
ar
X

iv
:2

20
6.

05
25

6v
2

 [
cs

.I
T

]
 1

3
A

pr
 2

02
3

Generic Reed-Solomon codes achieve list-decoding capacity

Joshua Brakensiek∗ Sivakanth Gopi† Visu Makam‡

Abstract

In a recent paper, Brakensiek, Gopi and Makam [BGM21] introduced higher order MDS codes
as a generalization of MDS codes. An order-ℓ MDS code, denoted by MDS(ℓ), has the property
that any ℓ subspaces formed from columns of its generator matrix intersect as minimally as
possible. An independent work by Roth [Rot21] defined a different notion of higher order MDS
codes as those achieving a generalized singleton bound for list-decoding. In this work, we show
that these two notions of higher order MDS codes are (nearly) equivalent.

We also show that generic Reed-Solomon codes are MDS(ℓ) for all ℓ, relying crucially on the
GM-MDS theorem which shows that generator matrices of generic Reed-Solomon codes achieve
any possible zero pattern. As a corollary, this implies that generic Reed-Solomon codes achieve
list decoding capacity. More concretely, we show that, with high probability, a random Reed-
Solomon code of rate R over an exponentially large field is list decodable from radius 1 − R − ε
with list size at most 1−R−ε

ε
, resolving a conjecture of Shangguan and Tamo [ST20].

∗Department of Computer Science, Stanford University, Stanford, CA. Email: jbrakens@cs.stanford.edu. Por-
tions of this work were completed at Microsoft Research, Redmond. Research supported in part by an NSF Graduate
Research Fellowship and a Microsoft Research PhD Fellowship.

†Microsoft Research, Redmond, WA. Email: sigopi@microsoft.com.
‡Radix Trading Europe B. V. Email: visu@umich.edu. Research supported by NSF Grant No. DMS-1638352,

CCF-1412958, and CCF-1900460.

http://arxiv.org/abs/2206.05256v2

Contents

1 Introduction 3

1.1 List-decoding Reed-Solomon codes . 3

1.1.1 Previous Work . 5

1.2 Higher order MDS codes . 5

1.3 Proof overview . 8

1.4 Further applications and connections . 10

1.4.1 Generic Gabidulin codes achieve list-decoding capacity 10

1.4.2 Field size lower bounds for LD-MDS(L) codes 11

1.4.3 Maximally recoverable tensor codes . 11

1.4.4 Connections to invariant theory . 12

1.5 Open Questions . 12

2 Generic Zero Patterns (GZPs) 14

2.1 Generalized Hall’s theorem and maximal GZPs . 15

2.2 A characterization of sets in order-ℓ generic zero patterns 17

3 Equivalence of GZP(ℓ) and MDS(ℓ) 20

3.1 GZP(ℓ) implies MDS(ℓ) . 20

3.2 MDS(ℓ) implies GZP(ℓ) . 21

3.3 Characterizing the null intersection property . 22

4 Applications to List Decoding: Proof of Theorem 1.4 22

4.1 Equivalence of MDS and LD-MDS (up to duality) 22

4.2 Reed-Solomon codes . 24

4.2.1 Generic Reed-Solomon codes . 24

4.2.2 Random Reed-Solomon codes . 24

5 Connections to Invariant Theory 25

5.1 Linear matrices, non-commutative rank and the blow-up regularity lemma 26

5.2 Polynomial time computability of generic intersection ranks 27

5.2.1 A doubling operation . 28

5.2.2 Scalability of generic intersection dimension 29

A Resolution of Conjecture 5.7 of [ST20] 33

B An alternative algorithm for computing generic intersection dimension in poly-
nomial time 35

B.1 Proof of Lemma B.1 . 36

B.2 Proof of Lemma B.2 . 37

1 Introduction

The singleton bound states that a (n, k)-code can have distance at most n − k + 1. Codes achieving
this bound are called MDS codes. Reed-Solomon codes [RS60] are an explicit construction of such
codes over fields of size O(n). In particular, they allow us to decode uniquely from up to half the
minimum distance. List decoding was introduced independently by [Woz58, Eli57] to decode from
beyond half the minimum distance. Naturally, we are not guaranteed to decode uniquely. But we
can hopefully return a small list of codewords which are close to a corrupted codeword. We now
define this formally.

Definition 1.1. We say that a (n, k)-code C is (ρ, L)-list decodable if there are at most L codewords
in any Hamming ball of radius ρn.

We call ρ the list-decoding radius and L the list size. A code with rate R cannot be list decoded
beyond radius 1 − R with polynomial list size (see [GRS12]). Therefore we must have ρ 6 1 − R,
this is called list-decoding capacity. A code with rate R which is (1 − R − ε, L)-list decodable
for L = L(ε) is said to achieve list-decoding capacity. Here ε is called the gap to capacity. It is
known that random non-linear codes can achieve list decoding capacity with list size O(1/ε) and
alphabet size exp(1/ε) (see [GRS12]). It is also known that random linear codes over large enough
alphabet achieve list-decoding capacity [ZP81]. There is also a stronger form of list decoding called
average-radius list-decoding.

Definition 1.2. We say that a (n, k)-code C is (ρ, L)-average-radius list-decodable1 if there doesn’t
exist L + 1 distinct codewords c0, c1, . . . , cL ∈ C and y ∈ Fn, such that2

1

L + 1

L∑

i=0

wt(ci − y) 6 ρn.

Note that if a code is (ρ, L)-average-radius list-decodable then it is also (ρ, L)-list decodable.
The capacity for average case list-decoding is also 1− R and random linear codes achieve it [ZP81].

A long line of work exists on constructing explicit codes which achieve list-decoding capacity.
Following an initial breakthrough by [PV05], Folded Reed-Solomon codes of [GR08] were the first
explicit codes to achieve list-decoding capacity, but with list size and alphabet size polynomial in
code length. Further works have reduced the list size to exp(Õ(1/ε)) where ε is the gap to capacity
[DL12, GX12, GX13, KRZSW18]. Some classes of structured random codes can also be shown to
achieve list decoding capacity. [MRRZ+20] show that LDPC codes achieve list decoding capacity.
[GM21] show that puncturings of low-bias codes have good list-decodability.

1.1 List-decoding Reed-Solomon codes

Reed-Solomon codes are one of the most popular codes with several applications both in theory
and practice [WB99]. We say that C is a Reed-Solomon code if it has a generator matrix which is

1In some previous works, such as [Rot21] this is referred to as strongly list-decodable.
2Here wt(x) is the Hamming weight of x, i.e., the number of non-zero coordinates of x.

3

a Vandermonde matrix. That is, there exists distinct α1, . . . , αn ∈ F such that



1 1 · · · 1
α1 α2 · · · αn

α2
1 α2

2 · · · α2
n

...
...

. . .
...

αk−1
1 αk−1

2 · · · αk−1
n




(1)

is a generator matrix of C. Reed-Solomon codes are MDS (maximum distance separable) codes,
i.e., they achieve the maximum distance possible for a code with given rate. So naturally, there is
a lot of interest in understanding the list-decodability of Reed-Solomon codes.

Question 1.3. Can Reed-Solomon codes achieve list-decoding capacity?

Guruswami and Sudan [Sud97, GS98] showed that rate R Reed-Solomon codes can be list-
decoded from radius 1 −

√
R, which is also coincidentally the Johnson bound for list-decoding

[Joh62]. Whether Reed-Solomon codes can be list-decoded beyond the Johnson bound has been
a topic of intense research. [RW14] are the first to show that random Reed-Solomon codes (i.e.,
when αi are chosen randomly from a large enough field in (1)) can be list-decoded beyond the
Johnson bound in some parameter ranges. On the other hand, full length Reed-Solomon codes
where α1, α2, . . . , αn are all the field elements (with n = |F|) are not list-decodable with constant
list size with list-decoding radius 1 − α

√
R for sufficiently small constant α, R < 1, in fact the

list size has to be at least n2 log(1/α) [BSKR09]. Therefore it is clear that the evaluation points αi

have to be chosen carefully from a large enough finite field to even beat the Johnson bound. In
this paper, we are interested in understanding the list-decoding behavior of generic3 Reed-Solomon
codes. That is, the limiting behavior of a random choice of α1, . . . , αn as F tends to infinity. In
[ST20], Shangguan and Tamo made a startling conjecture that generic Reed-Solomon codes don’t
just beat the Johnson bound, but in fact achieve list-decoding capacity! They also conjectured a
precise bound on the list size. In Section 4, we fully resolve their conjecture.

Theorem 1.4. Generic Reed-Solomon codes achieve list decoding capacity. If C is a generic (n, k)-
Reed-Solomon code with rate R = k/n, then C is (ρ, L)-list decodable for

ρ = 1 − R − 1 − R

L + 1
. (2)

Moreover, C is also (ρ, L)-average-radius list-decodable for the same ρ.

Equivalently, Theorem 1.4 shows that a generic Reed-Solomon code of rate R is (1−R−ε, L)-list
decodable with L = 1−R−ε

ε . The bound (2) is the best possible even for non-linear codes [GST21a,
Rot21].

In Section 4, we also show how to turn Theorem 1.4 into a quantitative bound on the field size
required for random Reed-Solomon codes to achieve list-decoding capacity.

Theorem 1.5. Let n, k, L be positive integers and let c(n, k, L) = 2Ln2
(n
6n−k

)L+1
. A random

(n, k)-Reed-Solomon code of rate R = k/n over F is (1 − R − 1−R
L+1 , L)-average-radius list decodable

with probability at least 1 − c/|F|.
Remark 1.6. Combining the construction from this paper with a different one in [BGM21], one
can get c(n, k, L) = nO(min(k,n−k)L) in Theorem 1.5 (see Remark 4.6).

3Genericity (from [BGM21]): “A generic point X can be thought of either as a symbolic vector, or one can
think of it as a point with entries in an infinite field F which avoids any fixed low-dimensional algebraic variety. If
F = R or C, then one can think of a generic point as something which escapes any measure zero set. In particular,
low-dimensional varieties are measure zero sets.”

4

1.1.1 Previous Work

[ST20] conjectured Theorem 1.4 and Theorem 1.5 and proved them in the case of L = 2, 3.4 Note
that it is also true for L = 1 trivially, since Reed-Solomon codes are MDS. They also made an alge-
braic conjecture in their paper (see Conjecture 5.7 from [ST20]) about the non-singularity of certain
symbolic matrices, which would imply Theorem 1.4. We prove this conjecture in Appendix A, the
proof follows from some of the results in our paper which we use to prove Theorem 1.4. Table 1.1.1
shows prior results on list-decoding of random Reed-Solomon codes over fields of size q.

ρ L Rate R Field size q

Johnson bound 1 − ε qn2 ε2 n

[RW14] 1 − ε O(1/ε) Ω
(

ε
log(q) log5(1/ε)

)
Ω̃(n/ε)

[ST20] 1 − R − 1−R
L+1 L = 2, 3 R exp(n)

[GLS+22] 1 − ε O(1/ε) Ω
(

ε
log(1/ε)

)
(1/ε)n

[FKS22] 1 − ε ⌈3/ε⌉ ε
3(1+ζ) n1+1/ζ

[GST21a] 1 − ε O(1/ζ) ε−ζ
2−ε+ζ poly(n)

Our work 1 − R − ε 1−R−ε
ε R exp(Õ(n/ε))

Table 1: Adapted from [GST21a]. Prior works on list-decoding of random Reed-Solomon codes
over fields of size q.

1.2 Higher order MDS codes

Our results on list-decodability of generic Reed-Solomon codes follow from studying generalizations
of MDS codes called higher order MDS codes. We will show that generic Reed-Solomon codes are
not just MDS, they are in fact higher order MDS codes. As we will see shortly, this implies that
generic Reed-Solomon codes have optimal list-decodability. We will now dive into the rich theory
of higher order MDS codes.

A (n, k)-code C is MDS if it has the property that every non-zero codeword has hamming
weight at least n − k + 1. MDS codes have a number of equivalent characterizations. As has
recently been explored in the literature [BGM21, Rot21], for many of the characterizations one can
define a suitable generalization of MDS codes, deriving various notions of higher-order MDS codes.
Each of these has an order parameter ℓ > 1, indicating the degree of generality over MDS codes.

◮ MDS(ℓ). Suppose Gk×n is the generator matrix of an (n, k)-code C over F. For A ⊂ [n],
let GA denote the linear subspace of Fk spanned by the columns of G indexed by A. C is MDS
iff every k columns of G are linearly independent, equivalently dim(GA) = min{|A|, k} for all
A ⊂ [n]. Equivalently, we can write this as dim(GA) = dim(WA) where Wk×n is a generic matrix.

4They did not conjecture average-radius list-decodability and also didn’t conjecture an explicit bound on c(n, k, L).

5

If A, B ⊂ [n] are any two subsets, then

dim(GA ∩ GB) = dim(GA) + dim(GB) − dim(GA + GB)

= dim(GA) + dim(GB) − dim(GA∪B)

= dim(WA) + dim(WB) − dim(WA∪B)

= dim(WA ∩ WB).

Unfortunately, it may not be true that dim(GA1 ∩ GA2 ∩ GA3) = dim(WA1 ∩ WA2 ∩ WA3) for all
subsets A1, A2, A3 ⊂ [n] if C is MDS. This is because, the usual inclusion-exclusion principle fails
for 3 or more subspaces. [BGM21] considered the following generalization of MDS codes which
they called higher order MDS codes.

Definition 1.7 (MDS(ℓ) [BGM21]). Let C be an (n, k)-code with generator matrix G. Let ℓ be a
positive integer. We say that C is MDS(ℓ) if for any ℓ subsets A1, . . . , Aℓ ⊆ [n] of size of at most
k, we have that

dim(GA1 ∩ · · · ∩ GAℓ
) = dim(WA1 ∩ · · · ∩ WAℓ

), (3)

where Wk×n is a generic matrix over the same field characteristic.5

Since dim(WA1 ∩ · · · ∩ WAℓ
) is minimized when W is a generic matrix, another intuitive way

to think of an MDS(ℓ) code is that GA1 , GA2 , . . . , GAℓ
intersect as minimally as possible for any ℓ

subsets A1, A2, . . . , Aℓ. The usual MDS codes are MDS(ℓ) for ℓ = 1, 2 by the above discussion. This
definition arose out of attempting to understand the properties of maximally recoverable tensor
codes, which are explained in more detail in Section 1.4.3. Briefly, the tensor product of C and
a parity check code is a maximally recoverable tensor code iff C is a higher order MDS code of
appropriate order (Proposition 1.19). Unlike MDS property, MDS(ℓ) is not preserved under duality.
The dual of an MDS(ℓ) code is MDS(ℓ) for ℓ 6 3, but this fails for ℓ > 4 [BGM21].

To get some intuition for MDS(ℓ), let’s understand a (n, 3)-code C which is MDS(3). Let
v1, v2, . . . , vn ∈ F3 be the columns of a generator matrix of C. Since scaling the columns doesn’t
affect MDS(3), we can think of them as points in the projective plane PF2. It is easy to see that C is
MDS iff the points v1, v2, . . . , vn ∈ PF2 are in general position, that is no three points are collinear.
C is MDS(3) iff in addition, any 3 lines formed by joining disjoint pairs of points in v1, v2, . . . , vn

are not concurrent.

◮ LD-MDS(ℓ). A generalization of the singleton bound was recently proved for list-decoding
in [ST20, Rot21, GST21b]. Roth [Rot21] defined a higher order generalization of MDS codes as
codes achieving this generalized singleton bound for list-decoding.6

Definition 1.8 (LD-MDS(L) [Rot21]). Let C be a (n, k)-code. We say that C is list decodable-

MDS(L), denoted by LD-MDS(L), if C is (ρ, L)-average-radius list-decodable for ρ = L
L+1

(
1 − k

n

)
.

In other words, for any y ∈ Fn, there doesn’t exist L + 1 distinct codewords c0, c1, . . . , cL ∈ C such
that

L∑

i=0

wt(ci − y) 6 L(n − k). (4)

We say7 that C is LD-MDS(6 L) if it is LD-MDS(ℓ) for all 1 6 ℓ 6 L.

5Note that MDS(ℓ) is a property of the code C and not a particular generator matrix G used to generate C. This
is because if G satisfies (3) then MG also satisfies (3) for any k × k invertible matrix M .

6[Rot21] also called these higher order MDS codes independently of the prior work [BGM21], leading to some
confusion. Fortunately, as we will see shortly, these two notions are nearly equivalent.

7In general, the notion of LD-MDS(ℓ) is not monotone in ℓ.

6

The list-decoding guarantees of LD-MDS(L) are very strong. In particular, LD-MDS(L) codes
of rate R get ε-close to list-decoding capacity when L > 1−R−ε

ε . Note that the usual MDS codes
are LD-MDS(1). [Rot21] showed that LD-MDS(L) property is preserved under duality only for
L = 1, 2, and also gave some explicit constructions of LD-MDS(2) codes.

◮ GZP(ℓ). In many coding theory applications, it is useful to have MDS codes with generator
matrices having constrained supports, see [DSY14, HHYD14, YS13, DSDY13] for some such ap-
plications to multiple access networks and secure data exchange. Dau et al. [DSY14] have made a
remarkable conjecture that Reed-Solomon codes over fields of size q > n + k − 1 can have generator
matrices with arbitrary patterns of zeros, as long as the pattern of zeros do not obviously preclude
MDS property by having a large block of zeros. This came to be called the GM-MDS conjecture.
It was eventually proved independently by Lovett [Lov18] and Yildiz and Hassibi [YH19b]. Before
we state the GM-MDS theorem, we will make some crucial definitions.

Let S = (S1, S2, . . . , Sk) where S1, . . . , Sk ⊂ [n], we call such an S a zero pattern for k × n
matrices. We say that S has order ℓ if there are ℓ distinct non-empty sets among S1, S2, . . . , Sk.
We say that a matrix Gk×n attains the zero pattern S if there exists an invertible matrix Mk×k

such that G̃ := MG has zeros in
⋃k

i=1{i} × Si. Note that G̃ and G generate the same code. We
now define the crucial notion of a generic zero pattern.

Definition 1.9 (Generic zero pattern). Suppose S = (S1, S2, . . . , Sk) is a zero pattern for k × n
matrices. We say S is a generic zero pattern if for all I ⊂ [k],

∣∣∣∣∣
⋂

i∈I

Si

∣∣∣∣∣ 6 k − |I|. (5)

It is not hard to see that, by Hall’s matching theorem, (5) is equivalent to the condition that
a generic k × n matrix W which has zeros in

⋃k
i=1{i} × Si (and the rest of the entries of W are

generic), has all k × k minors non-zero. This is because the condition (5) ensures that any k × k
submatrix of W has a matching of non-zero entries, and thus ensures non-zero determinant for
this k × k submatrix. (5) appeared in [DSY14], where it is called the MDS condition because it
is a necessary condition for a k × n matrix with zeros in S to be MDS. We will now define a new
generalization of MDS codes, which we call GZP(ℓ).

Definition 1.10 (GZP(ℓ)). We say that a (n, k)-code C is GZP(ℓ) if C is MDS 8 and its generator
matrix Gk×n attains all k × n generic zero patterns of order at most ℓ. 9

Thus, a code C is GZP(ℓ) if we can choose a generator matrix of C to have any order ℓ generic
zero pattern. One can prove that GZP(1) and GZP(2) are equivalent to MDS property, therefore
this is indeed a generalization of the MDS property. Given how we defined GZP(ℓ), it is not obvious
to see why generic matrices should be GZP(ℓ). In Proposition 2.1, we give an elementary proof of
the fact that generic matrices are indeed GZP(ℓ), i.e., a fixed generic matrix can attain any generic
zero pattern.

We will now state the GM-MDS theorem in terms of GZP(ℓ) property.

Theorem 1.11 (GM-MDS [DSY14, Lov18, YH19b]). A generic Reed-Solomon code is GZP(ℓ) for
all ℓ, i.e., a generic Reed-Solomon code can attain any generic zero pattern.

8We explicitly add the MDS condition to avoid degenerate cases like zero matrix being GZP(ℓ).
9Note that GZP(ℓ) is a property of the code C, and not a particular generator matrix G used to generate C. This

if because if G attains a generic zero pattern, then MG also attains it for any invertible k × k matrix M.

7

The actual GM-MDS theorem says that for any particular generic zero pattern S, there exists
a Reed-Solomon code over any field of size q > n + k − 1 which can attain S. This is a simple
consequence of Theorem 1.11, but we are more interested in GZP(ℓ) codes which simultaneously
attain all order ℓ generic zero patterns.

Equivalence of higher-order MDS codes. We are now ready to present the most impor-
tant theorem of our paper. We show that, surprisingly, all these notions of higher-order MDS codes
are equivalent (up to duality).

Theorem 1.12. The following are equivalent for a linear code C for all ℓ > 1.

(a) C is MDS(ℓ + 1).

(b) C⊥ is LD-MDS(6 ℓ).

(c) C is GZP(ℓ + 1).

Proof. (a) iff (b) is proved in Section 4 and (a) iff (c) is proved in Section 3. �

Remark 1.13. One can show that MDS(1), MDS(2), LD-MDS(1), GZP(1), GZP(2) are all equiva-
lent to MDS (see [BGM21, Rot21]).

As we will see, the core of the proof of Theorem 1.12 is combinatorial, with some simple linear
algebra on top. Since by GM-MDS theorem, generic Reed-Solomon codes are GZP(ℓ) for all ℓ, we
have the following corollary.

Corollary 1.14. Generic Reed-Solomon codes are GZP(ℓ), MDS(ℓ) and LD-MDS(ℓ) for all ℓ.

Proof. The dual of a generic Reed-Solomon code is also a generic Reed-Solomon code (Proposi-
tion 4.4). Therefore, Theorem 1.12 together with the GM-MDS theorem (Theorem 1.11), immedi-
ately implies that generic Reed-Solomon codes are MDS(ℓ) and LD-MDS(ℓ) for all ℓ. �

This immediately implies our main result that generic Reed-Solomon codes achieve list-decoding
capacity (Theorem 1.4).

1.3 Proof overview

The proof of Theorem 1.12 has a few key steps, including proving some novel properties of generic
zero patterns as well as solving a generic intersection problem.

Dimension of generic intersections The core of the proof of Theorem 1.12 is a combinatorial
characterization of the RHS of (3).

Theorem 1.15 (Dimension of Generic Intersection). Given A1, . . . , Aℓ ⊆ [n] of size at most k, for
a generic matrix Wk×n, we have that

dim(WA1 ∩ · · · ∩ WAℓ
) = max

P1⊔P2⊔···⊔Ps=[ℓ]


∑

i∈[s]

∣∣∣∣∣∣

⋂

j∈Pi

Aj

∣∣∣∣∣∣
− (s − 1)k


 (6)

where the maximum is over all partitions of [ℓ]. Note that the result is independent of the charac-
teristic of the underlying field.

8

The proof of Theorem 1.15 appears in Section 3.1. Since the RHS of (6) has a maximum over

exponentially many terms in ℓ, it gives an
(
exp(Õ(ℓ))k

)
-time algorithm for computing the generic

intersection dimension. In Section 5, we give a poly(k, ℓ)-time algorithm to compute the RHS of
(6) by reducing it non-commutative rank computation (see Theorem 1.21). We give an alternative
algorithm in Appendix B.

In literature, one can find many problems that are similar or related to Theorem 1.15 in a range
of subjects like Schubert calculus, intersection theory, matroid theory, representation stability and
homological algebra to name a few. For example, it seems conceivable that there is a matroid-
theoretic description or that there is a formula for the intersection dimension coming from Schubert
calculus and intersection theory. Despite that, it seems very difficult to adapt the techniques from
any of those subjects to say anything meaningful about the problem above, but a more in-depth
analysis from the view-point of any of those subjects could lead to new insights in broader contexts
(see Section 1.5).

A novel characterization of sets in order-ℓ generic zero patterns We also show a novel
structural result on order ℓ generic zero patterns. In particular, if S is an order ℓ generic zero
pattern containing sets A1, A2, . . . , Aℓ and say d copies of the empty set. Then by applying (5),
one can easily show that for all partitions P = P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ] we have that

s∑

i=1

∣∣∣∣∣∣

⋂

j∈Pi

Aj

∣∣∣∣∣∣
6 (s − 1)k + d. (7)

Surprisingly the converse is also true (see Lemma 2.8). A1, A2, . . . , Aℓ can be used to form an order
ℓ generic zero pattern with d copies of the empty set iff (7) holds. The proof involves an intricate
induction, which on a high level is comparable to the induction used to prove Hall’s matching
theorem. In the proof, one identifies the partition P for which the above inequality is tight (if no
such partition exists, then one pads with elements). One can then recursively apply the induction
hypothesis to each portion of the partition, which can then be combined together to show the
result. This result is crucially used to prove that GZP(ℓ) codes are also MDS(ℓ) and to prove
Theorem 1.15.

The proof of Theorem 1.15 proceeds as follows. Let d be the RHS of (6). By Lemma 2.8,
there exists a order ℓ zero pattern S with copies of A1, . . . , Aℓ ⊆ [n] and d copies of the empty
set. Then, since a generic matrix W is GZP(ℓ) (Proposition 2.1), there is an invertible Mk×k

such that W̃ = MW has the zero pattern S. From this, it is straightforward to upper bound the
dimension of the intersection dim(WA1 ∩ · · · ∩ WAℓ

) = dim(W̃A1 ∩ · · · ∩ W̃Aℓ
) 6 d. A matching

lower bound follows from the pigeonhole principle and dimension counting. Note that this proof
also immediately implies that GZP(ℓ) codes are MDS(ℓ) because in the proof of Theorem 1.15, we
only used the GZP(ℓ) property of generic matrices to get the correct dimension.

A generalized Hall’s theorem. One of the key results in [DSY14] is a generalized Hall’s the-
orem. For any generic zero pattern S = (S1, . . . , Sk) there exists a generic zero pattern S ′ =
(S′

1, . . . , S′
k) which contains S (i.e., for all i, S′

i ⊇ Si) such that |S′
i| = k − 1 for all i. However, this

theorem does not preserve order, if S is order ℓ, the order of S ′ can be as large as k (and in fact
must equal k).

In Section 2.1, we further generalize the generalized Hall’s theorem from [DSY14]. In particular,
we show that if S is an order ℓ generic zero pattern, then there is an order ℓ generic zero pattern S ′

9

which contains S such that for the non-empty A1, . . . , Aℓ which define S ′, each Ai appears exactly
k − |Ai| times. Such an S ′ is called maximal.

This new generalized Hall’s theorem is used to prove that MDS(ℓ) codes are also GZP(ℓ).
Suppose C is an MDS(ℓ) code with generator matrix G. Given an order ℓ generic zero pattern
S, one uses our generalized Hall theorem (Theorem 2.5), to find a maximal order ℓ generic zero
pattern S ′ containing S. Let A1, . . . , Aℓ be the ℓ non-empty sets in S ′ and say S ′ has d copies of
the empty set. Using the MDS(ℓ) property of G and the fact that S ′ satisfies (5), we can prove that
dim(GA1 ∩ · · · ∩ GAℓ

) = d via Theorem 1.15. By taking the dual of this intersection and performing
a dimension-counting argument, one can show that10 (GA1)⊥, . . . , (GAℓ

)⊥ are linearly independent.
One can then show that bases for these spaces can be put together to build a matrix M such that
MG has the desired zero pattern. For the proof to work, we absolutely need the fact that each
Ai appears exactly k − |Ai| times in the pattern S ′, which is guaranteed by the generalized Hall’s
theorem.

Equivalence of MDS(ℓ + 1) and LD-MDS(6 ℓ)⊥. The proof of equivalence mostly follows from
Theorem 1.15. We prove the contrapositive: that C is not MDS(ℓ + 1) iff C⊥ is not LD-MDS(6 ℓ).

Let G be a generator matrix of C, note that G is a parity check matrix for C⊥. If C is not
MDS(ℓ + 1), there exists some choice of A1, . . . , Aℓ+1 for which (6) is not satisfied. In fact, using
a result of [BGM21], one can assume that the RHS of (6) is 0. This implies there is a nontrivial
z ∈ GA1 ∩ · · · ∩ GAℓ+1

which is not captured by a generic intersection. In particular, for all i ∈ [ℓ],
there is ui with supp(ui) ⊆ Ai with z = Gui. This is almost enough to prove that C⊥ is not
LD-MDS(ℓ), but some of the ui’s may be equal. To get around this, we consider a partition of [ℓ]
with two Ai’s in the same part if their ui’s are equal. The resulting inequality arising from using
this partition with (6) is enough to prove that C⊥ is not LD-MDS(ℓ′) for some ℓ′ 6 ℓ.

Now assume that C⊥ is not LD-MDS(6 ℓ), WLOG say C⊥ is not LD-MDS(ℓ). In particular, this
implies that there are distinct u1, . . . , uℓ+1 for which Gu1 = · · · = Guℓ+1 and

∑ℓ+1
i=1 wt(ui) 6 ℓk. One

can then let Ai = supp(ui), and consider the intersection GA1 ∩ · · · ∩ GAℓ+1
. Using the distinctness

of u1, . . . , uℓ+1, one can prove that the dimension of this intersection is strictly greater than the
corresponding generic intersection. This is enough to show that C⊥ is not MDS(ℓ).

1.4 Further applications and connections

In this section, we mention some further applications and connections of our work to different areas
of coding theory and mathematics.

1.4.1 Generic Gabidulin codes achieve list-decoding capacity

Let α1, α2, . . . , αn be linearly independent over some base field Fq. A Gabidulin code has the
following generator matrix: 



α1 α2 · · · αn

αq
1 αq

2 · · · αq
n

αq2

1 αq2

2 · · · αq2

n
...

...
. . .

...

αqk−1

1 αqk−1

2 · · · αqk−1

n




. (8)

10The dual is of the linear space GA1
⊆ Fk. We are not taking the dual of the original matrix G.

10

A generic Gabidulin code is defined by choosing α1, α2, . . . , αn generically over a large enough
extension field of Fq. Gabidulin codes are rank metric codes which achieve the rank metric singleton
bound with applications in network coding, space-time coding and cryptography [Gab, Gab21].
GM-MDS theorem was extended to Gabidulin codes over both finite and zero characteristic in
[YH19a, YRH20]. Thus generator of matrices of generic Gabidulin codes over both finite and zero
characteristic also satisfy GZP(ℓ) for all ℓ. Since dual of a generic Gabidulin code is also a generic
Gabidulin code [Gab21], Theorem 1.12 shows that Gabidulin codes are MDS(ℓ) and LD-MDS(ℓ) for
all ℓ. This implies that generic Gabidulin codes have optimal list-decoding guarantees with respect
to the Hamming metric.

Theorem 1.16. Generic Gabidulin codes achieve list-decoding capacity (in the Hamming metric).
In particular, they are (ρ, L)-average-radius list-decodable for

ρ = 1 − R − 1 − R

L + 1
.

1.4.2 Field size lower bounds for LD-MDS(L) codes

The field size lower bound on MDS(ℓ) of [BGM21] is as follows.

Proposition 1.17 (Corollary 4.2 [BGM21]). If C is an (n, k)-code over F which is MDS(ℓ), then

|F| &ℓ nmin{k,n−k,ℓ}−1.

As an immediate corollary of Theorem 1.12, we have the following:

Corollary 1.18. If C is an (n, k)-code over F which is LD-MDS(6 L), then

|F| &L nmin{k−1,n−k−1,L}.

In particular, if C is a code of constant rate (thus both k and n − k tend to infinity), we have
that |F| &L nL. In this constant-rate regime, our lower bound significantly improves upon the lower

bound from [Rot21] which says that |F| &L

(
n

n−k

)min{k−1,L}
.

1.4.3 Maximally recoverable tensor codes

Gopalan et al. [GHK+17] introduced the notion of maximally recoverable (MR) codes with grid-like
topologies. These codes have applications in distributed storage in datacenters, where they offer
a good trade-off between low latency, durability and storage efficiency [HSX+12]. An important
special case of such codes are MR tensor codes. A code C is a (m, n, a, b)-tensor code if it can
be expressed as Ccol ⊗ Crow, where Ccol is a (m, m − a) code and Crow is a (n, n − b) code. In
other words, the codewords of C are m × n matrices where each row belongs to Crow and each
column belongs to Ccol. There are a parity checks per column and b parity checks per row. For
example, the f4 storage architecture of Facebook (now Meta) uses an (m = 3, n = 14, a = 1, b = 4)-
tensor code [MLR+14]. Such a code C is maximally recoverable if it can recover from every erasure
pattern E ⊆ [m] × [n] which can be recovered from by choosing a generic Ccol and Crow. Thus MR
tensor codes are optimal codes since they can recover from any erasure pattern that is information
theoretically possible to recover from. MR tensor codes are poorly understood with no known
explicit constructions. Even a characterization of which erasure patterns are correctable by an
(m, n, a, b)-MR tensor code is not known except in the case of a = 1 [GHK+17]. [BGM21] defined
MDS(ℓ) codes motivated by the following proposition.

11

Proposition 1.19 ([BGM21]). Let C = Ccol ⊗ Crow be an (m, n, a = 1, b)-tensor code. Here
a = 1 and thus Ccol is a parity check code. Then C is maximally recoverable if and only if Crow is
MDS(m).

Thus, better understanding higher order MDS codes is essential to understanding maximally
recoverable tensor codes. We hope that Theorem 1.12 which shows the importance of higher order
MDS codes to various areas of coding theory, will help in designing explicit MDS(ℓ) codes and thus
explicit maximally recoverable tensor codes. The following is a direct corollary of Proposition 1.19
and Corollary 1.14.

Corollary 1.20. The tensor product of a parity check code and a generic Reed-Solomon code is
maximally recoverable.

1.4.4 Connections to invariant theory

Theorem 1.15 has connections to invariant theory. Although Theorem 1.15 produces a closed for-
mula for generic intersection dimension, there are exponentially many (in ℓ, k) partitions to consider.
This can make computing the dimension cumbersome. We give a deterministic11 polynomial-time
algorithm by reducing the intersection dimension to a computation of non-commutative rank of a
suitable linear matrix. The computation of non-commutative rank in polynomial-time is a recent
breakthrough, an analytic algorithm appears in [GGOW16] based on Gurvits operator scaling and
an algebraic algorithm in [IQS18] based on their previous work [IQS17] and the degree bounds in
[DM17]. These results are part of a larger ambitious program of Mulmuley [Mul17] that attempts
to approach central problems in complexity via orbit problems in invariant theory that has seen
much progress over the last decade, see [BFG+19] and references there-in. In Section 5, we use
these methods to prove the following result.

Theorem 1.21. Given k, n and A1 . . . Aℓ ⊆ [n], we can compute the intersection dimension
dim(WA1 ∩ · · · ∩ WAℓ

) for generic W in poly(k, ℓ)-time.

Remark 1.22. Explicitly computing the formula found by Theorem 1.15 takes exp(Õ(ℓ))k time,
as there are exp(Õ(ℓ)) partitions of [ℓ] (e.g., [DB81]). Thus, Theorem 1.21 is superior when ℓ >

polylog(k).

1.5 Open Questions

There are a number of exciting directions that warrant further exploration. We list a few of these
directions.

Constructions of higher-order MDS codes. Despite knowing that generic Reed-Solomon
codes are higher-order MDS, we do not know of any good explicit constructions of such higher-order
MDS codes in general.12

As previously mentioned, Theorem 1.5 and the results of [BGM21] imply that MDS(ℓ) codes
exist over fields of size nO(min{k,n−k}ℓ).

11We remark that a simple randomized polynomial-time algorithm to compute generic intersection dimension is to
randomly sample W over a large enough field and compute the intersection dimension directly by a rank computation
[BGM21].

12Note that one can always get an “explicit” construction over doubly exponential size fields by choosing αi to be
in a degree k field extension over F2(α1, . . . , αi−1) in (1) [ST20].

12

Conversely, MDS(ℓ) codes require a field of size Ωℓ(n
min{ℓ,k,n−k}−1) [BGM21] (see Proposi-

tion 1.17). The simplest non-trivial case is when k = 3, ℓ = 3. The lower bound implies that, we
need field size at least q = Ω(n2) in this case.

Question 1.23. Do there exist (explicit) MDS(ℓ) codes of length n over fields of size O(nℓ−1)?
More concretely, can we construct an explicit MDS(3) (n, 3)-code over a field of size O(n2)?

Constructing such MDS(ℓ) codes immediately implies codes which get ε-close to list decoding
capacity over fields of size O(n1/ε) and list size 1/ε. [BGM21] gives O(n2) field size constructions
for notions slightly weaker than MDS(3). [Rot21] gives an explicit construction of size O(n32)
and a non-explicit construction over fields of size O(n5). More generally [Rot21] gives an explicit

construction of (n, k)-MDS(3) code over fields of size O(nk2k
).

Maximally recoverable tensor codes when a, b > 2. We saw that MDS(ℓ) codes arise
naturally from studying (m, n, a, b)-MR tensor codes when a = 1. It would be interesting to study,
what properties of the row and column codes would be needed to construct MR tensor codes for
a, b > 2.

As previously mentioned, the work of [GHK+17] fully characterized the correctable erasure
patterns for a (m, n, a, b) tensor code when a = 1. Theorem 1.15, when combined with the results
of [BGM21], fully characterizes the linearly independent patterns when a = 1. We hope that these
results lead to insights which resolve question of characterizing correctable erasure patterns in the
general case. More precisely,

Question 1.24. Given generic vectors u1, . . . , um ∈ Fm−a and v1, . . . , vn ∈ Fn−b, for which E ⊆
[m] × [n] is {ui ⊗ vj : (i, j) ∈ E} of full rank? For which E are they linearly independent?

Efficient list-decoding of LD-MDS(6 L) codes. As previously mentioned, the result of
Guruswami-Sudan [GS98] shows that any (n, k)-Reed-Solomon code of rate R can be efficiently
list-decoded up to radius ρ = 1 −

√
R. A hardness result by Cheng and Wan [CW07] states that it

is discrete-logarithm-hard to decode up to radius ρ̂ := 1 − ĝ/n, where

ĝ = min

{
g :

(
n

g

)
|F|k−g 6 1

}

However, this result only applies for small field sizes. In particular, if |F| > 2n, then ĝ = k + 1,
which is precisely list-decoding capacity. Further, for sufficiently large n, and R = k/n ∈ (0, 1) a
constant and |F| &L nL, one can estimate that

ρ̂ = 1 − R − OR

(
1

L log n

)
,

On the other hand, LD-MDS(6 L) are list decodable only upto list-decoding radius ρ = 1−R− 1−R
L+1

with list size L. Thus, given the established field size lower bound for LD-MDS(6 L) codes
(Corollary 1.18), we believe the following is open in general.

Question 1.25. Assume C is a (n, k)-Reed-Solomon which is LD-MDS(6 L). Given y ∈ Fn, can
one efficiently list all c ∈ C with distance from y at most L

L+1(n − k)?

13

Notation

A linear (n, k)-code C is a k-dimensional subspace of Fn.13 A matrix Gk×n is a generator matrix
of C, if the rows of G are a basis of C. A matrix H(n−k)×n is called a parity check matrix for C

if C = {x : Hx = 0}. The dual code C⊥ is defined as C⊥ = {y : 〈x, y〉 = 0 ∀x ∈ C}. C⊥ is a
(n, n − k)-code and its generator matrix is the parity check matrix of C.

We let [n] denote the set {1, 2, . . . , n}. Given a collection of sets A1, . . . , Ak ⊆ [n], and a
nonempty set I ⊆ [k], we let AI =

⋂
i∈I Ai.

Let V be a k × n matrix. For all i ∈ [n], let vi denote the ith column of V . Given A ⊆ [n], we
let VA = span{vj : j ∈ A}. This notation should not be confused with the AI notation.

Organization

The remainder of the paper is organized as follows. In Section 2, we discuss generic zero patterns
in more detail, particularly how they relate to the GM-MDS conjecture. In Section 3, we prove
that GZP(ℓ) and MDS(ℓ) are equivalent. In the process, we prove Theorem 1.15. In Section 4, we
prove that MDS(ℓ) and LD-MDS(6 ℓ − 1) are equivalent, up to duality. This completes the proofs
of Theorem 1.4 and Theorem 1.12. In Section 5, we show that Theorem 1.15 also holds in the non-
commutative setting, yielding a deterministic polynomial-time algorithm for generic intersection
dimension. In Appendix A, we prove Conjecture 5.7 from [ST20]. In Appendix B, we give an
alternative polynomial-time algorithm for computing the generic intersection dimension.

Acknowledgments

We thank Venkatesan Guruswami, Sergey Yekhanin, and June Huh for valuable discussions and
encouragement. We thank anonymous reviewers for numerous helpful comments.

2 Generic Zero Patterns (GZPs)

Recall that a zero pattern S = (S1, S2, . . . , Sk) is called a generic zero pattern if

∣∣∣∣∣
⋂

i∈I

Si

∣∣∣∣∣ 6 k − |I| ∀I ⊂ [k]. (9)

Also recall that (9) is equivalent to the fact that a generic matrix with zero pattern S has all of its
k × k minors non-zero. We will now prove a generic matrix can attain any generic zero pattern.

Proposition 2.1. A generic k × n matrix can attain any k × n generic zero pattern. In other
words, generic codes are GZP(ℓ) for all ℓ.

Proof. Let Vk×n be a generic matrix, which is the generator matrix of a generic (n, k)-code. Let
S = (S1, . . . , Sk) be a generic zero pattern for k × n matrices, i.e. S satisfies (9). We want to show
that there exists some invertible matrix Mk×k such that MV has zeros in ∪i∈[k]{i} × Si. By the
generalized Hall’s theorem (Theorem 2.2), there exists S′

i ⊂ [n] such that S′
i ⊃ Si, |S′

i| = k − 1
and (S′

1, S′
2, . . . , S′

k) satisfy (9). Therefore, WLOG we can assume that |Si| = k − 1 for all i. Let

13In this paper, we will only work with linear codes. So unless specified otherwise, a (n, k)-code is always a linear
code.

14

v1, v2, . . . , vn be the columns of V . Let m1, m2, . . . , mk be the rows of M . For MV to have zeros
in i × Si, it must be that 〈mi, vj〉 = 0 for all j ∈ Si. Therefore mi = V ⊥

Si
(up to scaling), note

that V ⊥
Si

is a one-dimensional space since |Si| = k − 1. Moreover the entries of mi = V ⊥
Si

can be
expressed as (k − 1) × (k − 1) minors of VSi

(with some ± signs) which are some polynomials in the
entries of V . Therefore M is completely determined (up to scaling of rows) by V , and the entries
of M are some polynomials in the entries of V . Now we just need to prove that det(M) which is
a polynomial in the entries of V is not identically zero. To prove this, we give a particular setting
of V = V ∗ ∈ Fk×n for which det(M) 6= 0, for any large enough field F (of any characteristic). Set
all the entries V ∗

ij = 0 whenever j ∈ Si and set the remaining entries randomly from F. Since S
is a generic zero pattern, V ∗ is an MDS matrix with high probability by Hall’s matching theorem.
Therefore mi = (V ∗

Si
)⊥ = ei (up to scaling), where ei is the ith standard basis vector. Therefore

M = Ik×k is the k × k identity matrix (upto scaling of rows), which has non-zero determinant.

�

2.1 Generalized Hall’s theorem and maximal GZPs

While formulating the GM-MDS conjecture, [DSY14] proved a variant of a Generalized Hall’s
Theorem and used it to show that any generic zero pattern can be extended to a maximal generic
zero pattern.

Theorem 2.2 (Generalized Hall’s Theorem–modern statement [DSY14]). Let S = (S1, . . . , Sk) be
a generic zero pattern for (n, k)-codes. Then, there exists a generic zero pattern S ′ = (S′

1, . . . , S′
k)

such that for all i ∈ [k], |S′
i| = k − 1 and Si ⊆ S′

i.

Remark 2.3. Note that Theorem 2.2 is a generalization of the classic Hall’s theorem about existence
of a bipartite matching when k = n. In this case, if we form a bipartite graph between [k] and [n]
where i ∈ [k] has neighborhood S̄i, (9) becomes the Hall’s matching condition that the neighborhood
N(I) of any set I satisfies |N(I)| > |I|.

If we apply Theorem 2.2 to an order ℓ pattern, the resulting pattern S ′ will not be order ℓ
in general (in fact, it will be order k). To extend an order ℓ generic zero pattern to a maximal
order ℓ generic zero pattern, we need a further generalization of the generalized Hall’s theorem
(Theorem 2.5). First, we state an equivalence.

Proposition 2.4. Assume n > k. Let A1, . . . , Aℓ ⊆ [n] of size at most k. The following are
equivalent.

(a) There exist δ1, . . . , δℓ > 0. such that for all nonempty I ⊆ [ℓ]

|AI | 6 k −
∑

i∈I

δi. (10)

(b) The pattern (S1, . . . , Sk), with δi copies of Ai for i ∈ [ℓ] and additional k −∑ℓ
i=1 δi copies of

the empty set, is a generic zero pattern order ℓ.

Proof. First we prove that (a) implies (b). Let d = k − ∑
i∈[ℓ] δi. By (10), we know that d is

nonnegative. We need to show that (9) holds for (S1, . . . , Sk). Let I ⊆ [k] be any non-empty
subset, we want to show that (9) holds for I. If I includes at least one i for which Si = ∅, then
(9) trivially holds. Further, if I ⊆ [k] includes a nonzero number of copies of Ai, we might as

15

well include all the δi copies, as the LHS of (9) is unchanged and the RHS can only decrease. If I
includes 0 or δi copies of each Ai, then (9) is exactly (10) for the relevant set of Ai’s.

To prove that (b) implies (a), for every I ⊆ [ℓ] for (10), look at the subset I ′ ⊆ [k] which
includes δi copies of Ai for each i ∈ I. The truth of (10) is then implied by applying (9) to I ′. �

We now state our generalized Hall’s theorem which is a further generalization of Theorem 2.2.

Theorem 2.5 (Generalized Hall’s Theorem (new)). Assume n > k.Let A1, . . . , Aℓ be subsets of [n]
of size at most k. Assume there exist δ1, . . . , δℓ > 0 such that for all nonempty I ⊆ [ℓ], (10) holds.
Then, there exists A′

i ⊇ Ai such that (10) holds for A′
1, . . . , A′

ℓ and for all i ∈ [ℓ], |A′
i| = k − δi.

Proof. It suffices to show that if for some i ∈ [ℓ], we have that |Ai| < k−δi, then we can find A′
i ⊃ Ai

for which |A′
i| = k − δi and replacing A′

i with Ai still satisfies (10). WLOG, by permutation of the
Ai’s, we may assume that |A1| < k − δ1. Note that if δ1 = 0, we may extend A1 to an arbitrary
superset of size k, Since (10) holds for all I with 1 6∈ I, adding 1 to I can only decrease the LHS
but not change the RHS. Thus, this is a valid extension.

We now assume δ1 > 1. By Proposition 2.4, we have that S1, . . . , Sk, with δi copies of Ai for
each i ∈ [ℓ] and the rest the empty set is a generic zero pattern. For all i ∈ [ℓ], let Ji ⊆ [k] (possibly
empty) be the indices for j for which Sj = Ai. Let T be an arbitrary subset of [n] of size k for
which A1 ⊆ T . Define Ti := Si ∩ T for all i ∈ [k]. Note that (T1, . . . , Tk) is a generic zero pattern,
as for each (9) the LHS could only decrease going from Si to Ti.

Note that the “T -complements” T̄i := T \ Ti satisfy the matching conditions of classical Hall’s
theorem (e.g., [VW01]). That is, for any nonempty I ⊆ [k],

∣∣∣∣∣
⋃

i∈I

T̄i

∣∣∣∣∣ = |T | −
∣∣∣∣∣
⋂

i∈I

Ti

∣∣∣∣∣ > k − (k − |I|) = |I|.

Thus, by Hall’s theorem, the elements of T can be listed as (t1, . . . , tk) such that ti ∈ T̄i for all
i. Define T ′

i = T \ {ti}. Note that Ti ⊆ T ′
i ⊂ T for all i ∈ [k]. Since each T ′

i excludes a distinct
element, the family (T ′

1, . . . , T ′
k) satisfies (9). For all i ∈ [ℓ], let

Ui :=

{⋂
j∈Ji

T ′
j Ji nonempty

T otherwise.

Note that Ai ∩ T ⊆ Ui for all i. For i = 1, since A1 ⊆ T , so A1 ⊆ U1. By (9), we have that
|U1| 6 k − δ1. Further, since |T \ T ′

i | = 1 for all i ∈ J1, we can deduce by the pigeonhole principle
that |U1| = k − δ1.

We claim that upon replacing A1 with U1, (10) is still satisfied for all nonempty I. Since we
keep the other sets unchanged, (10) holds for all I with 1 6∈ I. Now, assume that 1 ∈ I. By applying
(9) with

⋃
i∈I Ji, we have that

k −
∑

i∈I

δi = k −
∑

i∈I

|Ji|

>

∣∣∣∣∣∣

⋂

i∈I

⋂

j∈Ji

T ′
j

∣∣∣∣∣∣

=

∣∣∣∣∣∣
U1 ∩

⋂

i∈I\{1}

Ui

∣∣∣∣∣∣

16

>

∣∣∣∣∣∣
U1 ∩

⋂

i∈I\{1}

(Ai ∩ T)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
(U1 ∩ T) ∩

⋂

i∈I\{1}

Ai

∣∣∣∣∣∣

=

∣∣∣∣∣∣
U1 ∩

⋂

i∈I\{1}

Ai

∣∣∣∣∣∣
,

as desired. Thus, extending A1 to U1 was valid.

By recursively applying the argument, we may deduce that each Ai can be extended to a set of
size k − δi. �

If a generic pattern (S1, . . . , Sk) contains δi copies of a set Ai, then (9) implies that |Ai| 6 k−δi.
As an immediate corollary of Theorem 2.5 and Proposition 2.4, we can now show that any generic
zero pattern of order ℓ can be extended to a “maximal” generic zero pattern of order ℓ.

Corollary 2.6. Assume n > k. Let (S1, . . . , Sk) be a generic zero pattern order ℓ containing δi

copies of nonempty Ai for all i ∈ [ℓ]. Then, there exists A′
i ⊇ Ai with |A′

i| = k − δi for all i, such
that the zero pattern (S′

1, . . . , S′
k) with δi copies of A′

i for all i (and the same number of copies of
the empty set) is a generic zero pattern of order ℓ.

Remark 2.7. Following the methods of [DSY14], Corollary 2.6, as well as the other results in this
subsection can be made into efficient algorithms.

2.2 A characterization of sets in order-ℓ generic zero patterns

Given subsets A1, A2, . . . , Aℓ ⊂ [n], we are interested in knowing if there exists an order-ℓ generic
zero pattern S = (S1, S2, . . . , Sk) for k × n matrices which is formed by copies of A1, A2, . . . , Aℓ

and d copies of the empty set. We now give a combinatorial characterization of sets A1, A2, . . . , Aℓ

for which this can be done, based on partitions of the ℓ sets. This characterization is essential for
relating generic zero patterns with the generic intersection problem (see Section 3 for its applica-
tion).

Lemma 2.8. Assume n > k and d > 0. Let A1, A2, . . . , Aℓ ⊆ [n] of size at most k. The following
are equivalent.

(a) There exists an order at most ℓ generic zero pattern for k × n matrices which contains only
copies of A1, A2, . . . , Aℓ and an additional d copies of the empty set.

(b) There exist δ1, . . . , δℓ > 0 such that
∑ℓ

i=1 δi = k − d and for all nonempty I ⊆ [ℓ],

|AI | 6 k −
∑

i∈I

δi. (11)

(c) For all partitions P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ], we have that

s∑

i=1

|APi
| 6 (s − 1)k + d. (12)

17

Proof. We first prove that (a) iff (b). If (a) is true, let δi be the number of times that Ai appears in
the generic zero pattern. Note that the empty set must then appear d = k −∑ℓ

i=1 δi times. Thus,
by Proposition 2.4, we have that (b) holds.

If (b) is true, then by Proposition 2.4, there is a generic zero pattern which uses A1, . . . , Aℓ as
its nonempty sets with precisely additional k −∑ℓ

i=1 δi = d empty sets.

Now we prove that (b) iff (c). The proof that (b) implies (c) is near-immediate, for any partition
P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ], we have that by (11),

s∑

i=1

|APi
| 6

s∑

i=1


k −

∑

j∈Pi

δj




= sk −
ℓ∑

j=1

δj

= (s − 1)k + d.

The proof that (c) implies (b) is rather nontrivial and requires a careful induction on ℓ.14 The
base case ℓ = 1 follows by taking δ1 = k − d and the fact that |A1| 6 d.

Now assume that ℓ > 2. First, by applying the discrete partition {1} ⊔ {2} ⊔ · · · ⊔ {ℓ} to (12),
we know that

ℓ∑

i=1

|Ai| 6 (ℓ − 1)k + d, (13)

which is at most than nk. Thus, we can pad the Ai’s with additional elements until (12) is an
equality for some partition P1 ⊔P2 ⊔· · ·⊔Ps = [ℓ]. We call such a partition tight. Note that padding
the Ai’s with additional elements can only make (11) more difficult to satisfy, and thus we only
need to prove (b) implies (a) for the padded family of sets.

If the tight partition satisfies s = 1, that is, |A[ℓ]| = d, claim that we can continue to pad15 the
Ai’s until a partition with s > 2 is tight. If (13) is tight, this is already true. Otherwise, we have
that

ℓ∑

i=1

|Ai \ A[ℓ]| < (ℓ − 1)(k − d),

Thus, by the pigeonhole principle, there is i ∈ [n] \ A[ℓ] which appears in at most ⌊((ℓ − 1)(k − d) −
1)/(n − d)⌋ 6 ℓ − 2 of the Ai’s. Thus, we can continue padding the Ai’s, while keeping |A[ℓ]| = d,
until a partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ] with s > 2 is tight.

Fix i ∈ [s]. For all j ∈ Pi, define Bj = Aj \ APi
. Let ki = k − |APi

|. Since each Aj has size at
most k, each Bj has size at most ki 6 k. We claim that for all partitions Q1 ⊔ Q2 ⊔ · · · ⊔ Qt = Pi,
we have that

t∑

j=1

|BQj
| 6 (t − 1)ki (14)

To see why, note that P1 ⊔ · · · ⊔ Pi−1 ⊔ Q1 ⊔ · · · ⊔ Qt ⊔ Pi+1 ⊔ · · · ⊔ Ps = [ℓ] is a partition. Thus we
may apply (14) on this partition and the fact that P1 ⊔ P2 ⊔ · · · ⊔ Ps is a tight partition to obtain

14Although our induction is purely combinatorial, it has some similarities to [YH19b]’s proof of the GM-MDS
theorem.

15A similar padding argument appears in Appendix B of [BGM21].

18

that.

t∑

j=1

|BQj
| =

t∑

j=1

|AQj
| − t|APi

|

=




t∑

j=1

|AQj
| +

∑

j∈[s]\i

|APj
|

−

s∑

j=1

|APj
| − (t − 1)|APi

|

6 (s + t − 2)k + d − ((s − 1)k + d) − (t − 1)(k − ki)

= (t − 1)ki.

Since s > 2, we have that |Pi| < ℓ. Thus, we may apply the induction hypothesis16 to (Bj :
j ∈ Pi) to get that there exist δj > 0 for all j ∈ Pi such that

∑
j∈Pi

δj = ki and for all nonempty
J ⊆ Pi,

|BJ | 6 ki −
∑

j∈J

δj (15)

We can perform this procedure for all i ∈ [s], and thus obtain a δj for all j ∈ [ℓ] via that i ∈ [s]
for which j ∈ Pi. We claim that these exact same δj ’s satisfy condition (a) for A1, . . . , Aℓ. First,
observe that

ℓ∑

j=1

δj =
s∑

i=1

∑

j∈Pi

δj =
s∑

i=1

ki =
s∑

i=1

(k − |APi
|) = k − d,

where the last equation uses that the partition is tight.

Now we verify (11). Pick nonempty I ⊆ [ℓ]. Let σ ⊆ [s] be the set of indices i for which I ∩ Pi

is nonempty. Then,

|AI | =

∣∣∣∣∣∣

⋂

i∈σ

⋂

j∈I∩Pi

Aj

∣∣∣∣∣∣

=

∣∣∣∣∣∣

⋂

i∈σ


APi

∪
⋂

j∈I∩Pi

Bj



∣∣∣∣∣∣

6

∣∣∣∣∣
⋂

i∈σ

APi

∣∣∣∣∣+
∑

i∈σ

|BI∩Pi
|

=

∣∣∣∣∣
⋂

i∈σ

APi

∣∣∣∣∣+
∑

i∈σ


ki −

∑

j∈I∩Pi

δj




=

∣∣∣∣∣
⋂

i∈σ

APi

∣∣∣∣∣−
∑

i∈σ

|APi
| + k|σ| −

∑

j∈I

δi

=

∣∣∣∣∣
⋂

i∈σ

APi

∣∣∣∣∣+
∑

i6∈σ

|APi
| −

∑

i∈[s]

|APi
| + k|σ| −

∑

j∈I

δi

6 ((s − |σ| + 1) − 1)k + d − ((s − 1)k + d) + k|σ| −
∑

j∈I

δi

16Note that recursive padding in this induction as the “output” of the recursion is the δi’s satisfying (11) and not
the subsequent modifications to the sets.

19

= k −
∑

j∈I

δi,

where the last inequality follows from applying (12) to the partition {⋃i∈σ Pi} ∪ {Pj : j 6∈ σ}. �

3 Equivalence of GZP(ℓ) and MDS(ℓ)

In this section, we prove both Theorem 1.12 on computing the dimension of a generic intersection
and that MDS(ℓ) is equivalent to GZP(ℓ) for all ℓ > 1 (and thus that (a) and (c) are equivalent in
Theorem 1.12).

3.1 GZP(ℓ) implies MDS(ℓ)

The key result toward proving that GZP(ℓ) implies MDS(ℓ) is the following:

Lemma 3.1. Let C be an (n, k)-code whose generator matrix Gk×n is GZP(ℓ). Let A1, . . . , Aℓ ⊆ [n]
be sets of size at most k. Then,

dim(GA1 ∩ · · · ∩ GAℓ
) = max

P1⊔P2⊔···⊔Ps=[ℓ]


∑

i∈[s]

∣∣∣∣∣∣

⋂

j∈Pi

Aj

∣∣∣∣∣∣
− (s − 1)k


 (16)

where the maximum is over all partitions of [ℓ].

By Proposition 2.1, a generic matrix is GZP(ℓ) for all ℓ and thus Theorem 1.15 is an immediate
corollary of Lemma 3.1. As a result, replacing the RHS of (16) with the LHS of (6), we have that
any GZP(ℓ) code is also MDS(ℓ).

Proof of Lemma 3.1. We prove (16) as two inequalities. First we show that > direction of (16).
Observe that for any S ⊂ [ℓ], GAS

⊂ ⋂
j∈S GAj

. Thus, for every partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = [ℓ],
we have that

dim
⋂

i∈[s]

GAPi
6 dim

⋂

j∈[ℓ]

GAj
.

Thus, since G is MDS,17

dim
⋂

j∈[ℓ]

GAj
> dim

⋂

i∈[s]

GAPi
> k −

∑

i∈[s]

dim G⊥
APi

= k −
∑

i∈[s]

(k − |APi
|) =

∑

i∈[s]

|APi
| − (s − 1)k,

as desired.

Now we show that 6 direction. Let d be the RHS of (16); that is the minimum choice of d such
that condition (b) in Lemma 2.8 holds. Thus, by the lemma, there exist δ1, . . . , δℓ > 0 such that∑ℓ

i=1 δi = k − d and for all nonempty I ⊆ [ℓ],

|AI | 6 k −
∑

i∈I

δi.

By Proposition 2.4, the pattern S := (S1, . . . , Sk) with δi copies of Ai for each i ∈ [ℓ] and d copies
of the empty set (assume Sk−d+1 = · · · = Sk = ∅) is a generic zero pattern of order ℓ. Thus, since
C is a GZP(ℓ) code, there exists an invertible matrix Mk×k such that MG has the zero pattern S.

17See a similar argument in [BGM21].

20

Note that dim((MG)A1 ∩ · · · ∩ (MG)Aℓ
) = dim(GA1 ∩ · · · ∩ GAℓ

). Thus, in order to show that
dim(GA1 ∩ · · · ∩ GAℓ

) 6 d, it suffices to show that for any z ∈ (MG)A1 ∩ · · · ∩ (MG)Aℓ
, only the

last d coordinates can be nonzero.

For each i ∈ [ℓ], let Ii be the indices j for which Sj = Ai. Since z ∈ (MG)Ai
, and MG has the

zero pattern S, we have that z|Ii
= 0. Thus,

z|⋃
i∈[ℓ]

Ii
= 0.

Thus, z is only nonzero on the coordinates corresponding to empty Si’s in the partition. That is,
only the last d coordinates of z can be nonzero, proving the dimension upper bound. �

3.2 MDS(ℓ) implies GZP(ℓ)

The “(a) implies (c)” part of Theorem 1.12 follows from the following lemma.

Lemma 3.2. Let C be a (n, k)-code which is MDS(ℓ). Let Gk×n be its generator matrix. Let
S = (S1, . . . , Sk) be a generic zero pattern of order ℓ. Then, G attains S.

Proof. By Corollary 2.6, there exists a maximal order-ℓ generic zero pattern S ′ which is a superset
of S. That is, there are A1, . . . , Aℓ and δ1, . . . , δℓ, such that S ′ is the union for all i ∈ [ℓ] of δi copies
of Ai plus d := k −∑ℓ

i=1 δi copies of the empty set. Further, by “maximality”, each Ai is of size
k − δi. It suffices to show that C attains S ′.

Because S ′ is a generic zero pattern, we have for all nonempty I ⊆ [ℓ],

|AI | 6 k −
∑

i∈I

δi.

Thus, by Lemma 2.8, we have that for all partitions P of [ℓ], we have that

∑

P ∈P

|AP | 6 (|P| − 1)k + d.

For the partition, {1} ∪ · · · ∪ {ℓ}, we have equality because each |Ai| = k − δi.

Thus, since C is MDS(ℓ), by Theorem 1.15, we have that

dim(GA1 ∩ · · · ∩ GAℓ
) = d.

Let X := GA1 ∩ · · · ∩ GAℓ
be this d-dimensional subspace of Fk. Thus, by taking the dual,

X⊥ = G⊥
A1

+ · · · + G⊥
Aℓ

.

Note that dim(G⊥
Ai

) = k − |Ai| = δi. And dim(X⊥) = k − d =
∑

i∈[ℓ] δi. Therefore, if for each

i ∈ [ℓ], we pick a basis (vi
1, . . . , vi

δi
) for G⊥

Ai
, then (vi

j : i ∈ [ℓ], j ∈ [δi]) is a basis for X⊥.

Let Mk×k be an arbitrary invertible matrix whose first k − d rows are (vi
j : i ∈ [ℓ], j ∈ [δi]).

We claim that MG has zero pattern S. For each i ∈ [ℓ] and j ∈ [δi], let i′ be the row of M
corresponding to vi

j . For any j′ ∈ [n], we have that (MG)i′,j′ is the inner product18 of vi
j and Gj′ .

If j′ ∈ Ai, then Gj′ ∈ GAi
. Since vi

j ∈ G⊥
Ai

, the inner product is 0.

Thus, MG indeed has the desired zero pattern. �

18Here, “inner product” is the informal name for the bilinear form 〈v, w〉 =
∑k

i=1
viwi.

21

3.3 Characterizing the null intersection property

We recall from [BGM21] the following definition.

Definition 3.3. Let A1, . . . , Aℓ ⊆ [n] be sets of size at most k. We say that A1, . . . , Aℓ have the
null intersection property if for a generic matrix, Wk×n we have that

WA1 ∩ · · · ∩ WAk
= 0.

Note that Theorem 1.15 characterizes which sets have the null intersection property: they
are those for which the RHS of (6) is equal to 0. Notably, [BGM21] also shows that the MDS(ℓ)
condition is equivalent to attaining null intersection for any family of ℓ sets with the null intersection
property:

Lemma 3.4 (Lemma 3.1 [BGM21]). Let C be a (n, k)-code with generator matrix G. Let ℓ > 1.
The following are equivalent.

(a) C is MDS(ℓ).

(b) C is MDS and for all A1, . . . , Aℓ ⊆ [n] of size at most k and |A1| + · · · + |Aℓ| = (ℓ − 1)k, we
have that

GA1 ∩ · · · ∩ GAℓ
= 0

if and only if it holds generically.

Remark 3.5. Composing this lemma and the proof that MDS(ℓ) and GZP(ℓ) are equivalent, one
can in fact show that GZP(ℓ) is equivalent to the seemingly weaker property that the matrix G
attains all generic zero patterns with at most ℓ distinct sets including the empty set. We omit
further details.

4 Applications to List Decoding: Proof of Theorem 1.4

In this section, we show that the recently established notions of higher-order MDS codes in the
works of [BGM21] and [Rot21] are in fact equivalent. An equivalent way to define LD-MDS(L)
codes is using the parity check matrix H(n−k)×n matrix of C. C is LD-MDS(L) if there doesn’t
exist L + 1 distinct vectors u0, u1, . . . , uL ∈ Fn such that

L∑

i=0

wt(ui) 6 L(n − k) and Hu0 = Hu1 = · · · = HuL. (17)

4.1 Equivalence of MDS and LD-MDS (up to duality)

We now prove that (a) iff (b) in Theorem 1.12. We will break the proof into Propositions 4.1 and
4.2.

Proposition 4.1. C is LD-MDS(6 L) ⇒ C⊥ is MDS(L + 1).

Proof. We will prove the contrapositive: C⊥ is not MDS(L + 1) ⇒ C is not LD-MDS(6 L).

Let C be a (n, k)-code and H(n−k)×n be its parity check matrix. Note that H is the generator

matrix of C⊥. By Lemma 3.4, the fact that C⊥ is not MDS(L + 1) implies that there exists subsets
J0, J1, . . . , JL ⊂ [n] such that

22

1. HJ0 ∩ HJ1 ∩ · · · ∩ HJL
6= 0

2. WJ0 ∩ WJ1 ∩ · · · ∩ WJL
= 0 for a generic W(n−k)×n.

By Theorem 1.15, (2) implies that for all partitions P1 ⊔ P2 ⊔ · · · ⊔ Ps = {0, 1, . . . , L}, we have∑s
i=1 |JPi

| 6 (s−1)(n−k) where JPi
=
⋂

j∈Pi
Jj . (1) implies that there exist non-zero u0, u1, . . . , uL ∈

Fn such that
supp(ui) ⊂ Ji and Hu0 = Hu1 = · · · = HuL.

Suppose there are s distinct vectors among u0, u1, . . . , uL. Let P1 ⊔ P2 ⊔ · · · ⊔ Ps = {0, 1, . . . , L} be
the partition of L+1 into s parts such that all the {uj : j ∈ Pi} are equal for every i ∈ [s] (and they
are distinct if they fall in different parts). Let uPi

be the common vector equal to {uj : j ∈ Pi}. Note
that supp(uPi

) ⊂ ⋂
j∈Pi

Jj = JPi
. Therefore we have s distinct non-zero vectors uP1 , uP2 , . . . , uPs

such that
s∑

i=1

wt(uPi
) 6

s∑

i=1

|JPi
| 6 (s − 1)(n − k) and HuP1 = HuP2 = · · · = HuPs .

If s = 1, we get wt(uP1) 6 0 which is not possible since uP1 is non-zero. Therefore s > 2 and this
violates LD-MDS(s − 1) and therefore LD-MDS(6 L). �

Proposition 4.2. C⊥ is MDS(L + 1) ⇒ C is LD-MDS(6 L)

Proof. Since MDS(ℓ) =⇒ MDS(6 ℓ), it is enough to show that C⊥ is MDS(ℓ) ⇒ C is LD-MDS(ℓ−
1) for ℓ > 2. We will prove the contrapositive: C is MDS and C is not LD-MDS(ℓ − 1) ⇒ C⊥ is
not MDS(ℓ).

Let C be an MDS (n, k)-code and H(n−k)×n be its parity check matrix. Note that H is the

generator matrix of C⊥. Since C is not LD-MDS(ℓ−1), there exist distinct u1, u2, . . . , uℓ ∈ Fn such
that

ℓ∑

i=1

wt(ui) 6 (ℓ − 1)(n − k) and Hu1 = Hu2 = · · · = Huℓ.

Let Ji = supp(ui). WLOG, we can assume that |Ji| 6 n − k. We can also infer that all the ui

are non-zero, because if say u1 = 0, then wt(ui) > n − k + 1 for all i > 2, which violates the∑ℓ
i=1 wt(ui) 6 (ℓ − 1)(n − k) condition. The following claim completes the proof, since it proves

that C⊥ is not MDS(ℓ).

Claim 4.3. dim(HJ1 ∩ HJ2 ∩ · · · ∩ HJℓ
) > dim(WJ1 ∩ WJ2 ∩ · · · ∩ WJℓ

) for a generic W(n−k)×n.

Proof. If dim(WJ1 ∩ · · · ∩ WJℓ
) = 0, then we are done because Hu1 6= 0 and Hu1 ∈ HJ1 ∩ · · · ∩ HJℓ

.
Therefore assume that dim(WJ1 ∩ WJ2 ∩ · · · ∩ WJℓ

) > 0. By Theorem 1.15,

dim(WJ1 ∩ · · · ∩ WJℓ
) =

s∑

i=1

|JPi
| − (s − 1)(n − k)

for some partition P1 ⊔ · · · ⊔ Ps = [ℓ]. Note that s < ℓ, since
∑ℓ

i=1 |Ji| − (ℓ − 1)(n − k) 6 0. Let

V = {(x1, x2, . . . , xℓ) : Hx1 = Hx2 = · · · = Hxℓ and supp(xi) ⊂ Ji}
which is a subspace of (Fn)ℓ. Clearly (u1, u2, . . . , uℓ) ∈ V. Define the linear map f : HJ1 ∩HJ2 ∩· · ·∩
HJℓ

→ V as: f(y) = (x1, x2, . . . , xℓ) where xi is uniquely defined by Hxi = y and supp(xi) ⊂ Ji. It
is clear that f is a bijection which implies that

dim(V) = dim(HJ1 ∩ HJ2 ∩ · · · ∩ HJℓ
).

23

Define

VP = {(x1, x2, . . . , xℓ) : Hx1 = Hx2 = · · · = Hxℓ, supp(xi) ⊂ Ji and xj = xj′ if j, j′ ∈ Pi}.

Clearly VP is a subspace of V . But (u1, u2, . . . , uℓ) /∈ VP since all the ui are distinct, but the
partition P = P1 ⊔ · · · ⊔ Ps has only s < ℓ parts. Therefore dim(V) > dim(VP). We will now show
that dim(VP) >

∑s
i=1 |JPi

| − (s − 1)(n − k) which finishes the proof of the claim.

Define the linear map fP : HJP1
∩ HJP2

∩ · · · ∩ HJPs
→ VP as: fP(y) = (x1, x2, . . . , xℓ) where

xi is uniquely defined by Hxi = y where supp(xi) ⊂ JPj
where i ∈ Pj . Again, fP is also a

bijection. Therefore dim(VP) = dim(HJP1
∩ · · · ∩ HJPs

). By Theorem 1.15, for a generic W(n−k)×n,
dim(HJP1

∩ · · · ∩ HJPs
) > dim(WJP1

∩ · · · ∩ WJPs
) >

∑s
i=1 |JPi

| − (s − 1)(n − k). �

�

4.2 Reed-Solomon codes

4.2.1 Generic Reed-Solomon codes

Our main result Theorem 1.4 follows from this next result on duals of generic Reed-Solomon codes.

Proposition 4.4. The dual of a generic Reed-Solomon code is equivalent to a generic Reed-Solomon
code (up-to scaling of columns of the generator matrix).

Proof. Let C be a generic (n, k)-Reed-Solomon code. Let (α1, . . . , αn) be the generators of C. Let
C ′ be the (n, n − k)-code also generated by (α1, . . . , αn). Let G′

n−k,n be the Vandermonde matrix
with generators (α1, . . . , αn). Note that by definition G′ is also generic.

For all i ∈ [n], let ∆i =
∏

j∈[n]\{i}(αi − αj). By standard results19 on Reed-Solomon codes, C⊥

is a generalized Reed-Solomon code with generator matrix H such that Hj,i = αj−1
i /∆i. Since C

is generic, we have that ∆i 6= 0 for all i ∈ [n]. Therefore, each column of H is a nonzero scalar
multiple of a column of G′. Thus C⊥ is equivalent to a generic Reed-Solomon code. �

Proof of Theorem 1.4. From Theorem 1.11 (GM-MDS), Theorem 1.12, and Proposition 4.4, we
know that generic Reed-Solomon codes are LD-MDS(L) for all L. In other words they are (ρ, L)-
average-radius list-decodable for ρ = L

L+1(1 − R) for all L. This also implies that they are (ρ, L)-
list-decodable for the same ρ. �

4.2.2 Random Reed-Solomon codes

Here we prove Theorem 1.5 and show how one can make Theorem 1.4 more quantitative in order to
reason about the list-decoding capabilities of a random Reed-Solomon code. For a code parameters
(n, k) and a finite field F, we define a random Reed-Solomon code to be one whose generators
α1, . . . , αn are chosen uniformly and independently from F.

Proposition 4.5. Let n, k, L be positive integers. There exists a function c(n, k, L) = 2Ln2
(n
6n−k

)L+1

such that a random (n, k)-Reed-Solomon code is LD-MDS(6 L), and thus (ℓ
ℓ+1 (1 − k/n), ℓ)-list de-

codable for all ℓ 6 L, with probability at least 1 − c/|F|.
19See, for example, [MS77] or Theorem 5.1.6 in [Hal].

24

Proof. Let C be the code generated by the random α1, . . . , αn. With probability at least 1−n2/|F|,
we have that αi 6= αj for all i 6= j ∈ [n] and thus C is MDS. From the proof of Proposition 4.4 and
Theorem 1.12, we then have that (α1, . . . , αn) generate a LD-MDS(6 L) matrix if and only if the
(n, n − k)-matrix G′ with entries G′

j,i = αj−1
i is MDS(L + 1). In order to check that G′ is MDS(ℓ),

it suffices to show by Lemma 3.4 that for all null intersecting families A1, . . . , AL+1 ⊆ [n], each of
size at most n − k, with total size L(n − k), we have that

G′
A1

∩ · · · ∩ G′
AL+1

= 0.

This condition is equivalent to (see Appendix B of [BGM21]) the following block matrix being
nonsingular: 



G′
A1

G′
A2

G′
A1

G′
A3

...
. . .

G′
A1

G′
AL+1

.




The square matrix has size L(n − k) and each entry has degree at most n − k − 1. Therefore,
the determinant, which we know must not symbolically vanish by Corollary 1.14, has total degree
at most Ln2. Therefore, by the Schwartz-Zippel lemma [Sch80, Zip79], the probability that this

determinant is zero is at most Ln2

|F| . Now, the number of choices20 of A1, . . . , AL+1 ⊆ [n] to consider is

at most
(n
6n−k

)L+1
. Therefore, the probability that G′ is MDS(L+1), and thus C is LD-MDS(6 L)

is at most,

1 −
n2 + Ln2

(n
6n−k

)L+1

|F| ,

as desired. �

Remark 4.6. The work [BGM21] shows that a random linear code achieves MDS(ℓ) at field size
Oℓ(n

(n−k)(ℓ−1)(n − k)2ℓ(n−k)), and thus is MDS(6 L) with field size nO(kL). Since we prove that
generic Reed-Solomon codes are LD-MDS(6 L), one can adapt their methods to then show that one
can take c(n, k, L) = nO(min(k,n−k)L) in Theorem 1.5.

5 Connections to Invariant Theory

The combinatorial characterization of the generic intersection dimension in Theorem 1.15 allows
for a surprising connection between MDS(ℓ) codes and invariant theory. A simple observation
characterizes the generic intersection dimension as an instance of the well-known Edmonds problem,
i.e., a computation of the rank of a symbolic matrix with linear entries, see [BGM21, Appendix
B]. The Edmonds’ problem is not known to have a polynomial-time algorithm. Nevertheless, the
non-commutative version21 of the Edmonds’ problem does have a polynomial-time algorithm, but
this is highly non-trivial and rests on some deep results in invariant theory, see [GGOW16, IQS18].
The combinatorial characterization in Theorem 1.15 allows us to prove in a curious way that the
Edmonds’ problem for the generic intersection dimension is equivalent to its non-commutative
counterpart, which then immediately yields a polynomial-time algorithm for computing generic
intersection dimension.

20This can be optimized.
21The symbolic variables are considered non-commutative, the base field remains commutative.

25

5.1 Linear matrices, non-commutative rank and the blow-up regularity lemma

A matrix L = t1X1 + · · ·+ tmXm, where Xi are p×q matrices with entries in a ground field F and ti

are indeterminates. is called a linear matrix. There are two important notions of ranks associated
to such a linear matrix are the commutative rank and the non-commutative rank. We first state
their definitions and then clarify the terminology.

Definition 5.1. Let L = t1X1 + · · · + tmXm be a linear matrix.

• The commutative rank crk(L) is defined as rank(L) viewed as a matrix with entries in the
function field F(t1, . . . , tm).

• The non-commutative rank ncrk(L) is defined as rank(L) viewed as a matrix with entries in
the free skew-field F (<t1, . . . , tm >) .

The reader not interested in skew-fields can very much ignore the skew-fields as long as they
accept the characterization of non-commutative rank in terms of blow-ups in (18) below, and
perhaps take that to be the definition of non-commutative rank. For the interested readers, we give
a few details, but point to references for more details.

First, we note that most of linear algebra works over skew-fields (a.k.a. division algebras). Rank
is defined in terms of maximum number of (left)-linearly independent columns. This is sometimes
called left column rank. Similarly one can define left and right row and column ranks. Left column
rank equals the right row rank and the right column rank equals the left row rank, but the left
column rank may not equal the right column rank when working over a general division algebra. For
linear matrices interpreted as matrices with entries in the free skew-field, all ranks, i.e., left/right
row/column ranks, are all the same.

The free skew-field itself is a technically challenging object to explain, but we will try to give a
brief idea of its purpose. If you start with a (commutative) field F and add m elements t1, . . . , tm

that have no extra relations on them other than the ones imposed by the axioms of a commutative
field (that is one way to define a set of indeterminates), the field generated will be the function
field F(t1, . . . , tm). The analogous object where you impose no extra relations other than the ones
imposed by the axioms of a skew-field will create the free skew-field. However, unlike the well
understood function field, the free skew-field is far more difficult to understand and there are
several intricacies in constructing it or even showing its existence. For the reader interested in the
details of free skew-fields, we refer to [GGOW16] for a gentle introduction and references therein
for more technical details, we will not really need them here.

Computing the commutative rank of a linear matrix is the Edmonds’ problem and computing
the non-commutative rank is the non-commutative version of the Edmonds’ problem. Interpolating
between these two ranks are the ranks of blow-ups, a tool that originated in invariant theory and
is crucial in understanding the non-commutative rank. These blow-ups are also crucial for our
purposes.

Definition 5.2. Let L = t1X1 + · · · + tmXm be a linear matrix of size p × q. Then, for d ∈ Z>1,
we define the dth blow-up of L to be the dp × dq matrix

L(T1, . . . , Tm) := X1 ⊗ T1 + · · · + Xm ⊗ Tm,

where Ti are d × d matrices whose entries are all distinct variables, say t
(i)
j,k. We define the dth

blow-up rank of L by
rankd(L) := crk(L(T1, . . . , Tm)),

26

i.e., the latter rank is taken by viewing L(T1, . . . , Tm) as a matrix with entries in the function field

F(t
(i)
j,k).

Let us first justify the notation L(T1, . . . , Tm) := X1 ⊗ T1 + · · · + Xm ⊗ Tm. To get
∑

i Xi ⊗ Ti

from L we replace each entry with a d × d matrix as follows: if the (α, β)th entry of L is of the
form

∑
i citi, then we replace it with

∑
i ciTi. Thus, it is as if we plugged in Ti for ti. We have the

equality (see [IQS17, IQS18]):

ncrk(L) = lim
d→∞

rankd(L)

d
= supd

rankd(L)

d
= max

d

rankd(L)

d
. (18)

Dividing the rank of the blow-up by d is a normalization is to be expected because we blow-up
the size of the matrix by a factor of d. There are a few subtleties, for example the sequence rankd(L)

d
is not always monotone. But perhaps the major subtlety the reader may have noticed is that while
ncrk(L) is an integer by definition, it is not so clear why any of the other expressions are integers.
This is a consequence of an amazing result called the blow-up regularity lemma22 that was first
proved by Ivanyos, Qiao and Subrahmanyam in [IQS17]. A more conceptual proof can be found in
[DM18].

Theorem 5.3 (Blow-up regularity Lemma, [IQS17]). Let L =
∑m

i=1 tiXi be a linear matrix. Then
rankd(L)

d is an integer.

5.2 Polynomial time computability of generic intersection ranks

Let W = (wij) be a k × n matrix of indeterminates. Let A = (A1, . . . , Aℓ) be a ℓ-tuple of subsets
of [n]. Define

LA(W) =




W A1 W A2 0 0 0
W A1 0 W A3 0 0

... 0 0
. . . 0

W A1 0 0 0 W Aℓ




where W Ai is the submatrix of W obtained by restricted to the columns of Ai.

Observe that LA(W) is a linear matrix, i.e., each entry is a linear function in the wij’s (it’s
much more special than that of course, indeed each entry is either a variable or 0). So, we can
write LA(W) =

∑
i,j wijXij .

The following definition is perhaps a little unnecessary, but it allows us to present easier the
arguments in this section.

Definition 5.4 (Generic Intersection rank). The function rankGI takes as input the configuration
(k, n, A = (A1, . . . , Aℓ)) where Ai ⊆ [n] and returns dim(

⋂
i WAi

) where W is a d × n matrix of
indeterminates, i.e.,

rankGI(k, n, A) = dim

(
⋂

i

WAi

)
.

From Appendix B of [BGM21], we have that

rankGI(k, n, A) =
∑

i

|Ai| − crk(LA(W)). (19)

22This is just called the regularity lemma, but we call it the blow-up regularity lemma to avoid confusion with the
regularity criterion.

27

5.2.1 A doubling operation

Given a configuration (k, n, A), we will define a doubling operation as follows. We will assume
without loss of generality that |Ai| 6 d for all i. First, identify [2n] with {1, 1̃, 2, 2̃, . . . , n, ñ}. Then,
for each Ai ∈ A, define

A
(2)
i := Ai ∪ Ãi ⊆ {1, 1̃, 2, 2̃, . . . , n, ñ},

where Ãi := {ã : a ∈ Ai}. We insist that we will order the elements in A
(2)
i in the increasing

order where the order is given by 1 < 1̃ < 2 < · · · < n < ñ, so for example if Ai = {1, 2}, then

A
(2)
i = {1, 1̃, 2, 2̃}. Finally, define

A(2) := (A
(2)
1 , . . . , A

(2)
ℓ).

Definition 5.5 (Doubling configuration). To the configuration (k, n, A = (A1, . . . , Aℓ)) with each

Ai ⊆ [n], we will define the doubled configuration
(
2k, 2n, A(2) = (A

(2)
1 , . . . , A

(2)
ℓ)
)

as defined above.

Now, consider a 2k × 2n matrix U consisting of indeterminates, but let us index the rows and
columns a little differently. Let us index the rows by R = {1, 1′, 2, 2′, . . . , d, d′}, and the columns
by C = {1, 1̃, 2, 2̃, . . . , n, ñ}. So, the (i, j)th entry of U is uij for i ∈ R, j ∈ C. So, for example if I
am looking at the (3′, 4̃) entry, I will denote it u

3′ ,̃4
.

If one looks at the picture above of LA(W) and replaces each wij with Uij =

(
uij u

i,̃j

ui′j u
i′j̃

)
, it

should be evident that one obtains LA(2)(U) – we picked our indexing precisely to orchestrate this.
In other words, we have

LA(2)(U) = LA(W)(U11, U12, . . . , Unn),

where by LA(W)(U11, U12, . . . , Unn), we mean take the matrix LA(W) and replace wij by Uij

for all i, j (note that this is consistent with the notation in Definition 5.2). In particular, since
the Uij are 2 × 2 matrices whose entries are all independent indeterminates, we conclude that
rank2(LA(W)) = crk(LA(2)(U)). This yields

Corollary 5.6. Let W be a d× n matrix with indeterminates. Let (k, n, A) be a configuration, and
let (2k, 2n, A(2)) be the doubled configuration. Then

rankGI(2k, 2n, A(2)) = 2(
∑

i

|Ai|) − rank2(LA(W)).

Further, this means that rankGI(2k, 2n, A(2)) is a multiple of 2.

Proof. The equality rankGI(2k, 2n, A(2)) = 2
∑

i |Ai| − rank2(LA(W)) follows from the above dis-
cussion along with (19). By the blow-up regularity lemma, i.e., Theorem 5.3, we know that
rank2(LA(V)) is a multiple of 2, and hence so is rankGI(2k, 2n, A(2)). �

Analogously, for t ∈ Z>1, we define the t−pled configuration
(
tk, tn, A(t) = (A

(t)
1 , . . . , A

(t)
ℓ)
)
.

Corollary 5.7. Let W be a k ×n matrix with indeterminates. Let (k, n, A) be a configuration, and
let (tk, tn, A(t)) be the t−pled configuration. Then

rankGI(tk, tn, A(t)) = t(
∑

i

|Ai|) − rankt(LA(W)).

Further, this means that rankGI(tk, tn, A(t)) is a multiple of t.

28

5.2.2 Scalability of generic intersection dimension

Lemma 5.8. Let (k, n, A) be a configuration, and let (tk, tn, A(t)) be the t−pled configuration.
Then

rankGI(tk, tn, A(t)) = t · rankGI(k, n, A).

Proof. Suppose A consists of ℓ sets. Then, so does A(t). With this observation, the lemma follows
immediately from Theorem 1.15 since the dimension of the t−pled configuration (tk, tn, A(t)) is
also a maximum over all partitions of ℓ (i.e., the number of parts in A) and each corresponding
term is t times larger than the one for the configuration (k, n, A). �

Corollary 5.9. Given the configuration (k, n, A), we have

rankGI(k, n, A) =
∑

i

|Ai| − ncrk(LA(W)).

Proof. From the above lemma and Corollary 5.7, it follows that for any t ∈ Z>1,

t(
∑

i

|Ai|)−rankt(LA(W)) = rankGI(tk, tn, A(t)) = t(rankGI(k, n, A)) = t(
∑

i

|Ai|)−t·crk(LA(W)).

This means that t · crk(LA(W)) = rankt(LA(W)), so

ncrk(LA(W)) = lim
t→∞

rankt(LA(W))/t = crk(LA(W)).

Thus, we conclude that

rankGI(k, n, A) =
∑

i

|Ai| − ncrk(LA(W)). �

Proof of Theorem 1.21. Let A = (A1, . . . , Aℓ). Then, in the notation of this section, we have
dim(WA1 ∩ WA2 ∩ . . . WAℓ

) = rankGI(k, n, A). By the above corollary, we have rankGI(k, n, A) =∑
i |Ai| − ncrk(LA(W)), so it suffices to compute ncrk(LA(W)). But there is a polynomial time

algorithm for this [IQS18].23 Note that the size of LA(W) is poly(k, ℓ), so there is no dependence
on n in the runtime. �

References

[BFG+19] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi
Wigderson. Towards a theory of non-commutative optimization: Geodesic 1st and 2nd
order methods for moment maps and polytopes. In 2019 IEEE 60th Annual Symposium
on Foundations of Computer Science (FOCS), pages 845–861. IEEE, 2019.

[BGM21] Joshua Brakensiek, Sivakanth Gopi, and Visu Makam. Lower bounds for maximally
recoverable tensor code and higher order MDS codes. arXiv preprint arXiv:2107.10822,
2021.

[BSKR09] Eli Ben-Sasson, Swastik Kopparty, and Jaikumar Radhakrishnan. Subspace poly-
nomials and limits to list decoding of Reed-Solomon codes. IEEE Transactions on
Information Theory, 56(1):113–120, 2009.

23Alternately, one can use the algorithm in [GGOW16], but this needs to be appropriately modified because the
algorithm as stated can only check if the non-commutative rank of a square matrix is full or not.

29

[CW07] Qi Cheng and Daqing Wan. On the list and bounded distance decodability of Reed-
Solomon codes. SIAM Journal on Computing, 37(1):195–209, 2007.

[DB81] Nicolaas Govert De Bruijn. Asymptotic methods in analysis, volume 4. Courier Cor-
poration, 1981.

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing, pages 351–358, 2012.

[DM17] Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-invariants.
Adv. Math., 310:44–63, 2017.

[DM18] Harm Derksen and Visu Makam. On non-commutative rank and tensor rank. Linear
Multilinear Algebra, 66(6):1069–1084, 2018.

[DSDY13] Son Hoang Dau, Wentu Song, Zheng Dong, and Chau Yuen. Balanced sparsest gener-
ator matrices for mds codes. In 2013 IEEE International Symposium on Information
Theory, pages 1889–1893. IEEE, 2013.

[DSY14] Son Hoang Dau, Wentu Song, and Chau Yuen. On the existence of MDS codes
over small fields with constrained generator matrices. In 2014 IEEE International
Symposium on Information Theory, pages 1787–1791. IEEE, 2014.

[Eli57] P Elias. List decoding for noisy channels. In IRE WESCON Convention Record, 1957,
volume 2, pages 94–104, 1957.

[FKS22] Asaf Ferber, Matthew Kwan, and Lisa Sauermann. List-decodability with large radius
for Reed-Solomon codes. IEEE Transactions on Information Theory, 2022.

[Gab] Ernst M Gabidulin. Rank-metric codes and applications. Moscow Inst.
Phys. Technol., State Univ., Dolgoprudny, Russia.[Online]. Available: http://iitp.
ru/upload/content/839/Gabidulin. pdf.

[Gab21] Ernst M Gabidulin. Rank codes. TUM. University Press, 2021.

[GGOW16] Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic
polynomial time algorithm for non-commutative rational identity testing. In 57th
Annual IEEE Symposium on Foundations of Computer Science—FOCS 2016, pages
109–117. IEEE Computer Soc., Los Alamitos, CA, 2016.

[GHK+17] Parikshit Gopalan, Guangda Hu, Swastik Kopparty, Shubhangi Saraf, Carol Wang,
and Sergey Yekhanin. Maximally recoverable codes for grid-like topologies. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2092–2108. SIAM, 2017.

[GLS93] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Algorithms and
Combinatorial Optimization, volume 2. Springer Science & Business Media, 1993.

[GLS+22] Zeyu Guo, Ray Li, Chong Shangguan, Itzhak Tamo, and Mary Wootters. Improved
list-decodability and list-recoverability of Reed-Solomon codes via tree packings. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pages 708–719. IEEE, 2022.

30

[GM21] Venkatesan Guruswami and Jonathan Mosheiff. Punctured low-bias codes behave like
random linear codes. arXiv preprint arXiv:2109.11725, 2021.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capac-
ity: Error-correction with optimal redundancy. IEEE Transactions on Information
Theory, 54(1):135–150, 2008.

[GRS12] Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory. Draft
available at http://www. cse. buffalo. edu/ atri/courses/coding-theory/book, 2012.

[GS98] V. Guruswami and M. Sudan. Improved Decoding of Reed-Solomon and Algebraic-
Geometric Codes. In 39th Annual Symposium on Foundations of Computer Science,
1998. Proceedings, pages 28–37, November 1998.

[GST21a] Eitan Goldberg, Chong Shangguan, and Itzhak Tamo. List-decoding and list-recovery
of Reed-Solomon codes beyond the johnson radius for any rate. arXiv preprint
arXiv:2105.14754, 2021.

[GST21b] Eitan Goldberg, Chong Shangguan, and Itzhak Tamo. Singleton-type bounds for
list-decoding and list-recovery, and related results. arXiv preprint arXiv:2112.05592,
2021.

[GX12] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers
and improved optimal rate list decoding. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 339–350, 2012.

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon, Algebraic-
Geometric, and Gabidulin subcodes up to the singleton bound. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 843–852, 2013.

[Hal] JI Hall. Notes on coding theory (chapter 5—generalized Reed-Solomon codes). De-
partment of Mathematics, Michigan State University available online at http://users.
math. msu. edu/users/jhall/classes/codenotes/coding-notes. html (Jan. 7, 2015 revi-
sion).

[HHYD14] Wael Halbawi, Tracey Ho, Hongyi Yao, and Iwan Duursma. Distributed reed-solomon
codes for simple multiple access networks. In 2014 IEEE International Symposium on
Information Theory, pages 651–655, 2014.

[HSX+12] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in windows azure storage. In
2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 15–26, 2012.

[IQS17] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative Ed-
monds’ problem and matrix semi-invariants. Comput. Complexity, 26(3):717–763,
2017.

[IQS18] Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-
commutative rank computation is in deterministic polynomial time. Comput. Com-
plexity, 27(4):561–593, 2018.

[Joh62] Selmer Johnson. A new upper bound for error-correcting codes. IRE Transactions on
Information Theory, 8(3):203–207, 1962.

31

[KRZSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved
decoding of folded Reed-Solomon and multiplicity codes. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 212–223. IEEE, 2018.

[Lov18] Shachar Lovett. MDS matrices over small fields: A proof of the GM-MDS conjecture.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 194–199. IEEE, 2018.

[MLR+14] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin, Wei-
wen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang, et al. f4:
Facebook’s warm BLOB storage system. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 383–398, 2014.

[MRRZ+20] Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and Mary Woot-
ters. LDPC codes achieve list decoding capacity. In 2020 IEEE 61st Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 458–469. IEEE, 2020.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error
correcting codes, volume 16. Elsevier, 1977.

[Mul17] Ketan Mulmuley. Geometric complexity theory v: Efficient algorithms for noether
normalization. Journal of the American Mathematical Society, 30(1):225–309, 2017.

[PV05] Farzad Parvaresh and Alexander Vardy. Correcting errors beyond the guruswami-
sudan radius in polynomial time. In 46th Annual IEEE Symposium on Foundations
of Computer Science (FOCS’05), pages 285–294. IEEE, 2005.

[Rot21] Ron M Roth. Higher-order MDS codes. arXiv preprint arXiv:2111.03210, 2021.

[RS60] Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields.
Journal of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[RW14] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has abun-
dant near-optimal rate puncturings. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 764–773, 2014.

[Sch80] Jacob T Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM (JACM), 27(4):701–717, 1980.

[ST20] Chong Shangguan and Itzhak Tamo. Combinatorial list-decoding of Reed-Solomon
codes beyond the johnson radius. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 538–551, 2020.

[Sud97] Madhu Sudan. Decoding of Reed Solomon codes beyond the error-correction bound.
Journal of complexity, 13(1):180–193, 1997.

[VW01] Van Lint, Jacobus Hendricus and Wilson, Richard Michael. A course in combinatorics.
Cambridge university press, 2001.

[WB99] Stephen B Wicker and Vijay K Bhargava. Reed-Solomon codes and their applications.
John Wiley & Sons, 1999.

[Woz58] John M Wozencraft. List decoding. Quarterly Progress Report, 48:90–95, 1958.

32

[YH19a] Hikmet Yildiz and Babak Hassibi. Gabidulin codes with support constrained generator
matrices. IEEE Transactions on Information Theory, 66(6):3638–3649, 2019.

[YH19b] Hikmet Yildiz and Babak Hassibi. Optimum linear codes with support-constrained
generator matrices over small fields. IEEE Transactions on Information Theory,
65(12):7868–7875, 2019.

[YRH20] Hikmet Yildiz, Netanel Raviv, and Babak Hassibi. Support constrained generator
matrices of Gabidulin codes in characteristic zero. In 2020 IEEE International Sym-
posium on Information Theory (ISIT), pages 60–65, 2020.

[YS13] Muxi Yan and Alex Sprintson. Algorithms for weakly secure data exchange. In 2013
International Symposium on Network Coding (NetCod), pages 1–6. IEEE, 2013.

[Zip79] Richard Zippel. Probabilistic algorithms for sparse polynomials. In International
symposium on symbolic and algebraic manipulation, pages 216–226. Springer, 1979.

[ZP81] Victor Vasilievich Zyablov and Mark Semenovich Pinsker. List cascade decoding.
Problemy Peredachi Informatsii, 17(4):29–33, 1981.

A Resolution of Conjecture 5.7 of [ST20]

Shangguan and Tamo [ST20] made an algebraic conjecture in their paper (see Conjecture 5.7 from
[ST20]) about the non-singularity of certain symbolic matrices, which would imply that generic
Reed-Solomon codes achieve list decoding capacity. We prove this conjecture here, the proof follows
from some of the results in our paper which we use to prove Theorem 1.4. We first introduce the
necessary notation to properly state Conjecture 5.7 of [ST20].

Let C be a (n, k)-code with generator matrix G. Let J1, . . . , Jt ⊆ [n]. We define a block
matrix MG,(J1,...,Jt) as follows. For each i, j ∈ [t] with i < j, there is a block of k columns of M
corresponding to (i, j). The rows of M are filled in as follows.

(a) For each i, j ⊆ [t − 1] with i < j, we add k rows for which the identity matrix Ik appears in
the (i, j) and (j, t) blocks. The matrix −Ik appears in the (i, t) block. All other blocks are
zero.

(b) For each {i, j} ⊆ [t], we add |Ji ∩ Jj | rows for which the {i, j} block equals G⊤
Ji∩Jj

, with all
other blocks being zero.

Thus, M has
(t

2

)
k columns and

(t−1
2

)
k +

∑
i6=j |Ji ∩ Jj | rows. The following lemma of [ST20]

relates MG,(J1,...,Jt) to list decoding properties of C.

Lemma A.1 ([ST20]). Let L, τ > 1. Assume there exists c0, c1, . . . , cL ∈ C ∩ Bτ (y). Then, there
exist J0, . . . , JL such that |Ji| > n − τ for all i and MG,(J0,...,JL) does not have full column rank.

To give intuition about M , we include an adaptation of [ST20]’s proof of this lemma for com-
pleteness.

Proof. For all i ∈ {0, 1, . . . , L}, let Ji be the set of coordinates for ci and y are equal. Since
ci ∈ Bτ (y), we have that |Ji| > n− τ . Since G is the generator matrix of C, for all i ∈ {0, 1, . . . , L},

33

there exists a unique fi ∈ Fk such that ci = G⊤fi. For all i, j ∈ {0, 1, . . . , L} with i < j let
fij = fj − fi.

Let v be a column vector of length
(t

2

)
k which is the fij’s concatenated together in the order

as the block columns (i, j) of M are indexed. To complete, the proof is suffices to show that v 6= 0
but Mv = 0.

First, to see why v 6= 0, note that

G⊤f01 = G⊤(f1 − f0) = c1 − c0 6= 0.

Thus, f01 6= 0, so v 6= 0.

Second, to see why Mv = 0, we split the analysis into the type (a) rows and the type (b) rows.
For the type (a) rows, for each i < j ∈ {0, 1, . . . , L−1} note that Mv restricted to this block equals
fij + fjt − fit = (fj − fi) + (ft − fj) − (ft − fi) = 0. For the type (b) rows, it suffices to check for
all i < j ∈ {0, 1, . . . , L} that G⊤

Ji∩Jj
fij = 0. Observe that

G⊤
Ji∩Jj

fij = G⊤
Ji∩Jj

(fj − fi) = (cj − ci)|Ji∩Jj

Note that, by definition, for all indices a ∈ Ji ∩ Jj , we have that (cj)a = ya = (ci)a. Thus, the
above expression does indeed equal zero. Therefore, Mv = 0.

Thus, M lacks full column rank. �

As a result of this lemma, [ST20] formulated the following conjecture whose resolution also
implies that generic Reed-Solomon codes reach list-decoding capacity.

Conjecture A.2 (Conjecture 5.7 of [ST20]–restated). Let J1, . . . , Jt ⊆ [n] be such that for all
S ⊆ [t],

∑

i∈S

|Ji| −
∣∣∣∣∣
⋃

i∈S

Ji

∣∣∣∣∣ 6 (|S| − 1)k, (20)

and further that (20) is an equality when S = [t]. Let G be a generic (n, k)-Vandermonde matrix.
Then, MG,(J1,...,Jt) has full column rank.

We now prove this conjecture.

Proof. Note that MG,(J1,...,Jt) only includes entries from the ith column of G if i ∈ Jj for some
j ∈ [t]. Thus, we may assume without loss off generality that

⋃

i∈[t]

Ji = [n] (21)

Assume for sake of contradiction that MG,(J1,...,Jt) lacks full column rank. Thus, there exists

nonzero v ∈ F(t
2)k such that Mv = 0. For each i < j ∈ [n], let fij ∈ Fk be the block of v

corresponding to (i, j). Further, define ft = 0 and fi = −fit for all i ∈ [t − 1]. We claim that for
all i < j ∈ [n] that fij = fj − fi. This is by definition when j = t. Otherwise, if j < t, then by the
type (a) rows of M , we may deduce that fij − fit + fjt = 0, which implies that fij = fj − fi.

For all i ∈ [t], define ci = G⊤
Ji∩Jj

fi. Since v 6= 0, we know that fij 6= 0 for some i < j. Thus, for
some i < j, we have that ci < cj.

34

Due to the type (b) rows of M , we can deduce for all i < j ∈ [n] that G⊤
Ji∩Jj

fij = 0, so

G⊤
Ji∩Jj

fi = G⊤
Ji∩Jj

fj. Therefore, ci|Ji∩Jj
= cj |Ji∩Jj

.

Let y ∈ Fn be a vector such that yJi
= (ci)|Ji

for all i. Note that at least one y must exist
because each of the ci’s are consistent.

For all i ∈ [t], let J̄i = [n] \ Ji and ui = ci − y. Note that supp(ui) ⊆ J̄i. Let H be the
parity-check matrix of C. Then, since Hc1 = · · · = Hct, we have that Hu1 = · · · Hut. Thus, the
vector (−u1, u2, u3, . . . , uL) is in the kernel of the following matrix.




HJ̄1
HJ̄2

HJ̄1
HJ̄3

...
. . .

HJ̄1
HJ̄t




Since the ci’s are not all equal, the ui’s are not all 0. Therefore, we have that HJ̄1
∩ · · · ∩ HJ̄t

6= 0.

Observe that by (20) we have that for any nonempty S ⊆ [t], we have that

∣∣∣∣∣
⋂

i∈S

J̄i

∣∣∣∣∣ = n −
∣∣∣∣∣
⋃

i∈S

Ji

∣∣∣∣∣

6 n + (|S| − 1)k −
∑

i∈S

|Ji|

=
∑

i∈S

|J̄i| − (|S| − 1)(n − k),

with equality when S = [t]. Thus, for any partition P1 ⊔ P2 ⊔ · · · ⊔ Ps = [t], we have that

s∑

i=1

∣∣∣∣∣∣

⋂

j∈Pi

J̄j

∣∣∣∣∣∣
6
∑

i∈[t]

|J̄i| −
s∑

i=1

(|Pi| − 1)(n − k)

=

∣∣∣∣∣∣

⋂

i∈[t]

J̄i

∣∣∣∣∣∣
+ (t − 1)(n − k) − (t − s)(n − k)

= n −
∣∣∣∣∣∣

⋃

i∈[t]

Ji

∣∣∣∣∣∣
+ (s − 1)(n − k)

= (s − 1)(n − k),

The last equality follows from our WLOG assumption (21). Therefore, by Theorem 1.15 the generic
intersection dimension of J̄1, . . . , J̄t is zero. By Proposition 4.4 and Corollary 1.14, the dual of a
generic Reed-Solomon code is MDS(t). Thus, HJ̄1

∩ · · · ∩ HJ̄t
= 0, a contradiction. �

B An alternative algorithm for computing generic intersection di-

mension in polynomial time

In this appendix, we present an alternative polynomial-time algorithm for computing the generic
intersection dimension of a family of sets. Let A1, . . . , Aℓ ⊆ [n] be sets of size at most k. Consider
the following linear program:

35

Primal LP

minimize: k −
ℓ∑

i=1

δi

subject to: ∀i ∈ [ℓ], δi > 0

∀I ⊆ [ℓ] (I 6= ∅),
∑

i∈I

δi 6 k − |AI |.

By Theorem 1.15 and Lemma 2.8, we know that the optimal integral solution to this linear
program is equal to the generic intersection dimension of A1, . . . , Aℓ. In fact, we shall prove that
the optimal “fractional” has the same objective value.

Lemma B.1. The objective value of the Primal LP is equal to the k-dimensional generic intersec-
tion dimension of A1, . . . , Aℓ.

Even with this observation, it is not obvious that the Primal LP can be solved in poly(n, k, ℓ)
time, as there are roughly 2ℓ constraints. However, we shall demonstrate the Primal LP can still
be solved efficiently.

Lemma B.2. One can solve the Primal LP in poly(n, k, ℓ) time.

As a result of these two lemmas, we get the following corollary.

Corollary B.3. Given sets A1, . . . , Aℓ ⊆ [n] of size at most k as input, one can compute the
k-dimensional generic intersection dimension of these sets in poly(n, k, ℓ) time.

We note that while this is the same result as that proved in Section 5, the proof methods are
very different and seem to highlight different structural aspects of generic intersections.

The remainder of this appendix is devoted to proving the two lemmas.

B.1 Proof of Lemma B.1

By the theory of LP duality, the objective value of the Primal LP is equal to the objective value of
the Dual LP.

Dual LP

maximize: k −
∑

I⊆[ℓ]
I 6=∅

(k − |AI |)µI

subject to: ∀I ⊆ [ℓ] (I 6= ∅), µI > 0

∀i ∈ [ℓ],
∑

I⊆[ℓ]
i∈I

µI > 1.

By Theorem 1.15 and Lemma 2.8, we have that there exists a partition P1 ⊔ · · · ⊔ Ps = [ℓ] such
that

s∑

j=1

|APj
| = (s − 1)k + d,

36

where d is the generic intersection dimension. Consider the following assignment to the Dual LP:
µPj

= 1 for all j ∈ [s] and µS = 0 otherwise. Note that since each i ∈ [ℓ] is a member of (at least)
one of the Pj ’s, we have that this assignment is feasible for the Dual LP. The objective value is
then

k −
s∑

j=1

(k − |APj
|) =

s∑

j=1

|APj
| − (s − 1)k = d.

Thus, by duality, the objective value of the Primal LP is at least the generic intersection
dimension d. Since we previously mentioned that this value d is attainable by an integral assignment
(via Lemma 2.8), we have that the objective value of the Primal LP (and the Dual LP) is exactly
the generic intersection dimension.

B.2 Proof of Lemma B.2

To solve the Primal LP, it suffices to implement an efficient (i.e., in poly(n, k, ℓ) time) separation
oracle (c.f., [GLS93]). In particular, given nonnegative δ1, . . . , δℓ ∈ Q, we need to efficiently compute
that either (1) the δ’s satisfy the primal LP or (2) exhibit a nonempty I ⊆ [ℓ] for which

∑
i∈I δi >

k − |AI |.
Consider the function f : 2[ℓ] → Q defined by

f(I) = k − |AI | −
∑

i∈I

δi.

with f(∅) = 0. Observe that computing the separation oracle is thus equivalent to either verifying
that f is nonnegative or exhibiting an I ⊆ [ℓ] such that f(I) < 0.

It is straightforward to verify that f is submodular, that is for all I, J ⊆ [ℓ],

f(I) + f(J) > f(I ∪ J) + f(I ∩ J).

Minimizing such a function can be done in poly(ℓ) queries to f (c.f., [GLS93]), and thus we can
efficiently determine whether there exist I ⊆ [ℓ] such that f(I) < 0 (note that such an I must be
nonempty). Therefore, the Primal LP can be solved efficiently.

37

	1 Introduction
	1.1 List-decoding Reed-Solomon codes
	1.1.1 Previous Work

	1.2 Higher order MDS codes
	1.3 Proof overview
	1.4 Further applications and connections
	1.4.1 Generic Gabidulin codes achieve list-decoding capacity
	1.4.2 Field size lower bounds for LDMDS(L) codes
	1.4.3 Maximally recoverable tensor codes
	1.4.4 Connections to invariant theory

	1.5 Open Questions

	2 Generic Zero Patterns (GZPs)
	2.1 Generalized Hall's theorem and maximal GZPs
	2.2 A characterization of sets in order-ell generic zero patterns

	3 Equivalence of GZP(ell) and MDS(ell)
	3.1 GZP(ell) implies MDS(ell)
	3.2 MDS(ell) implies GZP(ell)
	3.3 Characterizing the null intersection property

	4 Applications to List Decoding: Proof of Theorem 1.4
	4.1 Equivalence of MDS and LDMDS (up to duality)
	4.2 Reed-Solomon codes
	4.2.1 Generic Reed-Solomon codes
	4.2.2 Random Reed-Solomon codes

	5 Connections to Invariant Theory
	5.1 Linear matrices, non-commutative rank and the blow-up regularity lemma
	5.2 Polynomial time computability of generic intersection ranks
	5.2.1 A doubling operation
	5.2.2 Scalability of generic intersection dimension

	A Resolution of Conjecture 5.7 of [ST20]
	B An alternative algorithm for computing generic intersection dimension in polynomial time
	B.1 Proof of Lemma B.1
	B.2 Proof of Lemma B.2

