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ABSTRACT
For integers 𝑘 ≥ 1 and 𝑛 ≥ 2𝑘 + 1, the Kneser graph 𝐾 (𝑛, 𝑘) has as
vertices all 𝑘-element subsets of an 𝑛-element ground set, and an

edge between any two disjoint sets. It has been conjectured since

the 1970s that all Kneser graphs admit a Hamilton cycle, with one

notable exception, namely the Petersen graph𝐾 (5, 2). This problem
received considerable attention in the literature, including a recent

solution for the sparsest case 𝑛 = 2𝑘 + 1. The main contribution

of this paper is to prove the conjecture in full generality. We also

extend this Hamiltonicity result to all connected generalized John-

son graphs (except the Petersen graph). The generalized Johnson

graph 𝐽 (𝑛, 𝑘, 𝑠) has as vertices all 𝑘-element subsets of an 𝑛-element

ground set, and an edge between any two sets whose intersection

has size exactly 𝑠 . Clearly, we have 𝐾 (𝑛, 𝑘) = 𝐽 (𝑛, 𝑘, 0), i.e., gener-
alized Johnson graphs include Kneser graphs as a special case. Our

results imply that all known families of vertex-transitive graphs

defined by intersecting set systems have a Hamilton cycle, which

settles an interesting special case of Lovász’ conjecture on Hamilton

cycles in vertex-transitive graphs from 1970. Our main technical

innovation is to study cycles in Kneser graphs by a kinetic system

of multiple gliders that move at different speeds and that interact

over time, reminiscent of the gliders in Conway’s Game of Life, and

to analyze this system combinatorially and via linear algebra.
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1 INTRODUCTION
For integers 𝑘 ≥ 1 and 𝑛 ≥ 2𝑘 + 1, the Kneser graph 𝐾 (𝑛, 𝑘) has as
vertices all 𝑘-element subsets of [𝑛] := {1, 2, . . . , 𝑛}, and an edge

between any two sets 𝐴 and 𝐵 that are disjoint, i.e., 𝐴 ∩ 𝐵 = ∅.
Kneser graphs were introduced by Lovász [42] in his celebrated

proof of Kneser’s conjecture. Using the Borsuk-Ulam theorem, he

proved that the chromatic number of 𝐾 (𝑛, 𝑘) equals 𝑛 − 2𝑘 + 2, and

his proof gave rise to the field of topological combinatorics. We

proceed to list a few other important properties of Kneser graphs.

The maximum independent set in 𝐾 (𝑛, 𝑘) has size
(𝑛−1
𝑘−1

)
by the fa-

mous Erdős-Ko-Rado [22] theorem. Furthermore, the graph 𝐾 (𝑛, 𝑘)
is vertex-transitive, i.e., it ‘looks the same’ from the point of view

of any vertex, and all vertices have degree

(𝑛−𝑘
𝑘

)
. Lastly, note that

when 𝑛 < 𝑐𝑘 , the Kneser graph 𝐾 (𝑛, 𝑘) does not contain cliques of

size 𝑐 , whereas it does contain such cliques when 𝑛 ≥ 𝑐𝑘 . Many

other properties of Kneser graphs have been studied, for exam-

ple their diameter [61], treewidth [30], boxicity [8], and removal

lemmas [24].

2 HAMILTON CYCLES IN KNESER GRAPHS
In this work we investigate Hamilton cycles in Kneser graphs, i.e.,

cycles that visit every vertex exactly once. Kneser graphs have

long been conjectured to have a Hamilton cycle, with one notable

exception, the Petersen graph 𝐾 (5, 2) (see Figure 2), which only

admits a Hamilton path. This conjecture goes back to the 1970s,

and in the following we give a detailed account of this long history.

As Kneser graphs are vertex-transitive, this is a special case of

Lovász’ famous conjecture [41], which asserts that every connected

vertex-transitive graph admits a Hamilton path. A stronger form

of the conjecture asserts that every connected vertex-transitive

graph admits a Hamilton cycle, apart from five exceptional graphs,

one of them being the Petersen graph. So far, the conjecture for

Hamilton cycles in Kneser graphs has been tackled from two angles,

namely for sufficiently dense Kneser graphs, and for the sparsest

Kneser graphs. From the aforementioned results about the degree

and cliques in 𝐾 (𝑛, 𝑘), we see that 𝐾 (𝑛, 𝑘) is relatively dense when

𝑛 is large w.r.t. 𝑘 , and relatively sparse otherwise. The sparsest case

is when 𝑛 = 2𝑘 + 1, and the graphs 𝑂𝑘 := 𝐾 (2𝑘 + 1, 𝑘) are also

known as odd graphs. Intuitively, proving Hamiltonicity should be

easier for the dense cases, and harder for the sparse cases.

We first recap the known results for dense Kneser graphs. Hein-

rich andWallis [31] showed that𝐾 (𝑛, 𝑘) has a Hamilton cycle if 𝑛 ≥
2𝑘 +𝑘/( 𝑘

√
2− 1) = (1+𝑜 (1))𝑘2/ln 2. This was improved by B. Chen

and Lih [10], whose results imply that 𝐾 (𝑛, 𝑘) has a Hamilton cy-

cle if 𝑛 ≥ (1 + 𝑜 (1))𝑘2/log𝑘 ; see [16]. In another breakthrough,

Y. Chen [11] showed that 𝐾 (𝑛, 𝑘) is Hamiltonian when 𝑛 ≥ 3𝑘 .

A particularly nice and clean proof for the cases where 𝑛 = 𝑐𝑘 ,
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𝑐 ∈ {3, 4, . . .}, was obtained by Y. Chen and Füredi [13]. Their proof

uses Baranyai’s well-known partition theorem for complete hy-

pergraphs [4] to partition the vertices of 𝐾 (𝑐𝑘, 𝑘) into cliques of

size 𝑐 . This proof method was extended by Bellmann and Schülke

to any 𝑛 ≥ 4𝑘 [5]. The asymptotically best result known to date,

again due to Y. Chen [12], is that 𝐾 (𝑛, 𝑘) has a Hamilton cycle if

𝑛 ≥ (3𝑘 + 1 +
√
5𝑘2 − 2𝑘 + 1)/2 = (1 + 𝑜 (1))2.618 . . . · 𝑘 . With the

help of computers, Shields and Savage [59] found Hamilton cycles

in 𝐾 (𝑛, 𝑘) for all 𝑛 ≤ 27 (except for the Petersen graph).

We now briefly summarize the Hamiltonicity story of the spars-

est Kneser graphs, namely the odd graphs. Note that 𝑂𝑘 = 𝐾 (2𝑘 +
1, 𝑘) has degree 𝑘 + 1, which is only logarithmic in the number of

vertices. The conjecture that 𝑂𝑘 has a Hamilton cycle for all 𝑘 ≥ 3

originated in the 1970s, in papers by Meredith and Lloyd [44, 45]

and by Biggs [6]. Already Balaban [2] exhibited a Hamilton cy-

cle for the cases 𝑘 = 3 and 𝑘 = 4, and Meredith and Lloyd de-

scribed one for 𝑘 = 5 and 𝑘 = 6. Later, Mather [43] solved the

case 𝑘 = 7. Mütze, Nummenpalo and Walczak [51] finally settled

the problem for all odd graphs, proving that 𝑂𝑘 has a Hamilton

cycle for every 𝑘 ≥ 3. In fact, they even proved that 𝑂𝑘 admits

double-exponentially (in 𝑘) many distinct Hamilton cycles. Already

much earlier, Johnson [36] provided an inductive argument that

establishes Hamiltonicity of 𝐾 (𝑛, 𝑘) provided that the existence of

Hamilton cycles is known for several smaller Kneser graphs. Com-

bining his result with the unconditional results from [51] yields

that 𝐾 (2𝑘 + 2
𝑎, 𝑘) has a Hamilton cycle for all 𝑘 ≥ 3 and 𝑎 ≥ 0.

These results still leave infinitely many open cases, the sparsest

one of which is the family 𝐾 (2𝑘 + 3, 𝑘) for 𝑘 ≥ 1.

Another line of attack towards proving Hamiltonicity is to find

long cycles in 𝐾 (𝑛, 𝑘). To this end, Johnson [35] showed that there

exists a constant 𝑐 > 0 such that the odd graph 𝑂𝑘 has a cycle that

visits at least a (1−𝑐/
√
𝑘)-fraction of all vertices, which is almost all

vertices as 𝑘 tends to infinity. This was generalized and improved

in [52], where it was shown that 𝐾 (𝑛, 𝑘) has a cycle visiting a 2𝑘/𝑛-
fraction of all vertices. For 𝑛 = 2𝑘 +1 this fraction is (1−1/(2𝑘 +1)),
and more generally for 𝑛 = 2𝑘 + 𝑜 (𝑘) it is 1 − 𝑜 (1).

The main contribution of this paper is to settle the conjecture on

Hamilton cycles in Kneser graphs affirmatively in full generality.

Theorem 1. For all𝑘 ≥ 1 and𝑛 ≥ 2𝑘+1, the Kneser graph𝐾 (𝑛, 𝑘)
has a Hamilton cycle, unless it is the Petersen graph, i.e., (𝑛, 𝑘) =

(5, 2).
In the following we present generalizations of this result that we

establish in this paper, and we discuss how they extend previously

known Hamiltonicity results. The relations between these results

for different families of vertex-transitive graphs are illustrated in

Figure 1. In fact, our proof of Theorem 1 enables us to settle all

known instances of Lovász’ conjecture for vertex-transitive graphs

defined by intersecting set systems. As we shall see, Kneser graphs

are the hardest cases among them to prove. Indeed, the more gen-

eral families of graphs can be settled easily once Hamiltonicity is

established for Kneser graphs.

3 GENERALIZED JOHNSON GRAPHS
The generalized Johnson graph 𝐽 (𝑛, 𝑘, 𝑠) has as vertices all 𝑘-element

subsets of [𝑛], and an edge between any two sets 𝐴 and 𝐵 that

satisfy |𝐴∩𝐵 | = 𝑠 , i.e., the intersection of𝐴 and 𝐵 has size exactly 𝑠 .

To ensure that the graph is connected, we assume that 𝑠 < 𝑘 and

𝑛 ≥ 2𝑘−𝑠 +1[𝑠=0] , where 1[𝑠=0] denotes the indicator function that

equals 1 if 𝑠 = 0 and 0 otherwise. Generalized Johnson graphs are

sometimes called ‘uniform subset graphs’ in the literature, and they

are also vertex-transitive. Furthermore, by taking complements, we

see that 𝐽 (𝑛, 𝑘, 𝑠) is isomorphic to 𝐽 (𝑛, 𝑛 − 𝑘, 𝑛 − 2𝑘 + 𝑠). Clearly,
Kneser graphs are special generalized Johnson graphs obtained

for 𝑠 = 0. On the other hand, the graphs obtained for 𝑠 = 𝑘 − 1 are

known as (ordinary) Johnson graphs 𝐽 (𝑛, 𝑘) := 𝐽 (𝑛, 𝑘, 𝑘 − 1).
Chen and Lih [10] conjectured that all graphs 𝐽 (𝑛, 𝑘, 𝑠) admit

a Hamilton cycle except the Petersen graph 𝐽 (5, 2, 0) = 𝐽 (5, 3, 1),
and this problem was reiterated in Gould’s survey [26]. In their

original paper, Chen and Lih settled the cases 𝑠 ∈ {𝑘−1, 𝑘−2, 𝑘−3}.
It is known that a Hamilton cycle in the Johnson graph 𝐽 (𝑛, 𝑘) =
𝐽 (𝑛, 𝑘, 𝑘 − 1) can be obtained by restricting the binary reflected

Gray code for bitstrings of length 𝑛 to those strings with Hamming

weight 𝑘 [60]. In fact, for Johnson graphs 𝐽 (𝑛, 𝑘) much stronger

Hamiltonicity properties are known [34, 37]. Other properties of

generalized Johnson graphs were investigated in [1, 14, 39, 62].

We generalize Theorem 1 further, by showing that all connected

generalized Johnson graphs admit a Hamilton cycle. This resolves

Chen and Lih’s conjecture affirmatively in full generality.

Theorem 2. For all 𝑘 ≥ 1, 0 ≤ 𝑠 < 𝑘 , and 𝑛 ≥ 2𝑘 − 𝑠 + 1[𝑠=0] the
generalized Johnson graph 𝐽 (𝑛, 𝑘, 𝑠) has a Hamilton cycle, unless it
is the Petersen graph, i.e., (𝑛, 𝑘, 𝑠) ∈ {(5, 2, 0), (5, 3, 1)}.

4 GENERALIZED KNESER GRAPHS
The generalized Kneser graph 𝐾 (𝑛, 𝑘, 𝑠) has as vertices all 𝑘-element

subsets of [𝑛], and an edge between any two sets 𝐴 and 𝐵 that

satisfy |𝐴∩𝐵 | ≤ 𝑠 , i.e., the intersection of𝐴 and 𝐵 has size at most 𝑠 .

The definition is very similar to generalized Johnson graphs, only

the equality condition on the size of the set intersection is replaced

by an inequality. As a consequence, we clearly have 𝐾 (𝑛, 𝑘, 𝑠) =⋃
𝑡≤𝑠 𝐽 (𝑛, 𝑘, 𝑡), i.e., 𝐾 (𝑛, 𝑘, 𝑠) has the same vertex set as 𝐽 (𝑛, 𝑘, 𝑠),

but more edges. In other words, 𝐽 (𝑛, 𝑘, 𝑠) is a spanning subgraph

of 𝐾 (𝑛, 𝑘, 𝑠). Generalized Kneser graphs are also vertex-transitive,

and they have been studied heavily in the literature; see e.g. [3, 15,

19, 23, 25, 33, 40, 47].

As 𝐽 (𝑛, 𝑘, 𝑠) is a spanning subgraph of 𝐾 (𝑛, 𝑘, 𝑠), Theorem 2

yields the following immediate corollary.

Corollary 3. For all 𝑘 ≥ 1, 0 ≤ 𝑠 < 𝑘 , and 𝑛 ≥ 2𝑘 − 𝑠 + 1[𝑠=0]
the generalized Kneser graph 𝐾 (𝑛, 𝑘, 𝑠) has a Hamilton cycle, unless
it is the Petersen graph, i.e., (𝑛, 𝑘, 𝑠) ∈ {(5, 2, 0), (5, 3, 1)}.

5 BIPARTITE KNESER GRAPHS AND THE
MIDDLE LEVELS PROBLEM

For integers 𝑘 ≥ 1 and 𝑛 ≥ 2𝑘 +1, the bipartite Kneser graph𝐻 (𝑛, 𝑘)
has as vertices all 𝑘-element and (𝑛 − 𝑘)-element subsets of [𝑛],
and an edge between any two sets 𝐴 and 𝐵 that satisfy 𝐴 ⊆ 𝐵. It is

easy to see that bipartite Kneser graphs are also vertex-transitive.

The following simple lemma shows that Hamiltonicity of 𝐾 (𝑛, 𝑘)
is harder than the Hamiltonicity of 𝐻 (𝑛, 𝑘).

Lemma 4. If 𝐾 (𝑛, 𝑘) admits a Hamilton cycle, then𝐻 (𝑛, 𝑘) admits
a Hamilton cycle or path.
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generalized Johnson graphs
J(n, k, s)

Theorem 2

generalized Kneser graphs
K(n, k, s)

Corollary 3

Johnson graphs
J(n, k) = J(n, k, k − 1)

[60]

bipartite Kneser graphs
H(n, k)

[52]

Kneser graphs K(n, k) =
K(n, k, 0) = J(n, k, 0)

Theorem 1

middle levels graphs
Mk = H(2k + 1, k)

[48]

odd graphs
Ok = K(2k + 1, k)

[51]

n = 2k + 1n = 2k + 1

s = 0 s = k − 1

spanning
subgraph

Lemma 4
s = 0

Lemma 4

Figure 1: Relation between Hamiltonicity results established in this paper and previous papers. Arrows indicate implications.

Proof. Given a Hamilton cycle 𝐶 = (𝑥1, 𝑥2, . . . , 𝑥𝑁 ) in 𝐾 (𝑛, 𝑘),
the sequences 𝑃 := (𝑥1, 𝑥2, 𝑥3, 𝑥4, . . .) and 𝑃 ′ := (𝑥1, 𝑥2, 𝑥3, 𝑥4, . . .),
where 𝑥𝑖 := [𝑛] \ 𝑥𝑖 , are two spanning paths in 𝐻 (𝑛, 𝑘). Conse-
quently, if 𝑁 =

(𝑛
𝑘

)
is odd, then the concatenation 𝑃𝑃 ′ is a Hamilton

cycle in 𝐻 (𝑛, 𝑘), and if 𝑁 is even, then 𝑃 and 𝑃 ′ are two disjoint

cycles that together span the graph and that can be joined to a

Hamilton path. □

The sparsest bipartite Kneser graphs 𝑀𝑘 := 𝐻 (2𝑘 + 1, 𝑘) are
known as middle levels graphs, as they are isomorphic to the sub-

graph of the (2𝑘 +1)-dimensional hypercube induced by the middle

two levels. The well-known middle levels conjecture asserts that𝑀𝑘

has a Hamilton cycle for all 𝑘 ≥ 1. This conjecture was raised in

the 1980s, settled affirmatively in [48], and a short proof was given

in [29]. More generally, all bipartite Kneser graphs 𝐻 (𝑛, 𝑘) were
shown to have a Hamilton cycle in [52], via a short argument that

uses the sparsest case𝑀𝑘 as a basis for induction. These papers com-

pleted a long line of previous partial results on these problems; see

the papers for more references and historical remarks. Via Lemma 4

and its proof shown before, our Theorem 1 thus also yields a new

alternative proof for the Hamiltonicity of bipartite Kneser graphs.

Consequently, our results in this paper settle Lovász’ conjecture

for all known families of vertex-transitive graphs that are defined

by intersecting set systems.

6 ALGORITHMIC CONSIDERATIONS
A combinatorial Gray code [49, 57] is an algorithm that computes

a listing of combinatorial objects such that any two consecutive

objects in the list satisfy a certain adjacency condition. Many such

algorithms are covered in depths in Knuth’s book ‘The Art of Com-

puter Programming Vol. 4A’ [38], and several of them correspond

to computing a Hamilton cycle in a vertex-transitive graph, thus

algorithmically solving one special case of Lovász’ conjecture. For

example, the classical binary reflected Gray code computes a Hamil-

ton cycle in the 𝑛-dimensional hypercube, which can be seen as the

Cayley graph ofZ𝑛
2
given by the standard generators. Another exam-

ple is the well-known Steinhaus-Johnson-Trotter algorithm, which

computes a Hamilton cycle in the Cayley graph of the symmetric

group when the generators are adjacent transpositions. Similarly,

the recent solution [58] of Nijenhuis and Wilf’s sigma-tau prob-

lem [53, Ex. 6] computes a Hamilton cycle in the Cayley (di)graph of

the symmetric group with the two generators being cyclic left-shift

or transposition of the first two elements. Similar Gray code algo-

rithms have been discovered for the symmetric group with other

generators, such as prefix reversals [54, 63], prefix shifts [17, 18, 56],

and for other groups such as the alternating group [27, 32].

Subsets of size 𝑘 of an 𝑛-element ground set are known as

(𝑛, 𝑘)-combinations in the Gray code literature. Many different al-

gorithms have been devised for generating (𝑛, 𝑘)-combinations

by element exchanges, i.e., any two consecutive combinations dif-

fer in removing one element from the subset and adding another

one [7, 9, 20, 21, 55, 60]. This is equivalent to saying that any two

consecutive sets intersect in exactly 𝑘 − 1 elements, i.e., such a Gray

code computes a Hamilton cycle in the Johnson graph 𝐽 (𝑛, 𝑘).
Computing a Hamilton cycle in the Kneser graph 𝐾 (𝑛, 𝑘) thus

corresponds to computing a Gray code for (𝑛, 𝑘)-combinations

where the adjacency condition is disjointness. Our proof of the

existence of a Hamilton cycle in 𝐾 (𝑛, 𝑘) is constructive, and it

translates straightforwardly into an algorithm for computing the

cycle whose running time is polynomial in the size 𝑁 :=
(𝑛
𝑘

)
of

the Kneser graph. It remains open whether there exists a more

efficient algorithm, i.e., one with running time that is polynomial

in 𝑛 and 𝑘 per generated combination (note that 𝑁 is exponential

in 𝑘), similarly to the previously mentioned combination generation

algorithms.

7 PROOF IDEAS
In Section 8 below we demonstrate how Theorem 1 can be used

to establish Theorem 2 by a simple inductive construction. Conse-

quently, the main work in this paper is to prove Theorem 1. In this

extended abstract, we only sketch the main ideas for this proof. For

details, see the full preprint version of this article [46].
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{1, 4}

{2, 5}

{2, 3}

{1, 2}

{3, 5}

{3, 4}

{1, 3}

{2, 4}

{1, 5}

{4, 5}

Figure 2: The Petersen graph 𝐾 (5, 2). The vertices are all 2-
elements subsets of [5] = {1, 2, 3, 4, 5}, and in the correspond-
ing bitstrings, 1s are represented by black squares and 0s by
white squares.

As mentioned before, Mütze, Nummenpalo and Walczak [51]

proved that𝐾 (𝑛, 𝑘) has a Hamilton cycle for 𝑛 = 2𝑘+1 and all 𝑘 ≥ 3.

Combining this result with Johnson’s construction [36] shows that

𝐾 (𝑛, 𝑘) has a Hamilton cycle for 𝑛 = 2𝑘 +2𝑎 and all 𝑘 ≥ 3 and 𝑎 ≥ 0,

in particular for 𝑛 = 2𝑘 + 2. The techniques developed in this paper

work whenever 𝑛 ≥ 2𝑘 + 3, and thus they settle all remaining cases

of Theorem 1. It should be noted that our proof does not work in

the cases 𝑛 = 2𝑘 + 1 and 𝑛 = 2𝑘 + 2, so the two earlier constructions
do not become obsolete.

We follow a two-step approach to construct a Hamilton cycle

in 𝐾 (𝑛, 𝑘) for 𝑛 ≥ 2𝑘 +3. In the first step, we construct a cycle factor
in the graph, i.e., a collection of disjoint cycles that together visit

all vertices. In the second step, we join the cycles of the factor to

a single cycle. In the following we discuss both of these steps in

more detail, outlining the main obstacles and novel ingredients to

overcome them.

7.1 Cycle Factor Construction
The starting point is to consider the characteristic vectors of the ver-

tices of 𝐾 (𝑛, 𝑘). For every 𝑘-element subset of [𝑛], this is a bitstring
of length 𝑛 with exactly 𝑘 many 1s at the positions corresponding

to the elements of the set. For example, the vertex {1, 7, 9} of𝐾 (9, 3)
is represented by the bitstring 100000101; see also Figure 2. In this

figure and the following ones, 1s are often represented by black

squares, and 0s by white squares. Clearly, two sets 𝐴 and 𝐵 that

are vertices of 𝐾 (𝑛, 𝑘) are disjoint if and only if the corresponding

bitstrings have no 1s at the same positions.

Our construction of a cycle factor in the Kneser graph 𝐾 (𝑛, 𝑘)
uses the following simple rule based on parenthesis matching,

which is a technique pioneered by Greene and Kleitman [28] (in

a completely different context): Given a vertex represented by a

bitstring 𝑥 , we interpret the 1s in 𝑥 as opening brackets and the 0s as

closing brackets, and we match closest pairs of opening and closing

brackets in the natural way, which will leave some 0s unmatched.

This matching is done cyclically across the boundary of 𝑥 , i.e., 𝑥 is

considered as a cyclic string. We write 𝑓 (𝑥) for the vertex obtained
from 𝑥 by complementing all matched bits, leaving the unmatched

bits unchanged. For example, 𝑥 = 100000101 is interpreted as 𝑥 =

())))) () ( = ())- - - () (, where each - denotes an unmatched closing

bracket, and then complementing matched bits (the first three and

last three in this case) yields the vertex 𝑓 (𝑥) = 011000010. Repeat-

edly applying 𝑓 to every vertex partitions the vertices of the Kneser

graph into cycles, and we write𝐶 (𝑥) := (𝑥, 𝑓 (𝑥), 𝑓 2 (𝑥), . . .) for the
cycle containing 𝑥 . For example, for 𝑥 from before we obtain𝐶 (𝑥) =
(100000101, 011000010, 000110001, 100001100, 010000011, . . . ,
000011010). Figure 3 shows several more examples of cycles gener-

ated by this parenthesis matching rule. The reason that this rule

indeed generates disjoint cycles is that 𝑓 is invertible and that

𝑓 (𝑥) ≠ 𝑥 and 𝑓 2 (𝑥) ≠ 𝑥 . Indeed, 𝑥 is obtained from 𝑓 (𝑥) by ap-

plying the same parenthesis matching procedure as before, but

with interpreting the 1s as closing brackets and the 0s are opening

brackets instead.

7.2 Analysis via Gliders
The next key step is to understand the structure of the cycles gen-

erated by 𝑓 , as this is important for joining the cycles to a sin-

gle Hamilton cycle. Unfortunately, the number of cycles and their

lengths in our factor are governed by intricate number-theoretic

phenomena, which we are unable to understand fully. Instead, we

describe the evolution of a bitstring 𝑥 under repeated applications

of 𝑓 combinatorially, which enables us to extract some important

cycle properties and invariants (other than the number of cycles

and the cycle lengths). Specifically, we describe this evolution by

a kinetic system of multiple gliders that move at different speeds

and that interact over time, reminiscent of the gliders in Conway’s

Game of Life. This physical interpretation and its analysis are one

of the main innovations of this paper. Specifically, we view each

application of 𝑓 as one unit of time moving forward. Furthermore,

we partition the matched bits of 𝑥 into groups, and each of these

groups is called a glider. A glider has a speed associated to it, which

is given by the number of 1s in its group. As a consequence of this

definition, the sum of speeds of all gliders equals 𝑘 . For example,

in the cycle shown in Figure 3 (a), there is a single matched 1 and

the corresponding matched 0, and together these two bits form a

glider of speed 1 that moves one step to the right in every time step.

Applying 𝑓 means going down to the next row in the picture, so

the time axis points downwards. Similarly, in Figure 3 (b), there

are two matched 1s and the corresponding two matched 0s, and

together these four bits form a glider of speed 2 that moves two

steps to the right in every time step. As we see from these examples,

a single glider of speed 𝑣 simply moves uniformly, following the

basic physics law

𝑠 (𝑡) = 𝑠 (0) + 𝑣 · 𝑡,

where 𝑡 is the time (i.e., the number of applications of 𝑓 ) and 𝑠 (𝑡) is
the position of the glider in the bitstring as a function of time. The
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x = 1 0 -

C(x)

(a)

x = 1 0 0 -

C(x)

(b)

-1

x = 1 0 0 0 -

C(x)

...

(c)

-1 1-

- - ------ ----

- - - -- -- --

- - - -- -

x = 1 0 0 0

C(x)

...

(d)

-1 1- - 1 0 01 01

f

f

f

f

time

time

time

time

(n, k) = (15, 1)

(n, k) = (15, 2)

(n, k) = (15, 3)

(n, k) = (15, 6)

speed 1

speed 2

speed 1speed 2

speed 1speed 2 speed 3

Figure 3: Cycles of our factor in several different Kneser graphs 𝐾 (𝑛, 𝑘). The cycles in (a) and (b) are shown completely, whereas
in (c) and (d) only the first 15 vertices are shown. The right hand side shows the interpretation of certain groups of bits as
gliders, and their movement over time. Matched bits belonging to the same glider are colored in the same color, with the opaque
filling given to 1-bits, and the transparent filling given to 0-bits. (a) one glider of speed 1; (b) one glider of speed 2; (c) two
gliders with speeds 1 and 2 that participate in an overtaking; (d) three gliders of speeds 1, 2 and 3 that participate in multiple
overtakings. Animations of these examples are available at [50].

967



STOC ’23, June 20–23, 2023, Orlando, FL, USA Arturo Merino, Torsten Mütze, and Namrata

position 𝑠 (𝑡) has to be considered modulo 𝑛, as bitstrings are consid-

ered as cyclic strings and the gliders hence wrap around the bound-

ary. The situation gets more interesting and complicated when

gliders of different speeds interact with each other. For example, in

Figure 3 (c), there is one glider of speed 2 and one glider of speed 1.

As long as these groups of bits are separated, each glider moves

uniformly as before. However, when the speed 2 glider catches up

with the speed 1 glider, an overtaking occurs. During an overtak-

ing, the faster glider receives a boost, whereas the slower glider is

delayed. This can be captured by augmenting the corresponding

equations of motion by introducing additional terms, making them

non-uniform. In the simplest case of two gliders of different speeds,

the equations become

𝑠1 (𝑡) = 𝑠1 (0) + 𝑣1 · 𝑡 − 2𝑣1𝑐1,2,

𝑠2 (𝑡) = 𝑠2 (0) + 𝑣2 · 𝑡 + 2𝑣1𝑐1,2,

where the subscript 1 stands for the slower glider and the sub-

script 2 stands for the faster glider, and the additional variable 𝑐1,2
counts the number of overtakings. Note that the terms 2𝑣1𝑐1,2 occur

with opposite signs in both equations, capturing the fact that the

faster glider is boosted by the same amount that the slower glider

is delayed. This can be seen as ‘energy conservation’ in the system

of gliders. Overall, the slower glider stands still for two time steps

during an overtaking, as 𝑣1 · 2 − 2𝑣1 · 1 = 0, and the faster glider’s

position changes by an additional amount of 2𝑣1 (compared to its

movement without overtaking). For more than two gliders, the

equations of motion can be generalized accordingly, by introducing

additional overtaking counters between any pair of gliders. Never-

theless, as the reader may appreciate from Figure 3 (d), in general

it is highly nontrivial to recognize from an arbitrary bitstring 𝑥

which of its matched bits belong to which glider, and consequently

which glider is currently overtaking which other glider. Note that in

general the gliders will not be nicely separated, but will be involved

in simultaneous interactions, so that the groups of bits forming the

gliders will be interleaved in complicated ways. Our general rule

that achieves the glider partition is based on a recursion that uses

an interpretation of 𝑥 as a Motzkin path, where every matched 1

becomes an↗-step in the Motzkin path, every matched 0 becomes

a↘-step, and every unmatched 0 becomes a→-step.

One important property that we extract from the aforementioned

physics interpretation is that the number of gliders and their speeds

are invariant along each cycle. For example, in Figure 3 (d), every

bitstring along this cycle has three gliders of speeds 1, 2 and 3. Note

in this example that the speeds do not necessarily correspond to the

lengths of maximal sequences of consecutive 1s in the bitstrings,

due to the interleaving of gliders. We also use the equations of

motion to derive a seemingly innocent, but very crucial property,

namely that no glider stands still forever, but will move eventually.

Note that the speed 1 glider in Figure 3 (d) stands still between

time steps 2–8, as during those steps it is overtaken once by the

speed 2 glider, and twice by the speed 3 glider (wrapping around

the boundary). We establish this fact by linear algebra, by showing

that the determinant of the linear systems of equations that governs

the gliders’ movements is non-singular.

For the reader’s entertainment, we programmed an interactive

animation of gliders over time, and we encourage experimentation

with this code, which can be found at [50]. In particular, this link

contains animations of many examples used in figures from our

paper, which greatly improves their educational value.

The cycle factor construction discussed before and our analysis

via gliders actually work for all 𝑛 ≥ 2𝑘 + 1, not just for 𝑛 ≥ 2𝑘 + 3.

The assumption 𝑛 ≥ 2𝑘 + 3 will become crucial in the next step,

though.

7.3 Gluing the Cycles Together
To join the cycles of our factor to a single Hamilton cycle, we

consider a 4-cycle 𝐷 that shares two opposite edges with two cy-

cles 𝐶,𝐶′
from our factor. Clearly, the symmetric difference of the

edge sets (𝐶 ∪𝐶′)Δ𝐷 yields a single cycle on the same vertex set

as 𝐶 ∪𝐶′
. We may repeatedly apply such gluing operations, each

time reducing the number of cycles in the factor by one, until the

resulting factor has a single cycle, namely a Hamilton cycle. It turns

out that the cycle factor defined by 𝑓 admits a lot of such gluing

4-cycles. Note that𝐾 (𝑛, 𝑘) does not have any 4-cycles for 𝑛 = 2𝑘 +1,
so the assumption 𝑛 ≥ 2𝑘 + 2 is needed here.

The two main technical obstacles we have to overcome are the

following: (a) All of the 4-cycles used for the gluing must be edge-

disjoint, so that none of the gluings interfere with each other. (b) We

must use sufficiently many gluings to achieve connectivity, i.e.,

every cycle must be connected to every other cycle via a sequence

of gluings. These two objectives are somewhat conflicting with each

other, so satisfying both at the same time is nontrivial. The final

gluings that we use and that satisfy both conditions are described

by a set of nine intricate regular expressions.

The 4-cycles that we use for the gluings are based on local mod-

ifications of two bitstrings 𝑥 and 𝑦 that satisfy certain conditions

and that lie on two different cycles 𝐶 (𝑥) and 𝐶 (𝑦) from our fac-

tor, by considering the gliders in 𝑥 and 𝑦. Specifically, this local

modification changes the speed sets of the gliders in 𝑥 and 𝑦 in

a controllable way. Recall that the speeds of gliders are invariant

along each cycle, so these speeds will only change along the gluing

4-cycles. To control the gluing, we consider the speeds of gliders in

a bitstring 𝑥 in non-increasing order. Recall that the sum of speeds

equals 𝑘 , so such a sorted sequence forms a number partition of 𝑘 .

To establish (b) we choose gluings that guarantee a lexicographic

increase in those number partitions. This ensures that every cycle

is joined, via a sequence of gluings, to a cycle that has the lexico-

graphically largest number partition, namely the number 𝑘 itself.

This corresponds to a single glider of maximum speed 𝑘 , i.e., to a

bitstring 𝑥 in which all 1s are consecutive.

For example, consider the two cycles 𝐶 (𝑥) and 𝐶 (𝑦) shown in

Figure 4, which can be glued together using the 4-cycle 𝐶4 (𝑥,𝑦) :=
(𝑥, 𝑓 (𝑥), 𝑦, 𝑓 (𝑦)). Note that in𝐶 (𝑥), there are two gliders of speed 1
and one glider of speed 3, whereas in 𝐶 (𝑦) there is one glider of
speed 2 and one of speed 3. Consequently, via the gluing we have

moved from the number partition (3, 1, 1) to the lexicographically

larger partition (3, 2).
The general idea for choosing the gluings 𝐶4 (𝑥,𝑦), which can

already be seen in this example, is such that in 𝑥 we decrease the

speed of a glider of minimum speed by 1, and instead we increase

the speed of any other glider by 1, which ensures that the number

partition associated with 𝑦 is lexicographically larger than that of 𝑥 .
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C(x) = (x, f(x), f2(x), . . . ) = (0100101110000, 0010010001110, 1101001000001, . . .)

C(y) = (y, f(y), f2(y), . . . ) = (1100001110000, 0011000001110, 1100110000001, . . .)

C4(x, y) := (x, f(x), y, f(y))

sp
ee
d
1

speed 3

speed 2 speed 3

sp
ee
d
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Figure 4: Gluing of two cycles from the factor via a 4-cycle in 𝐾 (13, 5).

Unfortunately, it is not always possible to use gluings that guaran-

tee such immediate lexicographic improvement. In some cases we

have to use gluings where a small lexicographic decrease occurs.

It then has to be argued that subsequent gluings compensate for

this defect such that the overall effect of the resulting sequence of

gluings is again a lexicographic improvement. For example, from a

vertex with associated number partition (4, 4), the first gluing may

lead to a vertex with number partition (4, 3, 1), and the next gluing

may lead to (5, 3). While the step (4, 4) → (4, 3, 1) is a lexicographic
decrease instead of an increase, overall (4, 4) → (4, 3, 1) → (5, 3)
is a lexicographic increase. In this step of the proof the assump-

tion 𝑛 ≥ 2𝑘 +3 finally enters the picture, as it gives us the necessary
flexibility in choosing gluings that are guaranteed to achieve this

improvement in all cases.

The arguments so far show that every cycle is connected, via

a sequence of gluings, to a cycle in which all 1s are consecutive.

Note however, that there may be several such cycles, depending

on the values of 𝑛 and 𝑘 . Specifically, there are exactly gcd(𝑛, 𝑘)
such cycles. To join those, we observe that the subgraph of 𝐾 (𝑛, 𝑘)
induced by those special cycles is isomorphic to a Cayley graph

of Z/𝑛Z, which admits many gluing 4-cycles to join them.

8 PROOF OF THEOREM 2
We show how Theorem 1 can be used to establish the more general

Theorem 2 quite easily. Chen and Lih showed the following about

generalized Johnson graphs.

Lemma 5 ([10, Thm. 1]). If 𝐽 (𝑛 − 1, 𝑘 − 1, 𝑠 − 1) and 𝐽 (𝑛 − 1, 𝑘, 𝑠)
have a Hamilton cycle, then 𝐽 (𝑛, 𝑘, 𝑠) also has a Hamilton cycle.

The proof of Lemma 5 given in [10] is based on a straightforward

partitioning of the graph 𝐽 (𝑛, 𝑘, 𝑠) into two subgraphs that are

isomorphic to 𝐽 (𝑛 − 1, 𝑘 − 1, 𝑠 − 1) and 𝐽 (𝑛 − 1, 𝑘, 𝑠). Specifically,
this partition is obtained by considering all vertices (=sets) that

contain a fixed element, 𝑛 say, and those that do not contain it. One

can then join the cycles in the two subgraphs to one, by taking the

symmetric difference with a 4-cycle that has one edge in each of

the two subgraphs, using the fact that Johnson graphs are edge-

transitive, i.e., we can force each of the cycles in the two subgraphs

to use this edge from the 4-cycle. All that is needed now for the

proof of Theorem 2 is the following simple observation.

Lemma 6. If 𝐽 (𝑛, 𝑘, 𝑠) is a generalized Johnson graph, then either
it is a Kneser graph or 𝐽 (𝑛 − 1, 𝑘 − 1, 𝑠 − 1) and 𝐽 (𝑛 − 1, 𝑘, 𝑠) are both
generalized Johnson graphs.

In the proof we will use the aforementioned observation that

𝐽 (𝑛, 𝑘, 𝑠) is isomorphic to 𝐽 (𝑛, 𝑛 − 𝑘, 𝑛 − 2𝑘 + 𝑠).

Proof. Let 𝑘 ≥ 1, 0 ≤ 𝑠 < 𝑘 and 𝑛 ≥ 2𝑘 − 𝑠 + 1[𝑠=0] . If 𝑠 =

0, then 𝐽 (𝑛, 𝑘, 𝑠) = 𝐽 (𝑛, 𝑘, 0) = 𝐾 (𝑛, 𝑘) is a Kneser graph. This

happens in particular if 𝑘 = 1. If 𝑠 > 0 and 𝑛 = 2𝑘 − 𝑠 , then
𝐽 (𝑛, 𝑘, 𝑠) = 𝐽 (𝑛, 𝑛 − 𝑘, 𝑛 − 2𝑘 + 𝑠) = 𝐽 (𝑛, 𝑘 − 𝑠, 0) = 𝐾 (𝑛, 𝑘 − 𝑠)
is also a Kneser graph. Otherwise, we have 𝑘 > 1, 𝑠 > 0 and

𝑛 > 2𝑘 − 𝑠 , and we consider the graphs 𝐻1 := 𝐽 (𝑛 − 1, 𝑘 − 1, 𝑠 − 1)
and 𝐻0 := 𝐽 (𝑛 − 1, 𝑘, 𝑠). From 𝑘 > 1 we obtain 𝑘 − 1 ≥ 1, and from

𝑠 > 0 and 𝑠 < 𝑘 we obtain that 0 ≤ 𝑠 − 1 < 𝑘 − 1. Furthermore, the

inequality 𝑛 > 2𝑘 − 𝑠 is equivalent to 𝑛 − 1 > 2(𝑘 − 1) − (𝑠 − 1),
which implies 𝑛 − 1 ≥ 2(𝑘 − 1) − (𝑠 − 1) + 1. Combining these

observations shows that the graph 𝐻1 is indeed a valid generalized

Johnson graph. Similarly, the inequality 𝑛 > 2𝑘 − 𝑠 implies that

𝑛 − 1 ≥ 2𝑘 − 𝑠 = 2𝑘 − 𝑠 + 1[𝑠=0] (since 𝑠 > 0), and consequently the

graph 𝐻0 is also a valid generalized Johnson graph. □

Proof of Theorem 2. Combine Lemmas 5 and 6, and use Theo-

rem 1 and induction. Because of the exceptional cases 𝐽 (5, 2, 0) =
𝐽 (5, 3, 1), in a few base cases the existence of a Hamilton cycle

in 𝐽 (𝑛, 𝑘, 𝑠) has to be checked directly, namely for (𝑛, 𝑘, 𝑠) ∈
{(3, 1, 0), (4, 1, 0), (4, 2, 1), (5, 1, 0), (5, 2, 1), (6, 1, 0), (6, 2, 0), (6, 2, 1),
(6, 3, 1), (6, 3, 2)}. Using that 𝐽 (𝑛, 𝑘, 𝑠) = 𝐽 (𝑛, 𝑛 − 𝑘, 𝑛 − 2𝑘 + 𝑠) this
settles all cases with 𝑛 ≤ 6. □
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