
Nearly All :-SAT Functions Are Unate

József Balogh
University of Illinois at

Urbana-Champaign

Champaign, IL, USA

jobal@illinois.edu

Dingding Dong
Harvard University

Cambridge, MA, USA

ddong@math.harvard.edu

Bernard Lidický
Iowa State University

Ames, IA, USA

lidicky@iastate.edu

Nitya Mani
Massachusetts Institute of Technology

Cambridge, MA, USA

nmani@mit.edu

Yufei Zhao
Massachusetts Institute of Technology

Cambridge, MA, USA

yufeiz@mit.edu

ABSTRACT
We prove that 1−> (1) fraction of all :-SAT functions on = Boolean

variables are unate (i.e., monotone after �rst negating some vari-

ables), for any �xed positive integer : and as = → ∞. This resolves

a conjecture by Bollobás, Brightwell, and Leader from 2003.

This paper is the second half of a two-part work solving the

problem. The �rst part, by Dong, Mani, and Zhao, reduces the

conjecture to a Turán problem on partially directed hypergraphs.

In this paper we solve this Turán problem.

CCS CONCEPTS
• Mathematics of computing → Combinatoric problems; Hy-
pergraphs.
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1 INTRODUCTION
A :-SAT function is a Boolean function 5 : {0, 1}= → {0, 1} on =

variables G1, . . . , G= that has at least one representation as a :-SAT

(speci�cally :-CNF) formula. Such a function is called unate if it

has a formula where, for each 8 , G8 and its negation G8 do not both

appear in the formula. In other words, a function/formula is unate

if it is monotone after �rst negating some variables (here monotone

means that only positive literals G8 appear and no negated literals

G8 appear).

Ourmain result below proves a conjecture by Bollobás, Brightwell,

and Leader [5].
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Theorem 1.1. Let : be a �xed positive integer. As = → ∞, the

number of :-SAT functions on = Boolean variables is (1+> (1))2=+(=:) ,
and 1−> (1) proportion of all :-SAT functions on = Boolean variables

are unate.

An easy argument shows that the number of unate :-SAT func-

tions on = Boolean variables is at least (1 − > (1))2=+(=:) . Basically,
for each 8 , we can choose whether to negate G8 , and then for each

:-element subset of the = available literals, whether to include it as

a clause. There is a small overcount due to unused variables, but it

is easy to analyze (see [5]).

Bollobás, Brightwell, and Leader [5] proved a weaker version of

their conjecture for the : = 2 case, namely that the number of 2-SAT

functions on = Boolean variables is 2(1+> (1)) (=2) . Some special cases

of Theorem 1.1 were previously known: : = 2 by Allen [1] (also

see [8] for an alternate proof) and : = 3 by Ilinca and Kahn [9].

We call a :-SAT formula minimal (the term non-redundant was

used in [8]) if deleting any clause changes the function. Every :-

SAT function admits some minimal :-SAT formula representation.

Some functions, such as unate functions [1], admit a unique mini-

mal representation, while others may admit one or multiple such

representations. The fact that unate functions have a unique mini-

mal representation follows from the following observation: suppose

�1, �2 are formulae where �1 is unate and �2 contains a clause �

whose variables do not form a clause in �1; �1 and �2 cannot repre-

sent the same function, since there exists an assignment where �

evaluates to F (so that �2 is not satis�ed) but all clauses in �1 are

satis�ed.

We establish the following result, which implies Theorem 1.1.

Theorem 1.2. Let : be a �xed positive integer. As = → ∞, the

number of minimal :-SAT formulae on = Boolean variables is (1 +
> (1))2=+(=:) , and a 1−> (1) proportion of all minimal :-SAT formulae

are unate.

As suggested by Bollobás, Brightwell, and Leader [5], these re-

sults open doors to a theory of random :-SAT functions. For ex-

ample, the theorems imply that a typical :-SAT function admits a

unique minimal :-SAT formula, and furthermore the formula has

(1/2 + > (1))
(=
:

)
clauses. Note that our model is very di�erent from

that of random :-SAT formulae where clauses are added at random

(e.g., the recent breakthrough on the satis�ability conjecture [6]).

Rather, Theorem 1.2 concerns a random :-SAT formula conditioned

on minimality. In this light, our results are analogous to the theory

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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of Erdős–Rényi random graphs � (=, ?) in the dense setting with

? = 1/2, which corresponds to counting. It would be interesting

to further study the behavior of sparser random :-SAT formulae

where each clause is introduced with some probability ?= decaying

with=, and conditioned on the minimality of the formula. This leads

to a rich source of problems on thresholds and typical structures

and potentially interesting phenomena.

In a di�erent direction, we can also ask what happens when

the width : of :-SAT is allowed to grow with =. Since our proof

techniques are quantitative, they allow : to grow rather slowly

with = (we have not worked out the precise dependence, which is

a function of the speci�c choice of hypergraph container lemma

applied in our argumentation; our results likely continue to hold for

: = $ (log log=)). A bold conjecture by Bollobás and Brightwell [4]

states that for all : ≤ (1/2 − n)= with any �xed n > 0, the number

of :-SAT functions on = Boolean variables is 2(1+> (1)) (=:) . This
conjecture appears to be outside the scope of current methods.

We leave the following related question as an open problem: how

quickly can : = : (=) grow with = so that a typical :-SAT function

on = Boolean variables is unate? Curiously, a completely di�erent

behavior emerges for : > =/2, as observed in [4], and this regime

also has a lot of interesting open problems.

This paper is the second half of a two-part work establishing

the above results. The �rst part [7] (by Dong, Mani, and Zhao)

reduces the problem, for each : , to a Turán problem on partially

directed hypergraphs.1 In this paper we solve this Turán problem

completely for every : .

The reduction in [7] applies the hypergraph container method [2,

3, 11], a major recent development in combinatorics. Our solution

to the Turán problem is partly inspired by the method of �ag al-

gebras, introduced by Razborov [10], which reduces graph density

inequalities to sums of squares.

2 PARTIALLY DIRECTED HYPERGRAPHS
A partially directed :-graph (abbreviated as :-PDG) is formed by

starting with a :-uniform hypergraph (i.e., whose edges are :-

element subsets of vertices), and then for each edge, either (i) leaving

it as an undirected edge or (ii) converting it to a directed edge by

choosing a special vertex in the edge (we say that the edge points

to or is directed toward this special vertex). We notate a directed

edge by putting a ∨ on top of the special vertex. An example of a

2-PDG (that we call ®)2) is illustrated below:

®)2 :=
2

1 3

edges = {12, 13∧, 23}.

Given a pair of :-PDGs, ®� and ®� , we say that ®� is a subgraph

of ®� if one can obtain ®� from ®� by a combination of (1) removing

vertices, (2) removing edges, and (3) removing the orientation of

some edges. As examples, the left 2-PDG below contains ®)2 as a

1The �rst paper [7] also solves the Turán problem for : = 4 using a di�erent method
from this work. A separate brute-force computer search by Mani and Yu yielded
the : = 5 case, as documented in the appendix of the arXiv version 3 of [7] at
arXiv:2107.09233v3.

subgraph, and the right does not contain ®)2 as a subgraph.

We say that a :-PDG ®� is ®� -free if ®� does not contain ®� as a

subgraph.

An important :-PDG for us is denoted by ®): , formed (for each

: ≥ 3) by starting with ®)2 and then adding : − 2 common vertices

to all three edges, e.g.,

®)3 = 1

3

2 4

edges = {123, 124∧, 134},

and

®)4 = 21

4

3 5

edges = {1234, 1235∧, 1245}.

We prove the following statement, which, by the reduction in

[7], implies Theorems 1.1 and 1.2.

Theorem 2.1. Let: ≥ 2 be a positive integer. There exists some\ >

log2 3 such that every =-vertex ®): -free :-PDG with U
(=
:

)
undirected

edges and V
(=
:

)
directed edges satis�es

U + \V ≤ 1 + >=→∞ (1) .
Remark 2.2 (A sketch of the reduction). Let us sketch this reduction

and defer to [7] for details. The reader is welcomed to skip this

remark.

We wish to prove Theorem 1.2 and count minimal :-SAT formu-

lae. We relax the minimality condition and actually upper bound the

number of :-SAT formulae that avoid some short certi�cate of non-

minimality. There is a useful analogy between the latter problem

and counting triangle-free graphs on = vertices. The hypergraph

container method allows us to reduce such an asymptotic enumer-

ation problem to a Turán problem (along with supersaturation,

which is automatic in the dense setting).

For countingminimal:-SAT formulae, containers are themselves

:-SAT formulae (but not necessarily minimal). We say that a for-

mula is simple if every :-element subset of variables supports at

most one clause (e.g., G1G2G3 and G1G2G3 do not both appear as

clauses). We say that a formula is semisimple if every :-element

subset of variables supports either at most one clause, or exactly

two clauses di�ering by negation at exactly one variable (e.g.,

{G1G2G3, G1G2G3}, but not {G1G2G3, G1G2G3}).
We wish to upper bound the number of simple minimal :-SAT

formulae (it turns out there are negligibly many non-simple ones).

The container theorem produces a small collection of container for-

mulae, such that each simple minimal :-SAT formula is contained

in some container. These containers satisfy additional properties.

For example, each container is, up to removing > (=: ) clauses, a
semisimple formula. We can convert a semisimple :-SAT formula

(arising from a container) to a :-PDG by converting each clause to

an edge, and whenever two clauses are supported on the same set of

959
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variables, we direct the edge towards the unique di�ering variable

(e.g., {G1G2G3, G1G2G3} becomes 123

∧

). The ®): -free condition for :-

PDGs corresponds to a certain short certi�cate of non-minimality in

the semisimple formula (we actually need to consider a 2-blow-up

in this step, but let us skip that discussion here).

Consider a container � , so that up to removing > (=: ) clauses
from � , we obtain a semisimple formula � ′. Among all :-element

subsets of variables (out of
(=
:

)
total), suppose U

(=
:

)
of them support

exactly one clause in � ′, and V
(=
:

)
of them support exactly two

clauses in � ′. To choose a simple subformula of � , we have two

choices for each of the �rst type (i.e., whether to include or not),

three choices for each of the second type (i.e., keep one of the two

clauses, or discard both), and 2> (=
: ) choices for whether to include

each clause in � \ � ′. Then the number of simple subformulae

of � is 2U (=:)3V (=:)2> (=: ) . The container theorem guarantees us

that the number of containers is 2> (=
: ) . Thus, we �nd that the

number of simple minimal formulae is at most 2U (=:)3V (=:)2> (=: ) ,
and we wish to obtain an upper bound of 2(1+> (1)) (=:) , i.e., we want
U + (log2 3)V ≤ 1 + > (1). This is the reason for the appearance of

log2 3 in Theorem 2.1. This sketches the proof that the number of

minimal :-SAT formulae is 2(1+> (1)) (=:) . To get the more precise

count of (1+> (1))2=+(=:) , one needs an additional stability argument

to handle the case when U is close to 1. The stability argument was

introduced in [9] for 3-SAT, and extended in [7] to general :-SAT.

3 SOLUTION OF THE TURÁN PROBLEM
We only consider : ≥ 4 from now on, as [7] already gives simple

proofs of Theorem 2.1 for : = 2 and : = 3. Here is the key lemma.

Lemma 3.1. Let : ≥ 4 be a positive integer. There exist \ > log2 3

and 0, 1 ∈ R (depending on :) such that the following holds. Suppose
®� is a ®): -free :-PDG on : + 1 vertices. Let G1, . . . , G:−1, ~, I be a

permutation of vertices of ®� chosen uniformly at random.

De�ne G := G1 . . . G:−1, let G~ denote the event that G1 . . . G:−1~
forms an undirected edge in ®� , let G~∧

denote the event that G1 . . . G:−1~

∧

is a directed edge in ®� , and let G~ denote the event that there is no

edge with vertices G1, . . . , G:−1, ~ in ®� . Then, we have that
P(G~) +:\P(G~∧) +02P(G~∧GI)−201P(G~∧GI∧) +12P(G~∧∧GI∧) ≤ 1.

Remark 3.2. The proof gives \ = 1 + 1√
2
≥ 1.707 > 1.585 > log2 3.

Proof of Theorem 2.1 for : ≥ 4 using Lemma 3.1. Let ®� be an

=-vertex ®): -free :-PDG with U
(=
:

)
undirected edges and V

(=
:

)
di-

rected edges.

Let G1, . . . , G:−1, ~, I be vertices of ®� chosen without replacement

uniformly at random. Applying Lemma 3.1 (by �rst conditioning on

the set of : + 1 randomly selected vertices) and using the notation

of the lemma,

P(G~) +:\P(G~∧) +02P(G~∧GI)−201P(G~∧GI∧) +12P(G~∧∧GI∧) ≤ 1.

Note that P(G~) = U and :P(G~∧) = V . It remains to show that

02P(G~ ∧ GI) − 201P(G~ ∧ GI

∧) + 12P(G~∧∧ GI

∧) ≥ −> (1) .
We will show that this inequality holds for every �xed choice of G .

Conditioned on G , we see that~ and I are uniformly chosen vertices

without replacement in + ( ®� ) \ {G1, . . . , G: }. When = is large, this

is not much di�erent than with replacement, in which case ~ and I

would be conditionally independent given G . In particular, P(G~ ∧
GI |G) = P(G~ |G)2+> (1), and P(G~∧GI∧|G) = P(G~ |G)P(G~∧|G) +> (1),
and P(G~∧∧ GI

∧|G) = P(G~∧|G)2 + > (1). Then we can prove the above

displayed inequality, conditioned on any G , by observing that

02P(G~ ∧ GI |G) − 201P(G~ ∧ GI

∧|G) + 12P(G~∧

, GI

∧|G)
= 02P(G~ |G)2 − 201P(G~ |G)P(G~∧|G) + 12P(G~∧|G)2 − > (1)

=

(
0P(G~ |G) − 1P(G~∧|G)

)2
− > (1) ≥ −> (1) . □

Finally, it remains to prove Lemma 3.1.

Proof of Lemma 3.1. Let ®� be a ®): -free :-PDG on : +1 vertices.
Construct the following associated digraph � on the same vertex

set as ®� :

(1) For every directed edge in ®� missing vertex 8 and directed

towards vertex 9 , add the directed edge 8 → 9 in � .

(2) For every undirected edge in ®� missing vertex 8 , add the

loop 8 → 8 in � .

Notice that every vertex in � has out-degree at most 1. Moreover,

since ®� does not contain ®): as a subgraph,� is free of the following

forbidden pattern:

• Forbidden pattern: 81 → 82 → ∗ and 83 → ∗ for three distinct
vertices 81, 82, 83, where ∗ can be any vertex (the two ∗’s do
not have to be the same).

Indeed, if � contains the above pattern, then ®� has an edge missing

82, an edge missing 83, and an edge containing both 82 and 83 that is

directed at 82. These three edges contain ®): as a subgraph.

It is easy to deduce the following exhaustive classi�cation of all

digraphs � on : + 1 vertices with out-degree at most 1 at every

vertex and without the above forbidden pattern.

(A) 8 → 9 → 8 for distinct 8, 9 . No other edges.

(B) 8 → 9 → 9 for distinct 8, 9 . No other edges.

(C) 81 → 82 → 83 for distinct 81, 82, 83. No other edges.

(D) No vertex has both positive in-degree and positive out-degree

except isolated self-loops 8 → 8 .

(E) A number of loops 81 → 81, . . . , 8< → 8< .

Write 8 → ∅ to denote that 8 has out-degree 0 in � . The inequal-

ity in Lemma 3.1 then translates to

P(I → I) + :\ · P(I → ~) + 02P(~ → ∅∧ I → ∅)
− 201P(~ → I ∧ I → ∅) + 12P(~ → I ∧ I → ~) ≤ 1. (3.1)
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Let D and 3 denote the number of undirected and directed edges

in ®� , respectively. We calculate the terms in inequality (3.1):

P(I → I) = D

: + 1
, P(I → ~) = 3

: (: + 1) ,

P(~ → ∅∧ I → ∅) = (: + 1 − D − 3) (: − D − 3)
(: + 1): ,

P(~ → I ∧ I → ∅) =



0 in cases (A), (B) and (E),
1

(:+1): in case (C),

3
(:+1): in case (D),

P(~ → I ∧ I → ~) =
{

2
(:+1): in case (A),

0 in cases (B), (C), (D) and (E).

Then (3.1) reduces to simpler inequalities in each of the four cases:

(A) When our digraph is of the form 8 → 9 → 8 for distinct 8, 9

with no other edges, (3.1) simpli�es to

2\

: + 1
+ (: − 1) (: − 2)

(: + 1): 02 + 2

(: + 1): 1
2 ≤ 1. (3.2)

(B) Since \ ≥ 1, the associated inequality in this case is implied

by (A); we note the inequality below, but do not need to

consider this case separately:

1

: + 1
+ \

: + 1
+ (: − 1) (: − 2)

(: + 1): 02 ≤ 1.

(C) The inequality in this case is also implied by (A) (we will

end up choosing 0, 1 > 0) so we also need not consider it

separately:

2\

: + 1
+ (: − 1) (: − 2)

: (: + 1) 02 − 2

: (: + 1) 01 ≤ 1.

(D) In this case, if3 = 0 thenD ≤ :+1, and if3 ≥ 1 thenD+3 ≤ : .

The inequality reduces to

D

: + 1
+ \3

: + 1
+ (: + 1 − D − 3) (: − D − 3)

(: + 1): 02 − 23

(: + 1): 01 ≤ 1.

(3.3)

(E) In this case, since ®� has no directed edge, (3.1) simpli�es to

D

: + 1
+ (: + 1 − D) (: − D)

(: + 1): 02 ≤ 1, (3.4)

which holds as long as 0 ≤ 0 ≤ 1.

Thus it remains to show that we can choose parameters \ > log2 3

and 0, 1 > 0 to make the inequalities implied by (A), (D) and (E)

true. We choose

\ = 1 + 1√
2
> 1.707, satisfying 2\2 − 4\ + 1 = 0

0 =

1√
2
, 1 =

: (\ − 1) − 1√
2

.

(3.4) immediately follows from the fact that 0 ≤ 0 ≤ 1.

We can verify (3.2), establishing the desired inequality for case

(A) (and thus cases (B) and (C)) via a direct substitution:

2\

: + 1
+ (: − 1) (: − 2)

(: + 1): 02 + 2

(: + 1): 1
2 − 1

=

2\

: + 1
+ (: − 1) (: − 2)

2(: + 1): + (: (\ − 1) − 1)2
(: + 1): − 1

=

4:\ + (: − 1) (: − 2) + 2(: (\ − 1) − 1)2 − 2(: + 1):
2(: + 1):

=

4 − : + :2 (2\2 − 4\ + 1)
2(: + 1): =

4 − :

2(: + 1): ≤ 0.

To verify (3.3) for (D), observe that the left-hand side of (3.3)

is non-decreasing in D. Indeed, replacing D by D + 1 increases the

expression by at least

1

: + 1
− (: + 1): − : (: − 1)

(: + 1): 02 =
1

: + 1
− 2

: + 1
02 = 0.

Consequently, it remains to verify case (D) when D is as large as

possible, meaning D + 3 ∈ {:, : + 1}, which makes the third term

in (3.3) zero. The left-hand side of (3.3) becomes

D

: + 1
+ \3

: + 1
− 23

(: + 1): 01.

If 3 = 0, then D = : + 1, and the inequality clearly holds. Otherwise,

3 +D = : . Since the above expression is linear in D (or equivalently,

linear in 3), the maximum is attained at one of endpoints (D,3) =
(:, 0) or (0, :). The only nontrivial situation to check is (D,3) =

(0, :), in which case the above expression is

:\

: + 1
− 2

: + 1
01 =

:\

: + 1
− : (\ − 1) − 1

: + 1
= 1.

Therefore, (3.1) always holds. □
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