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ABSTRACT

We prove an analogue of Bonami’s (hypercontractive) lemma for
complex-valued functions on L(+ ,, ), where + and, are vector
spaces over a �nite �eld. This inequality is useful for functions on
L(+ ,, ) whose ‘generalised in�uences’ are small, in an appropriate
sense. It leads to a signi�cant shortening of the proof of a recent
seminal result by Khot, Minzer and Safra that pseudorandom
sets in Grassmann graphs have near-perfect expansion, which (in
combination with the work of Dinur, Khot, Kindler, Minzer and
Safra) implies the 2-2 Games conjecture (the variant, that is, with
imperfect completeness).
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1 INTRODUCTION

Hypercontractive inequalities are of great importance and use
in mathematical physics, analysis, geometry, probability theory,
combinatorics and theoretical computer science (having �rst been
introduced by Nelson [18], motivated by mathematical physics). In
general, for 1 ≤ ? < @ ≤ ∞, a (?, @)-hypercontractive inequality
for a measure space - and an operator ) : !? (- ) → !@ (- )
says that ∥) (5 )∥@ ≤ ∥ 5 ∥? for all 5 ∈ !? (- ). One of the most
classical, fundamental and useful hypercontractive inequalities is
the hypercontractive inequality of Bonami, Beckner and Gross
regarding the noise operator on the discrete cube, with the uniform
measure. Let us give the statement in full. For 0 ≤ d ≤ 1, the noise

STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585116

operator )d : !? ({0, 1}=) → !@ ({0, 1}=) is de�ned by

()d 5 ) (G) = E~∼#d (G) [5 (~)] ∀G ∈ {0, 1}=, ∀5 : {0, 1}= → R,

where the distribution ~ ∼ #d (G) is de�ned as follows:
independently for each coordinate 8 ∈ [=], we set ~8 = G8 with
probability d , and with probability 1 − d we take ~8 ∈ {0, 1}
uniformly at random (independently of G8 ). In other words, we
obtain ~ from G by resampling each coordinate of G independently
with probability 1 − d , so ~ is a ‘noisy’ version of G . Note that
)1 (5 ) = 5 , i.e.)1 is simply the identity operator; on the other hand,
)0 maps a function 5 to the constant function with value E[5 ]. For
0 < d < 1,)d interpolates between these two extremes: the smaller
the value of d , the greater the degree of ‘smoothing’.

The hypercontractive inequality of Bonami [3], Beckner [2] and
Gross [8]1 states that

∥)d (5 )∥@ ≤ ∥ 5 ∥? ∀d ≤
√

(? − 1)/(@ − 1), ∀5 : {0, 1}= → R.

As the spectral norm of )d is 1, this inequality means that it acts as
a smoothing operator, smoothing out sharp peaks.

Often, the special case with @ = 4 and ? = 2 su�ces for
applications; this says that

∥)d (5 )∥4 ≤ ∥ 5 ∥2 ∀d ≤ 1/
√
3. (1.1)

)d can also be written in terms of the Fourier transform, writing

5 : {0, 1}= → R as 5 =
∑

(⊆[=] 5̂ (()j( , where j( (G) = (−1)
∑

8∈( G8

for all G ∈ {0, 1}= and ( ⊆ [=] (here, 5̂ (() = ⟨5 , j( ⟩ for all ( ⊆ [=]),
the noise operator )d is given by

)d (5 ) =
∑

(⊂[=]
d |( | 5̂ (()j( .

This yields the following corollary of (1.1), known as Bonami’s
lemma, which is extremely useful.

Lemma 1 (Bonami’s Lemma). Let 5 : {0, 1}= → R be a function of

degree at most 3 ; then

∥ 5 ∥4 ≤ 33/2∥ 5 ∥2 .

(Recall that the degree of a function 5 : {0, 1}= → R is the
maximal size of a set ( such that 5̂ (() ≠ 0.) Bonami’s lemma bounds
the 4-norm of a low-degree function in terms of its 2-norm; roughly
speaking, it says that low-degree functions on {0, 1}= do not have
very large ‘peaks’ in their modulus (such peaks would lead to their
having large 4-norm).

1It was discovered independently by these three authors, though Bonami considered
only the case ? = 2, which su�ces for most applications.
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The Bonami-Beckner-Gross hypercontractive inequality was
a crucial ingredient in the proof of the seminal Kahn-Kalai-
Linial theorem [9] on the in�uences of Boolean functions, and
of Friedgut’s junta theorem [7]; both have been of huge importance
in combinatorics and theoretical computer science over the last
three decades. (In fact, Bonami’s lemma su�ces for these two
applications.)

The notion of a ‘noise’ operator (which we de�ned above for
the discrete cube) readily generalises to !? (-, `) for many other
measure spaces (-, `): one just needs to �nd a (natural) way to
resample the input of a function (resampling in a way that is more or
less ‘extreme’, depending on the noise parameter). For example, the
noise operator *d : !? (R=, W=) → !@ (R=, W=) on =-dimensional
Gaussian space (with the standard=-dimensional Gaussian measure
W=) is de�ned by

*d (5 ) (G) = E.∼W=
[

5

(

dG +
√

1 − d2.

)]

∀5 ∈ !? (R=, W=);

this is natural because if - and . are independent =-dimensional

standard Gaussian random variables, then- and d- +
√

1 − d2. are
d-correlated standard =-dimensional Gaussians. Here, the ‘noisy’

version of G is the random variable Nd (G) := dG +
√

1 − d2. , where
. ∼ W= .

Hypercontractive inequalities for natural ‘noise’ operators on
many other spaces have been obtained over the last �ve decades. A
very useful example is the hypercontractive inequality for the noise
operator in Gaussian space [2, 8, 19] (an earlier suboptimal version
appeared in [18]); this is intimately related to the heat equation.
Rothaus proved a sharp hypercontractive inequality [21] for the
=-dimensional sphere (= . Gross [8] proved that a hypercontractive
inequality for a space is equivalent to a log-Sobolev inequality
for that space, linking two important bodies of work, and proved
hypercontractive inequalities over some noncommutative algebras
related to quantum �eld theory. The hypercontractive inequality
for the noise operator in Gaussian space was a crucial ingredient in
the proof of the seminal Invariance Theorem of Mossel, O’Donnell
and Oleszkiewicz [17].

The hypercontractive inequalities we have discussed above hold
for all functions on the corresponding space. For some important
examples of spaces, however, a (strong) hypercontractive inequality
does not hold for all functions — even an analogue of Bonami’s
lemma does not hold, since there are ‘badly-behaved’ low-degree
functions whose 4-norm is large compared to their 2-norm. This
is the case for functions on the ?-biased cube ({0, 1}=, `? ), where
? = > (1): the ‘dictatorship’ functions de�ned by 5 (G) = G8 for
some 8 have 4-norm ?1/4, which is much greater than their 2-norm
?1/2, when ? = > (1). (Recall that the ?-biased measure on {0, 1}=
is de�ned by `? (G) = ?

∑=
8=1 G8 (1 − ?)=−

∑=
8=1 G8 . A ‘weak’ analogue

of Bonami’s lemma holds for the ?-biased measure, but with
√
3

replaced by function of ? which tends to in�nity as ? tends to zero.
This weak analogue is insu�cient for many important applications.)

Recently, Keevash, Lifshitz, Long and Minzer [11] proved that
‘dictatorships’ and similar ‘junta-type’ constructions are in a
sense the only barrier to hypercontractivity: for functions whose
norm is not too much a�ected by restricting the values of a
small set of coordinates, a hypercontractive inequality does hold.

(Keevash, Lifshitz, Long and Minzer called such functions global
functions.) A hypercontractive inequality for global functions may
be termed a conditional hypercontractive inequality (the precise
quantitative notion of ‘global’ may di�er according to the context
or the application in mind) — the classical Bonami-Beckner-Gross
inequality and its Gaussian analogue, on the other hand, are
unconditional (the hypercontractive inequality there holds for all
functions, not just global ones). In [11], Keevash, Lifshitz, Long and
Minzer obtained (conditional) hypercontractive inequalities (for the
natural noise operator) for global functions on both the ?-biased
cube ({0, 1}=, `? ) and for a general product space (-=, `=); these
had several important applications in extremal combinatorics and
theoretical computer science (see e.g. [10]). In [6], Filmus, Kindler,
Lifshitz and Minzer obtained a (conditional) hypercontractive
inequality for global functions on the symmetric group (= , a non-
product space (in the case of the symmetric group, again, a ‘strong’
hypercontractivity does not hold for all functions, as one can see by
considering the indicator function of a point-stabilizer); this in turn
was a crucial ingredient in the resolution by Keevash, Lifshitz and
Minzer [12] of a well-known open problem of Crane, concerning
the largest product-free sets in the alternating groups �= .

One important family of applications of hypercontractive
inequalities (both unconditional and conditional hypercontractive
inequalities) is to obtain small-set expansion theorems. A small-
set expansion theorem for a �nite, regular undirected graph �

says, roughly speaking, that small sets2 have very large vertex-
boundary in � , much larger than the bound guaranteed by the
Cheeger constant3, the latter bound being sharp only for larger
(or non-pseudorandom) sets. More precisely, a small-set expansion
theorem for � = (+ , �) says that if ( ⊂ + (�) with |( | small (and,
possibly, satis�es an additional globalness or psuedorandomness
condition), then choosing a uniform random element D of ( and a
random edge DE of� incident with D, the vertex E (at the other end
of the random edge) will lie outside ( with probability close to 1.
There is a similar notion for weighted graphs, where the edges are
weighted with non-negative weights and the weighting is regular
(meaning that the sum of the weights of edges incident to each
vertex is the same): in this case, the random edge DE is chosen with
probability proportional to the weight of the edge DE .

A hypercontractive inequality can often be used to prove a small-
set expansion theorem, as we shall now roughly outline. First, given
a graph � on a probability space (-, `), one �nds a noise operator
)d de�ned by )d 5 (G) = E~∼#d (G) [5 (~)], such that )d satis�es

a hypercontractive inequality, and such that the ‘noised’ version
#d (G) of G is concentrated on close neighbours of G in � (i.e.,
on vertices of � with small graph-distance from G). This means,
roughly, that )d 5 (G) is an average value of 5 (~) over vertices ~
that are ‘close neighbors’ of G . This in turn means that if 5 is the
indicator function of a set ( , then the inner product ⟨)d 5 , 5 ⟩ is
roughly (or sometimes, exactly) proportional to the probability
that if we choose a uniform random vertex D in ( and a uniform
random edge DE incident with D, traversing the edge from D to E

does not take us outside the set ( . Partitioning)d 5 to its low-degree

2Possibly, provided they satisfy an additional ‘globalness’ or ‘psuedorandomness’
condition, such as having no large density increment on a ‘nice’ subset.
3Or, which is roughly equivalent, the second eigenvalue of the graph.
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and high-degree part, the high-degree part contributes little to the
inner product because )d shrinks its 2-norm to something very
small (this follows from the Fourier transform representation of
)d ). As for the contribution of the low-degree part, this can be
bounded by an expression involving the 4-norm of )d 5 , by using
Hölder’s inequality. Applying the hypercontractive inequality for
)d and rearranging, we obtain an upper bound on the probability
of staying inside ( , and thus a lower bound on the probability of
moving outside it.

In this paper, we obtain an analogue of Bonami’s lemma for
‘global’ functions on the space L(+ ,, ) of linear maps from + to
, , where + and, are �nite-dimensional vector spaces over a
�nite �eld. This leads to a signi�cant conceptual simpli�cation
and streamlining/shortening of the proof of the seminal result
of Khot, Minzer and Safra [15] obtaining small-set expansion for
pseudorandom sets in the Grassmann graph; the latter was one of
the crucial ingredients in the celebrated proof of the 2-2 Games
conjecture (with imperfect completeness), along with the earlier
results of Khot, Minzer and Safra in [16], of Dinur, Kindler, Khot,
Minzer and Safra in [4, 5], and of Barak, Kothari and Steurer in [1].

The Unique Games conjecture of Khot is considered by many to
be the second-most important open problem in complexity theory,
after the P versus NP problem; yet it is not considered to be out of
reach in the same way as the P versus NP problem. The proof of
the 2-2 Games conjecture (with imperfect completeness) is one of
the greatest breakthroughs in the area, in recent times. We proceed
to give a full statement of the problem.

One can think of an instance of the Unique Games problem as a
system of linear equations over F? for some prime ? , where every
equation (/constraint) is of the form

C8 9G8 + C ′8 9G 9 = 28 9 ,

for 8, 9 ∈ [=], where G1, G2, . . . G= are variables taking values in
F? , and 28 9 , C8 9 , C

′
8 9 ∈ F? are constants4. The goal is to �nd an

assignment of the variables that satis�es a large fraction of the
equations (/constraints). The Unique Games conjecture states that
for any n > 0, there exists ?0 (n) ∈ N such that for all primes
? ≥ ?0 (n), given an instance of the Unique Games conjecture for
F? where we are promised there is an assignment satisfying at least
a (1 − n)-fraction of the equations, it is an NP-hard problem to
�nd an assignment satisfying (even) at least an n-fraction of the
equations.

The ‘uniqueness’ in the Unique Games problem refers to the fact
each equation (/constraint) E of the form C8 9G8 + C ′8 9G 9 = 28 9 inside
an instance actually �xes a one-to-one correspondence between
assignments of the variable G8 and assignments of the variable G 9 ,
since if the coe�cients 28 9 and 2 ′8 9 are non-zero (which indeed we

may assume, without loss of generality), then for each assignment
of G8 there is a unique assignment of G 9 for which E is satis�ed,
and vice versa. The 2-2 Games conjecture (the variant, that is, with
imperfect completeness) refers to an analogous problem, where
each constraint sets a relation between a pair of distinct variables G8
and G 9 which, rather than being ‘unique’ (or ‘one-to-one’), is instead

4The original version of the Unique Games Conjecture allowed for more general types
of constraints, but it was shown in [13] that one can assume without loss of generality
that the constraints are as we describe here.

‘two-to-two’. (We explain precisely what this means, shortly.) This
is a more general set of allowed constraints, and so intuitively one
would guess that it would be more di�cult to �nd an assignment
that satis�es at least an n-fraction of the constraints, even when
one is promised that there exists an assignment satisfying at least
a (1 − n)-fraction of them. This guess turns out to be correct: it
is easy to prove that the 2-2 Games conjecture with imperfect
completeness, follows from the Unique Games conjecture, and (as
mentioned above) the former has now been proven, whereas the
latter remains open.

Now let us explain what a 2-to-2 constraint is. A very simple
example is the constraint

C8 9G8 + C ′8 9G 9 ∈ {28 9 , 2 ′8 9 }

on the pair of variables G8 and G 9 , where C8 9 , C ′8 9 ∈ F
×
? and 28 9 ≠ 2 ′8 9 ∈

F? . Now each assignment of G8 that satis�es the constraint has two
corresponding assignments of G 9 that satisfy the constraint, and
vice versa. Formally, a constraint on two variables G and ~ is said to
be a 2-to-2 relation on their assignments if there is a partition of the
set of possible assignments of G into a collection of pairs P, and a
partition of the possible assignments of ~ into a collection of pairs
Q, along with a perfect matching from P to Q, such that once two
matched pairs are chosen (one pair, ? say, in P and the other pair,
@ say, in Q), any assignment of G from ? and any assignment of ~
from@ will satisfy the constraint; and furthermore, any assignments
of G and ~ that do not come from matched pairs do not satisfy the
constraint.

Let us now give a more complicated example of a 2-2 constraint,
an example that was crucial in the aforementioned works on the 2-2
Games conjecture. We now index the variables by ℓ-dimensional
subspaces of F:2 , and we impose constraints �!,!′ on pairs of
variables G!, G!′ , where ! and !′ are ℓ-dimensional subspaces with
dim(! ∩ !′) = ℓ − 1. For each ℓ-dimensional subspace !, we seek to
assign values (to the variable G!) which are F2-linear functionals
on !, i.e. the assignments to G! are elements 5! of the dual space !∗.
The constraint �!,!′ is de�ned as follows: an assignment 5! to G!
and an assignment 5!′ to G!′ together satisfy�!,!′ if 5! (G) = 5!′ (G)
for all G ∈ ! ∩ !′, i.e. if the linear functionals 5! and 5!′ agree on
! ∩ !′. We note that since ! ∩ !′ is of codimension one in ! (and
also of codimension one in !′), and since we are working over F2,
for any given linear functional 6 on ! ∩ !′ there are exactly two
possible extensions of 6 to a linear functional on ! and exactly two
possible extensions of 6 to a linear functional on !′. It follows that
the constraint �!,!′ is indeed 2-2 in the above sense.

In [4], Dinur, Khot, Kindler, Minzer and Safra reduced the 2-2
Games conjecture (with imperfect completeness) to a statement
called the ‘Grassmann Soundness Hypothesis’, which concerns
constraints of the form �!,!′ de�ned above. To explain further,
we need some additional terminology. The Grassmann graph �:,ℓ

denotes the graph whose vertex-set consists of all ℓ-dimensional
subspaces of F:2 , and where two ℓ-dimensional subspaces ! and !′

are joined by an edge if dim(! ∩ !′) = ℓ − 1. An (ℓ, :)-Grassmann

Test is a system of constraints where we have a variable G! for
every vertex of the Grassmann graph (i.e. for every ℓ-dimensional
subspace ! of F:2 ), and a constraint �!,!′ as de�ned above for
every edge of the Grassmann graph. The Grassmann Soundness
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Hypothesis states (roughly) that if an assignment (5!)!∈+ (�:,ℓ )
satis�es at least an n-fraction of the constraints (�!,!′){!,!′ }∈� (�:,ℓ ) ,

then there must be a linear functional 5 : F:2 → F2 that agrees
on ! with the assignment 5! : ! → F2, for many ℓ-dimensional
subspaces !. More precisely, there must be a linear functional
5 : F:2 → F2, and two subspaces � ≤ � ≤ F:2 (with � of low
dimension and � of low codimension) such that 5 agrees with a
constant fraction of those assignments 5! for which ! is sandwiched
between � and �. The formal statement is as follows.

Hypothesis 2 (Grassmann Soundness Hypothesis). For every n > 0,

there exist ℓ0 ∈ N, [ > 0, 3 ∈ N and a function :0 : N→ N such that

the following holds. If ℓ ≥ ℓ0 and : ≥ :0 (ℓ), and an assignment is

given for the (ℓ, :)-Grassmann Test that satis�es at least an n-fraction

of the constraints, then there exists a linear functional 5 : F:2 → F2
and subspaces � ⊆ � ⊆ F:2 with dim(�) + codim(�) ≤ 3 , such that

for at least an [-fraction of the ℓ-dimensional spaces � ⊆ ! ⊆ �, it

holds that 5! (the assignment of G!) is equal to the restriction of 5 to

!.

The work of Barak, Kothari and Steurer [1] further reduced the
Grassmann Soundness Hypothesis to the ‘Grassmann Expansion
Hypothesis’, a statement about the expansion properties of the
Grassmann graph, which we now describe. Given a �nite, 3-regular
graph � = (+ , �) and a set of vertices ( ⊂ + (�), we de�ne the
expansion ratio

Φ� (() := |�� ((, () |
3 |( | ,

where �� ((, () denotes the set of edges of � with one endpoint
in ( and the other endpoint in ( := + (�) \ ( . (Note that Φ� (() is
precisely the probability that, if we pick uniformly at random a
vertex D of ( and then uniformly at random an edge of � that is
incident with D, then the other endpoint of this edge lies outside ( .)
The Grassmann Expansion Hypothesis states that pseudorandom
sets in the Grassmann graph have high expansion ratio, where by
‘psuedorandom’ we mean that the density of the set on lower-order
copies of the Grassmann graph is not too high:

Hypothesis 3 (Grassmann Expansion Hypothesis). For any 0 <

n < 1, there exists ℓ0 = ℓ0 (n) ∈ N, 3 ∈ N and [ > 0 such that the

following holds. Let ℓ ≥ ℓ0 and let : be su�ciently large depending

on ℓ . Let ( ⊂ + (�:,ℓ ) such that for any subspaces� and � of F:2 with

� ⊆ � and dim(�) + codim(�) ≤ 3 , we have

|{! ∈ ( : � ⊆ ! ⊆ �}|
|{! ∈ + (�:,ℓ ) : � ⊆ ! ⊆ �}| ≤ [.

Then Φ�:,ℓ
(() ≥ 1 − n .

The proof of the 2-2 Games conjecture (with imperfect
completeness) was completed when Khot, Minzer and Safra proved
the Grassmann Expansion Hypothesis in the seminal work [15].
The proof in [15], however, is extremely long and technical. In this
paper, we �nd a streamlined proof by �rst obtaining an (essentially
optimal) analogue of Bonami’s lemma for complex-valued functions
on L(+ ,, ), where + and, are vector spaces over F@ , and then
using the @ = 2 case of this to obtain a small-set expansion theorem
for pseudorandom sets in the Shortcode Graph (the graph with
vertex-set L(+ ,, ), where two linear maps �1 and �2 are joined

by an edge if �1 −�2 is of rank one); such a small-set expansion
theorem was already known to imply the Grassmann Expansion
Hypothesis, by the work of Barak, Kothari and Steurer in [1].

We now describe our results in more detail. Our conceptual
starting-point is the following (conditional) analogue of Bonami’s
lemma for global functions on product spaces, obtained by Keevash,
Lifshitz, Long and Minzer in [11]. To state it we need some more
notation and de�nitions. If Ω = -= is a �nite product-space, and
( ⊂ [=], we write Ω( = -( . For G ∈ Ω( and a function 5 : Ω → C,
we write 5(→G for the ‘restricted’ function on Ω [=]\( de�ned by
5(→G (~) = 5 (G,~), where (abusing notation slightly) we write
(G,~) for the element I ∈ Ω with I8 = G8 for all 8 ∈ ( and I8 = ~8
for all 8 ∈ [=] \ ( . We equip the product-space Ω with the uniform
(product) measure ` on Ω, and similarly we equip the product-space
Ω( with the uniform (product) measure on Ω( , for any ( ⊂ [=].
The Efron-Stein decomposition is an orthogonal decomposition of
!2 (Ω, `) into spaces +( (for ( ⊂ [=]), where +( consists of the
functions in !2 (Ω, `) that depend only upon the coordinates in (

and are orthogonal to any function that depends only upon the
coordinates in ) , for a proper subsets ) of ( . For a complex-valued
function 5 : Ω → C and for each ( ⊂ [=], we de�ne 5 =( to be the
orthogonal projection of 5 onto+( . We de�ne the Efron-Stein degree
of 5 to bemax{|( | : 5 =( ≠ 0}, and we de�ne the degree-3 truncation

of 5 to be the function 5 ≤3 obtained by orthogonally projecting 5

onto the linear space of functions of (Efron-Stein) degree at most 3
(in other words, 5 ≤3 is simply the degree-3 part of 5 ).

Theorem 4 (Keevash, Lifshitz, Long, Minzer, 2019+). Let Ω be

�nite product space. Let 5 : Ω → C and let X > 0. Suppose that

∥ 5(→G ∥22 ≤ X for sets ( ⊆ [=] with |( | ≤ 3 and all G ∈ Ω( . Then

∥ 5 ≤3 ∥44 ≤ 10003X ∥ 5 ≤3 ∥22.
We call the functions 5(→G (for |( | ≤ 3) the 3-restrictions of 5 .

The above theorem says that if 5 is a function whose 3-restrictions
have small 2-norms, then the 4-norm of the degree-3 part of 5 can
be bounded from above in terms of its 2-norm. Theorem 4 was used
in [11] to obtain a small-set expansion theorem for noise operators
on product spaces; this small-set expansion theorem then played a
crucial role in obtaining sharp forbidden intersection theorems for
subsets [<]= .

Our �rst aim in this paper is to obtain an analogue of Theorem
4 for complex-valued functions on L(+ ,, ), but with Efron-Stein
degree replaced by a di�erent notion of degree, namely, the
maximum rank of a linear map appearing in the Fourier expansion
of 5 (this turns out to be the same as the ‘junta degree’, de�ned
below). We note that L(+ ,, ) could be viewed as a product space
by �xing bases of + and , , and it could be equipped with the
corresponding Efron-Stein degree, but this notion of degree would
not be invariant under changes of basis and would not therefore be
useful for applications.

To state our (conditional) Bonami-type lemma for functions
on L(+ ,, ), we need some more de�nitions. Let @ be a prime
power, and let + and, be �nite-dimensional vector spaces over
F@ . We must �rst de�ne our notion of a 3-restriction of a function
5 : L(+ ,, ) → C. This is a little notationally cumbersome, if
intuitively clear.

Let +1 be a subspace of + , let,1 be a subspace of, , let ) ∈
L(+ ,, ) be a linear map, and let 5 : L(+ ,, ) → C. The restriction
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5(+1,,1)→) is the function from L(+ /+1,,1) to C de�ned by

5(+1,,1)→) (�) = 5 (�′ +) ) ∀� ∈ L(+ /+1,,1),
where �′ ∈ L(+ ,, ) is the unique linear map with kernel
containing +1 and satisfying �′

= � ◦ Q+1
, with Q+1

: + → + /+1
denoting the natural quotient map. If dim(+1) + codim(,1) ≤ 3

then we call such a restriction a 3-restriction. We note that the linear
maps � of the form�′ +) in the de�nition 5(+1,,1)→) are precisely
the linear maps � such that � agrees with ) on +1 and �∗ agrees
with ) ∗ on the annihilator of,1.

Adopting the matrix perspective, the 3-restriction of a function
5 on = by< matrices over F@ corresponds to restricting 5 to those
matrices where A speci�c rows and 2 speci�c columns take �xed
values, where A + 2 ≤ 3 (and possibly translating the domain by a
�xed matrix, if the matrix of ) has non-zero entries outside the A
�xed rows and the 2 �xed columns).

A function 5 : L(+ ,, ) → C is said to be a 3-junta if there
exist E1, . . . , E8 ∈ + ,D8+1, . . . , D3 ∈, ∗, such that the value of 5 (�)
is determined once we know the values of �(E8 ) and the values of
�∗ (D8 ). The junta-degree of a function 5 is the minimal integer 3
such that 5 can bewritten as a sum of3-juntas. (Asmentioned above,
we will show that the junta-degree of 5 is equal to the maximum
rank of a linear map that appears in the Fourier expansion of 5 .)
For a function 5 : L(,,+ ) → C, we let 5 ≤3 denote its orthogonal
projection onto the (linear) space of all functions with junta-degree
at most 3 (in other words, as before, 5 ≤3 is simply the degree-3
part of 5 ).

For 3 ∈ N and X > 0, we say a function 5 : L(+ ,, ) → C is
(3, X)-restriction global if ∥ 5(+1,,1)→) ∥22 ≤ X for all +1 ≤ + and
,1 ≤ , with dim(+1) + codim(,1) ≤ 3 and all ) ∈ L(+ ,, ); in
other words, if all the 3-restrictions of 5 have 2-norm at most

√
X .

This is our notion of ‘globalness’ for functions on L(+ ,, ).
We can now state our Bonami-type lemma for global functions

on L(+ ,, ).

Theorem 5. Let 3 ∈ N, let X > 0, let @ be a prime power, let +

and, be �nite-dimensional vector spaces over F@ , and suppose that

5 : L(+ ,, ) → C is a (3, X)-restriction global function. Then

∥ 5 ≤3 ∥44 ≤ @�3
2
X ∥ 5 ≤3 ∥22,

where � > 0 is an absolute constant.

The 32 in the exponent is sharp, as can be veri�ed by
inspecting the function

∑

- ∈L(,,+ ) : rank(- )=3 D- , where D- (�) =
lg (Tr(-�)) , l = exp(2c8/?) and g : F@ → F? is de�ned by

g (G) = G + G? + . . . + G?
B−1

for @ = ?B . (This example shows that
one must take � ≥ 1, for any 3 and @.)

To motivate our proof of Theorem 5, and to illustrate some of
the key ideas in a simpler setting, we will �rst give a proof of a
(slightly weaker) version of Theorem 4 for the product space F=? for

? a prime, and with �3 replaced by (�3)3 .
Using Theorem 5, we obtain the following quantitatively sharp

small-set expansion theorem for the shortcode graph, which (as
mentioned above) implies the Grassmann Expansion Hypothesis.

Theorem 6 (Small-set expansion theorem for the shortcode graph).
There exist absolute constants �1,�2 > 0 such that the following

holds. Let A ∈ N, and let ( ⊆ L (+ ,, ) be a family of linear maps

with 1( being
(

�1A, @
−�2A

2
)

-restriction global. Then

Pr
�∼(, � of rank 1

[� + � ∈ (] < @−A .

Theorem 6 is sharp up to the values of�1 and�2, as can be seen
by considering the family ( = {� ∈ L(+ ,, ) : rank(�) ≤ = − A },
where dim(+ ) = dim(, ) = =.

2 ARXIV LINK

The rest of this paper contains numerous long mathematical
expressions that do not �t nicely in a two-columns format. Hence
the reader is referred to the ArXiv version of this paper, available at
https://doi.org/10.48550/arXiv.2209.04243, for the remaining details.

REFERENCES
[1] B. Barak, P.K. Kothari and D. Steurer. Small-set Expansion in the Shortcode Graph

and the 2-2 Conjecture. ITCS 2019, Paper 9.
[2] W. Beckner. Inequalities in Fourier Analysis. Inequalities in Fourier analysis. Ann.

Math. 102 (1975), 159–182.
[3] A. Bonami. Études des coe�cients Fourier des fonctiones de !? (�) . Ann. Inst.

Fourier 20 (1070), 335–402.
[4] I. Dinur, S. Khot, G. Kindler, D. Minzer and M. Safra. Towards a proof of the 2-to-1

games conjecture? Electronic Colloquium on Computational Complexity 23:198,
2016.

[5] I. Dinur, S. Khot, G. Kinder, D. Minzer and S. Safra. On non-optimally expanding
sets in Grassmann graphs. Electronic Colloquium on Computational Complexity
24:94, 2017.

[6] Y. Filmus, G. Kindler, N. Lifshitz and D. Minzer. Hypercontractivity for the
symmetric group. Preprint, 2020. arXiv:2009.05503.

[7] E. Friedgut. Boolean functions with low average sensitivity depend on few
coordinates. Combinatorica 18 (1998), 27–35.

[8] L. Gross. Logarithmic Sobolev inequalities. Amer. J. Math. 97 (1975), 1061–1083.
[9] J. Kahn, G. Kalai and N. Linial. The in�uence of variables on Boolean functions.

Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science
(1988), pp. 68–80.

[10] P. Keevash, N. Lifshitz, E. P. Long and D. Minzer. Global hypercontractivity and
its applications. Preprint, 2021. arXiv:2103.04604.

[11] P. Keevash, N. Lifshitz, E. P. Long and D. Minzer. Hypercontractivity for global
functions and sharp thresholds. Preprint, 2019. arXiv:1906.05568.

[12] P. Keevash, N. Lifshitz and D. Minzer. On the largest product-free subsets of the
alternating groups. Preprint, 2022. arXiv:2205.15191.

[13] S. Khot, G. Kindler, E. Mossel and R. O’Donnell. Optimal inapproximability results
for MAX-CUT and other 2-variable CSPs? SIAM J. Comput. 37 (2007), 319–357.

[14] S. Khot. On the power of unique 2-prover 1-round games. Proceedings of the 34th
Annual ACM Symposium on the Theory of Computing (2002), pp. 767–775.

[15] S. Khot, D. Minzer and S. Safra. Pseudorandom sets in Grassmann graphs have
near-perfect expansion. Electronic Colloquium on Communication Complexity 25:6,
2018.

[16] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games,
and Grassmann graphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing (STOC), 2017, pp. 576–589.

[17] E. Mossel, R. O’Donnell and K. Oleszkiewicz. Noise stability of functions with
low in�uences: Invariance and optimality. Ann. Math. 171 (2010), 295–341.

[18] E. Nelson. A quartic interaction in two dimensions. In: Mathematical Theory
of Elementary Particles (R. Goodman and I. Segal, Eds.), pp. 69–73, MIT Press,
Cambridge, MA, 1966.

[19] E. Nelson. Construction of quantum �elds from Marko� �elds. J. Funct. Anal. 12
(1973), 97–112.

[20] R. O’Donnell, Analysis of Boolean functions. Cambridge University Press,
Cambridge, 2014.

[21] O. S. Rothaus. Hypercontractivity and the Bakry-Emery criterion for compact
Lie groups. J. Funct. Anal. 65 (1986), 358–367.

Received 2022-11-07; accepted 2023-02-06

660

https://doi.org/10.48550/arXiv.2209.04243

	Abstract
	1 Introduction
	2 ArXiv link
	References

