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ABSTRACT

A code C : {0, 1}: → {0, 1}= is a @-locally decodable code (@-LDC)

if one can recover any chosen bit 18 of the message 1 ∈ {0, 1}: with

good con�dence by randomly querying the encoding G ≔ C(1) on
at most @ coordinates. Existing constructions of 2-LDCs achieve

= = exp($ (:)), and lower bounds show that this is in fact tight.

However, when @ = 3, far less is known: the best constructions

achieve = = exp(:> (1) ), while the best known results only show a

quadratic lower bound = ≥ Ω̃(:2) on the blocklength.

In this paper, we prove a near-cubic lower bound of = ≥ Ω̃(:3)
on the blocklength of 3-query LDCs. This improves on the best

known prior works by a polynomial factor in : . Our proof relies on a

new connection between LDCs and refuting constraint satisfaction

problems with limited randomness. Our quantitative improvement

builds on the new techniques for refuting semirandom instances

of CSPs and, in particular, relies on bounding the spectral norm of

appropriate Kikuchi matrices.
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1 INTRODUCTION

A binary locally decodable code (LDC) C : {0, 1}: → {0, 1}= maps a

:-bit message 1 ∈ {0, 1}: to an =-bit codeword G ∈ {0, 1}= with the

property that the receiver, when given oracle access to ~ ∈ {0, 1}=
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obtained by corrupting G in a constant fraction of coordinates, can

recover any chosen bit 18 of the original message with good con-

�dence by only querying ~ in a few locations. More formally, a

code C is @-locally decodable if for any input 8 ∈ [:], the decod-
ing algorithm makes at most @ queries to the corrupted codeword

~ and recovers the bit 18 with probability 1/2 + Y, provided that

Δ(~, C(1)) ≔ |{E ∈ [=] : ~E ≠ C(1)E}| ≤ X=, where X, Y are con-

stants. Though formalized later in [19], locally decodable codes

were instrumental in the proof of the PCP theorem [2, 3], and have

deep connections to many other areas of complexity theory (see

Section 7 in [31]), including worst-case to average-case reductions

[23], private information retrieval [30], secure multiparty computa-

tion [18], derandomization [10], matrix rigidity [8], data structures

[7, 26], and fault-tolerant computation [21].

A central research focus in coding theory is to understand the

largest possible rate achievable by a @-query locally decodable code.

For the simplest non-trivial setting of @ = 2 queries, we have a

complete understanding: the Hadamard code provides an LDC with

a blocklength = = 2: and an essentially matching lower bound of

= = 2Ω (: ) was shown in [6, 13, 14, 20].

In contrast, there is a wide gap in our understanding of 3 or

higher query LDCs. The best known constructions are based on

families of matching vector codes [9, 11, 29] and achieve = = 2:
> (1)

.

In particular, the blocklength is slightly subexponential in : and

asymptotically improves on the rate achievable by 2-query LDCs.

The known lower bounds, on the other hand, are far from this bound.

The �rst LDC lower bounds are due to Katz and Trevisan [19], who

proved that @-query LDCs require a blocklength of = ≥ Ω(:
@

@−1 ).
This was later improved in 2004 by Kerenedis and de Wolf [20]

via a “quantum argument” to obtain = ≥ :
@

@−2 /polylog(:) when
@ is even, and = ≥ :

@+1
@−1 /polylog(:) when @ is odd. For the �rst

nontrivial setting of @ = 3, their result yields a nearly quadratic

lower bound of = ≥ Ω(:2/log2 :) on the blocklength. Subsequently,
Woodru� [27, 28] improved this bound by polylog(:) factors to
obtain a lower bound of = ≥ Ω(:2/log:) for non-linear codes, and
= ≥ Ω(:2) for linear codes. Very recently, Bhattacharya, Chandran,

and Ghoshal [4] used a combinatorial method to give a new proof

of the quadratic lower bound of = ≥ Ω(:2/log:), albeit with a few

additional assumptions on the code.

Our Work. In this work, we show a near-cubic lower bound

= ≥ :3/polylog(:) on the blocklength of any 3-query LDC. This

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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improves on the previous best lower bound by a $̃ (:) factor. More

precisely, we prove:

Theorem 1. Let C : {0, 1}: → {0, 1}= be a code that is (3, X, Y)-
locally decodable. Then, it must hold that :3 ≤ = ·$ ((log6 =)/Y32X16).
In particular, if X, Y are constants, then = ≥ Ω(:3/log6 :).

We have not attempted to optimize the dependence on Y and X

in Theorem 1. We also suspect that it is simple to extend Theorem 1

to nonbinary alphabets, with a polynomial loss in the alphabet

size. Finally, using known relationships between locally correctable

codes (LCCs) and LDCs (e.g., TheoremA.6 of [5]), Theorem 1 implies

a similar lower bound for 3-query LCCs.

Our main tool is a new connection between the existence of

locally decodable codes and refutation of instances of Boolean CSPs

with limited randomness. This connection is similar in spirit to the

connection between PCPs and hardness of approximation for CSPs,

in which one produces a @-ary CSP from a PCP with a @-query

veri�er by adding, for each possible query set of the veri�er, a local

constraint that asserts that the veri�er accepts when it queries this

particular set. To refute the resulting CSP instance, our proof builds

on the spectral analysis of Kikuchi matrices employed in the recent

work of [16] (and the re�ned argument in [17]), which obtained

strong refutation algorithms for semirandom and smoothed CSPs

and proved the hypergraph Moore bound conjectured by Feige [12]

up to a single logarithmic factor.

Up to polylog(:) factors, the best known lower bound of = ≥
:

@+1
@−1 /polylog(:) for @-LDCs for odd @ can be obtained by simply

observing that a @-LDC is also a (@ +1)-LDC, and then invoking the

lower bound for (@ + 1)-query LDCs. Our improvement for @ = 3

thus comes from obtaining the same tradeo� with @ as in the case

of even @, but now for @ = 3. For technical reasons, our proof does

not extend to odd @ ≥ 5; we brie�y mention in Section 1.1 the place

where the natural generalization fails. We leave proving a lower

bound of = ≥ :
@

@−2 /polylog(:) for all odd @ ≥ 5 as an intriguing

open problem.

1.1 Proof Overview

The key insight in our proof is to observe that for any @, a @-LDC

yields a collection of @-XOR instances, one for each possible mes-

sage, and a typical instance has a high value, i.e., there’s an assign-

ment that satis�es 1
2 +Y-fraction of the constraints. To prove a lower

bound on the blocklength = for 3-LDCs, it is then enough to show

that for any purported construction with = ≪ :3, the associated

3-XOR instance corresponding to a uniformly random message has

a low value. We establish such a claim by producing a refutation

(i.e., a certi�cate of low value), building on tools from the recent

work on refuting smoothed instances of Boolean CSPs [16, 17].

For this overview, we will assume that the code C is a linear

@-LDC. We will also write the code using {−1, 1} notation, so that

C : {−1, 1}: → {−1, 1}= . By standard reductions (Lemma 6.2 in

[31]), one can assume that the LDC is in normal form: there ex-

ist @-uniform hypergraph matchingsH1, . . . ,H: , each with Ω(=)
hyperedges,1 and the decoding procedure on input 8 ∈ [:] simply

1A @-uniform hypergraph H8 is a collection of subsets of [=], called hyperedges, each
of size exactly @. The hypergraph H8 is a matching if all the hyperedges are disjoint.

chooses a uniformly random � ∈ H8 , and outputs
∏

E∈� GE . Be-

cause C is linear, when G = C(1) is the encoding of 1, the decoding
procedure recovers 18 with probability 1. In other words, for any

1 ∈ {−1, 1}: , the assignment G = C(1) satis�es the set of @-XOR
constraints ∀8 ∈ [:],� ∈ H8 ,

∏
E∈� GE = 18 .

The XOR Instance. The above connection now suggests the fol-

lowing approach: let1 ∈ {−1, 1}: be chosen randomly, and consider

the @-XOR instance with constraints ∀8 ∈ [:],� ∈ H8 ,
∏

E∈� GE =

18 . Since C is a linear@-LDC, this set of constraints will be satis�able

for every choice of 1. Thus, proving that the instance is unsatis-

�able, with high probability for a uniformly random 1, implies a

contradiction.

One might expect to show unsatis�ability of a @-XOR instance

produced by a su�ciently random generation process by using

natural probabilistic arguments. Indeed, if the instance was “fully

random” (i.e., bothH8 ’s and 18 ’s chosen uniformly at random from

their domain), or even semirandom (where H8 ’s are worst-case

but each constraint � has a uniformly random “right hand side”

1� ∈ {−1, 1}), then a simple union bound argument su�ces to

prove unsatis�ability.

The main challenge in our setting is that the @-XOR instances

have signi�cantly limited randomness even compared to the semi-

random setting: all the constraints � ∈ H8 share the same right

hand side 18 . In particular, the @-XOR instance on = variables has

: ≪ = bits of independent randomness.

We establish the unsatis�ability of such a @-XOR instance above

by constructing a subexponential-sized SDP-based certi�cate of low

value. A priori, bounding the SDP value might seem like a rather

roundabout route to show unsatis�ability of a @-XOR instance.

However, shifting to this stronger target allows us to leverage the

techniques introduced in the recent work of [16] on semirandom

CSP refutation and to show existence of such certi�cates of unsat-

is�ability. Despite the signi�cantly smaller amount of randomness

in the @-XOR instances produced in our setting, compared to, e.g.,

semirandom instances, we show that an appropriate adaptation of

the techniques from [16] is powerful enough to exploit the combi-

natorial structure in our instances and succeed in refuting them.

Warmup: the case when q is even. Certifying unsatis�ability

of @-XOR instances when @ is even is known to be, from a technical

standpoint, substantially easier compared to the case when @ is

odd. As a warmup, we will �rst sketch a proof of the known lower

bound for @-LDCs when @ is even, via our CSP refutation approach.

A full formal proof is presented in Appendix A.

The refutation certi�cate is as follows. Let ℓ be a parameter to

be chosen later, and let # ≔
(=
ℓ

)
. For a set � ∈

([=]
@

)
,2 we let

�(� ) ∈ R#×# be the matrix indexed by sets ( ∈
([=]
ℓ

)
, where

�(� ) ((,) ) = 1 if ( ⊕ ) = � , and 0 otherwise, where ( ⊕ ) denotes

the symmetric di�erence of ( and ) . We note that ( ⊕ ) = � if

and only if ( = �1 ∪ & and ) = �2 ∪ & , where �1 is half of the

clause � , �2 is the other half of the clause � , and & is an arbitrary

subset of [=] \� of size ℓ − @/2. This matrix �(� ) is the Kikuchi
matrix (also called symmetric di�erence matrix) of [25]. We then set

� =
∑:
8=1 18

∑
�∈H8

�(� ) . By looking at the quadratic form ~⊤�~

2We use
( [=]
C

)
to denote the collection of subsets of [=] of size exactly C .
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where ~ is de�ned as ~( ≔
∏

E∈( GE , where G = C(1), it is simple

to observe that ∥�∥2 ≥ (ℓ/=)@/2 ·
∑:
8=1 |H8 | ≥ (ℓ/=)@/2Ω(:=).

As each 18 is an independent bit from {−1, 1}, the matrix � is

the sum of : independent, mean 0 random matrices: we can write

� =
∑:
8=1 18�8 , where�8 ≔

∑
�∈H8

�(� ) . We can then bound ∥�∥2
using Matrix Bernstein, which implies that ∥�∥2 ≤ $ (Δ) (ℓ log= +√
:ℓ log=), where Δ is the maximum ℓ1-norm of a row in any �8 .

One technical issue is that there are rows with abnormally large ℓ1-

norm, so Δ can be as large as Ω(ℓ). We show that when ℓ ≤ =1−2/@ ,
one can “zero out” rows of�8 carefully so that each row/column has

at most one nonzero entry.3 This allows us to set Δ = 1 provided

that ℓ ≤ =1−2/@ .4

Combining, we thus have that for ℓ ≤ =1−2/@ ,

(ℓ/=)@/2Ω(:=) ≤ ∥�∥2 ≤ $ (ℓ log= +
√
:ℓ log=) .

Taking ℓ = =1−2/@ to be the largest possible setting of ℓ for which

the above holds, we obtain the desired lower bound of : ≤ =1−2/@ ·
polylog(=).
The case of q = 3. When @ = 3, or more generally when @ is odd,

the matrices�(� ) are no longer meaningful, as the condition (⊕) =

� is never satis�ed. A naive attempt to salvage the above approach

is to simply allow the columns of �(� ) to be indexed by sets of

size ℓ + 1, rather than ℓ . However, this asymmetry in the matrix

causes the spectral certi�cate to obtain a suboptimal dependence

in terms of @, leading to a �nal bound of : ≤ =1−2/(@+1)polylog(=),
the same as the current state-of-the-art lower bound for odd @.

This is precisely the issue that in general makes refuting @-XOR

instances for odd @ technically more challenging than even @. The

asymmetric matrix e�ectively pretends that @ is @ + 1, and thus

obtains the “wrong” dependence on @.

Our idea is to transform a 3-LDC into a 4-XOR instance and

then use an appropriate Kikuchi matrix to �nd a refutation for the

resulting 4-XOR instance. The transformation works as follows.

We randomly partition [:] into two sets, !, ', and �x 1 9 = 1 for

all 9 ∈ '. Then, for each intersecting pair of constraints �8 ,� 9 that

intersect with �8 ∈ H8 , 8 ∈ !, � 9 ∈ H9 , 9 ∈ ', we add the derived

constraint �8 ⊕ � 9 to our new 4-XOR instance, with right hand

side 18 .
5 Because the 3-XOR instance was satis�able, the 4-XOR

instance is also satis�able. Moreover, the 4-XOR instance has ∼ :2=
constraints, as a typical E ∈ [=] participates in ∼ : hyperedges in

∪:8=1H8 , and hence can be “canceled” to form :2 derived constraints.

The partition (!, ') is a technical trick that allows us to pro-

duce ∼ :2= constraints in the 4-XOR instance while preserving

: independent bits of randomness in the right hand sides of the

constraints. If we considered all derived constraints, rather than

just those that cross the partition (!, '), then it would be possible

3Concretely, one sets �8 ((,) ) = 1 if ( ⊕ ) = � ∈ H8 , and |( ⊕ �′ |, |) ⊕ �′ | ≠ ℓ

for all other�′ ∈ H8 \� . In other words, one sets �8 ((,) ) = 1 if � (� ) ((,) ) = 1

for some � ∈ H8 and the (-th row and ) -th column are 0 in �(�
′ ) for all other

�′ ∈ H8 \ {� }.
4The “zeroing out” step is a variant of the row pruning argument in [16], which uses a
sophisticated concentration inequality for polynomials [22] to show that almost all
of the rows of�8 have ℓ1-norm at most polylog(=) . As shown in [17], by doing this
explicitly and without using concentration inequalities, we save on the polylog(=)
factor.
5If |�8 ∩� 9 | = 2, then the derived constraint is a 2-XOR constraint, not 4-XOR. This
is a minor technical issue that can be circumvented easily, so we will ignore it for the
proof overview.

to produce derived constraints where the right hand sides have

nontrivial correlations. Speci�cally, one could produce 3 constraints

with right hand sides 181 9 , 1 91C , 181C , which are pairwise indepen-

dent but not 3-wise independent. With the partitioning, however,

the right hand sides of any two constraints must either be equal or

independent, and in particular there are no nontrivial correlations.

The fact that we have produced more constraints in the 4-XOR

instance is crucial, as otherwise we could only hope to obtain the

same bound as in the @ = 4 case in the warmup earlier. However,

our reduction does not produce an instance with the same structure

as a 4-XOR instance arising from a 4-LDC: if we let H ′8 for 8 ∈ !
denote the set of derived constraints with right hand side 18 , then

we clearly can see that H ′8 is not a matching. In fact, the typical

size of H ′8 is Ω(=:), whereas a matching can have at most =/@
hyperedges.

Nonetheless, we can still apply the CSP refutation machinery

to try to refute this 4-XOR instance. However, because each H ′8
is no longer a matching, the “zeroing out” step now only works

if we assume that any pair ? = (D, E) of vertices appears in at

most polylog(=) hyperedges in the original 3-uniform hypergraph

∪:8=1H8 . But, if we make this assumption, the rest of the proof

follows the blueprint of the even @ case, and we can prove that

= ≥ :3/polylog(:). We note that a recent work [4] managed to

reprove that = ≥ :2/polylog(:) under a similar assumption about

pairs of vertices.

Thus, the �nal step of the proof is to remove the assumption by

showing that no pair of vertices can appear in too many hyperedges.

Suppose that we do have many “heavy” pairs ? = (D, E) that appear
in ≫ log= clauses in the original 3-uniform hypergraph H ≔
∪:8=1H8 . Now, we transform the 3-XOR instance into a bipartite

2-XOR instance ([1, 16]) by replacing each heavy pair ? with a

new variable ~? . That is, the 3-XOR clause � = (D, E,F) inH8 now

becomes the 2-XOR clause (?,F), where ? is a new variable. In other

words, the constraint GDGEGF = 18 is replaced by ~?GF = 18 . Each

clause in the bipartite 2-XOR instance now uses one variable from

the set of heavy pairs, and one from the original set of variables

[=]. We then show that if there are too many heavy pairs, then

this instance has a su�cient number of constraints in order to be

refuted, and is thus not satis�able, which is again a contradiction.

Finally, we note that for larger odd @ ≥ 5, the proof showing

that there not too many heavy pairs breaks down, and this is what

prevents us from generalizing Theorem 1 to all odd @.

1.2 Discussion: LDCs and the CSP Perspective

Prior work on lower bounds for @-LDCs reduce @-query LDCs with

even @ to 2-query LDCs, and then apply the essentially tight known

lower bounds for 2-query LDCs. (To handle the odd @ case, they

essentially observe that a @-LDC is also a (@ + 1)-LDC.) While the

warmup proof we sketched earlier (and present in Appendix A)

for even @ is in the language of CSP refutation, it is in fact very

similar to the reduction from @-LDCs to 2-LDCs for @ even used in

the proof in [20]. The reduction in [20] (see also Exercise 4 in [15])

employs a certain tensor product, and while it is not relevant to

their argument, the natural matrix corresponding to the 2-LDC

produced by their reduction is in fact very closely related to the

Kikuchi matrix � of [25].
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The main advantage of the CSP refutation viewpoint is that

it suggests a natural route to analyze @-LDCs for odd @ via an

appropriately modi�ed Kikuchi matrix. By viewing the 3-LDC as

a 3-XOR instance, we obtain a natural way to produce a related

4-XOR instance using a reduction that does not correspond to a 4-

LDC. In fact, if our reduction were to only produce a 4-LDC, then

we would not expect to obtain an improved 3-LDC lower bound

without improving the 4-LDC lower bound as well. In a sense,

this relates to the key strength of the CSP viewpoint in that it is

arguably the “right” level of abstraction. On one hand, it naturally

suggests reductions from 3-LDCs to 4-XOR that are rather unnatural

if one were to follow the more well-trodden route of reducing odd

query LDCs to even query ones. On the other hand, the ideas from

semirandom CSP refutation are resilient enough to apply, with

some e�ort, to even the more general, non-semirandom instances

arising in such reductions, and so we can still prove lower bounds.

Further exploration of such an approach to obtain stronger lower

bounds for LDCs is an interesting research direction.

2 PRELIMINARIES

2.1 Basic Notation

We let [=] denote the set {1, . . . , =}. For two subsets (,) ⊆ [=], we
let ( ⊕ ) denote the symmetric di�erence of ( and ) , i.e., ( ⊕ ) ≔
{8 : (8 ∈ ( ∧ 8 ∉ ) ) ∨ (8 ∉ ( ∧ 8 ∈ ) )}. For a natural number C ∈ N,
we let

([=]
C

)
be the collection of subsets of [=] of size exactly C .

For a rectangular matrix � ∈ R<×= , we let

∥�∥2 ≔ max
G∈R<,~∈R= :∥G ∥2=∥~ ∥2=1

G⊤�~

denote the spectral norm of �.

2.2 Locally Decodable Codes and Hypergraphs

De�nition 2.1. A hypergraphH with vertices [=] is a collection
of subsets � ⊆ [=] called hyperedges. We say that a hypergraph

H is @-uniform if |� | = @ for all � ∈ H , and we say that H is

a matching if all the hyperedges in H are disjoint. For a subset

& ⊆ [=], we de�ne the degree of & inH , denoted degH (&), to be

|{� ∈ H : & ⊆ �}|.

De�nition 2.2 (Locally Decodable Code). A code C : {0, 1}: →
{0, 1}= is (@, X, Y)-locally decodable if there exists a randomized

decoding algorithm Dec(·) with the following properties. The al-

gorithm Dec(·) is given oracle access to some ~ ∈ {0, 1}= , takes an
8 ∈ [:] as input, and satis�es the following: (1) the algorithm Dec

makes at most @ queries to the string ~, and (2) for all 1 ∈ {0, 1}: ,
8 ∈ [:], and all~ ∈ {0, 1}= such that Δ(~, C(1)) ≤ X=, Pr[Dec~ (8) =
18 ] ≥ 1

2 + Y. Here, Δ(G,~) denotes the Hamming distance between

G and ~, i.e., the number of indices E ∈ [=] where GE ≠ ~E .

Following known reductions [31], locally decodable codes can

be reduced to the following normal form, which is more convenient

to work with.

De�nition 2.3 (Normal LDC). A code C : {−1, 1}: → {−1, 1}= is

(@, X, Y)-normally decodable if for each 8 ∈ [:], there is a @-uniform
hypergraph matchingH8 with at least X= hyperedges such that for

every� ∈ H8 , it holds that Pr1←{−1,1}: [18 =
∏

E∈� C(1)E] ≥ 1
2 +Y.

Fact 2.4 (Reduction to LDC Normal Form, Lemma 6.2 in [31]). Let

C : {0, 1}: → {0, 1}= be a code that is (@, X, Y)-locally decodable.

Then, there is a code C′ : {−1, 1}: → {−1, 1}$ (=) that is (@, X ′, Y′)
normally decodable, with X ′ ≥ YX/3@22@−1 and Y′ ≥ Y/22@ .

2.3 The Matrix Bernstein Inequality

Our work will use the expectation form of the standard rectangular

Matrix Bernstein inequality.

Fact 2.5 (Rectangular Matrix Bernstein Inequality, Theorem 4.1.1

of [24]). Let -1, . . . , -: be �xed 31 × 32 matrices and 11, . . . , 1: be

i.i.d. from {−1, 1}. Let f2 ≥ max(∥∑:
8=1 -8-

⊤
8 ] ∥2, ∥

∑:
8=1 -

⊤
8 -8 ] ∥2).

Then

E

[
∥

:∑
8=1

18-8 ∥2
]
≤

√
2f2 log(31 + 32) .

2.4 A Fact about Binomial Coe�cients

We will need the following fact about the ratio of two speci�c

binomial coe�cients.

Fact 2.6. Let =, ℓ, @ be positive integers such that =/2 ≥ ℓ ≥ @. Then,

43@ (ℓ/=)@ ≥
(=−2@
ℓ−@

)
/
(=
ℓ

)
≥ 4−3@ (ℓ/=)@ .

Proof. The ratio(
= − 2@
ℓ − @

)
/
(
=

ℓ

)
=

(= − 2@)!
(ℓ − @)!(= − ℓ − @)! ·

ℓ!(= − ℓ)!
=!

=

(
= − ℓ
@

) (
ℓ

@

)
/
(
2@

@

) (
=

2@

)
.

This implies that(
= − 2@
ℓ − @

)
/
(
=

ℓ

)
≤ 42@

(
= − ℓ
@

)@ (
ℓ

@

)@
· 2−@

(
=

2@

)−2@

≤ 42@@−2@2−@ (2@)2@
(
= − ℓ
=

)@ (
ℓ

=

)@
≤ 43@

(
ℓ

=

)@
,

and that(
= − 2@
ℓ − @

)
/
(
=

ℓ

)
≥

(
= − ℓ
@

)@ (
ℓ

@

)@
· 2−2@

(
4=

2@

)−2@

= 4−2@ ·
(
= − ℓ
=

)@ (
ℓ

=

)@
≥ 4−2@2−@

(
ℓ

=

)@
≥ 4−3@

(
ℓ

=

)@
,

where we use that ℓ ≤ =/2. Throughout, we use that
(
=
:

):
≤

(=
:

)
≤(

4=
:

):
. □

3 LOWER BOUND FOR 3-QUERY LOCALLY

DECODABLE CODES

In this section, we will prove Theorem 1, our main result.

Setup. By Fact 2.4, in order to show that :3 ≤ = · $ (log
6 =)

Y32X16
, it suf-

�ces for us to show that for any code C : {−1, 1}: → {−1, 1}= that

is (3, X, Y)-normally decodable, it holds that :3 ≤ = · $ (log
6 =)

Y16X16
. As C

is (3, X, Y)-normally decodable, this implies that there are 3-uniform

hypergraph matchingsH1, . . . ,H: satisfying the property in De�-

nition 2.3. Let< ≔
∑:
8=1 |H8 | be the total number of hyperedges in

the hypergraphH ≔ ∪:8=1H8 .
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The key idea in our proof is to de�ne a 3-XOR instance corre-

sponding to the decoder in De�nition 2.3. By De�nition 2.3, the

3-XOR instance we de�ne has a high value, i.e., there is an as-

signment to the variables satisfying a nontrivial fraction of the

constraints. To �nish the proof, we show that if = ≪ :3, then the

3-XOR instance must have small value, which is a contradiction.

We de�ne the relevant family of 3-XOR instances below.

The Key 3-XOR Instances

For each 1 ∈ {−1, 1}: , we de�ne the 3-XOR instance Ψ1 ,

where:

(1) The variables are G1, . . . , G= ∈ {−1, 1},
(2) The constraints are, for each 8 ∈ [:] and� ∈ H8 ,

∏
E∈� GE =

18 .

The value of Ψ1 , denoted val(Ψ1 ), is the maximum fraction

of constraints satis�ed by any assignment G ∈ {−1, 1}= .
We associate an instance Ψ1 with the polynomialk1 (G) ≔

1
<

∑:
8=1 18

∑
�∈H8

∏
E∈� GE , and de�ne val(k1 ) to be the max-

imum over G ∈ {−1, 1}= of k1 (G). We note that val(Ψ1 ) =
1
2 +

1
2val(k1 ).

We �rst observe that De�nition 2.3 immediately implies that every

3-XOR instance in the above family (indexed by 1 ∈ {−1, 1}: ) Ψ1
must have a non-trivially large value. Formally, we have that

E1←{−1,1}: [val(k1 )] ≥ E1←{−1,1}: [k1 (C(1))] ≥ 2Y , (1)

where the �rst inequality is by de�nition of val(·), and the sec-

ond inequality uses De�nition 2.3, as for each constraint � ∈ H8

for some 8 , the encoding C(1) of 1 satis�es this constraint with

probability 1
2 + Y for a random 1.

Overview: refuting the XOR instances. To �nish the proof, it

thus su�ces to argue that E1←{−1,1}: [val(k1 )] is small. We will

do this by using a CSP refutation algorithm inspired by [16]. Our

argument proceeds in two steps:

(1) Decomposition: First, we take any pair & = {D, E} of vertices
that appears in≫ log= of the hyperedges inH ≔ ∪:8=1H8 , and

we replace this pair with a new variable~& in all the constraints

containing this pair. This process decomposes the 3-XOR in-

stance into a bipartite 2-XOR instance ([1, 16]), and a residual

3-XOR instance where every pair of variables appears in at most

$ (log=) constraints.
(2) Refutation: We then produce a “strong refutation” for each

of the bipartite 2-XOR and the residual 3-XOR instances that

shows that the average value of the instance over the draw

of 1 ∼ {−1, 1}: is small. This implies that each of the two

instances produced and thus the original 3-XOR instance has a

small expected value and �nishes the proof.

We now formally de�ne the decomposition process. We recall a

notion of degree in hypergraphs that turns out to be useful in our

argument (similar to the analysis in [16]).

De�nition 3.1 (Degree). LetH be a @-uniform hypergraph on =

vertices, and let& ⊆ [=]. The degree of& , degH (&), is the number

of � ∈ H with & ⊆ � .

Lemma 3.2 (Hypergraph Decomposition). Let H1, . . . ,H: be 3-

uniform hypergraphs on = vertices, and letH ≔ ∪:8=1H8 . Let 3 ∈ N

be a threshold. Let % ≔ {{D, E} : degH ({D, E}) > 3}. Then, there are
3-uniform hypergraphsH ′1 , . . . ,H

′
:
and bipartite graphs�1, . . . ,�: ,

with the following properties.

(1) Each�8 is a bipartite graph with left vertices [=] and right vertices
% .

(2) EachH ′8 is a subset ofH8 .

(3) For each 8 ∈ [:], there is a one-to-one correspondence between

hyperedges � ∈ H8 \ H ′8 and edges 4 in �8 , given by 4 =

(F, {D, E}) ↦→ � = {D, E,F}.
(4) Let H ′ ≔ ∪:8=1H

′
8 . Then, for any D ≠ E ∈ [=], it holds that

degH′ ({D, E}) ≤ 3 .

(5) IfH8 is a matching, thenH ′8 and �8 are also matchings.

The proof of Lemma 3.2 is simple, and is given in Section 3.1.

Given the decomposition, the two main steps in our refutation

are captured in the following two lemmas, which handle the 2-XOR

and 3-XOR instances, respectively.

Lemma 3.3 (2-XOR refutation). Fix = ∈ N. Let �1, . . . ,�: be bi-

partite matchings with left vertices [=] and a right vertex set % of

size |% | ≤ =:/3 for some 3 ∈ N. For 1 ∈ {−1, 1}: , let 61 (G,~) be a
homogeneous quadratic polynomial de�ned by

61 (G,~) ≔
:∑
8=1

18

∑
4={E,? }:E∈[=],?∈%

GE~? ,

and let val(61 ) ≔ maxG∈{−1,1}=,~∈{−1,1}% 61 (G,~). Then, it holds
that E1←{−1,1}: [val(61 )] ≤ $ (=:

√
(log=)/3).

Lemma 3.4 (3-XOR refutation). LetH1, . . . ,H: be 3-uniform hy-

pergraph matchings on = vertices, and let H ≔ ∪:8=1H8 . Suppose

that for any {D, E} ⊆ [=], degH ({D, E}) ≤ 3 . Let 51 (G) be de�ned as∑:
8=1 18

∑
�∈H8

∏
E∈� GE . Then, it holds that

E1←{−1,1}: [val(51 )] ≤ =
√
: ·$ (3) · (=:)1/8 log1/4 = .

We prove Lemma 3.3 in Section 3.2, and we prove Lemma 3.4 in

Section 4.

With the above ingredients, we can now �nish the proof of

Theorem 1.

Proof of Theorem 1. Applying Lemma 3.2 with 3 chosen to

be $ ((log=)/Y2X2) for a su�ciently large constant, we decompose

the instance Ψ1 into 2-XOR and 3-XOR subinstances.6 Note that as

< ≤ =: , we will have |% | ≤ </3 ≤ =:/3 . We have that<val(k1 ) ≤
val(51 )+val(61 ) because of the one-to-one correspondence property
in Lemma 3.2.We also note that< ≥ X=: , as |H8 | ≥ X= for each 8 . By

Lemma 3.3 and by taking the constant in the choice of 3 su�ciently

large, we can ensure that E1←{−1,1}: [val(61 )] ≤ YX=:/3. Hence,

6We remark that it is possible that one (but not both!) of the 2-XOR or 3-XOR subin-
stances has very few constraints, or even no constraints at all. This is not a problem,
however, as then the upper bound on the value of the instance shown in corresponding
lemma (either Lemma 3.3 or Lemma 3.4) becomes trivial.
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by Eq. (1) and Lemma 3.4, we have

2YX=: ≤ 2Y< ≤ <E1←{−1,1}: [val(k1 )]
≤ E1←{−1,1}: [val(51 ) + val(61 )]

≤ YX=:

3
+ =
√
: ·$ (

√
log=/YX) · (=:)1/8 log1/4 =

=⇒ Y2X2
√
: ≤ $ (

√
log=) · (=:)1/8 log1/4 =

=⇒ :3 ≤ = ·$ (log6 =)/Y16X16 .

We thus conclude that :3 ≤ = ·$
(
log6 =

Y16X16

)
, which �nishes the proof.

□

3.1 Hypergraph Decomposition: Proof of

Lemma 3.2

We prove Lemma 3.2 by analyzing the following greedy algorithm.

Algorithm 3.5.

Given: 3-uniform hypergraphsH1, . . . ,H: .

Output: 3-uniform hypergraphsH ′1 , . . . ,H
′
:
and bipar-

tite graphs �1, . . . ,�: .

Operation:

(1) Initialize: H ′8 = H8 for all 8 ∈ [:], % = {{D, E} :
degH′ ({D, E}) > 3}, whereH ′ = ∪8∈[: ]H ′8 .

(2) While % is nonempty:

(1) Choose ? = {D, E} ∈ % arbitrarily.

(2) For each 8 ∈ [:], � ∈ H ′8 with ? ∈ � , remove �

fromH ′8 , and add the edge (� \ ?, ?) to �8 .

(3) Recompute % = {{D, E} : degH′ ({D, E}) > 3}.
(3) OutputH ′1 , . . . ,H

′
:
, �1, . . . ,�: .

Indeed, properties (1), (2) and (5) in Lemma 3.2 trivially hold. Prop-

erty (4) holds because otherwise the algorithm would not have

terminated, as the set % would still be nonempty. Property (3) holds

because each hyperedge� ∈ H8 starts inH ′8 , and is either removed

exactly once and added to�8 as (� \ ?, ?), or remains inH ′8 for the

entire operation of the algorithm. This �nishes the proof.

3.2 Refuting the 2-XOR Instance: Proof of

Lemma 3.3

We now prove Lemma 3.3. We do this as follows. For each 4 =

{E, ?}, with E ∈ [=], ? ∈ % , de�ne the matrix �(4 ) ∈ R=×% , where
�(4 ) (E ′, ?′) = 1 if E ′ = E and ?′ = ? , and 0 otherwise. Let �8 ≔∑
4∈�8

�(4 ) , the bipartite adjacency matrix of �8 . Finally, let � ≔∑:
8=1 18�8 .

First, we observe that val(61 ) ≤
√
= |% | ∥�∥2. Indeed, this is be-

cause for any G ∈ {−1, 1}=, ~ ∈ {−1, 1}% , we have 61 (G,~) =

G⊤�~ ≤ ∥G ∥2∥~∥2∥�∥2 =
√
= |% | ∥�∥2. Thus, in order to bound

E1←{−1,1}: [val(61 )], it su�ces to bound E1 [∥�∥2].
We use Fact 2.5 to bound E[∥�∥2]. Indeed, we observe that

∥�8 ∥2 ≤ 1 for each 8 , as each row/column of �8 has at most one

nonzero entry of magnitude 1 because each�8 is a matching. Thus,

max(∥∑:
8=1�8�

⊤
8 ∥, ∥

∑:
8=1�

⊤
8 �8 ∥) ≤ : . As the 18 ’s are i.i.d. from

{−1, 1}, by Fact 2.5 we have that E[∥�∥2] ≤ $ (
√
: log=). It thus

follows that E[val(61 )] ≤
√
= |% |$ (

√
: log=) ≤ $ (=:

√
(log=)/3).

4 REFUTING THE 3-XOR INSTANCE: PROOF

OF LEMMA 3.4

In this section, we will omit the subscript and write 5 instead of 51 .

We will also let< ≔ |H | = ∑:
8=1 |H8 |.

For a vertex D ∈ [=] and a subset � ∈
([=]
2

)
, we will use the

notation (D,�) to denote the set {D} ∪ � . We will assume that

: ≤ =/2 for some su�ciently large absolute constant 2 . This is

without loss of generality, as otherwise we can partition : into

at most 2 disjoint blocks of size ≤ =/2 , and refute each of these

subinstances separately.

The main idea is inspired by the “Cauchy-Schwarz” trick in

the context of refuting odd-arity XOR instances. Speci�cally, we

will construct a 4-XOR instance by “canceling” out every GD that

appears in two di�erent clauses. Concretely, include every element

in [:] into one of two sets !, ' uniformly at random. Then, for

any (D,�) ∈ H8 with 8 ∈ ! and (D,�′) ∈ H9 with 9 ∈ ', we

construct the “derived clause” � ⊕ �′ by XOR-ing both sides of the

two constraints. We then relate the value of the instance with such

derived constraints to the original 3-XOR instance and produce

a spectral refutation for the derived instance via an appropriate

subexponential-sized matrix. This will show that the expected value

of the derived instance, over the randomness of the 18 ’s, is small,

and complete the proof.

Relating the derived 4-XOR to the original 3-XOR. First,

let (!, ') be a partition of [:] into two sets of equal size :/2. Let
5!,' (G) be the following polynomial:

5!,' (G) ≔
∑
8∈!
9∈'

∑
D∈[=]

∑
(D,� ) ∈H8

(D,�′ ) ∈H9

181 9G�G�′ ,

where G� is de�ned as
∏

E∈� GE . We note that because the H8 ’s

are matchings, after �xing 8 , 9 , and D, there is at most one pair

(�,�′) in the inner sum. Informally speaking, only working with

clauses derived across the partition allows us to “preserve” ∼ :

independent bits of randomness in the right hand sides of the 4-

XOR instance while eliminating nontrivial correlations. This is

crucial in eventually applying the Matrix Bernstein inequality to

produce a spectral refutation.

The following lemma relates val(5!,') to val(5 ).

Lemma 4.1 (Cauchy-Schwarz Trick). Let 5 be as in Lemma 3.4 and

let !, ' ⊆ [:] be constructed by including every element in [:] to be in
! with probability 1/2 independently and de�ning ' = [:] \ !. Then,
it holds that 9 · val(5 )2 ≤ 3=< + 4=E(!,')val(5!,'). In particular,

E1∈{−1,1}: [9 · val(5 )2] ≤ 3=< + 4=E(!,')E1∈{−1,1}: [val(5!,')].

Proof. Fix any assignment to G ∈ {−1, 1}= . We have that

(35 (G))2 = ©­«
∑

D∈[=]
GD

∑
8∈[: ]

∑
(D,� ) ∈H8

18G�
ª®¬
2

≤ ©­
«

∑
D∈[=]

G2D
ª®
¬
©­
«

∑
D∈[=]

©­
«

∑
8∈[: ]

∑
(D,� ) ∈H8

18G�
ª®
¬
2ª®
¬
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= =
∑

D∈[=]

∑
8, 9∈[: ]

∑
(D,� ) ∈H8

(D,�′ ) ∈H9

181 9G�G�′

= =

©­­­­
«
3

∑
8∈[: ]

|H8 | +
∑

D∈[=]

∑
8, 9∈[: ],8≠9

∑
(D,� ) ∈H8

(D,�′ ) ∈H9

181 9G�G�′

ª®®®®
¬

= 3=< + 4= · E(!,') 5!,' (G) ,
where the �rst equality is because there are 3 ways to decompose a

set �8 ∈ H8 with |�8 | = 3 into a pair (D,�), the inequality follows

by the Cauchy-Schwarz inequality, and the last equality follows

because for a pair of hypergraphsH8 andH9 , we have 8 ∈ ! and

9 ∈ ' with probability 1/4. Finally, maxG∈{−1,1}= E(!,') 5!,' (G) ≤
E(!,') maxG∈{−1,1}= 5!,' (G) = E(!,')val(5!,'). Thus, we have that
9 · val(5 )2 ≤ 3=< + 4= · E(!,')val(5!,'). □

4.1 Bounding val(5!,') Using CSP Refutation

It remains to bound E1∈{−1,1}: val(5!,') for each choice of partition
(!, '). We will do this by introducing a matrix � for each 1 ∈
{−1, 1}: and partition (!, '), and then we will relate val5!,' to ∥�∥2.
Note that � will depend on the choice of 1 and the partition (!, ').
Then, we will bound E1∈{−1,1}: [∥�∥2].

To de�ne the matrix �, we introduce the following de�nitions.

De�nition 4.2. LetD ∈ [=] be a vertex.We letD (1) andD (2) denote
the elements (D, 1) and (D, 2) of [=]× [2], i.e., if we think of [=]× [2]
as two copies of [=], thenD (1) is the �rst copy andD (2) is the second
one. We use similar notation for sets, so if � ⊆ [=], then � (1) and
� (2) denote the subsets of [=]×[2] de�ned as� (1 ) = {(8, 1) : 8 ∈ �}
for 1 ∈ [2].

De�nition 4.3 (Half clauses). For 8 ∈ !, 9 ∈ ', we de�ne the set
%8, 9 of “half clauses” to consist of all pairs (E (1) ,F (2) ) such that

there exist clauses (D,�) ∈ H8 , (D,�′) ∈ H9 where E ∈ � and

F ∈ �′.
We let %8 ≔ ∪9∈'%8, 9 .

Our matrix is easiest to de�ne in two steps. We �rst de�ne a

matrix �. Then, we will specify some modi�cations to � that yield

the �nal matrix �.

De�nition 4.4 (Our initial Kikuchi matrix). Let ℓ ≔ (
√
=/:)/2 for

some su�ciently large constant 2 ,7 and let # ≔
(2=
ℓ

)
. For any two

sets (,) ⊆ [=] × [2] and sets �,�′ ∈
([=]
2

)
, we say that (

�,�′↔ ) if

(1) ( ⊕ ) = � (1) ⊕ �′(2) ,
(2) |( ∩� (1) | = |( ∩�′(2) | = |) ∩� (1) | = |) ∩�′(2) | = 1.

Note that� (1) ⊕�′(2) = � (1) ∪�′(2) , as� (1) and�′(2) are disjoint
by construction.

For each 8 ∈ ! and�,�′ ∈
([=]
2

)
, de�ne the#×# matrix� (8,�,�

′ ) ,
indexed by sets ( ⊆ [=] × [2] of size ℓ , by setting � (8,�,�′ ) ((,) ) = 1

if (1) (
�,�′↔ ) , and (2) each of ( and ) contains at most one half

clause from %8 . Otherwise, we set �
(8,�,�′ ) ((,) ) = 0.

7We note that the matrix is only well-de�ned if ℓ ≥ 2, but this holds because we
assumed that : ≤ =/2′ for some su�ciently large absolute constant 2′ . This is the
only place where we will use this assumption.

Finally, we let

�8, 9 ≔
∑

D∈[=]

∑
(D,� ) ∈H8 ,(D,�′ ) ∈H9

� (8,�,�
′ ) ,

�8 ≔
∑
9∈'

1 9�8, 9 ,

� ≔
∑
8∈!

18�8 .

Remark 4.5. For a �xed choice of (D,�) ∈ H8 , (D,�′) ∈ H9 with

9 ∈ ', the matrix � (8,�,�
′ ) has exactly 4

(2=−4
ℓ−2

)
nonzero entries, if

we ignore the additional condition that ( and ) each contain at

most one half clause from %8 . Indeed, this is because (
�,�′↔ ) if

and only if ( and ) each contain one entry of � and �′ (2 choices
per clause), and the remaining part of ( and ) is the same set

& ⊆ [=] × [2] \ (� (1) ⊕ �′(2) ) of size ℓ − 2 (which has
(2=−4
ℓ−2

)
choices).

We note that this fact is the reason for using subsets of [=] × [2]
rather than just [=]. If we used subsets of [=] only, the number

of nonzero entries in � (8,�,�
′ ) would depend on |� ⊕ �′ |, whereas

with subsets of [=] × [2] we always have |� (1) ⊕ �′(2) | = 4.

Observe that if (
�,�′↔ ) , then ( and ) each contain at least

one half clause from %8 , namely coming from (�,�′). Thus, the
additional condition on ( and ) is that they contain no other half

clauses. As we shall see, this additional condition makes ∥�8 ∥2 ≤
$ (3), where 3 is the parameter in the statement of Lemma 3.4,

without meaningfully a�ecting the number of nonzero entries in

each of the � (8,�,�
′ ) ’s. We note that without this condition, one can

show that ∥�8 ∥2 ≥ Ω(ℓ), which is large.

The following lemma shows that the number of nonzero entries

in � (8,�,�
′ ) is at least 2

(2=−4
ℓ−2

)
, i.e., half of 4

(2=−4
ℓ−2

)
; thus, the addi-

tional condition only decreases the number of nonzero entries by a

factor of 2 per derived constraint. The factor of 2 is not important

and is chosen for convenience, and determines the constant 2 in

the parameter ℓ .

Lemma 4.6 (Counting nonzero entries). For some (D,�) ∈ H8 and

(D,�′) ∈ H9 with 9 ∈ ', let � (8,�,�′ ) be as in De�nition 4.4. Then,

the number of nonzero entries in � (8,�,�
′ ) is at least 2

(2=−4
ℓ−2

)
.

We postpone the proof of Lemma 4.6 to Section 4.2, and now

continue with the proof.

We obtain the �nal matrix � by, for each �(8,�,�
′ ) , zero-ing out

entries of � (8,�,�
′ ) until it has exactly 2

(2=−4
ℓ−2

)
nonzero entries. This

is identical to the “equalizing step” of the edge deletion process

in [17].

De�nition 4.7 (Our �nal Kikuchi matrix). For each 8 ∈ ! and

each pair of clauses (D,�) ∈ H8 and (D,�′) ∈ H9 with 9 ∈ ', let
�(8,�,�

′ ) be the matrix obtained from � (8,�,�
′ ) by arbitrarily zero-

ing out entries of � (8,�,�
′ ) until the resulting matrix has exactly

� ≔ 2
(2=−4
ℓ−2

)
nonzero entries.
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We let

�8, 9 ≔

∑
D∈[=]

∑
(D,� ) ∈H8 ,(D,�′ ) ∈H9

�(8,�,�
′ ) ,

�8 ≔

∑
9∈'

1 9�8, 9 ,

� ≔
∑
8∈!

18�8 .

We are now ready to �nish the proof. First, we relate ∥�∥2 to
val(5!,'). Fix an assignment G ∈ {−1, 1}= , and let I ∈ {−1, 1}# be

de�ned as I( ≔
∏

D∈(1 GD
∏

E∈(2 GE for ( = (
(1)
1 ∪(

(2)
2 ⊆ [=] × [2]

satisfying |( | = ℓ .

We observe that � · 5!,' (G) = I⊤�I. This is because:

(1) For (,) ⊆ [=] × [2] with ( ⊕ ) = � (1) ⊕ �′(2) , we have

I(I) =

∏
D∈(1

GD

∏
E∈(2

GE

∏
D′∈)1

GD

∏
E′∈)2

GE

=

∏
D∈(1⊕)1

GD

∏
E∈(2⊕)2

GE =
∏
D∈�

GD

∏
E∈�′

GE ,

(2) For a pair of clauses (D,�) ∈ H8 and (D,�′) ∈ H9 with 8 ∈ !
and 9 ∈ ', there are exactly � = 2

(2=−4
ℓ−2

)
nonzero entries ((,) )

of �(8,�,�
′ ) , and these entries have ( ⊕ ) = � (1) ⊕ �′(2) .

In particular, this implies

val(5!,') ≤
#

�
· ∥�∥2 . (2)

It thus remains to bound E1∈{−1,1}: [∥�∥2], which we do in the

following lemma.

Lemma 4.8 (Spectral norm bound). It holds that E1∈{−1,1}: [∥�∥2]
is at most 3 ·$ (

√
:ℓ log=).

We postpone the proof of Lemma 4.8 to Section 4.3, and now

�nish the proof of Lemma 3.4.

Proof of Lemma 3.4. By Eq. (2) and Lemma 4.8, we have that

E1∈{−1,1}: [val(5!,')] ≤
#

�
E1∈{−1,1}: [∥�∥2]

≤ #

�

(
3 ·$ (

√
:ℓ log=)

)
≤ =2

ℓ2
3 ·$ (

√
:ℓ log=)

= =:3 ·$ ((=:)1/4
√
log=) ,

where we use that ℓ = (
√
=/:)/2 for some constant 2 , and we use

Fact 2.6 to bound # /� . Finally, combining with Lemma 4.1 and

using that< ≤ =: , we have that

E[val(5 )]2 ≤ E[val(5 )2]

≤ 1

9
·
(
3=2: + 4=E(!,')E1∈{−1,1}: [val(5!,')]

)
≤ =2:3 ·$ ((=:)1/4

√
log=) .

Hence,

E[val(5 )] ≤ =
√
:3 ·$

(
(=:)1/8 log1/4 =

)
,

which �nishes the proof of Lemma 3.4. □

4.2 Counting Nonzero Entries: Proof of

Lemma 4.6

Proof of Lemma 4.6. Fix 9 ∈ ' and clauses (D,�) ∈ H8 and

(D,�′) ∈ H9 . Recall that in Remark 4.5, we observed that there are

exactly 4
(2=−4
ℓ−2

)
pairs ((,) ) with (

�,�′↔ ) . Indeed, this is because

(
�,�′↔ ) if and only if ( and) each contain one entry of� and�′ (2

choices per clause), and the remaining part of ( and ) is the same

set & ⊆ [=] × [2] \ (� (1) ⊕ �′(2) ) of size ℓ − 2 (which has
(2=−4
ℓ−2

)
choices).

From the above, we observe that for each& ⊆ [=] × [2] \ (� (1) ⊕
�′(2) ) of size ℓ − 2, we can identify & with 4 di�erent pairs ((,) )
with (

�,�′↔ ) ; namely, each pair ((,) ) corresponds to a subset of

size 2 of (�,�′) containing exactly one entry from each of �,�′.
We note that these 4 choices of ((,) ) correspond exactly to the 4

half clauses in %8 contributed by the derived clause (�,�′). We will

show that for at least 1
2

(2=−4
ℓ−2

)
choices of & , all 4 corresponding

choices of ((,) ) will contain exactly one derived clause from %8 :

namely, the half clause of (�,�′) that we add to & to obtain ( or ) .

This clearly su�ces to �nish the proof.

Call such a set & bad if it does not have the above property,

i.e., there is some pair ((,) ) identi�ed with & such that one of (

or ) contains more than one half clause from %8 . Since (
�,�′↔ )

already implies that each of ( and ) has exactly one half clause

from � (1) ⊕ �′(2) , there are three ways that & can be bad:

(1) & contains a half clause from %8 ,

(2) there is E (1) ∈ � (1) andF (2) ∈ & such that (E (1) ,F (2) ) ∈ %8 ,
(3) there is E (1) ∈ & andF (2) ∈ �′(2) such that (E (1) ,F (2) ) ∈ %8 .
We thus have that the number of bad & ’s is at most

?0

(
2= − 6
ℓ − 4

)
+ ?1

(
2= − 5
ℓ − 3

)
+ ?2

(
2= − 5
ℓ − 3

)
,

where ?0 = |%8 |, ?1 = |{(E (1) ,F (2) ) ∈ %8 : E (1) ∈ � (1) }|, ?2 =

|{(E (1) ,F (2) ) ∈ %8 : F (2) ∈ �′(2) }|.
We now upper bound ?0, ?1, ?2. Recall that a half clause in %8 is a

pair (E (1) ,F (2) ) such that there are clauses (D,�1) ∈ H8 , (D,�2) ∈
H9 with 9 ∈ ', and E ∈ �1,F ∈ �2.

(1) We have ?0 ≤ 4=: , as for each D ∈ [=], because the H8 ’s are

matchings, there is at most one �1 such that (D,�1) ∈ H8 , and

at most : choices of (D,�2) ∈ H9 with 9 ∈ ', as |' | ≤ : . Finally,

each choice of (�1,�2) yields 4 half clauses.
(2) We have ?1 ≤ 8: . First, there are at most 2 choices for E , each

coming from � . For each such E , there is at most one �8 ∈ H8

with E ∈ �8 . (Note that |�8 | = 3.) Once �8 is �xed, we have at

most 2 choices for D, given by �8 \ {E}, and there are at most :

hyperedges (D,�2) ∈ H9 for 9 ∈ ' (as each H9 is a matching

and |' | ≤ :). Finally, for each such �2 there are 2 possible

choices forF .

(3) We have ?2 ≤ 8: . First, there are at most 2 choices forF , each

coming from �′. For each suchF , there are at most : choices

of � 9 ∈ ∪9∈'H9 with F ∈ � 9 , as each H9 is a matching and

|' | ≤ : . (Note that |� 9 | = 3.) For each such� 9 , there are at most

2 choices for D, given by � 9 \ {F}, and for each D, there is at

most one choice of �1 such that (D,�1) ∈ H8 . Finally, such a

�1, if it exists, gives 2 choices for E .
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Combining, we thus have that the number of bad & ’s is at most

4=:

(
2= − 6
ℓ − 4

)
+ 16:

(
2= − 5
ℓ − 3

)
.

We have that

4=:
(2=−6
ℓ−4

)
+ 16:

(2=−5
ℓ−3

)
(2=−4
ℓ−2

) =

4=:
(2=−6)!

(ℓ−4)!(2=−2−ℓ )! + 16:
(2=−5)!

(ℓ−3)!(2=−2−ℓ )!
(2=−4)!

(ℓ−2)!(2=−2−ℓ )!

= 4=:
(ℓ − 2) (ℓ − 3)
(2= − 4) (2= − 5) + 16:

ℓ − 2
2= − 4 ≤

1

2
,

as we have ℓ ≤ (
√
=/:)/2 , for some su�ciently large constant 2 ,

and : ≤
√
=: since : ≤ =. □

4.3 Spectral Norm Bound: Proof of Lemma 4.8

Proof of Lemma 4.8. We have that � =
∑
8∈! 18�8 , where the

18 ’s are i.i.d. from {−1, 1}.
We now show that the ℓ1-norm of each row/column of �8 is at

most 23 . Indeed, this is because if ( is a nonzero row (or column)

in �8 , then ( contains at most one half clause from %8 . If (�,�′) is
a derived clause where (

�,�′↔ ) for some ) , then ( must contain

a half clause in %8 that is contained in � (1) ⊕ �′(2) , i.e., a half

clause coming from (�,�′). As ( contains at most one half clause, it

follows that the number of nonzero entries in the (-th row is upper

bounded by the maximum, over all half clauses, of the number

of derived clauses (�,�′) that contain this half clause. One can

observe that this is 23 . Indeed, if we �x E (1) and F (2) , there is at
most one clause � ∈ H8 containing E . Once E is �xed, there are

two choices for D in � \ {E}. Once we have chosen D, the second

clause must be (D,�′) ∈ H9 for some 9 ∈ ', where �′ containsF .

By assumption, the number of hyperedges in ∪:8=1H8 containing

the pair {D,F} is at most 3 , so there are at most 3 choices for �′.
Thus, ∥�8 ∥2 ≤ 23 . This additionally implies that ∥∑8∈! �8�

⊤
8 ∥2 ≤

|! | (23)2 ≤ : (23)2, and that ∥∑8∈! �
⊤
8 �8 ∥2 ≤ |! | (23)2 ≤ : (23)2.

Applying Matrix Bernstein (Fact 2.5), we conclude that E[∥�∥2] ≤
3 ·$ (

√
: log# ). As log# = $ (ℓ log=), Lemma 4.8 follows. □
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A CSP REFUTATION PROOF OF EXISTING

LDC LOWER BOUNDS

In this section, we prove the following theorem, which are the

existing LDC lower bounds using the connection between LDCs

and CSP refutation.

Theorem A.1. Let C : {0, 1}: → {0, 1}= be a code that is (@, X, Y)-
locally decodable, for constant @ ≥ 2. Then, the following hold:

(1) If @ is even, : ≤ =1−2/@$ ((log=)/Y4X2), and
(2) If @ is odd, : ≤ =1−2/(@+1)$ ((log=)/Y4X2).

Proof. By Fact 2.4, it su�ces to show that for any (@, X, Y)-
normally decodable code C : {−1, 1}: → {−1, 1}= , it holds that
(1) if @ is even, : ≤ =1−2/@$ ((log=)/Y2X2), and (2) if @ is odd,

: ≤ =1−2/(@+1)$ ((log=)/Y2X2).
We �rst observe for any @, we can transform C into a code C′

that is (@ + 1, X/2, Y)-normally decodable. In particular, it su�ces to

prove the lower bound in the case when @ is even. We note that one

can also prove the @ odd case directly using a similar approach to

the even case, just with asymmetric matrices. For simplicity, we do

not present this proof, but the de�nition of the asymmetric matrices

is given in Remark A.4.

Claim A.2. Let C : {−1, 1}: → {−1, 1}= be a code that is (@, X, Y)-
normally decodable. Then, there is a code C′ : {−1, 1}: → {−1, 1}2=
that is (@ + 1, X/2, Y)-normally decodable.

Proof. Let C′ : {−1, 1}: → {−1, 1}2= be de�ned by setting

C′ (1) = C(1)∥1= , i.e., the encoding of 1 under the original code

C concatenated with = 1’s. For each hypergraphH8 , we construct

the hypergraph H ′8 as follows. First, let c8 : H8 → [=] be an

arbitrary ordering of the hyperedges of H8 , and then let H ′8 =

{� ∪ {= +c8 (�)} : � ∈ H8 }. That is, the hypergraphH ′8 is obtained

by taking each hyperedge in H8 and appending one of the new

coordinates, and each new coordinate is added to at most one hy-

peredge, so that H ′8 remains a matching. It is now obvious from

construction that C′ is (@ + 1, X/2, Y)-normally decodable, which

�nishes the proof. □

It thus remains to show that for any codeC : {−1, 1}: → {−1, 1}=
that is (@, X, Y)-normally decodable with @ even, it holds that = ≥
Ω̃(:

@
@−2 ) for @ ≥ 4 and = ≥ exp(Ω(:)) for @ = 2. Without loss of

generality, we may assume that the hypergraphs H1, . . . ,H: all

have size exactly X=.

Similar to the proof of Theorem 1, we construct a@-XOR instance

associated with C′, and argue via CSP refutation that its value must

be small. For each 1 ∈ {−1, 1}: , let Ψ1 denote the @-XOR instance

with variables G ∈ {−1, 1}= and constraints
∏

E∈� GE = 18 for all

8 ∈ [:],� ∈ H8 . We let < ≔
∑:
8=1 |H8 | denote the total number

of constraints. Let k1 (G) ≔ 1
<

∑:
8=1 18

∑
�∈H8

∏
E∈� GE , and let

val(k1 ) ≔ maxG∈{−1,1}= k1 (G). As in the proof of Theorem 1, we

observe that De�nition 2.3 implies that E1←{−1,1}: [val(k1 )] ≥ 2Y.

It thus remains to upper bound E1←{−1,1}: [val(k1 )]. We do this

by introducing a matrix � for each 1 ∈ {−1, 1}: , where ∥�∥2 is

related to val(k1 ). We then upper bound E1←{−1,1}: [∥�∥2]. We

note that the matrix � depends on the choice of 1 ∈ {−1, 1}: but

we suppress this dependence for notational simplicity.
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De�nition A.3. Let ℓ ≔ =1−2/@/2 for some absolute constant

2 ≥ 416, and let # ≔
(=
ℓ

)
. For each @-uniform hypergraph matching

H8 , let �8 ∈ R#×# denote the matrix indexed by sets (,) ∈
([=]
ℓ

)
where �8 ((,) ) = 1 if the pair ((,) ) satis�es (1) ( ⊕ ) = � ∈ H8 ,

and (2) |( ⊕ �′ | ≠ ℓ , |) ⊕ �′ | ≠ ℓ for every �′ ∈ H8 with �′ ≠ � .

We set �8 ((,) ) = 0 otherwise. We let � ≔
∑:
8=1 18�8 .

Remark A.4 (Matrices for @ odd). As mentioned earlier, when @ is

odd we can prove the lower bound directly by choosing slightly

di�erent matrices, although we do not present the proof in full.

The matrices used are de�ned as follows. We let the matrix �8

now be indexed by rows ( ∈
([=]
ℓ

)
and columns ) ∈

([=]
ℓ+1

)
, and let

�8 ((,) ) = 1 if ( ⊕ ) = � ∈ H8 , and |( ⊕ �′ | ≠ ℓ + 1, |) ⊕ �′ | ≠ ℓ ,

for all �′ ∈ H8 with �′ ≠ � . The matrix � is again de�ned as∑:
8=1 18�8 .

Lemma A.5. There is an integer � such that the following holds. Fix

8 ∈ [:], and let�8 be one of the matrices de�ned in De�nition A.3. For

any� ∈ H8 , the number of pairs ((,) ) with (⊕) = � and�8 ((,) ) =
1 is exactly � . Moreover, we have that �/# ≥ 1

2

( @
@/2

)
4−3@ · ( ℓ= )@/2.

We postpone the proof of Lemma A.5, and now �nish the proof.

Our proof now proceeds as in Section 4. We similarly observe

that val(k1 ) ≤ #
<� ∥�∥2, where � is from Lemma A.5, and< ≔∑:

8=1 |H8 | is the total number of constraints. It thus remains to

bound E1←{−1,1}: [∥�∥2], which we do in the following lemma.

LemmaA.6 (Spectral norm bound). It holds thatE1∈{−1,1}: [∥�∥2]
is at most $ (

√
:ℓ log=).

Proof. Wewill useMatrix Bernstein (Fact 2.5) to boundE[∥�∥2].
We have � =

∑:
8=1 18�8 . We observe that ∥�8 ∥2 ≤ 1 by construc-

tion, as the ℓ1-norm of any row/column of �8 is at most 1. It then

follows that ∥∑:
8=1�

2
8 ∥2 ≤

∑:
8=1∥�8 ∥22 ≤ : . Hence, by Fact 2.5,

it follows that E[∥�∥2] ≤ $ (
√
: log# ). Finally, we observe that

log2 # ≤ ℓ log2 =, which �nishes the proof. □

We now �nish the proof of Theorem A.1. By Lemma A.6, we

have

2Y ≤ E1∈{−1,1}: [val(k1 )] ≤
1

<�
#$ (

√
:ℓ log=) .

As |H8 | = X= for all 8 , it follows that< = X=: . Therefore,

Y ≤ #

X=:�
$ (

√
:ℓ log=) ≤ 1

X=:

(=
ℓ

)@/2
·$ (

√
:ℓ log=)

≤ 1

X
·$ ©­

«
√
=1−2/@

:
log=

ª®
¬

,

wherewe use that ℓ = =1−2/@/2 and the bound on �
# fromLemmaA.5.

We thus conclude that : ≤ =1−2/@ ·$ (log=)/Y2X2. □

Proof of Lemma A.5. First, let� ∈ H8 be any element. We �rst

show that the number of pairs ((,) ) with (⊕) = � and�8 ((,) ) = 1

is independent of � . Indeed, let �′ ∈ H8 be di�erent from � . As

H8 is a matching, we have that � and �′ are disjoint. Let c be an

arbitrary bijection between � and �′ and extend c to act on all of

[=] by acting as the identity on elements not in � ∪�′. It is simple

to observe that if ((,) ) is any pair satisfying the above criterion

for � , then (( ′,) ′), obtained by applying c to all elements of (

and ) , satis�es the criterion for �′. Hence, the number of pairs is

independent of the choice of � ∈ H8 .

We note that it is clear from symmetry that � depends only on

|H8 |, @, and =. As |H8 | = X= for all 8 , it follows that � does not

depend on 8 .

We now lower bound� . Let� ∈ H8 be arbitrary. We observe that

(⊕) = � if and only if ( = �(∪& ,) = �) ∪& , where�( ,�) ⊆ � are

disjoint subsets of size exactly @/2, so that� = �( ∪�) ,& ⊆ [=] \�
has size exactly ℓ − @/2. It follows that if ( ⊕ ) = � and for some

�′ ≠ � ∈ H8 , either |( ⊕�′ | = ℓ or |) ⊕�′ | = ℓ , then it must be the

case that |& ∩�′ | = @/2. Hence, we have that

� ≥
(
@

@/2

) (
= − @
ℓ − @/2

)
− |H8 | ·

(
@

@/2

)2 (
= − 2@
ℓ − @

)
.

Applying Fact 2.6, we thus have that

�/# ≥
(
@

@/2

)
4−3@

(
ℓ

=

)@/2
− = ·

(
@

@/2

)2
43@

(
ℓ

=

)@

=

(
@

@/2

)
4−3@

(
ℓ

=

)@/2 (
1 − = · 2@46@

(
ℓ

=

)@/2)

≥ 1

2

(
@

@/2

)
4−3@

(
ℓ

=

)@/2
,

where we use that ℓ ≤ =1−2/@/416. □
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