and its imbalanced interval of length ℓ is imbalanced

in the direction of 1-bits (i.e. has more 1’s than 1̄’s).

• If ℓ ≥ Y2F and 1 ∈ {0, 1}, then &ℓ,1 is the property that ~

has at least
(1+Y2

2

)
ℓ 1-bits.

• If ℓ < Y2F , then %ℓ is the property that G is ℓ-�ne.

• If ℓ < Y2F , then &ℓ is the property that ~ contains ~ℓ =

(0ℓ1ℓ)YF/(5ℓ) as a subsequence.
The properties %C are based on one of the key technical lemmas

of the deletion codes bound [23], a combinatorial structure lemma.

This structure lemma roughly says that for strings of length =, there

are properties %̃1, . . . , %̃) with) ≤ $ (log=), such that

1148

Approximating Binary Longest Common Subsequence in Almost-Linear Time STOC ’23, June 20–23, 2023, Orlando, FL, USA

(i) any binary string of length = has some property %̃8 , and

(ii) if two strings G and ~ have property %̃8 , then G and ~ have

(contiguous) substrings G ′ and ~′ of length Ω(=) whose LCS
is at least (12 + X) (

|G ′ |+|~′ |
2) (the real guarantee is stronger

but more technical to state).

Theorem 1.3, the deletion codes lower bound, is proved (very roughly)

by partitioning each string in � into polylog= substrings, �nding

by pigeonhole two strings G and ~ such that the types of the corre-

sponding substrings of G and ~ agree, and using guarantee (ii) to

�nd a (12 + X ′)F overall LCS.

Lemma 4.1 is a generalization of this combinatorial structure

lemma that is “algorithmic” and “handles unequal length strings.”

The properties %C that we choose in Lemma 4.1 are similar to the

properties %̃C of [23], and it is not hard to check by inspection that

the properties %̃C of [23] can be tested in linear time. The di�culty

lies in �nding properties &C of strings ~ that (a) can be “inherited”

from properties like %̃C if ~ has a subsequence covering most of G ,

(b) can be tested e�ciently, and (c) still guarantee an LCS advantage

between G and ~.

Because of Lemma 4.1, we can de�ne the following algorithms,

which we use in our �nal LCS algorithm.

De�nition 4.3. For an integerF , let %1, . . . , %) , &1, . . . , &) be the

properties from Lemma 4.1. Let GetPTypeF (G) denote the smallest

index C such that G has property %C . Let IsQTypeF (G, C) be true

if G has property &C and false otherwise. For G satisfying %C for

some C , let GetIF (G, C) denote a WF-aligned interval � such that

LCS(G� , ~) ≥ |� |2 + X2>34F for all ~ satisfying &C . Such an interval

exists by Lemma 4.1 and Remark4.2.

By Lemma 4.1, GetPTypeF (G) can be computed in $ (F log2F)
time, since one can simply test each of the $ (logF) properties %C .
By Lemma 4.1, any string ~ can be preprocessed in $ (|~ | log |~ |)
time such that, for any contiguous substring~′ of~, IsQTypeF (~′, C)
can be computed in $ (F) time. Note that the input to GetPTypeF
must have length F , but the string input to IsQTypeF can have

arbitrary length. By Lemma 4.1, GetIF (G, C) can be computed in

$ (F logF) time.

4.2 Combinatorial Structure Lemma and Types

In a string G , an ℓ-�ag is an index 8 such that between the 8th one

and the (8 + ℓ)-th one, there are strictly more than 10(ℓ − 1) zeros.
An ℓ+-�ag is an index 8 that is a C-�ag for some C ≥ ℓ , where C must

be a power of two. By abuse of notation, if 8 is a ℓ-�ag, we may also

call the 8-th one of G a ℓ-�ag. Note that there are many more zeros

than ones between the 8th and (8 + ℓ)-th one, so �ags tell us where

it is more advantageous to use zeros rather than ones in �nding

long subsequences.

The basis for the algorithmic structure lemma is a combinatorial

structure lemma for strings, which we inherit from [23, Lemma

4.1]. We use a weaker form of the lemma, which has a signi�cantly

simpler statement and proof, and is also tailored to our algorithmic

application. The proof is given in Appendix A.

Lemma 4.4 (Combinatorial Structure Lemma). For Y = 10−5 and
F su�ciently large, at least one of the following two conditions holds

for every string G ∈ {0, 1}F .

(1) There exists ℓ ∈ [Y2F,F] equal to a power of two and an

0.1-imbalanced interval � in G of length ℓ .

(2) There exists ℓ ∈ [1, Y2F) equal to a power of two such that

the number of ℓ+-�ags in G is at least YF , and G contains

(0ℓ1ℓ)YF/ℓ as a subsequence.
For the remainder of Section 4, �x Y ≔ 10−5 . Lemma 4.4 shows

that every su�ciently long string G is of one of the below types, of

which there are logF total.

De�nition 4.5. Let ℓ be a power of two, ℓ ∈ [1,F], and G ∈ {0, 1}F .
(1) We say that G is ℓ-coarse if ℓ ≥ Y2F and there is a Y2-

imbalanced interval � in G of length ℓ . We say G is coarse

if it is ℓ-coarse for some ℓ ≥ Y2F .

(2) We say that G is ℓ-�ne if it is not coarse, ℓ < Y2F , the number

of ℓ+-�ags in G is at least YF , and G contains (0ℓ1ℓ)YF/ℓ as a
subsequence. We say G is �ne if it is ℓ-�ne for some ℓ < Y2F .

Note that for the convenience of our later proofs, we change the

imbalanced threshold from 0.1 in Lemma 4.4 to the much smaller Y2

in the above de�nition. Since every 0.1-imbalanced interval is also

Y2-imbalanced, Lemma 4.4 implies every su�ciently long string G

is of one of the above two types.

4.3 Algorithmic Structure Lemma Ingredients

As in the last section, we �x Y = 10−5. Also, for brevity, for every
positive integer ℓ , de�ne the special string

~ℓ ≔ (0ℓ1ℓ)YF/(5ℓ) .
We prove two ingredients to justify our “&C ” properties in the

algorithmic structure lemma. The �rst is the simple observation

that if G is ℓ-�ne and LCS(G,~) ≥ (1 − X2>34) |G |, then ~ inherits

the easily testable subsequence ~ℓ from G .

Lemma 4.6. Let 0 < X < Y/10, ℓ be a power of two, andF > Y−2ℓ .
If G is an ℓ-�ne string of length F and LCS(G,~) ≥ (1 − X)F , then
~ℓ is a subsequence of ~.

Proof. By de�nition, if G is ℓ-�ne then G contains (0ℓ1ℓ)YF/ℓ =
~5ℓ as a subsequence. Since LCS(G,~) ≥ |G | − XF and ~5ℓ is a sub-

sequence of G , we have LCS(~5ℓ , ~) ≥ |~5ℓ | − XF . Thus, there is

a subsequence of ~ obtained by applying XF deletions to ~5ℓ . By

counting, at most 2XF/ℓ of the chunks 0ℓ1ℓ in ~5ℓ receive more than

ℓ/2 of these deletions. The remaining YF/ℓ − 2XF/ℓ > 4YF/(5ℓ)
chunks each have at least ℓ/2 zeros and ℓ/2 ones. Taking ℓ zeros
from the �rst two chunks, ℓ ones from the next two, and so on, we

see that ~ contains ~ℓ as a subsequence, as desired. □

The second ingredient implies that if G is ℓ-�ne, then a substring

of G can be matched advantageously with ~ℓ .

Lemma 4.7. Let ℓ be a power of two, andF > Y−2ℓ . If a string G of

lengthF is ℓ-�ne, then there exists an interval � with LCS(G� , ~ℓ) ≥
|� |
2 + Y3 |G |. Furthermore, given G and ℓ , we can determine the interval

� and the common subsequence of G� and ~ℓ in time $ (F logF).

Proof. The number of ℓ+-�ags in G is at least YF . By pigeonhole,

there exists some interval � ′ = [0, 1] of length 4Y2F containing

at least 2Y3F many ℓ+-�ags (the lost factor of two accounts for

2Y2F possibly not evenly dividingF). Furthermore, since G is not

1149

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu He and Ray Li

coarse, we may assume that each such ℓ+-�ag is an ℓ′-�ag for some

ℓ′ ∈ [ℓ, Y2F). Thus, the interval � = [0, 1 + 11Y2F] has length
4Y2F +11Y2F ≤ 20Y2F and G ′ ≔ G� has at least 2Y

3F many ℓ+-�ags
(we cannot simply take G ′ = G� ′ , as bits at the right end of � may be

�ags in G but not in G� ′). Furthermore, G ′ is Y2-balanced since it has
length at least Y2F and is a substring of G , which is not coarse. We

can �nd interval � ′, and thus � and G ′, in time $ (F logF), because
(with preprocessing of the string’s pre�x sums) we can test whether

a bit is an ℓ+-�ag in logF time, so counting the �ags in an interval

can be done in $ (F logF) time, and there are a constant number

of intervals to check.

Now we claim LCS(G ′, ~ℓ) ≥ |G
′ |
2 + Y3 |G |. Construct a common

subsequence G ′′ of G ′ and ~′ as follows: Initialize a counter 8 = 1.

While 8 ≤ 1(G ′),
(1) Append a one to G ′′,
(2) If the 8th one of G ′ is an ℓ′-�ag for some ℓ′ ≥ ℓ , append

1 + ⌊10(ℓ′ − 1)⌋ zeros to G ′′ and 8 ← 8 + ℓ′.
(3) Otherwise 8 ← 8 + 1.

We claim the subsequence G ′′ has the following properties.

• G ′′ is a subsequence of G ′.
• G ′′ is a subsequence of ~ℓ .
• G ′′ has length at least

|G ′ |
2 + Y3 |G |.

To see the �rst property, take the subsequence of G ′ where the
one added to G ′′ when the counter is 8 is matched to the 8-th one

of G ′, and the zeros added when the counter is 8 are the zeros

between the 8-th and (8 + ℓ′)-th one of G ′, of which there are at least

1 + ⌊10(ℓ′ − 1)⌋ because 8 is an ℓ′-�ag in G ′.
To see the second property, �rst note that ⌊10(ℓ′ − 1)⌋ + 1 ≥ ℓ′

for all positive integers ℓ′, so all runs of zeros in G ′′ have length
at least ℓ . Write G ′′ = 101002103004 · · · 102:+1 , where all 028 ≥ ℓ and
028−1 ≥ 1 for all positive integers 8 (except possibly 02:+1, which
may be 0). Notice that 108 and 008 are each subsequences of (0ℓ1ℓ)A8 ,
where A8 ≔ ⌈08/ℓ⌉ ≤ 08

ℓ + 1. Thus, G ′′ is a subsequence of (0ℓ1ℓ)A
for A ≔ A1 + · · · + A2:+1. Thus, we have

A ≤ A1 + · · · + A2:+1 ≤
01 + · · · + 02:+1

ℓ
+ (2: + 1)

<

4(01 + · · · + 02:+1)
ℓ

≤ 80Y2F

ℓ
<

YF

5ℓ
,

proving that G ′′ is a subsequence of~ℓ . In the third inequality above,
we used 02 +04 + · · · +02: ≥ :ℓ , so 2: + 1 ≤ 3: <

3(01+···+02:+1)
ℓ . In

the fourth inequality, we used 01+· · ·+02:+1 = |G ′′ | ≤ |G ′ | ≤ 20Y2F .

To see the third property, notice that |G ′′ | − 8 only changes when
a run of zeros is added to G ′′. If this run is added for an ℓ′-�ag at 8 in
G ′, then di�erence |G ′′ | − 8 increases by 1 + ⌊9(ℓ′ − 1)⌋ ≥ ℓ′, while
the total number of �ags skipped over is at most ℓ′. By induction

on 8 , after every while-loop iteration, we have

|G ′′ | − 8 ≥ #{ℓ+-�ags in [8]}.
so the total length of G ′′ at the end is at least

1(G ′) + #{ℓ+-�ags in G ′} ≥
(
1

2
− Y2

)
|G ′ | + 2Y3F ≥ |G

′ |
2
+ Y3 |G |,

as desired. The �rst inequality above follows from the fact that G ′

is Y2-balanced, and the second from |G ′ | ≤ 20Y2F . □

4.4 Proof of the Algorithmic Structure Lemma

Proof of Lemma 4.1. Let X2>34 = Y
4/2. We de�ne the properties

%C and &C based on the types in De�nition 4.5. For convenience,

we index them not as %1, %2, . . . , %) , but rather as %ℓ,0, %ℓ,1, %ℓ for

ℓ ≤ F a power of 2, for a total of roughly) ∼ 3 logF properties.

• If ℓ ≥ Y2F and 1 ∈ {0, 1}, then %ℓ,1 is the property that G is ℓ-

coarse, and its imbalanced interval of length ℓ is imbalanced

in the direction of 1-bits (i.e. has more 1’s than 1̄’s).

• If ℓ ≥ Y2F and 1 ∈ {0, 1}, then &ℓ,1 is the property that ~

has at least
(1+Y2

2

)
ℓ 1-bits.

• If ℓ < Y2F , then %ℓ is the property that G is ℓ-�ne.

• If ℓ < Y2F , then &ℓ is the property that ~ contains ~ℓ =

(0ℓ1ℓ)YF/(5ℓ) as a subsequence.
We now verify the conditions of Lemma 4.1.

(1) For every length-F string G , there exists a C such that G has

property %C .

This follows immediately from Lemma 4.4.

(2) If LCS(G,~) ≥ (1 − X2>34) |G | and G has property %C , then ~

has property &C .

First suppose ℓ ≥ Y2F , 1 ∈ {0, 1}, and G has property %ℓ,1 .

Then G has a substring G� of length at least Y2F with at least

(12 + Y2)ℓ 1-bits. The longest common subsequence of G� and

~ has at least |� | − X2>34F of the bits of G� , so ~ has at least

(12 +Y4)ℓ −X2>34F ≥ (1+Y
4

2)ℓ 1-bits, satisfying property&ℓ,1 .
If G has property %ℓ for ℓ < Y

2F , G is ℓ-�ne. By Lemma 4.6,

~ has property &ℓ .

(3) For every C , property &C is hereditary, meaning that if ~ has

&C and ~ is a subsequence of ~′, then ~′ has &C .
This follows from the de�nition of &C and that being a sub-

sequence is a transitive relation.

(4) For every C , property %C can be tested in time $ (F logF), and
property &C can be tested in time $ (F) on substrings of a

string ~, after $ (|~ | log |~ |) prepreocessing.
Testing the %C ’s can be done in $ (F logF) because, after
$ (F) preprocessing by storing all pre�x sums, we can check

whether any particular index is an ℓ-�ag or not in$ (1) time,

and for any particular property %C , we need to check at most

$ (F logF) �ags.
To test &C , �rst note that if we are working with a coarse

property &ℓ,1 , this can be tested in $ (1) time after prepro-

cessing pre�x sums. To test a �ne property&ℓ , preprocess the

string ~ as follows: for every index 9 ∈ {0, 1, . . . , |~ |} and bit

1 ∈ {0, 1}, compute next1,ℓ (9), the smallest index 9 ′ such that
the substring~[9, 9 ′] has at least ℓ bits equal to1. For any 9 and
1, next1,ℓ (9) can be computed by a binary search in log(|~ |)
time, so the preprocessing takes time $ (|~ | log |~ |). Now
property&C can be tested on a substring ~� in$ (F) time by

evaluating next1,ℓ (next0,ℓ (· · · next1,ℓ (next0,ℓ (start �)) · · ·)),
where there are YF/(5ℓ) calls to each of next0,ℓ and next1,ℓ ,

and checking if the result is at most end � .

(5) If G has property %C , |G | = F , and~ has property&C , then there

exists an interval � ⊂ [F] such that LCS(G� , ~) ≥ |� |2 +X2>34F .

Furthermore, given G and C , the interval � and the promised

common subsequence of G� and ~ can be chosen independent

of ~, and both can be found in time $ (F logF).

1150

Approximating Binary Longest Common Subsequence in Almost-Linear Time STOC ’23, June 20–23, 2023, Orlando, FL, USA

First suppose G has property %ℓ,1 and ~ has property&ℓ,1 for

ℓ ≥ Y2F and 1 ∈ {0, 1}. Then G has a substring G� of length

ℓ with at least (12 + Y2)ℓ 1-bits and ~ has at least (1+Y22)ℓ
1-bits, so LCS(G� , ~) ≥ (1+Y

2

2)ℓ ≥
|� |
2 + Y4

2 F , as desired.

Furthermore, � can be found in linear time by a linear sweep,

and the common subsequence is simply 1 (
1+Y2
2)ℓ as desired.

Now suppose G has property %ℓ for ℓ < Y2F , and ~ has

property &ℓ . Thus, G is ℓ-�ne and ~ contains ~ℓ as a sub-

sequence. By Lemma 4.7, there exists an interval � with

LCS(G� , ~) ≥ |� |2 + Y3 |G |, as desired. Furthermore, also by

Lemma 4.7, � and the common subsequence of G� and ~ can

be computed from G and C in time $ (F logF), independent
of ~, as desired.

This proves Lemma 4.1. □

5 ALMOST-LINEAR TIME ALGORITHM

We now give the almost-linear time algorithm for the “equally

balanced” case, which implies our main result. Speci�cally, we

prove the following (see Section 6 for how Theorem 1.2 follows

from Theorem 3.2).

Theorem (Theorem 3.2, restated). For all Y > 0, there exists an

absolute constant X = X (Y) > 0 and a deterministic algorithm that,

on input strings G and ~ with 0(G) = 1(G) ≤ min(0(~), 1(~)), gives
a (12 + X)-approximation of the longest common subsequence in

time $ (=1+Y).

The algorithm is given in Algorithm 2 with the covering step

given in Algorithm 1. The rest of this section proves the correctness.

5.1 Parameters and Notation Conventions

Throughout G and ~ are the input strings satisfying 0(G) = 1(G) ≤
min(0(~), 1(~)), and throughout = = max(|G |, |~ |). Let F be the

closest power of 2 to
|G |

log |G | . We may assume by deleting a negligible

number of bits from G and ~ that |G | and |~ | are multiples ofF . Let

<G ≔
|G |
F ∼ log |G | and<~ ≔ |~ |

F ∼
|~ | log |G |
|G | . Throughout, we

always denote intervals for string G by the letter � , and intervals

for string ~ by the letter � . By abuse of notation, we let intervals

� (possibly with decorations) denote the substring G� , and we let

intervals � denote the substring ~� .

Let Y > 0 be such that$ (=1+Y) is the desired runtime. Let X2>34 be

the constant from Lemma 4.1. Let X4@ = X4@ (Y2) be the constant from
Theorem 2.2. Let U, V,W, X, \ be constant powers of 1/2 that satisfy
min(X4@, X2>34) ≥ U ≫ V ≫ W ≫ X = \ . That is, X is su�ciently

small compared to W , which is su�ciently small compared to V ,

which is su�ciently small compared to U . For completeness, we

note it su�ces to take \ = X = W8, W =
1
2 V

2, V = U2. We did not try

to optimize our constants. We give the following intuition for the

above parameters.

• U lower bounds the LCS advantage gained from both algo-

rithmic structure lemma rectangles and nearly-square rect-

angles.

• V is the “nearly-square” parameter: in the optimal LCS, in-

tervals � are called nearly-square if they get matched to in-

tervals of length ≤ (1 + V) |� |. We may assume at most V2

fraction of intervals are nearly-square or else the nearly-

square rectangles (together with “trivial rectangles”) give a

(12 + poly V)-approximation by applying EqLCS to each of

them.

• W is the “imbalanced” parameter and discretization parameter

for � -intervals: we may assume most WF-length intervals to

be W-balanced, or else the “Trivial rectangles” give a (12 +
polyW)-approximation. We also round all � -intervals so that

they are WF-aligned. W is small enough so that the e�ect of

this rounding is negligible.

• X is the overall LCS approximation advantage: we obtain a

(1+X2)-approximation. We assume LCS(G,~) ≥ (1 − X) |G |, or
else Trivial gives a (1+X2)-approximation.

• \ is the discretization parameter for � -intervals: we round all

� -intervals so that they are \F aligned. \ is small enough so

that the e�ect of this rounding is negligible. We take \ , the

� -interval discretization, to be smaller than W , the � -interval

discretization, so that the gain from matching “Trivial rect-

angles” is larger than the loss due to discretization.

5.2 Runtime

We now analyze the runtime. We re-emphasize, as we did in the

proof sketch, that we need to be careful about factors<~ in our

runtime, but not powers of<G :<G is only log=, but<~ is roughly

|~ |/|G |, which can be a positive power of |~ |.
We �rst run a $ (|~ |)-time preprocessing of pre�x-sums that

allows us to query zero-counts and one-counts in any interval in

either G or~ in$ (1) time.We also preprocess string~ so that we can

test every property &C e�ciently on substrings of ~; for each C this

takes $ (|~ | log |~ |) preprocessing time, for a total preprocessing

time that is $ (|~ | log2 |~ |).
The runtime of CoveringAlgorithm is dominated by calls to

Trivial, EqLCS,GetPTypeF , IsQTypeF , andGetIF . Note that in Line 4

and Line 7, � can be computed by a binary search over a search

space of size<~/\ , and thus can be found in log(<~/\) calls to
Trivial, which each take $ (1) time with preprocessing. Thus, the

�rst nested loop takes $ (<2
G<~ log<~) ≤ $̃ (|~ |/|G |) time.

The second nested loop has $ (<G<~) calls to EqLCS, each of

which runs in $ (|G |1+ Y2) time, and thus takes $ (=1+Y) time.

For the third nested loop, the number of calls to GetPTypeF and

GetIF is<G , and each run in time $ (F logF), so the runtime is at

most $̃ (|G |). Because the property&C is hereditary, we can compute

� in Line 20 by binary search with log(<~/\) ≤ $ (log |~ |) calls to
IsQTypeF , which runs in time $ (F) (the binary search crucially

saves us a factor of roughly |~ |/|G | in the runtime). The number of

binary searches is $ (<G<~), so in total the runtime of this step is

$ (<G<~ · log(<~) ·F) ≤ $ (|~ | log2 |~ |).
There are $ (<G<~) rectangles, and the dynamic programming

has $ (<G<~) states. The runtime of the dynamic programming is

thus$ (<G<~) ≤ $̃ (|~ |/|G |), so the total runtime is thus$ (|~ |1+Y).

1151

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu He and Ray Li

Algorithm 1: CoveringAlgorithm

Input: G,~ such that 1(G) = 0(G) ≤ min(1(~), 0(~))
Output: A set R of certi�ed rectangles (� × � , ^) where � is

WF-aligned, � is \F-aligned, and LCS(� , �) ≥ ^.
// Trivial rectangles

1 R ← {([0, |G |] × [0, |~ |], Trivial([0, |G |], [0, |~ |]))}
2 for all WF-aligned intervals � do

3 for 9 = 0, . . . ,<~/\ do

4 � ← the smallest \F-aligned interval s.t.

end � = \F 9 and Trivial(� , �) ≥ (12 −
√
X) |� |

5 if � exists then

6 R ← R ∪(� × � , Trivial(� , �))
7 � ← the smallest \F-aligned interval s.t.

end � = \F 9 and Trivial(� , �) ≥ (12 +
W
2) |� |

8 if � exists then

9 R ← R ∪(� × � , Trivial(� , �))

10 for \F-aligned intervals � with |� | = |� | do
11 R ← R ∪(� × � , Trivial(� , �))

// Nearly-square rectangles

12 for intervals � ∈ IF do

13 for \F-aligned intervals � with

|� | ∈ [(1 − U)F, (1 + U)F] do
14 R ← R ∪(� × � , EqLCS(� , �))

// Algorithmic structure lemma rectangles

15 for 8 = 1, . . . ,<G do

16 � ← [(8 − 1)F, 8F]
17 C ← GetPTypeF (G�)
18 � ′ ← GetIF (G� , C)
19 for 9 = 1, . . . ,<~/\ do

20 � ← smallest interval such that end � = \F 9 ,

|� | ≥ (1 + 0.9V)F , and IsQTypeF (~� , C)
21 if � exists then

22 R ← R ∪(� ′ × � , |�
′ |
2 + UF)

23 return R.

5.3 Correctness Proof, High Level Overview

Weneed two inequalities about our output, FullLCSAlgorithm(G,~).
LCS(G,~) ≥ FullLCSAlgorithm(G,~) (2)

1 + X
2

LCS(G,~) ≤ FullLCSAlgorithm(G,~) (3)

Equation (2) is the easier, which we prove at the end of this section.

Equation (3) is the harder direction. We prove it in two cases, based

on the following de�nition.

De�nition 5.1. We say a pair of binary strings (G,~) is good if

(1) LCS(G,~) ≥ (1 − X) |G |,
(2) For at least (1 − W)<G intervals � ∈ IF , every � ′ ∈ IWF (�)

is W-balanced, and

(3) At least 1 − V2 of � ∈ IF satisfy |�g
�
| ≥ (1 + V) |� |.

We call a pair bad if it is not good.

Algorithm 2: FullLCSAlgorithm

Input: G,~ such that 1(G) = 0(G) ≤ min(1(~), 0(~))
Output: A (1+X2)-approximation of LCS

1 R ← CoveringAlgorithm(G,~)
// DP[8] [9] lower bounds !�(([0, WF8], [0, \F 9])

2 DP← [0,<G/W] × [0,<~/\] array, initialized to 0

3 for 8 = 1, . . . ,<G/W do

4 for 9 = 1, . . . ,<~/\ do

5 DP[8] [9] ← max(DP[8 − 1] [9],DP[8] [9 − 1])
6 for (� × � , ^) ∈ R with end � = (WF)8, end � = (\F) 9 ,

do

7 DP[8] [9] ←

max

(
DP[8] [9],

DP[(start �)/(WF)] [(start �)/(\F)] + ^

)

8 return DP[<G/W] [<~/\].

Obviously, we cannot determine in almost-linear time if an input

is good or bad, since that involves computing LCS(G,~). However,
our analysis of the performance of FullLCSAlgorithm(G,~) di�ers
depending on whether the input is good or bad. In Section 5.4, we

prove (3) when the input is bad, and in Section 5.5, we prove (3)

when the input is good.

In both the easy direction (2) and the hard direction (3), we use

the following characterization of the output of the dynamic pro-

gramming in Algorithm 2. Recall a collection of rectangles is called

an ordered collection if every pair (� , �) and (� ′, � ′) is comparable

(i.e. either � < � ′ and � < � ′ or � > � ′ and � > � ′).

Lemma 5.2. The output of FullLCSAlgorithm is the maximum, over

all ordered collections of certi�ed rectangles (�1 × �1, ^1), . . . , (�ℓ ×
�ℓ , ^ℓ), of ^1 + ^2 + · · · + ^ℓ .

Proof. By induction, it follows that DP[8] [9] is the maximum,

over all ordered collections of certi�ed rectangles (�1×�1, ^1), . . . , (�ℓ×
�ℓ , ^ℓ) contained in [0, WF8] × [0, \F 9], of ^1 + ^2 + · · · + ^ℓ . Here,
we use that, for all rectangles � × � in R, interval � is WF-aligned
and interval � is \F-aligned. □

The next lemma asserts that certi�ed rectangles are indeed “cer-

ti�ed.”

Lemma5.3. Every certi�ed rectangle (�×� , ^) inCoveringAlgorithm
satis�es LCS(� , �) ≥ ^.

Proof. This is true of all rectangles certi�ed by Trivial and

EqLCS by de�nition. The algorithmic structure lemma rectangles

(� ′× � , ^) for ^ =

|� ′ |
2 +UF satisfy LCS(� ′, �) ≥ ^ by Lemma 4.1. □

The easy direction (2) follows from Lemma 5.2 and Lemma 5.3.

Corollary 5.4. FullLCSAlgorithm(G,~) ≤ LCS(G,~)

Proof. By Lemma 5.2, the output of FullLCSAlgorithm(G,~)
equals^1+· · ·+^ℓ for some ordered collection of certi�ed rectangles

1152

Approximating Binary Longest Common Subsequence in Almost-Linear Time STOC ’23, June 20–23, 2023, Orlando, FL, USA

(�1 × �1, ^1), . . . , (�ℓ × �ℓ , ^ℓ). Then, by Lemma 5.3, we have

FullLCSAlgorithm(G,~) =
ℓ∑

8=1

^8 ≤
ℓ∑

8=1

LCS(�8 , �8) ≤ LCS(G,~),

as desired. □

5.4 Proof of (3) for Bad Inputs

We show that (3) holds in the bad case by conditioning on which

case of De�nition 5.1 is violated.

Subcase 1: Trivial. In the �rst subcase, we suppose LCS(G,~) ≤
(1 − X) |G |.
Lemma 5.5. If LCS(G,~) ≤ (1 − X) |G |, then (3) holds.

Proof. We always have Trivial([0, |G |], [0, |~ |]) ≥ |G |2 as
|G |
2 =

1(G) = 0(G) ≤ min(1(~), 0(~)). Hence, we have

FullLCSAlgorithm(G,~) ≥ |G |
2
≥ 1 + X

2
LCS(G,~) .

□

Subcase 2: Locally imbalanced. In the next subcase, we assume

LCS(G,~) ≥ (1 − X) |G | and that a nontrivial fraction of intervals

are imbalanced. Since G and ~ have such a long LCS, we know that

most intervals in G appear nearly unmodi�ed in ~:

Lemma5.6. IfF ′ is a positive integer that divides |G | and LCS(G,~) ≥
(1−X) |G |, then at most

√
X
|G |
F′ intervals �8 ∈ IF′ satisfy LCS(�8 , �g�8) >

(1 −
√
X) |�8 |.

Proof. To obtain the longest common subsequence of G and ~,

one applies at most X< deletions. By counting, at most
√
X
|G |
F′ inter-

vals of IF′ receive more than
√
XF ′ deletions, and the remaining

intervals satisfy the desired inequality. □

We now can establish (3) in this case.

Lemma 5.7. If at least W<G many WF-intervals are W-imbalanced,

and LCS(G,~) ≥ (1 − X) |G |, then (3) holds.

Proof. Let �1 < · · · < �<G /W be the intervals of IWF . For all
8 = 1, . . . ,<G/W , let �8 ≔ round\F (�g�8), so that �8 are pairwise

disjoint. Let 8<10; be the indices 8 such that �8 is W-imbalanced.

By assumption | 8<10; | ≥ W<G . Let 6>>3 be the indices 8 such

that LCS(�8 , �g�8) ≥ (1 −
√
X) |�8 |. By Lemma 5.6 with F ′ = WF ,

| 6>>3 | ≥ (1 −
√
X)<GW .

Observe that under these assumptions, CoveringAlgorithm cer-

ti�es many rectangles using the trivial algorithm. For 8 ∈ 6>>3 ,
we have Trivial(�8 , �8) ≥ 1

2 (1 −
√
X) |�8 | − 2\F ≥ (12 −

√
X) |�8 |. Thus,

we certify (�8 × � ′8 , (12 −
√
X) |�8 |) for some subinterval � ′8 ⊂ �8 , de-

�ned as the shortest \F-aligned interval with end � ′8 = end �8 and

Trivial(�8 , � ′8) ≥ 1
2 (1 −

√
X) |�8 |.

For 8 ∈ 6>>3 ∩ 8<10; , we have Trivial(�8 , �8) ≥ Trivial(�8 , �g�8) −
2\F ≥ (12 + W −

√
X) |�8 | − 2\F > (12 +

W
2)WF . Thus, we certify (�8 ×

� ′8 , (12 +
W
2) |�8 |) for some subinterval � ′8 ⊂ �8 , de�ned as the shortest

\F-aligned interval with end � ′8 = end �8 and Trivial(�8 , � ′8) ≥ (12 +
W
2) |�8 |.

Thus CoveringAlgorithm obtains an ordered collection of certi-

�ed rectangles (�8 × � ′8 , ^8) over 8 ∈ 6>>3 with ^8 ≥ (12 −
√
X) |�8 | for

all 8 ∈ 6>>3 and ^8 ≥ (12 −
√
X + W2) |�8 | for all 8 ∈ 6>>3 ∩ 8<10; .

Thus,

FullLCSAlgorithm(G,~)
≥

∑

8∈ 6>>3
^8

≥
(
1

2
−
√
X

)
(WF) · | 6>>3 | +

W

2
(WF) · | 6>>3 ∩ 8<10; |

≥
(
1 + X
2

)
LCS(G,~),

as desired. In the last inequality, we used (i) | 6>>3 | ≥ (1 −
√
X)<GW ,

(ii) | 6>>3 ∩ 8<10; | ≥ W<G −
√
X<G
W , (iii) W ≫ X , and (iv)<GF =

|G | ≥ LCS(G,~). □

Subcase 3: Many nearly-square intervals. This case applies when

the equal-length input algorithm [30] correctly certi�es many rect-

angles. Recall that an interval � ∈ IF is nearly-square if |�g
�
| ≤

(1+V) |� |. For convenience, we call � oblong if it is not nearly-square.

Lemma 5.8. If at least V2<G intervals � ∈ IF are nearly-square,

then (3) holds.

Proof. Let �1 < �2 < · · · < �<G be the intervals of IF . For all 8 =
1, . . . ,<G , let �8 ≔ round\F (�g�8), so that the �8 are pairwise disjoint.
Let Bℎ>AC be the set of indices 8 such that �8 is nearly-square. By

assumption, | Bℎ>AC | ≥ V2<G . Let 6>>3 be the set of indices 8

such that LCS(�8 , �g�8) ≥ (1 −
√
X) |�8 |. By Lemma 5.6, | 6>>3 | ≥

(1 −
√
X)<G .

Just as in the proof of Lemma 5.8, we track the rectangles certi�ed

byCoveringAlgorithm. For 8 ∈ 6>>3 , we have Trivial(�8 , �8) ≥ (12 −√
X) |�8 |, so we certify (�8× � ′8 , (12 −

√
X) |�8 |) for some subinterval � ′8 ⊂

�8 . For 8 ∈ 6>>3∩ Bℎ>AC , we have (1+U)F ≥ (1+V)F ≥ |�g�8 | ≥ |�8 |
since �8 is nearly-square, and |�8 | ≥ LCS(�8 , �8) ≥ LCS(�8 , �g�8) −
2\F ≥ (1 −

√
X − 2\)F ≥ (1 − U)F . Hence, EqLCS(�8 , �8) is called

at Line 14 and has value at least (12 + U) LCS(�8 , �8) ≥ (12 + U) (1 −√
X − 2\)F >

1+U
2 F by Theorem 2.2.

We thus have an ordered collection of certi�ed rectangles (�8 ×
� ′8 , ^8) over 8 ∈ 6>>3 with ^8 ≥ (12 −

√
X)F for all 8 ∈ 6>>3 and

^8 ≥ (12 −
√
X + U2)F for 8 ∈ 6>>3 ∩ Bℎ>AC . Thus,

FullLCSAlgorithm(G,~)
≥

∑

8∈ 6>>3
^8

≥
(
1

2
−
√
X

)
F · | 6>>3 | +

U

2
F · | 6>>3 ∩ Bℎ>AC |

≥
(
1 + X
2

)
LCS(G,~),

as desired. In the last inequality, we used (i) | 6>>3 | ≥ (1 −
√
X)<G ,

(ii) | 6>>3 ∩ Bℎ>AC | ≥ V2<G −
√
X<G , (iii) U ≫ V ≫ X , and (iv)

<GF = |G | ≥ LCS(G,~). □

1153

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu He and Ray Li

Wrapping up the bad case. We now can prove the following

lemma.

Lemma 5.9. If (G,~) is bad, then (3) holds.

Proof. If (G,~) is bad, then either item 1, 2, or 3 of De�ni-

tion 5.1 is violated. If 1 is violated, (3) holds by Lemma 5.5. If 2

is violated, there are at least W<G intervals � with a W-imbalanced

WF-subinterval, so there are at least W<G many W-imbalanced WF-

intervals, so by Lemma 5.7, (3) holds. If 3 is violated, (3) holds by

Lemma 5.8. □

5.5 Proof of (3) for Good Inputs

Let

<′G ≔ (1 − 2V2)<G .
The following lemma establishes the natural structural property

for good inputs.

Lemma 5.10. If (G,~) is good, then there exist an ordered sequence

of rectangles �1 × �1 < · · · < �<′G × �<′G such that for all 8 , (i) �8 ∈ IF ,
(ii) every WF-subinterval of �8 is W-balanced, (iii) |�8 | ≥ (1 + 0.9V)F ,
and (iv) IsQTypeF (~�8 ,GetPTypeF (G�8)) returns true.

Proof. Among the<G intervals � ∈ IF , all but at most
√
X<G

intervals satisfy LCS(� , �g
�
) > (1 −

√
X) |� | by Lemma 5.6, at most

W<G have a W-imbalanced WF-subinterval since (G,~) is good, and
at most V2<G are nearly-square since (G,~) is good. Thus, at least
(1 − 2V2)<G = <′G intervals are (i) satisfying LCS(� , �g

�
) > (1 −√

X) |� |, (ii) W-balanced in all WF-subintervals, and (iii) oblong. Let

�1 < · · · < �<′G be<′G of these intervals. Let �8 ≔ round\F (�g�8), so
these �8 are pairwise disjoint. For all such 8 , we have

|�8 | ≥ |�g�8 | − 2\F ≥ (1 + V − 2\)F ≥ (1 + 0.9V)F
and

LCS(�8 , �8) ≥ LCS(�8 , �g�8) − 2\F ≥ (1 −
√
X − 2\)F ≥ (1 − U)F.

For all C such that G�8 has property %C , we have ~�8 has property &C
by Lemma 4.1 (Item 2). Thus, IsQTypeF (~�8 , C) returns true for C =

GetPTypeF (G�8). We have found our ordered sequence of rectangles

�1 × �1 < · · · < �<′G × �<′G . □

We now can prove the main result for this section.

Lemma 5.11. If (G,~) is good, then (3) holds.

Proof. Let �1 × �1 < �2 × �2 < · · · < �<′G × �<′G be the or-

dered sequence of rectangles given by Lemma 5.10. By construc-

tion, for all 8 = 1, . . . ,<′G , we have (i) �8 ∈ IF , (ii) every WF-
subinterval of �8 is W-balanced, (iii) |�8 | ≥ (1 + 0.9V)F , and (iv)

IsQTypeF (~�8 ,GetPTypeF (G�8)) = true.

As a result, at loop iteration 8 = (end �8)/F and 9 = (end �8)/(\F)
of Line 20, the interval � exists (the interval � = �8 satis�es the

requirement, so a minimal � exists). Thus, CoveringAlgorithm cer-

ti�es a rectangle (� ′8 × � ′8 ,
|� ′8 |
2 + UF) where � ′8 , the output of GetIF ,

is a WF-aligned subinterval of �8 and �
′
8 is a subinterval of �8 with

length at least (1 + 0.9V)F .

We would like to build an ordered collection of certi�ed rectan-

gles containing these (� ′8 × � ′8 ,
|� ′8 |
2 + UF), which embed more than

half of each small interval � ′8 into ~. However, for each of these

rectangles, � ′8 is typically much longer than � ′8 , so using many of

them is extremely wasteful of bits in ~. To reduce this issue, we

let C ≔ 3/V and build an ordered collection using only every C-th

rectangle from the preceding family.

Let<′′G be the largest multiple of C less than<′G . For each 8 that
is a multiple of C , partition �8 into �̃

!
8 < �̃"8 < �̃'8 where �̃"8 ≔ � ′8 . For

8 not a multiple of C , let �̃8 ≔ �8 . For 8 a multiple of C , let �̃"8 ≔ � ′8 .
For 8 a multiple of C , we claim there exist \F-aligned intervals

�̃'8−C < �̃8−C+1 < �̃8−C+2 < · · · < �̃8−1 < �̃!8 such that

• �̃!8 < �̃"8 .

• | �̃!8 | = |�̃!8 |.
• | �̃8−ℓ | = |�̃8−ℓ | for ℓ = 1, . . . , C − 1.
• | �̃'8−C | = |�̃'8−C | (we take �̃'0 = ∅).
• �̃"8−C < �̃'8−C (this is vacuously true if 8 = C)

To see that such intervals exist, note that the interval

[end �̃"8−C , start �̃"8] = [end � ′8−C , start � ′8]

contains all intervals � ′8−ℓ for ℓ = 1, . . . , C − 1. Since each � ′8−ℓ has
length at least (1 + 0.9V)F , we have

start �"8 − end �"8−C ≥ (C − 1) (1 + 0.9V)F
> (C + 1)F

≥ |�̃!8 | +
C−1∑

ℓ=1

|�̃8−ℓ | + |�̃'8−C |.

The last inequality holds as each term on the right is at most F .

Thus we can construct the intervals greedily in order

�̃!8 , �̃8−1, �̃8−2, . . . , �̃8−C+1, �̃
'
8−C

by setting end �̃!8 = start �̃"8 , and then end �̃8−1 = start �̃!8 , and so

on. They will be \F-aligned as all of the �̃ intervals have lengths a

multiple of WF , and thus a multiple of \F .

By construction of these intervals, CoveringAlgorithm certi�es

the following rectangles for 8 ≤ <′′G :

(�̃"8 × �̃"8 , ^"8) where ^"8 ≔
|�̃"8 |
2
+ UF if C | 8

(�̃!8 × �̃!8 , ^!8) where ^!8 ≔ Trivial(�̃!8 , �̃!8) if C | 8
(�̃'8 × �̃'8 , ^'8) where ^'8 ≔ Trivial(�̃'8 , �̃'8) if C | 8
(�̃8 × �̃8 , ^8) where ^8 ≔ Trivial(�̃8 , �̃8) if C ∤ 8 (4)

The �rst collection of rectangles comes from the de�nition of

�̃"8 ≔ � ′8 and �̃
"
8 ≔ � ′8 . The rest of the rectangles come from the

fact that we certify all WF-aligned squares with the trivial algorithm

in CoveringAlgorithm Line 11. Furthermore, the rectangles are in-

creasing in 8 , with additionally �̃!8 × �̃!8 < �̃"8 × �̃"8 < �̃'8 × �̃'8 for 8 a

multiple of C . Hence, the rectangles in (4) form an ordered collection

of rectangles. By Lemma 2.1, we also have ^!8 ≥ (12 − W) |�̃!8 |, ^'8 ≥
(12 −W) |�̃'8 | for 8 a multiple of C and ^8 ≥ (12 −W) |�̃8 | for all other 8 , be-
cause the intervals �̃'8 , �̃

!
8 , �̃8 are all WF-aligned and thus W-balanced.

Thus, by Lemma 5.2, the output of FullLCSAlgorithm(G,~) is at

1154

Approximating Binary Longest Common Subsequence in Almost-Linear Time STOC ’23, June 20–23, 2023, Orlando, FL, USA

least

∑

8≤<′′G
C |8

(
^!8 + ^"8 + ^'8

)
+

∑

8≤<′′G
C∤8

^8

≥
∑

8≤<′′G
C |8

((
1

2
− W

)
(|�̃!8 | + |�̃"8 | + |�̃'8 |) + UF

)
+

∑

8≤<′′G
C∤8

(
1

2
− W

)
|�̃8 |

≥
(
1

2
− W

)
F ·<′′G + UF ·

V

3
<′′G

≥
(
1 + X
2

)
LCS(G,~)

In the third inequality, we used that <′′GF ≥ (<′G − C)F ≥ (1 −
3V2)<GF and<GF = |G | ≥ LCS(G,~). □

We can now �nish the proof of Theorem 3.2.

Proof of Theorem 3.2. We have now proved that (2) and (3)

always hold, and that FullLCSAlgorithm runs in time $ (=1+Y), so
FullLCSAlgorithm gives a (1+X2)-approximation of the LCS of two

binary strings with 0(G) = 1(G) ≤ min(0(~), 1(~)) in time$ (=1+Y),
as desired. □

6 PUTTING IT ALL TOGETHER

In this �nal section we use standard techniques to �nish the proof

of Theorem 1.2 given the balanced case Theorem 3.2. This proved

in [30] for equal length strings and in [7] for unequal length strings

(see also [6]).

Lemma 6.1 (Lemma 13 of [7], see also Lemma 3.5 of [6]). For every

d > 0, there exists X = X (d) > 0 such that the following holds. There

exists an algorithm which, given binary strings G,~ with |G | ≤ |~ |
and 0(G) = 1(~) ≤ (12 − d) |G |, computes a (12 + X)-approximation of

LCS(G,~) in deterministic linear time. 2

Lemma 6.2. For all Y > 0, there exists an absolute constant X =

X (Y) > 0 and a deterministic algorithm that, given two strings G and

~ with |G | ≤ |~ | and min(1(G), 1(~)) = min(0(G), 0(~)), outputs a
(12 + X)-approximation of LCS(G,~) in time $ (|~ |1+Y).

Proof. Let X1 = X1 (Y) > 0 be the absolute constant in Theo-

rem 3.2. Let X2 > 0 be the absolute constant in Lemma 6.1 with

parameter d = X1/10. Let X = min(X1/2, X2). As |G | ≤ |~ |, we have
three cases, and we �nd a (12 + X)-approximation to LCS(G,~) in
each.

Case 1. 0(G) = min(0(G), 0(~)), 1(G) = min(1(G), 1(~)). Then
0(G) = 1(G) = |G |/2 and LCS(G,~) ≥ |G |/2. The algorithm in

Theorem 3.2, gives a (12 + X1)-approximation of the LCS.

2There are several minor di�erences between this statement and the statement in [7].
First, the statement in [7] says subquadratic time but it actually runs in linear time,

similar to the analogous algorithm in [30] who proved Lemma 6.1 for equal-length
strings. This was con�rmed in private communication with the authors.

Second, [7] prove the statement when 0(G) and 1(~) are within Y |G | of each other
for some |G | , while we only consider when they are equal.

Case 2. 0(~) = min(0(G), 0(~)), 1(G) = min(1(G), 1(~)). Wehave

1(G) = 0(~) ≤ 0(G). There are two subcases.

Subcase 2a. 1(G) ≥ (12 − d) |G |. In this case, delete 0(G) − 1(G) ≤
d |G | zeros from G arbitrarily to get a balanced subsequence G ′.
Then LCS(G ′, ~) ≥ LCS(G,~) − d |G | ≥ (1 − d) LCS(G,~). Thus, the
algorithm in Theorem 3.2 gives a common subsequence of length

(12 + X1) (1 − d) LCS(G,~) ≥ (12 + X) LCS(G,~).
Subcase 2b. 1(G) ≤ (12 − d) |G |. In this case, Lemma 6.1 with

parameter d �nds a common subsequence of length at least (12 +
X) LCS(G,~).

Case 3. 0(G) = min(0(G), 0(~)), 1(~) = min(1(G), 1(~)). Sym-

metric to case 2. □

Theorem (Theorem 1.2, restated). For all Y > 0, there exists an

absolute constant X = X (Y) > 0 and a deterministic algorithm

that, given two binary strings G and ~ of not-necessarily-equal

length, outputs a (12 + X)-approximation of the longest common

subsequence in time $ (=1+Y) where = = max(|G |, |~ |).

Proof. Let X0 be the constant in Lemma 6.2. Let X = X0/5. Let
the input strings be G and ~ and assume without loss of generality

|G | ≤ |~ | and that min(0(G), 0(~)) ≥ min(1(G), 1(~)). We have

Trivial(G,~) = min(0(G), 0(~)) and LCS(G,~) ≤ min(0(G), 0(~)) +
min(1(G), 1(~)).

If min(0(G), 0(~)) ≥ (1 + X0)min(1(G), 1(~)), then, as 1+X0
2+X0 >

1
2 +X , the trivial algorithm gives a (12 +X)-approximation of the LCS.

Thus we may assume min(0(G), 0(~)) ≤ (1 + X0)min(1(G), 1(~)).
Delete min(0(G), 0(~)) −min(1(G), 1(~)) ≤ X0min(1(G), 1(~)) ze-
ros from each of G and ~ arbitrarily to obtain G ′ and ~′ with

min(0(G ′), 0(~′)) = min(1(G ′), 1(~′)).
We have

LCS(G ′, ~′) ≥ LCS(G,~) − X0min(1(G), 1(~)) ≥ (1 − X0) LCS(G,~) .

Running the algorithm in Lemma 6.2 gives an approximation to

LCS(G ′, ~′) that is at least (12 + X0) (1 − X0) LCS(G,~) > (12 +
X) LCS(G,~), as desired. □

7 CONCLUSION AND OPEN QUESTIONS

We close with some related open questions.

• What is the best possible approximation factor of binary LCS

in almost-linear or truly subquadratic time? We give a 1
2 + X

in almost-linear time. We made no attempt to optimize X ,

and currently it depends on the runtime exponent 1 + Y.
• Related to the above, can we prove �ne-grained hardness of

approximation results for LCS? It is known that a determin-

istic 2−(log=)
1−X

approximation in =2−Y time for LCS over

alphabet => (1) would imply new circuit lower bounds, as

would a deterministic 1− 1
poly log=

-approximation for binary

inputs [1, 4, 20].

• We studied the algorithmic question of computing LCS, where,

as the previous two questions highlight, the optimal approx-

imation factor is open. We showed this algorithmic question

is closed related to an analogous combinatorial question,

which is also open: What is the largest constant U ∈ (0, 1)

1155

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu He and Ray Li

such that in any set� ⊂ {0, 1}= of |� | ≥ 2Ω (=) binary strings,
there are always two strings G,~ with LCS(G,~) ≥ U=? The
optimal U is known to be in [12 + 10−40, 2 −

√
2] [18, 23],

and 1 − U quanti�es the maximum fraction of adversarial

deletions that can be tolerated by a (asymptotically) positive

rate code.

It would also be interesting to understand how strong is

the connection between the deletion codes question and

the algorithmic LCS question. At �rst blush, it seems that

techniques derived solely from analysis of deletion codes

should not give an U-approximation for U > 2 −
√
2 ≈ 0.59

(because of the deletion codes construction [18]), so beating

this ratio would show some separation between the two

questions.

• How does the optimal subquadratic time or almost-linear

time approximation factor growwith the alphabet size? Over

alphabet size @, we show that we can beat (barely) the trivial
1
@ -approximation. We know that we can always get a ran-

domized 1
=> (1)

-approximation in linear time [11, 28], which

is much better than 1
@ for large alphabets.

• There is a natural question that arises from another possible

approach to proving Theorem 1.2. De�ne the directed edit

distance of two strings G,~ to be the number of edits needed

to get from G to ~, where insertions cost 0 and deletions

(and substitutions) cost 1. Equivalently, ®Δedit (G,~) ≔ |G | −
LCS(G,~). When the strings are equal length, the directed

edit distance is simply half the edit distance. A constant-

factor approximation of directed edit distance in almost-

linear time would immediately imply Theorem 3.2 and thus

Theorem 1.2. This suggest the following question, which

may be of independent interest.

Question 7.1. Is there an almost-linear time constant-factor

approximation of the directed edit distance?

We note that ®Δedit (G,~) is not a metric. Indeed, it is not even

symmetric3, and it does not satisfy the triangle inequality.

Thus, the existing edit distance approximation algorithms

[10, 15, 19, 25], which rely heavily on the triangle inequal-

ity, do not seem to immediately apply to directed edit dis-

tance. On the other hand, directed edit distance does satisfy

a “directed triangle inequality”: for strings G,~, I, we have
®Δedit (G, I) ≤ ®Δedit (G,~) + ®Δedit (~, I). This gives some hope

that fast approximation algorithms exist.

ACKNOWLEDGMENTS

We thank Saeed Seddighin for introducing us to the question of ap-

proximating binary LCS and for suggesting its potential connection

to the deletion codes bound [23]. We thank Negev Shekel Nosatzki

for helpful discussions about edit-distance algorithms. We thank

Shyan Akmal and Virginia Vassilevska-Williams for helpful dis-

cussions on their work [7]. We thank Aviad Rubinstein for helpful

feedback. We thank Venkatesan Guruswami for helpful feedback

and encouragement.

3 ®Δedit (0011, 00) = 2 but ®Δedit (00, 0011) = 0

A PROOF OF LEMMA 4.4

Lemma 4.4 is essentially a corollary of the stronger combinatorial

structure lemma [23, Lemma 4.1], except that the constant depen-

dences are superior and we make the additional assumption that

the lengths involved are all powers of two. For completeness, we

include a proof here which is signi�cantly simpler than the proof

of [23, Lemma 4.1].

Lemma (Lemma 4.4, restated). For Y = 10−5 and F su�ciently

large, at least one of the following two conditions holds for every

string G ∈ {0, 1}F .
(1) There exists ℓ ∈ [Y2F,F] equal to a power of two and an

0.1-imbalanced interval � in G of length ℓ .

(2) There exists ℓ ∈ [1, Y2F) equal to a power of two such that

the number of ℓ+-�ags in G is at least YF , and G contains

(0ℓ1ℓ)YF/ℓ as a subsequence.

Proof. We �rst reduce to the case that F is a power of two.

Indeed, suppose we show the statement for all lengthsF ′ equal to
su�ciently large powers of 2, with a stronger Y′ = 10−4 in place

of Y. Then, let F ′ be the largest power of two at most F , and let

G ′ = G [F′] be the pre�x of G of length F ′ > F/2. Applying our

assumption to G ′, the lemma statement holds for G ′ with stronger

Y′ = 10−4. If G ′ falls into the �rst case of the lemma, then G ′ contains
a 0.1-imbalanced interval � of length ℓ ∈ [(Y′)2F ′,F ′] ⊆ [Y2F,F],
so G must fall into the �rst case as well.

Otherwise, there exists ℓ ∈ [1, (Y′)2F ′) equal to a power of two

such that the number of ℓ+-�ags in G ′ is at least (Y′)2F ′ ≥ YF ,

and G ′ contains (0ℓ1ℓ) (Y′)2F′/ℓ ⊇ (0ℓ1ℓ)Y2F/ℓ . If ℓ ≥ Y2F , then

the existence of an ℓ+-�ag implies that there is a 0.1-imbalanced

interval of length at least ℓ in G ′, so G again falls into the �rst case

of the lemma. On the other hand, if ℓ < Y2F then G falls into the

second case of the lemma, as desired.

Thus, we assume F is a power of two and prove this special

case with the stronger constant Y = 10−4. LetF = 2 , and for any

0 ≤ : ≤ and 1 ≤ 8 ≤ 2 −: , de�ne �:,8 ≔ [(8 − 1) · 2: + 1, 8 · 2:]
to be an aligned dyadic interval of length 2: . Observe that for each

: , the intervals �:,8 form a partition of [F]. If �:,8 is 0.1-imbalanced

for some : satisfying 2: ≥ Y2F , case 1 holds and we are done. Thus,

we may assume �:,8 is 0.1-balanced whenever 2: ≥ Y2F . We would

like to show that case 2 above always holds.

Call an interval � is sparse if 3 (G�) < 0.01, and dense otherwise.

Let S: denote the collection of all maximal sparse dyadic intervals

�:,8 of length 2: , i.e. all sparse dyadic intervals �:,8 that are not

proper subintervals of other sparse �: ′,8′ . Let S =

⋃
:=0
S: , so that

S is the collection of all maximal sparse dyadic intervals in G , and

the elements of S are pairwise disjoint.

Observe that sparse intervals are certainly 0.1-imbalanced, so

by our previous assumption, S: is empty if 2: ≥ YF . On the other

hand, we also assumed that � ,1 = [F] is 0.1-balanced, so the

number of zeros in G is at least 0.4F . Every zero-bit in G constitutes

a sparse dyadic interval �0,8 of length 1 by itself, and every sparse

dyadic interval lies inside some element of S. Thus, intervals in S
cover all zero-bits in G and have total length at least 0.4F .

Let if � = �:,8 and 8 > 1, de�ne the predecessor of � to be pred(�) ≔
�:,8−1.

1156

Approximating Binary Longest Common Subsequence in Almost-Linear Time STOC ’23, June 20–23, 2023, Orlando, FL, USA

Claim. If : ≥ 0, 1 < 8 ≤ 2 −: , �:,8 ∈ S, C = 2max(0,:−5) , and
pred(�:,8) is dense, then the number of C-�ags in pred(�:,8) is at least
0.01 · | pred(�:,8) |.

Proof. If : < 5 then the assumption that �:,8 is sparse implies

that it contains only zeros, so the �rst one-bit in pred(�:,8) is a
1-�ag, and this is su�cient. Assume now that : ≥ 5. Observe that

since �:,8 is sparse, it contains at least 0.99 · 2: > 2:−1 > 10(C − 1)
zeros and at most 0.01 · 2: < 2:−6 = C/2 ones. In particular, the last

C/2 = 2:−6 ones in Gpred(�:,8) (or all of them if there are fewer than

2:−6) must all be C-�ags. As pred(�:,8) is dense, we are done. □

Thus, dense predecessors of elements of S contain many �ags. In

order to make sure these �ags are not double-counted, we �rst pass

to a subcollection of S, de�ned as follows. Write if � , � ∈ S, write
� ≺ � if both pred(�) and pred(�) exist, and pred(�) ⊂ pred(�).
De�ne S′ to be the subcollection of S obtained by removing the (at

most one) element of the form �:,0 without a predecessor, and then

removing all elements non-maximal with respect to ≺. Observe that
if two dyadic intervals satisfy � ≺ � , then � ⊆ pred(�), so for any

dyadic interval � , the total length of all elements � of S satisfying

� ≺ � is at most |� |. By passing to S′, we deleted at most half of the

total length in S, plus possibly one interval with no predecessor,

which has length at most Y2F . Thus,
∑

� ∈S′
|� | ≥ 1

2

∑

� ∈S
|� | − Y2F ≥ 0.1F.

Writing S′≥: for the collection of all intervals in S′ with length

at least 2: , we pick :0 to be the largest 0 ≤ :0 ≤ for which
∑

� ∈S′≥:0

|� | ≥ 0.01F.

Our choice of ℓ is ℓ ≔ 2max(0,:0−5) . Note that ℓ < Y2F because

S: is empty when 2: ≥ Y2F . We separately prove each of the two

required hypotheses.

Claim. For ℓ = 2max(0,:0−5) , the number of ℓ+-�ags in G is at least

YF .

Proof. For any two dyadic intervals � , � , either � ≺ � or � ∩ � =
∅. Thus, {pred(�) |� ∈ S′≥: } is a collection of pairwise-disjoint

intervals with total length at least 0.01F . By the previous claim,

the number of ℓ+-�ags in one of these intervals pred(�) is at least
0.01| pred(�) | = 0.01|� |, and so in total the number of ℓ+-�ags in G
is at least 10−4F , as desired. □

It remains to check that G contains (0ℓ1ℓ)YF/ℓ .

Claim. For ℓ = 2max(0,:0−5) , G contains (0ℓ1ℓ)YF/ℓ as a subse-

quence.

Proof. Let: = :0+1. By themaximality of:0, we have
∑
� ∈S′≥: |� | <

0.01F . Let S≥: denote the collection of maximal sparse dyadic in-

tervals of length at least 2: . Reversing the analysis which led to a

lower bound on the total length of S′, we obtain
∑

� ∈S≥:
|� | ≤ 2

∑

� ∈S′≥:

|� | + YF ≤ 0.1F.

Since all sparse dyadic intervals of length 2: lie inside some element

ofS≥: , we see that in total at most 0.1 ·2 −: of the dyadic intervals
�:,8 are sparse.

On the other hand, at most 0.7 · 2 −: of them have density

greater than 0.99, since otherwise these very dense intervals alone

account for at least 0.68F ones, making the entire interval [F]
0.1-imbalanced, which is a contradiction. In sum, out of 2 −: total

intervals �:,8 , at most 0.1 · 2 −: have density less than 0.01, and

at most 0.7 · 2 −: have density greater than 0.99, leaving at least

0.2 · 2 −: that must each contain 0.01 · 2: zeros and 0.01 · 2: ones.

Passing to only these subintervals, we conclude that G contains

a subsequence of the form G ′ = G1G2 · · · G0.2·2 −: where each G8
contains 0.01 · 2: zeros and 0.01 · 2: ones. A string of the form

(1ℓ0ℓ)0 can be found as a subsequence of G ′ by taking ones from

the �rst ⌈100ℓ/2: ⌉ G8 ’s, then zeros from the next ⌈100ℓ/2: ⌉, and so
on. Since ℓ ≥ 2:−6, we can pick

0 ≥ 0.2 · 2 −:
2⌈100ℓ/2: ⌉

≥ 10−4F/ℓ,

as desired. □

Combining the above two claims proves that if case 1 of the lemma

does not hold, then case 2 does for ℓ = 2max(0,:0−5) . □

REFERENCES
[1] Amir Abboud and Arturs Backurs. 2017. Towards Hardness of Approximation

for Polynomial Time Problems. In 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA (LIPIcs, Vol. 67), Chris-
tos H. Papadimitriou (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
11:1–11:26. https://doi.org/10.4230/LIPIcs.ITCS.2017.11

[2] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. 2015. Tight
Hardness Results for LCS and Other Sequence Similarity Measures. In IEEE 56th
Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,
USA, 17-20 October, 2015, Venkatesan Guruswami (Ed.). IEEE Computer Society,
59–78. https://doi.org/10.1109/FOCS.2015.14

[3] Amir Abboud, Thomas Dueholm Hansen, Virginia Vassilevska Williams, and
Ryan Williams. 2016. Simulating branching programs with edit distance and
friends: or: a polylog shaved is a lower bound made. In Proceedings of the 48th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, Daniel Wichs and Yishay Mansour (Eds.). ACM,
375–388. https://doi.org/10.1145/2897518.2897653

[4] Amir Abboud and Aviad Rubinstein. 2018. Fast and Deterministic Constant
Factor Approximation Algorithms for LCS Imply New Circuit Lower Bounds. In
9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January
11-14, 2018, Cambridge, MA, USA (LIPIcs, Vol. 94), Anna R. Karlin (Ed.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 35:1–35:14. https://doi.org/10.4230/
LIPIcs.ITCS.2018.35

[5] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. 2014. Con-
sequences of Faster Alignment of Sequences. In Automata, Languages, and Pro-
gramming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark,
July 8-11, 2014, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 8572),
Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias (Eds.).
Springer, 39–51. https://doi.org/10.1007/978-3-662-43948-7_4

[6] Shyan Akmal. 2021. Longest Common Subsequence Over Constant-Sized Alphabets:
Beating the Naive Approximation Ratio. Master’s thesis. Massachusetts Institute
of Technology.

[7] Shyan Akmal and Virginia Vassilevska Williams. 2021. Improved Approximation
for Longest Common Subsequence over Small Alphabets. In 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-
16, 2021, Glasgow, Scotland (Virtual Conference) (LIPIcs, Vol. 198), Nikhil Bansal,
Emanuela Merelli, and James Worrell (Eds.). Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 13:1–13:18. https://doi.org/10.4230/LIPIcs.ICALP.2021.13

[8] Alexandr Andoni. 2018. Simpler constant-factor approximation to edit distance
problems. (2018). http://www.cs.columbia.edu/~andoni/papers/edit/

[9] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. 2010. Polylogarith-
mic Approximation for Edit Distance and the Asymmetric Query Complexity.
In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010,

1157

https://doi.org/10.4230/LIPIcs.ITCS.2017.11
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/2897518.2897653
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.4230/LIPIcs.ITCS.2018.35
https://doi.org/10.1007/978-3-662-43948-7_4
https://doi.org/10.4230/LIPIcs.ICALP.2021.13
http://www.cs.columbia.edu/~andoni/papers/edit/

STOC ’23, June 20–23, 2023, Orlando, FL, USA Xiaoyu He and Ray Li

October 23-26, 2010, Las Vegas, Nevada, USA. IEEE Computer Society, 377–386.
https://doi.org/10.1109/FOCS.2010.43

[10] Alexandr Andoni and Negev Shekel Nosatzki. 2020. Edit Distance in Near-Linear
Time: it’s a Constant Factor. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy
Irani (Ed.). IEEE, 990–1001. https://doi.org/10.1109/FOCS46700.2020.00096

[11] Alexandr Andoni, Negev Shekel Nosatzki, Sandip Sinha, and Cli�ord Stein. 2022.
Estimating the Longest Increasing Subsequence in Nearly Optimal Time. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver,
CO, USA, October 31 - November 3, 2022. IEEE, 708–719. https://doi.org/10.1109/
FOCS54457.2022.00073

[12] Alexandr Andoni and Krzysztof Onak. 2012. Approximating Edit Distance in
Near-Linear Time. SIAM J. Comput. 41, 6 (2012), 1635–1648. https://doi.org/10.
1137/090767182

[13] Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in
Strongly Subquadratic Time (unless SETH is false). In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, Rocco A. Servedio and Ronitt Rubinfeld (Eds.). ACM,
51–58. https://doi.org/10.1145/2746539.2746612

[14] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. 2004. Approx-
imating Edit Distance E�ciently. In 45th Symposium on Foundations of Computer
Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings. IEEE Computer
Society, 550–559. https://doi.org/10.1109/FOCS.2004.14

[15] Joshua Brakensiek and Aviad Rubinstein. 2020. Constant-factor approximation
of near-linear edit distance in near-linear time. In Proccedings of the 52nd Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA,
June 22-26, 2020, Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,
Gautam Kamath, and Julia Chuzhoy (Eds.). ACM, 685–698. https://doi.org/10.
1145/3357713.3384282

[16] Karl Bringmann and Debarati Das. 2021. A Linear-Time n0.4-Approximation for
Longest Common Subsequence. In 48th International Colloquium on Automata,
Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference) (LIPIcs, Vol. 198), Nikhil Bansal, Emanuela Merelli, and James
Worrell (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 39:1–39:20.
https://doi.org/10.4230/LIPIcs.ICALP.2021.39

[17] Karl Bringmann and Marvin Künnemann. 2015. Quadratic Conditional Lower
Bounds for String Problems and Dynamic Time Warping. In IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA,
17-20 October, 2015, Venkatesan Guruswami (Ed.). IEEE Computer Society, 79–97.
https://doi.org/10.1109/FOCS.2015.15

[18] Boris Bukh, Venkatesan Guruswami, and Johan Håstad. 2017. An Improved
Bound on the Fraction of Correctable Deletions. IEEE Trans. Inf. Theory 63, 1
(2017), 93–103. https://doi.org/10.1109/TIT.2016.2621044

[19] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and
Michael E. Saks. 2020. Approximating Edit Distance Within Constant Factor in
Truly Sub-quadratic Time. J. ACM 67, 6 (2020), 36:1–36:22. https://doi.org/10.
1145/3422823

[20] Lijie Chen, Sha� Goldwasser, Kaifeng Lyu, Guy N. Rothblum, and Aviad Rubin-
stein. 2019. Fine-grained Complexity Meets IP = PSPACE. In Proceedings of the

Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, Timothy M. Chan (Ed.). SIAM, 1–20.
https://doi.org/10.1137/1.9781611975482.1

[21] Vašek Chvátal, David A Klarner, and Donald Ervin Knuth. 1972. Selected combi-
natorial research problems. Computer Science Department, Stanford University.

[22] Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. 2020. Does preprocessing
help in fast sequence comparisons?. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June
22-26, 2020, Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam
Kamath, and Julia Chuzhoy (Eds.). ACM, 657–670. https://doi.org/10.1145/
3357713.3384300

[23] Venkatesan Guruswami, Xiaoyu He, and Ray Li. 2021. The zero-rate threshold
for adversarial bit-deletions is less than 1/2. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022.
IEEE, 727–738. https://doi.org/10.1109/FOCS52979.2021.00076

[24] MohammadTaghi Hajiaghayi, Masoud Seddighin, Saeed Seddighin, and Xiaorui
Sun. 2019. Approximating LCS in Linear Time: Beating the

√
n Barrier. In Pro-

ceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, Timothy M. Chan (Ed.).
SIAM, 1181–1200. https://doi.org/10.1137/1.9781611975482.72

[25] Michal Koucký and Michael E. Saks. 2020. Constant factor approximations
to edit distance on far input pairs in nearly linear time. In Proccedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020,
Chicago, IL, USA, June 22-26, 2020, Konstantin Makarychev, Yury Makarychev,
Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy (Eds.). ACM, 699–712.
https://doi.org/10.1145/3357713.3384307

[26] Vladmir I. Levenshtein. 1966. Binary codes capable of correcting deletions,
insertions and reversals. Soviet Physics Dokl. (English Translation) 10, 8 (1966),
707–710.

[27] William J. Masek and Mike Paterson. 1980. A Faster Algorithm Computing String
Edit Distances. J. Comput. Syst. Sci. 20, 1 (1980), 18–31. https://doi.org/10.1016/
0022-0000(80)90002-1

[28] Negev Shekel Nosatzki. 2021. Approximating the Longest Common Subsequence
problem within a sub-polynomial factor in linear time. CoRR abs/2112.08454
(2021). arXiv:2112.08454 https://arxiv.org/abs/2112.08454

[29] Aviad Rubinstein, Saeed Seddighin, Zhao Song, and Xiaorui Sun. 2019. Approx-
imation Algorithms for LCS and LIS with Truly Improved Running Times. In
60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, David Zuckerman (Ed.). IEEE
Computer Society, 1121–1145. https://doi.org/10.1109/FOCS.2019.00071

[30] Aviad Rubinstein and Zhao Song. 2020. Reducing approximate Longest Common
Subsequence to approximate Edit Distance. In Proceedings of the 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, Shuchi Chawla (Ed.). SIAM, 1591–1600. https://doi.org/10.1137/1.
9781611975994.98

[31] Je�rey D. Ullman. 1967. On the capabilities of codes to correct synchronization
errors. IEEE Transactions on Information Theory 13, 1 (1967), 95–105.

Received 2022-11-07; accepted 2023-02-06

1158

https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1109/FOCS54457.2022.00073
https://doi.org/10.1109/FOCS54457.2022.00073
https://doi.org/10.1137/090767182
https://doi.org/10.1137/090767182
https://doi.org/10.1145/2746539.2746612
https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.4230/LIPIcs.ICALP.2021.39
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/TIT.2016.2621044
https://doi.org/10.1145/3422823
https://doi.org/10.1145/3422823
https://doi.org/10.1137/1.9781611975482.1
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1109/FOCS52979.2021.00076
https://doi.org/10.1137/1.9781611975482.72
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://arxiv.org/abs/2112.08454
https://arxiv.org/abs/2112.08454
https://doi.org/10.1109/FOCS.2019.00071
https://doi.org/10.1137/1.9781611975994.98
https://doi.org/10.1137/1.9781611975994.98

	Abstract
	1 Introduction
	2 Preliminaries
	3 Proof Sketch
	4 Algorithmic Structure Lemma
	4.1 Algorithm Structure Lemma Statement
	4.2 Combinatorial Structure Lemma and Types
	4.3 Algorithmic Structure Lemma Ingredients
	4.4 Proof of the Algorithmic Structure Lemma

	5 Almost-Linear Time Algorithm
	5.1 Parameters and Notation Conventions
	5.2 Runtime
	5.3 Correctness Proof, High Level Overview
	5.4 Proof of (3) for Bad Inputs
	5.5 Proof of (3) for Good Inputs

	6 Putting It All Together
	7 Conclusion and Open Questions
	Acknowledgments
	A Proof of Lemma 4.4
	References

