
ar
X

iv
:2

30
2.

04
22

9v
1

 [
cs

.D
S]

 8
 F

eb
 2

02
3

Weighted Edit Distance Computation: Strings, Trees and Dyck

Debarati Das1, Jacob Gilbert2, MohammadTaghi Hajiaghayi2, Tomasz Kociumaka3, and

Barna Saha4

1Pennsylvania State University, United States
debaratix710@gmail.com

2University of Maryland, United States
jgilber8@umd.edu hajiaghayi@gmail.com

3Max Planck Institute for Informatics, Germany
tomasz.kociumaka@mpi-inf.mpg.de

4University of California, San Diego, United States
barnas@ucsd.edu

Abstract

Given two strings of length n over alphabet Σ, and an upper bound k on their edit distance,
the algorithm of Myers (Algorithmica’86) and Landau and Vishkin (JCSS’88) from almost forty
years back computes the unweighted string edit distance in O(n+k2) time. Till date, it remains
the fastest algorithm for exact edit distance computation, and it is optimal under the Strong
Exponential Hypothesis (STOC’15). Over the years, this result has inspired many developments,
including fast approximation algorithms for string edit distance as well as similar Õ(n+poly(k))-
time algorithms for generalizations to tree and Dyck edit distances. Surprisingly, all these results
hold only for unweighted instances.

While unweighted edit distance is theoretically fundamental, almost all real-world appli-
cations require weighted edit distance, where different weights are assigned to different edit
operations (insertions, deletions, and substitutions), and the weights may vary with the charac-
ters being edited. Given a weight function w : Σ ∪ {ε} ×Σ ∪ {ε} → R≥0 (such that w(a, a) = 0
and w(a, b) ≥ 1 for all a, b ∈ Σ∪{ε} with a 6= b), the goal is to find an alignment that minimizes
the total weight of edits. Except for the vanilla O(n2)-time dynamic-programming algorithm
and its almost trivial O(nk)-time implementation (k being an upper bound on the sought total
weight), none of the aforementioned developments on the unweighted edit distance applies to
the weighted variant. In this paper, we propose the first O(n + poly(k))-time algorithm that
computes weighted string edit distance exactly, thus bridging a fundamental decades-old gap
between our understanding of unweighted and weighted edit distance. We then generalize this
result to weighted tree and Dyck edit distances, bringing in several new techniques, which lead
to a deterministic algorithm that improves upon the previous work even for unweighted tree
edit distance. Given how fundamental weighted edit distance is, we believe our O(n + poly(k))
algorithm for weighted edit distance will be instrumental for further significant developments in
the area.

1 Introduction

String edit distance and its several variants have been studied for decades since the 1960s [Lev65,
NW70, WF74]. Historically, most work on these problems assumed that the edit operations have
unit weights in order to simplify the problem and streamline theoretical results. Till date, the

1

http://arxiv.org/abs/2302.04229v1

fastest exact algorithm for unweighted edit distance is due to Myers [Mye86] and Landau and
Vishkin [LV88], who obtained an O(n + k2)-time solution for two strings of length n with an
upper bound k on their edit distance. This bound is now known to be optimal (up to subpoly-
nomial factors) under the Strong Exponential Hypothesis [BI18]. Over the years, the Holy-Grail
result of [Mye86, LV88] has inspired many developments on fast approximation algorithms for
(unweighted) string edit distance [CDG+20, GKS19, GRS20, KS20a] and similar Õ(n + poly(k))-
time1 algorithms for generalizations such as the (unweighted) Dyck and tree edit distances [BO16,
FGK+22a, DGH+22]. However, almost all real-world applications require weighted edit distance,
where different weights are assigned to different edit operations (insertions, deletions, and substi-
tutions), and the weights may vary with the characters being edited [WF74, ZS89, Kur96, Gus97,
PM02, JM09, FFF+16, Ski20, KXI20, GWK21, CIG22]. As a result, there is a major gap between
the theoretical results of prior research and real-world utility of these results. In this paper, we
bridge this fundamental gap between the understanding of unweighted and weighted edit distance:
We provide the first non-trivial algorithm computing the weighted edit distance and its generaliza-
tions to weighted tree and Dyck tree edit distance.

More specifically, in this paper we propose the first O(n + poly(k))-time algorithm for exact
weighted edit distance computation in which, given a weight function w : Σ∪{ε}×Σ∪{ε} → R≥0

(normalized so that w(a, b) ≥ 1 for a 6= b), the goal is to find an alignment that minimizes the total
weight of edit operations (insertions, deletions, and substitutions) assuming that it does not exceed a
provided threshold k. Strikingly, except for the vanillaO(n2)-time dynamic-programming algorithm
and its almost trivial O(nk)-time implementation, none of the aforementioned developments on
unweighted edit distance apply to this weighted variant. We then generalize our result to weighted
tree and Dyck edit distances, bringing in several new techniques that lead to improvements even for
the unweighted tree edit distance problem: As a byproduct of our results, we present a deterministic
O(n+k7 log k)-time solution, which is much faster than the randomized O(n log n+k15 log2 k)-time
algorithm of Das, Gilbert, Hajiaghayi, Kociumaka, Saha, and Saleh [DGH+22].

Can this apparent lack of progress in weighted edit distance computation be explained? As we
observe later, even basic properties like monotonicity, which was fundamental for efficient computa-
tion of unweighted edit distance [Mye86, LV88], break down when considering weighted operations.
This precludes any local matching approach, which seemed necessary for a linear-time algorithm for
bounded (unweighted) edit distance [Mye86, LV88, BO16, FGK+22a, DGH+22]; instead, a global
view of the sequences is needed to find matching substrings and yet maintain the linear runtime.
Faced with such barriers, our biggest contribution is a kernelization method for weighted edit dis-
tance, not just for strings, but also for tree and Dyck edit distance instances. Interestingly, our
kernels are weight-agnostic, that is, the kernelization algorithms do not need to know the weight
function w. Given how fundamental weighted edit distance is, we believe our O(n + poly(k)) al-
gorithm for weighted edit distance will be instrumental for further significant developments in the
area.

1.1 Related Work

String Edit Distance: Edit distance is one of the most fundamental problems in computer
science studied since the 1960s [Lev65, NW70, WF74]. In the unweighted edit distance problem,
given two strings of length at most n, the goal is to find the minimum number of edit operations
(insertions, deletions, and substitutions) required to transform one string into the other. Given
a parameter k as an upper bound on the edit distance, an algorithm proposed in the 1980s by

1The Õ(·) notation suppresses factors polylogarithmic in the input size n.

2

Myers [Mye86] and Landau and Vishkin [LV88] achieves this task in O(n + k2) time by combining
suffix trees with an elegant greedy approach. As long as k = O(

√
n), the running time of the

above algorithm in linear in n. For larger values of k, approximation algorithms for edit distance
have been studied extensively [LMS98, Ind01, BYJKK04, BES06, AO09, AKO10], especially re-
cently [HRS19, CDG+20, GRS20, KS20b, BR20, BEG+21]. This culminated with the currently best
bound by Andoni and Nosatzki [AN20], who obtained a constant-factor approximation algorithm
with running time O(n1+ǫ) time for any constant ǫ > 0. All of these works require monotonicity
and assume that an optimal solution can be extended easily if matching suffixes are added to both
strings, none of which may hold in weighted edit distance instances. As a result, the state-of-the-
art approximation algorithm for weighted edit distance, by Kuszmaul [Kus19], offers much worse
trade-off, with an O(nτ)-factor approximation in Õ(n2−τ) time for any 0 ≤ τ ≤ 1.

Tree Edit Distance: The tree edit distance problem, first introduced by Selkow [Sel77], is a
generalization of edit distance in which the task is to compute a measure of dissimilarity between
two rooted ordered trees with node labels. In the unweighted version of tree edit distance, every
node insertion, deletion, or relabeling operation has unit cost. The problem has numerous appli-
cations in compiler optimization [DMRW10], structured data analysis [Cha99, BGK03, FLMM09],
image analysis [BS98], and computational biology [HT84, SZ90, Gus97, LMS98, Bil05]. The cur-
rent best bound on running time of an algorithm for finding exact tree edit distance is due to
Dürr [Dür22] who obtained an O(n2.9149)-time algorithm for the problem, after a long series of im-
provements from O(n6) [Tai79] to O(n4) [ZS89], to O(n3 log n) [Kle98], to O(n3) [DMRW10], and
to O(n2.9546) [Mao21]. Moreover, there is a (1 + ǫ)-approximation algorithm for tree edit distance
with running time Õ(n2) time due to Boroujeni, Ghodsi, Hajiaghayi, and Seddighin [BGHS19].
Recently, Seddighin and Seddighin [SS22] gave an O(n1.99)-time (3 + ǫ)-approximation algorithm
for tree edit distance (building on a previous Õ(n)-time O(

√
n)-factor approximation algorithm

of [BGHS19]). Furthermore, Das, Gilbert, Hajiaghayi, Kociumaka, Saha, and Saleh [DGH+22]
obtained an Õ(n + k15)-time algorithm for exact tree edit distance with an upper bound k on
the distance (see also an Õ(nk2)-time algorithm of Akmal and Jin [AJ21], which improves upon a
previous algorithm with running time O(nk3) for the bounded tree edit distance problem [Tou05]).

As far as the weighted tree edit distance is concerned, the fastest algorithm, by Demaine,
Mozes, Rossman, and Weimann [DMRW10], takes O(n3) time, which matches the conditional
lower-bound of Bringmann, Gawrychowski, Mozes, and Weimann [BGMW20] (earlier conjectured
by Abboud [Abb14]). Specifically, there is no truly subcubic-time algorithm for weighted tree edit
distance unless APSP has a truly subcubic-time solution. The lower bound still holds for trees over
a constant-size alphabet unless the weighted k-clique problem admits an O(nk−ǫ)-time algorithm.

Dyck Edit Distance: The Dyck edit distance problem is another variation of edit distance which
falls under the umbrella of general language edit distance [AP72, Mye95, Sah17, BGSW19] and has
numerous practical applications, e.g., for fixing hierarchical data files, in particular XML and JSON
files [Har78, Koz97]. In the unweighted version of this problem, given a string of n parentheses, the
goal is to find the minimum number of edits (character insertions, deletions, and substitutions) to
make the string well-balanced. Several algorithms for both exact [BGSW19, CDX22, Dür22] and
approximation [Sah14, DKS22] versions of the problem have been obtained. Finding exact Dyck
edit distance is at least as hard as Boolean matrix multiplication [ABW18]. The bounded Dyck
edit problem was subject to several recent studies as well: Backurs and Onak [BO16] obtained the
first algorithm with running time O(n+k16), which was further improved to O(n+k5) [FGK+22a],
and finally to O(n + k4.5442) using fast matrix multiplication [FGK+22b, Dür22]. Except for the

3

O(n3)-time exact algorithm for language edit distance [Mye95], these results are not applicable to
the weighted setting.

1.2 Our Contribution

The main contributions of our paper are new algorithms for weighted string, tree, and Dyck edit
distance. We define a weight function as a function w : Σ ∪ {ε} × Σ ∪ {ε} → R≥0 such that
w(a, a) = 0 and w(a, b) ≥ 1 for a 6= b. If a, b ∈ Σ, then w(a, ε) is the cost of deleting a, w(ε, b) is the
cost of inserting b, whereas w(a, b) is the cost of substituting a for b. The assumption w(a, a) = 0
indicates that matching symbols can be aligned at no cost, whereas the assumption w(a, b) ≥ 1
for a 6= b indicates that the weights are normalized so that every edit costs at least one. A weight
function is a quasimetric if it also satisfies the triangle inequality (which we assume for tree and
Dyck edit distance). When it comes to computations on weights, we consider any uniform model
in which real numbers are subject to only comparison and addition [PR05], e.g., the RAM model.

We define edw(X,Y) to be the minimum cost of an alignment of strings X and Y for weight
function w. Furthermore, we define edw≤k(X,Y) as edw(X,Y) (if it is at most k) or ∞ (otherwise).
We give the first weighted bounded edit distance algorithm with runtime O(n + poly(k)).

Theorem 1.1. Given strings X,Y of length at most n, an integer k ∈ Z+, and a weight function w,
the value edw≤k(X,Y) can be computed in O(n + k5) time.

Similarly to string edit distance, we define tedw(F,G) as the minimum cost of a tree alignment of
forests F and G for weight function w. We define tedw≤k(F,G) analogously and give the first weighted
tree edit distance algorithm with runtime O(n+poly(k)). In the unweighted case, our deterministic
algorithm is significantly faster than the state-of-the-art randomized algorithm from [DGH+22].

Theorem 1.2. Given forests F,G of length at most n, an integer k ∈ Z+, and a quasimetric w,
the value tedw≤k(F,G) can be computed in O(n+ k15) time. Moreover, ted≤k(F,G) can be computed
in O(n + k7 log k) time.

Finally, we define dyckw≤k(X) to be the minimum distance edw≤k(X,Y) between X and a string
Y in the Dyck language. We give the first algorithm for weighted Dyck edit distance with runtime
O(n + poly(k)). In this setting, the alphabet consists of opening and closing parentheses, and
we need to assume that the weight function, apart from satisfying the triangle inequality, treats
opening and closing parentheses of the same type similarly. This is captured in the notion of a
skewmetric formally defined in Section 4.2.

Theorem 1.3. Given a string X of length n, an integer k ∈ Z+, and a skewmetric w, the value
dyckw≤k(X) can be computed in O(n + k12) time.

We note that, although our algorithms assume k is given, one can also obtain running times
analogous to those of Theorems 1.1 to 1.3 but with the sought distance instead of the threshold k.
For this, it suffices to start from the largest value k that results in the running time of O(n), e.g.,
k = Θ(n1/5) for strings, and keep doubling the threshold k as long as the algorithm outputs ∞.
The first finite outcome is guaranteed to be the sought distance and, since the running times of the
subsequent iterations form a geometric progression, the overall runtime is dominated by the last
iteration, where k is at most twice the sought distance.

4

1.3 Overview

The folklore algorithms to compute edit distance for unweighted and weighted instances use dynamic
programming and runs in O(n2) time. Given two strings X and Y , the entry D[i, j] of the dynamic
programming table D holds the weighted (unweighted) edit distance of prefixes of X and Y up to
indices i and j respectively. That is D[i, j] := ed(X[0 . . i), Y [0 . . j)). Then

D[i+ 1, j + 1] = min{D[i, j + 1] + 1,D[i+ 1, j] + 1,D[i, j] + δ(X[i], Y [j])} :unweighted edit distance

D[i + 1, j + 1] = min{D[i, j + 1] + w(X[i], ε),D[i + 1, j] + w(ε, Y [j]),D[i, j] + w(X[i], Y [j])}.
:weighted edit distance

The first entry in the recursive definition corresponds to deleting X[i], the second entry corresponds
to inserting Y [j], and the third entry corresponds to either matching or substitution (δ(X[i], Y [j]) =
0 if X[i] = Y [j], otherwise δ(X[i], Y [j]) = 1). Clearly, D[|X|, |Y |] equals the total weighted
(unweighted) edit distance between X and Y , and can be computed in O(n2) time.

It is possible to improve the running time to O(nk) if the weighted (unweighted) edit distance
is bounded by k < n. In this case the entries corresponding to only 2k + 1 diagonals surrounding
the main diagonal of D need to be computed. However, the similarities between the developments
on unweighted and weighted edit distance computations end here.

The first major breakthrough in the unweighted edit distance computation came in the late
eighties [Mye86, LV88]. An O(n + k2)-time algorithm for unweighted edit distance was developed
whenever edit distance is bounded by k, thereby giving a linear time algorithm for k ≤ √n.
The algorithm utilizes two simple but powerful properties of unweighted edit distance, namely (i)
monotonicity : D[i+1, j+1] ≥ D[i, j], and (ii) greedy extension: if X[i] = Y [j] then D[i+1, j+1] =
D[i, j]. These two properties together imply that if we can find maximal equal substrings in X and
Y through a preprocessing step, only O(k2) entries of D need to be computed. More precisely, for
each of the 2k+1 diagonals, these are the at most k+1 entries with k+1 ≥ D[i+1, j+1] > D[i, j].
The preprocessing step utilizes a linear-time construction of a suffix tree to answer any maximal
equal substring queries in constant time, leading to an overall running time of O(n + k2). All
subsequent developments on fast approximation algorithms for unweighted string edit distance rely
on the above two properties without exception.

Unfortunately, none of the above two properties hold for weighted edit distance computation.
The following simple examples will make this observation clear.

1. No monotonicity: Let X = ab, Y = c, and w(a, c)+w(b, ε) < w(a, ε). Then D[1, 0] = w(a, ε)
and D[2, 1] = w(a, c) + w(b, ε) < w(a, ε).

2. No greedy extension: Let X = ab, Y = b, and w(a, b) + w(b, ε) < w(a, ε). Then substituting
a to b and deleting b from X is cheaper than deleting a and matching the subsequent b.

In some sense, this explains the lack of progress on weighted instances in this field. We need a very
different approach and new ideas.

When k, the minimum weighted edit distance, is small for two input strings, clearly most
characters of the input strings are perfectly matched and contribute no cost to the edit distance
computation. The main idea of our algorithm is to find small representative instances for the input
strings and then run the O(nk)-time weighted edit distance solution on these representatives to find
the original weighted edit distance. In fact, we prove that any instance of the bounded-weighted
edit distance can be solved using strings of size O(k4). Our algorithm constructs such an O(k4)-size
kernel from strings of size O(n) in time O(n), and then the resulting small instances can be solved
in time O(k5) using the O(nk)-time weighted extension of the dynamic programming.

5

We are also able to extend the idea of kernelization to weighted instances of tree and Dyck
edit distances by giving the first O(n + poly(k)) algorithms for them. Notably, our algorithms
are deterministic and give significant improvements over the recent randomized algorithms on
unweighted tree edit distance [DGH+22]. We show it is possible to compute small O(poly(k))-
size kernels from the original instances of each problem in linear time, and then run dynamic
programming based algorithms to compute the final edit distance values.

To find such kernels, we utilize substrings that have synchronized occurrences in both input
strings X and Y , that is, they occur in X and Y at positions x and y, respectively, satisfying
|x− y| = O(k). Our kernelization algorithm first tries to cover the input strings (almost entirely)
with O(k) pairs of synchronized occurrences. If this is impossible, then we conclude that the
edit distance must be large, that is, edw≤k(X,Y) = ∞. Otherwise, we apply a novel notion of
edit-distance equivalence so that synchronized occurrences of a substring P can be substituted
with synchronized occurrences of an equivalent substring P ′ without affecting the edit distance
edw≤k(X,Y). To this end, we provide a linear-time algorithm that, given any string P , computes an
edit-distance equivalent string P ′ of size poly(k).

A similar notion of equivalent pieces is also central to our algorithms for weighted tree and
Dyck edit distance. Our three algorithms all utilize the following high-level steps:

1. Partition the input objects into O(k) pieces most of which can be paired up to form synchro-
nized occurrences.

2. If the algorithm failed to find sufficiently long synchronized occurrences, report that the edit
distance exceeds k.

3. Otherwise, for every pair of synchronized occurrences, substitute the original piece with a
small equivalent replacement.

4. Solve the resulting small instance with a known dynamic-programming algorithm.

1.3.1 Weighted String Edit Distance

We now describe how to obtain Theorem 1.1 by implementing the aforementioned high-level scheme.

Edit-Distance Equivalent Strings The biggest technical contribution behind our weighted edit
distance algorithm is a linear-time procedure (of Corollary 2.14) that, given a string P , computes
an equivalent string of length O(k3). In the first phase, it eliminates k-periodicity : as long as the
processed string contains a fragment of the form Q4k+1 with |Q| ∈ [1 . . 2k], this fragment is replaced
by Q4k. As shown in Lemma 2.9, the strings Q4k+1 and Q4k are equivalent, so this step preserves
equivalence with the input string P . Eventually, the first phase results in a string that avoids
k-periodicity and is equivalent with P (see Fig. 1 for example). It is implemented in Lemma 2.13,
where the underlying algorithm processes the input string P from left to right and removes the
first copy of Q for every encountered fragment of the form Q4k+1 with |Q| ∈ [1 . . 2k].

In Lemma 2.11, we prove that if P avoids k-periodicity and satisfies |P | ≥ 42k3, then it is
equivalent to P [0 . . 21k3) · P [|P | − 21k3 . . |P |), that is, the concatenation of its prefix of length
21k3 and its suffix of length 21k3 (with the characters in the middle removed). For this, we
consider synchronized occurrences of P in strings X and Y and an optimal alignment A of cost
edw(X,Y) ≤ k that maps X onto Y . We observe that A must perfectly match a length-10k2

fragment within the length-21k3 prefix of the occurrence of P in X. Moreover, since P avoids
k-periodicity, A can only match this fragment to the corresponding fragment of the occurrence
of P in Y . Symmetrically, A must match the two copies of a length-10k2 fragment within the
length-21k3 suffix of P . We conclude that A aligns the two copies of P [d . . |P | − e) for some

6

d, e ∈ [0 . . 21k3]. Since A is optimal, it must perfectly match the two copies of P [d . . |P |−e). Thus,
P [21k3 . . |P | − 21k3) can be removed from the synchronized occurrences of P in X and Y without
affecting the cost edw≤k(X,Y). Consequently, if the first phase returns a string of length at least
42k3, then the algorithm of Corollary 2.14 removes all but the leading 21k3 and the trailing 21k3

characters of that string (see Fig. 2 for example).

Linear-Time Kernel In order to apply the notion of edit-distance equivalence, we need to
identify synchronized occurrences within X and Y . To this end, we check whether ed(X,Y) ≤ k. If
this is not the case, then edw(X,Y) ≥ ed(X,Y) > k holds for every normalized weight function w,
and thus we already know that edw≤k(X,Y) = ∞. If ed(X,Y) ≤ k, on the other hand, then we
construct an optimal unweighted A alignment mapping X onto Y . As formally proved in Fact 2.7,
the unedited characters of X form at most k+ 1 fragments that A matches perfectly. Each of these
fragments of X forms a synchronized occurrence together with its image under A in Y . Thus, we
can replace the synchronized occurrences with occurrences of an equivalent string of length O(k3).
Since we have partitioned X and Y into O(k) edited characters plus O(k) synchronized occurrences,
this yields strings X ′ and Y ′ of length O(k4) satisfying edw≤k(X ′, Y ′) = edw≤k(X,Y). In order to
construct A efficiently, we use the O(n+ k2) unweighted edit distance algorithm of [Mye86, LV88].
However, if n ≤ k4, then we do not need to worry about reducing the size of X and Y in the first
place and therefore do not construct an optimal unweighted alignment; otherwise, O(n+k2) = O(n)
and constructing the O(k4)-size kernel takes linear time; see Theorem 2.15 for details on our kernel
for weighted string edit distance.

As mentioned earlier, once we have a kernel (X ′, Y ′) of size O(k4), we can run the O(nk)-time
weighted edit-distance algorithm to compute edw≤k(X ′, Y ′) = edw≤k(X,Y) in O(k5) time.

1.3.2 Weighted Tree Edit Distance

Our algorithm for weighted tree edit distance follows the same high-level approach. However,
compared to the string edit distance, two major challenges arise. First, the structure of periodicity
is much richer and requires two notions: horizontal periodicity of forests and vertical periodicity of
contexts. As a result, we need separate definitions of tree-edit-distance equivalence for forests and
contexts. Nevertheless, assuming that the weight function w satisfies the triangle inequality, we can
still construct equivalent forests and contexts of size O(k3) and O(k4), respectively. The second
challenge is that the state-of-the-art algorithm for computing the unweighted tree edit distance
is randomized and takes O(n log n + poly(k)) time rather than O(n + poly(k)) time. Thus, in
order to achieve a deterministic linear-time kernel, we need another method for identifying large
synchronizing occurrences. Our workaround is to shrink the input in multiple iterations (essentially
halving the size each time) rather than in a single shot. This way, we can still obtain a kernel of size
O(k5), which is asymptotically as small as we would get from an optimum unweighted alignment.

Periodicity in Trees Intuitively, the two types of periodicity in trees correspond to the two
ways to interpret strings as trees. For a string X, the horizontal embedding constructs a tree with
|X| leafs attached to the root and labeled by subsequent characters of X, whereas the vertical
embedding constructs a path with |X| nodes labeled by subsequent characters of X. Similarly,
forest algebras (see [BW08] for a survey) in formal language theory involve two natural monoids:
a horizontal monoid of forests (with concatenation, denoted ·) and a vertical monoid of contexts
(with composition, denoted ⋆). A context can be defined as a tree with a single hole in some leaf,
and contexts can be composed by placing one of them in the hole of the other. Moreover, placing
a forest in the hole of a context yields a forest. In order to formalize these notions and easily port

7

combinatorial and algorithmic tools designed for strings, we interpret forests as balanced strings of
parentheses; see Section 3.1.

Following [DGH+22], a horizontal power is the concatenation of multiple copies of the same
forest, whereas a vertical power is the composition of multiple copies of the same context; see Fig. 3
for an example. More specifically, we say that a forest contains horizontal k-periodicity if it has a
subforest of the form Q4k+1 for some forest Q of size |Q| ≤ 4k, whereas a context contains vertical
k-periodicity if it can be expressed as a composition of several contexts, including Q6k+1 for some
context Q of size |Q| ≤ 8k.

Tree-Edit-Distance Equivalent Forests The first ingredient of our algorithm for weighted
tree edit distance is a linear-time procedure that, given a forest P , constructs an equivalent forest
of size O(k3). The first phase of this subroutine eliminates horizontal k-periodicity: as long as the
processed forest contains a subforest of the form Q4k+1 with |Q| ∈ [1 . . 4k], this subforest is replaced
by Q4k. As shown in Lemma 3.5, the forests Q4k+1 and Q4k are equivalent, so this step preserves
equivalence with the input forest P . An efficient implementation of this phase relies on the fact
that, if P is interpreted as a string, then horizontal k-periodicity can be interpreted as a substring
of the form Q4k+1 for a sufficiently short balanced string Q. Thus, we can reuse Lemma 2.13 to
obtain a forest equivalent with P that avoids horizontal k-periodicity.

In Lemma 3.7, we show the equivalence of any two forests of size at least 74k3 that avoid
horizontal k-periodicity.2 Based on this result, if horizontal periodicity reduction yields a forest of
size at least 74k3, we return a canonical forest of size exactly 74k3; see Lemma 3.17 for details.

Tree-Edit-Distance Equivalent Contexts Our next ingredient is a linear-time algorithm that,
given a context P , constructs an equivalent context of size O(k4). First, we use the previous
procedure for every maximal forest in P (that does not contain the hole). Then, we eliminate
vertical k-periodicity: as long as P contains a context of the form Q6k+1 with |Q| ∈ [1 . . 8k], this
context is replaced by Q6k. As shown in Lemma 3.10, the contexts Q6k+1 and Q6k are equivalent,
so this step preserves equivalence with the input context P . For an efficient implementation, the
spine, i.e., the path from the root of P to the hole, is interpreted as a string, with each character
encoding the label of the underlying node and the subtrees attached there to the left and to the right
of the spine. This way, vertical-k periodicity can be interpreted as periodicity in the constructed
string, and hence Lemma 2.13 can be used again.

In Lemma 3.12, we show the equivalence of any two contexts of size at least 578k4 that avoid
vertical k-periodicity and subforests of size more than 74k3. Thus, if vertical periodicity reduction
yields a context of size at least 578k4, we replace it with a canonical context of size exactly 578k4;
see Lemma 3.18 for details.

Linear-Time Kernel As for strings, in order to apply the notion of tree-edit-distance equiva-
lence, we need to identify synchronized occurrences of forests and contexts within the input forests
F and G. As mention above, in order to obtain a deterministic linear-time kernel, we cannot use the
algorithm of [DGH+22] to obtain a tree alignment mapping F to G with at most k edits. Instead,
we develop an iterative workaround. At each step, we decompose F into O(k) contexts and forests
(jointly called pieces) of size at most n

2k each; see Lemma 3.15 for details. Next, we maximize
the number of pieces (from the decomposition) that admit disjoint synchronized occurrences in G;
Lemma 3.16 implements this step in O(n+k4) time using dynamic programming. If ted(F,G) ≤ k,

2This statement is stronger that its counterpart for strings, Lemma 2.11, because we now assume that the weight
function w satisfies the triangle inequality.

8

then no more than k of the pieces are left unmatched (an optimal alignment may edit at most
k pieces). We replace the matched pieces with equivalent pieces of size O(k5), obtaining forests
of size at most n

2 + O(k5), where the first term corresponds to the unmatched pieces; see Theo-
rem 3.19. As long as n = ω(k5), this procedure essentially halves the input size. Hence, as shown
in Corollary 3.20, this still yields a linear-time algorithm producing forests F ′ and G′ of size O(k5)
such that tedw≤k(F ′, G′) = tedw≤k(F,G).

Once we have such a kernel (F ′, G′) of size O(k5), we can run the cubic-time weighted edit-
distance algorithm [DMRW10] to compute tedw≤k(X ′, Y ′) = tedw≤k(X,Y) in O(k15) time, for a total
runtime of O(n+k15). Additionally, we significantly improve the state-of-the-art of the unweighted
tree edit distance problem by using the O(nk2 log n)-time algorithm from [AJ21], which gives us a
total runtime of O(n + k7 log k) for unweighted tree edit distance.

1.3.3 Weighted Dyck Edit Distance

In the final section of our paper, the weighted Dyck edit distance algorithm follows a similar
approach to that of the string and tree edit distance algorithm. However, many of the proofs and
details are specific to Dyck edit distance problem and come with their own set of intricacies and
difficulties that we outline in the following.

Given a string X over an alphabet Σ = T ∪T (where T and T are the sets of opening and closing
parentheses, respectively), an integer k ∈ Z+, and a skewmetric weight function w representing the
cost of each edit operation (parenthesis insertion, deletion, and substitution), our objective is
to compute the minimum weight of a sequence of edits that convert X to a well-parenthesized
expression over Σ provided the total weight of all edits is bounded by k. In this work we design a
deterministic algorithm that achieves this goal in O(n+k12) time. For the unweighted counterpart
of this problem, the recent solution of [FGK+22b, Dür22] computes the Dyck edit distance in time
O(n+ k4.5442). That algorithm, consistently with its predecessors [BO16, FGK+22a], starts with a
greedy preprocessing step that exhaustively removes any two adjacent characters X[i]X[i+ 1] such
that X[i] is an opening parenthesis and X[i+1] is a closing parenthesis of the same type. Following
a simple argument, it can be shown that the Dyck edit distance of the preprocessed string stays
exactly the same as the input string X.

Preprocessing We tried to follow a similar approach for the weighted version, but it turns out
that such a simple analysis is not enough to construct a reduced string. For example, let the
input string be ({(). For a general weight function w, it is not evident that the optimal matching
should always match the last two parentheses. In fact, if we consider a weight function where the
cost of substituting { with) is 10 whereas the cost of substituting (with } is 5, then any optimal
matching should match the first and the last parentheses instead of the last two. Thus, in this work,
we consider our weight function w to be a skewmetric. Formally, we assume that w satisfies the
triangle inequality and skew-symmetry, that is, w(p1, p2) = w(p2, p1) holds for all p1, p2 ∈ Σ ∪ {ε},
where p is the parenthesis complementary to p (and ε = ε). Following this property of w, we show
that one can apply a similar greedy preprocessing (as described for the unweighted version) to reduce
X to a string X ′ while preserving the weighted Dyck edit distance. Our argument is substantially
more elaborate, though, and follows a case-by-case analysis depending on the structure of the other
alternate alignments (Claim 4.7). Nevertheless, it is trivial to observe the greedy preprocessing can
be done in linear time.

Dyck-Edit-Distance Equivalent Strings Next, following a similar strategy as described for
string edit distance, we further reduce X ′ to generate a string X ′′ of length O(k4) while preserving

9

the weighted Dyck edit distance. For this first we introduce the concept of k-synchronicity. A sub-
string P containing only opening parentheses and a substring P containing only closing parentheses
are k-synchronized if P appears after P , they are of same length and their height difference is at
most 2k. Following this and the non-crossing property of Dyck matching, first we argue that if the
lengths of P,P are large and the distance is bounded by k, then there exist a substring ℓ ∈ P that
is matched with a substring ℓ′ ∈ P in the optimal alignment (we fix one for the analysis purpose).
Now if we replace P with P \ ℓ and P ′ with P ′ \ ℓ′ then in the resulting string the distance stays
the same (Fact 4.12). Following this, for any two k-synchronized substrings P,P , we can reduce
their periodicity as follows: if P = Qe and P = Qe, (where Q is a primitive string with large
exponent e) then at least one occurrence of Q is matched with its reverse complement counterpart
Q in P . Thus, we can remove the matched part while not changing the distance, and it reduces
the exponent by one. Repeat this until e become small (Lemma 4.13).

Next assuming that P,P avoid periodicity, it can be shown that there exists a pair of indices
i, j ∈ [0 . . 78k3] such that P [i] is matched with, P [|P |−1−i] and P [|P |−1−j] is matched with, P [j]
in the optimal alignment. Thus, following the fact that |P | = |P | and the non-crossing property
of the Dyck optimal alignment, all the indices between i and |P | − 1 − j are also matched, and
thus removing these matched characters from both P,P does not affect the Dyck edit distance.
Consequently, we replace each k-synchronized pairs with substrings of length just 156k3 (replace
P,P with their first and last 78k3 characters) to generate a string X ′′ such that the weighted Dyck
edit distance of X and X ′′ is the same (Lemma 4.15, Corollary 4.17).

Linear-Time Kernel Lastly, we show if the distance is bounded by k, then X can be partitioned
in time O(n + k5) into O(k) disjoint k-synchronized pairs of substrings (plus O(k) individual
characters) and thus the total length of X ′′ is bounded by O(k4). Start by preprocessing input
string X to generate X ′. Next, we check if ded(X ′) ≤ k and, if so, we compute an unweighted
optimal Dyck alignment M of X ′ in time O(n + k5) [FGK+22a]. Then, we argue any pair of
substrings of X ′ that are matched by M are k-synchronized. Thus, using M, we identify the set
of maximal substrings from T ∗ and T

∗
that are matched byM. A substring is maximal in a sense

that either the substring itself or its matched counterpart can not be extended to the right or left
without paying an edit. As unweighted Dyck edit distance is no more than the weighted version
and hence, assuming cost of M is bounded by k, we can show string X ′ can be partitioned into
O(k) different k-synchronized pairs. Also, these maximal fragments can be found in linear time
with a left-to-right scan of X ′. Subsequently, we create a string X ′′ from X ′ as follows: (i) for
each k-synchronized pairs we reduce them following the algorithm as discussed above and add two
corresponding strings each of length O(k3) (ii) add all the characters that are edited byM just the
same to X ′′ (Theorem 4.19).

Finally, we compute the weighted Dyck edit distance of X ′′ using the dynamic program algo-
rithm of [Mye95] in time O(k12).

2 String Edit Distance

2.1 Preliminaries

A string Y ∈ Σn is a sequence of |Y | := n characters from an alphabet Σ. For i ∈ [0 . . n), we
denote the ith character of Y with Y [i]. We say that a string X occurs as a substring of a string
Y if X = Y [i] · · · Y [j − 1] holds for some integers 0 ≤ i ≤ j ≤ |Y |. We denote the underlying
occurrence of X as Y [i . . j). Formally, Y [i . . j) is a fragment of Y that can be represented using
a reference to Y as well as its endpoints i, j. The fragment Y [i . . j) can be alternatively denoted

10

as Y [i . . j − 1], Y (i − 1 . . j − 1], or Y (i − 1 . . j). A fragment of the form Y [0 . . j) is a prefix of Y ,
whereas a fragment of the form Y [i . . n) is a suffix of Y .

Theorem 2.1 (LCE queries [LV88, FFM00]). Strings X,Y can be preprocessed in linear time so
that the following longest common extension (LCE) queries can be answered in O(1) time: given
positions x ∈ [0 . . |X|] and y ∈ [0 . . |Y |], compute the largest ℓ such that X[x . . x+ℓ) = Y [y . . y+ℓ).

As mentioned in Section 1.3, high-power periodicity plays a key role in our algorithms, which
we may now formally define for strings here. An integer p ∈ [1 . . n] is a period of a string Y ∈ Σn

if Y [i] = Y [i + p] holds for all i ∈ [0 . . n − p). In this case, the prefix Y [0 . . p) is called a string
period of Y . By per(Y) we denote the smallest period of Y . The exponent of a string Y is defined

as exp(Y) := |Y |
per(Y) , and we say that a string Y is periodic if exp(Y) ≥ 2.

Theorem 2.2 (2-Period queries [KRRW15, BII+17]). A string X can be preprocessed in linear
time so that one can decide in constant time whether any given fragment X[i . . j) is periodic and,
if so, compute its shortest period per(X[i . . j)).

For a string Y and an integer m ≥ 0, we define the mth power of Y , denoted Y m, as the
concatenation of m copies of Y . A non-empty string Y ∈ Σn is primitive if it cannot be expressed
as Y = Xm for some string X and integer m > 1. For a string Y ∈ Σn, we define a forward rotation
rot(Y) = Y [1] · · · Y [n− 1]Y [0]. In general, a cyclic rotation rots(Y) with shift s ∈ Z is obtained by
iterating rot or the inverse operation rot−1. A string Y is primitive if and only if it is distinct from
its non-trivial rotations, i.e., if Y = rots(Y) holds only when s is a multiple of n.

2.2 Edit-Distance Alignments and Weighted Edit Distance

In this subsection, we discuss alignments and their weighted cost, which provide a formal way to
describe a sequence of edits needed to transform a string X into Y .

Definition 2.3. A sequence A = (xt, yt)
m
t=0 is an alignment of a fragment X[x . . x′) onto a

fragment Y [y . . y′) if (x0, y0) = (x, y), (xm, ym) = (x′, y′), and (xt+1, yt+1) ∈ {(xt + 1, yt + 1),
(xt + 1, yt), (xt, yt + 1)} for t ∈ [0 . . m). The set of all alignments of X[x . . x′) onto Y [y . . y′) is
denoted with A(X[x . . x′), Y [y . . y′)).

Given an alignment A = (xt, yt)
m
t=0 ∈ A(X[x . . x′), Y [y . . y′)), for every t ∈ [0 . . m), we say that

• A deletes X[xt] if (xt+1, yt+1) = (xt + 1, yt).
• A inserts Y [yt] if (xt+1, yt+1) = (xt, yt + 1).
• A aligns X[xt] to Y [yt], denoted by X[xt] ∼A Y [yt], if (xt+1, yt+1) = (xt + 1, yt + 1).
• A matches X[xt] with Y [yt], denoted by X[xt] ≃A Y [yt], if X[xt] ∼A Y [yt] and X[xt] = Y [yt].
• A substitutes X[xt] for Y [yt] if X[xt] ∼A Y [yt] but X[xt] 6= Y [yt].

Insertions, deletions, and substitutions are jointly called (character) edits.

Example 2.4. For an example of an alignment, consider strings X = abc and Y = bd. One optimal
alignment A might be {(0, 0), (1, 0), (2, 1), (3, 2)}. The pairs (0, 0), (1, 0) represent a deletion of
X[0] = a by A. The pairs (1, 0), (2, 1), (3, 2) signify that A aligns X[1 . . 2] ∼A Y [0 . . 1], i.e.
bc ∼A bd. Moreover, X[1] is matched to Y [0] since X[1] = Y [0] = b while X[2] is substituted for
Y [1] since X[2] = c 6= d = Y [1].

For an alphabet Σ, we define Σ̄ := Σ ∪ {ε}, where ε is the empty string over Σ. We say that
a function w : Σ̄ × Σ̄ → R≥0 ∪ {∞} is a weight function if w(a, a) = 0 holds for all a ∈ Σ̄. The
cost of an alignment A ∈ A(X[x . . x′), Y [y . . y′)) with respect to a weight function w, denoted
edwA(X[x . . x′), Y [y . . y′)), is defined as the total cost of edits that A performs, where:

11

• the cost of deleting X[x] is w(X[x], ε),
• the cost of inserting Y [y] is w(ε, Y [y]),
• the cost of substituting X[x] for Y [y] is w(X[x], Y [y]).

The width of an alignment (xt, yt)
m
t=0 ∈ A(X[x . . x′), Y [y . . y′)) is defined as maxm

t=0 |xt − yt|.
We usually consider alignments of the entire string X[0 . . |X|) onto the entire string Y [0 . . |Y |),

and we denote the set of all such alignment with A(X,Y) = A(X[0 . . |X|), Y [0 . . |Y |)). The weighted
edit distance of strings X,Y ∈ Σ∗ with respect to a weight function w is defined as edw(X,Y) =
minA∈A(X,Y) ed

w
A(X,Y). For k ∈ R≥0, we also denote

edw≤k(X,Y) =

{

edw(X,Y) if edw(X,Y) ≤ k,

∞ otherwise.

In the literature, the (weighted) edit distance of X and Y is sometimes defined as the minimum
cost of a sequence of edits that transform X into Y . As shown in the following fact (whose technical
proof is deferred to Appendix A), this sequence-based view is equivalent to our alignment-based view
provided that w is a quasimetric, that is, it satisfies the triangle inequality w(a, b)+w(b, c) ≥ w(a, c)
for every a, b, c ∈ Σ̄. The assumption of w being quasimetric can be made without loss of generality
in the sequence-based view (a single character can be edited multiple times, so one can replace
w by its distance closure without affecting the edit distances). Our alignment-based view, on the
other hand, is more general and captures weighted edit distances violating the triangle inequality.

Fact 2.5. If w is a quasimetric on Σ̄, then edw is a quasimetric on Σ∗. In this case, edw(X,Y)
can be equivalently defined as the minimum cost of a sequence of edits transforming X into Y .

Although our algorithm for strings works for any weight function, its tree and Dyck counterparts
assume that w is a quasimetric. Specifically, they rely on the following fact proved in Appendix A.

Fact 2.6. Consider a string X and its fragment X[i . . j). Then, for every quasimetric w, we have
edw(X,X[i . . j)) = edw(X[0 . . i) ·X[j . . |X|), ε).

While our main results are on the weighted version of edit distance, our algorithm relies on
unweighted edit distance procedures as well. If w is the discrete metric on Σ̄ (that is, for every
a, b ∈ Σ̄, we have w(a, b) = 0 if a = b and w(a, b) = 1 otherwise), then we drop the superscript w in
edw and edwA. This yields the unit-cost edit distance (also known as the unweighted edit distance or
the Levenshtein distance). We consider weight function w to be normalized that is w(a, b) ≥ 1 holds
for all a, b ∈ Σ̄ with a 6= b. In this case, edwA(X,Y) ≥ edA(X,Y) holds for all strings X,Y ∈ Σ∗ and
alignments A ∈ A(X,Y).

Given an alignment A = (xt, yt)
m
t=0 ∈ A(X,Y), for every ℓ, r ∈ [0 . . m] with ℓ ≤ r, we say that

A aligns X[xℓ . . xr) to Y [yℓ . . yr), denoted X[xℓ . . xr) ∼A Y [yℓ . . yr). In this case, for any weight
function w, we write edwA(X[xℓ . . xr), Y [yℓ . . yr)) to denote the cost of the induced alignment of
X[xℓ . . xr) onto Y [yℓ . . yr). If edwA(X[xℓ . . xr), Y [yℓ . . yr)) = 0, we say that A matches X[xℓ . . xr)
with Y [yℓ . . yr), denoted X[xℓ . . xr) ≃A Y [yℓ . . yr).

Fact 2.7. Consider k ∈ Z≥0, strings X,Y , and an alignment A ∈ A(X,Y) of cost edA(X,Y) ≤ k.
Then, the string X can be partitioned into at most k individual characters (that A deletes or
substitutes) and at most k + 1 fragments that A matches perfectly to fragments of Y .

Proof. Let A = (xt, yt)
m
t=0 and let t1 < · · · < te be the indices in [0 . . m) corresponding to edits

in A. Then, the maximal fragments that A matches perfectly are X[0 . . xt1), X[xti+1 . . xti+1
) for

i ∈ [1 . . e), and X[xte+1 . . |X|). Moreover, A deletes or substitutes X[xti] for every i ∈ [1 . . e] such
that xti+1 > xti . Each edit contributes one unit to the cost of A, so the decomposition contains at
most e ≤ k edited characters and e + 1 ≤ k + 1 fragments matched perfectly.

12

a a c a a c a a c a a c

a a c a a c a a c a a c

a a c a a c

a a c a a c

X:

Y :

X ′:

Y ′:

d

d′

Figure 1: Periodicity reduction in X and Y with an optimal alignment depicted by lines connecting
characters of the two strings. At indices d, d′ in X and Y respectively, the periodic substring is fully
aligned (depicted by green lines), and so, we may reduce the power of these periodic substrings to
construct X ′ and Y ′ with ed(X,Y) = ed(X ′, Y ′).

2.3 Combinatorial Foundations

Before giving our algorithms for weighted string edit distance, we discuss edit distance equivalent
substrings, one of our main technical contributions.

Definition 2.8. For k ∈ Z≥0 and a weight function w, strings P,P ′ are called edw≤k-equivalent if

edw≤k(X,Y) = edw≤k(X[0 . . pX) · P ′ ·X[pX + |P | . . |X|), Y [0 . . pY) · P ′ · Y [pY + |P | . . |Y |))
holds for all strings X and Y in which P occurs at positions pX and pY , respectively, satisfying
|pX − pY | ≤ k. We say that such occurrences of P in X and Y are k-synchronized occurrences.

First, we prove that changing the power of a periodic substring does not change the edit distance
cost of any synchronized occurrences of that substring. Second, we prove that we only need to
consider the small prefixes and suffixes of substrings when calculating the edit distance. In both
cases, we are able to show that any optimal alignment must align such large substrings (first periodic
and then non-periodic) that have synchronized occurrences in edit distance instances, and so, we do
not have to worry about most of these large substrings when calculating edit distance. See Fig. 1
and Fig. 2 for examples of these two edit distance equivalent steps.

Lemma 2.9. Let k ∈ Z+, let Q be a string, and let e, e′ ∈ Z≥4k. Then, Qe and Qe′ are edw≤k-
equivalent for every weight function w.

Proof. We assume without loss of generality that Q is primitive. (If Q = Rm for m ∈ Z≥2, then
Qe = Rme and Qe′ = Rme′ can be interpreted as powers of R rather than powers of Q.) Suppose
that Qe occurs in strings X and Y at positions pX and pY , respectively, satisfying |pX − pY | ≤ k.
Denote X ′ = X[0 . . pX) · Qe′ · X[pX + |Qe| . . |X|) and Y ′ = Y [0 . . pY) · Qe′ · Y [pY + |Qe| . . |Y |).
Moreover, let q = |Q| and let A ∈ A(X,Y) be an alignment such that edw(X,Y) = edwA(X,Y) ≤ k.

Claim 2.10. There exist iX , iY ∈ [0 . . 3k] such that

X[pX + iX · q . . pX + (iX + 1) · q) ≃A Y [pY + iY · q . . pY + (iY + 1) · q).

13

a c e g n o r s u v x

a c e g n o r s u v x

a c e u v x

a c e u v x

X:

Y :

X ′:

Y ′:

Figure 2: For any synchronized occurrences of a substring P that avoids k-periodicity, any optimal
alignment (depicted by lines connecting characters of the two strings) must match most of the
inner characters of P (see green lines). We can construct strings X ′, Y ′ removing these matched
characters such that ed(X,Y) = ed(X ′, Y ′).

Proof. Let (tX , tY) ∈ A be the leftmost element of A such that tX ≥ pX and tY ≥ pY . By symmetry
between X and Y , we assume without loss of generality that tX = pX . Consider the k+1 occurrences
of Q in X starting at positions pX + i · q for i ∈ [0 . . k]. The alignment A matches at least one of
them exactly; we can thus define iX ∈ [0 . . k] so that A matches X[pX + iX · q . . pX + (iX + 1) · q)
exactly to some fragment Y [sY . . sY + q). Due to (tX , tY) ∈ A, the non-crossing property of A
implies that sY ≥ tY ≥ pY . Moreover, since edA(X,Y) ≤ k and X[pX + iX · q] ≃A Y [sY], we have
sY ≤ (pX + iX · q) + k ≤ pX + kq+ k ≤ pY + kq+ 2k ≤ pY + 3kq. Furthermore, since Q is primitive
(i.e., distinct from all its non-trivial cyclic rotations), we conclude that sY = pY + iY · q for some
iY ∈ [0 . . 3k].

Now, if Qe = X[pX . . pX + e · q) = Y [pY . . pY + e · q) is replaced with Qe′ for e′ ≥ e− 1, we can
interpret this as replacing Q = X[pX + iX · q . . pX + (iX + 1) · q) = Y [pY + iY · q . . pY + (iY + 1) · q)
with Q1+e′−e. By Claim 2.10, A can be trivially adapted without modifying its cost, and hence
edw(X ′, Y ′) ≤ edwA(X,Y) = edw(X,Y). If e′ < e − 1, we repeat the above argument to decrement
the exponent e one step at a time, still concluding that edw(X ′, Y ′) ≤ edw(X,Y). In either case,
the converse inequality follows by symmetry between (X,Y, e) and (X ′, Y ′, e′).

We say that a string avoids k-periodicity if it does not contain any substring of the form Q4k+1

with |Q| ∈ [1 . . 2k].

Lemma 2.11. Let k ∈ Z+ and let P,P ′ be strings of lengths at least 42k3 such that P [0 . . 21k3) =
P ′[0 . . 21k3) and P [|P | − 21k3 . . |P |) = P ′[|P ′| − 21k3 . . |P ′|) avoid k-periodicity. Then, P and P ′

are edw≤k-equivalent for every weight function w.

Proof. Suppose that P occurs in strings X and Y at positions pX and pY , respectively, satisfying
|pX − pY | ≤ k. Denote X ′ = X[0 . . pX) · P ′ · X[pX + |P | . . |X|) and Y ′ = Y [0 . . pY) · P ′ · Y [pY +
|P | . . |Y |). Moreover, let A ∈ A(X,Y) be an alignment such that edw(X,Y) = edwA(X,Y) ≤ k.

Claim 2.12. There exist d, e ∈ [0 . . 21k3] such that

X[pX + d . . pX + |P | − e) ∼A Y [pY + d . . pY + |P | − e).

14

Proof. Let us partition X[pX . . pX + 21k3) into individual characters representing deletions or
substitutions of A and maximal fragments that A matches perfectly (to fragments of Y). By
Fact 2.7, the number of such maximal fragments is at most k + 1 and their total length is at
least 21k3 − k ≥ 20k3. Hence, one of these fragments is of length at least 20k3

k+1 ≥ 10k2. Thus, let

R := X[rX . . rX + |R|) be a fragment of length at least 10k2 contained in X[pX . . pX + 21k3) that
A matches perfectly to Y [rY . . rY + |R|). Moreover, let r′Y := rX + pY − pX . If rY = r′Y , then we
set d := rX − pX = rY − pY so that (pX + d, pY + d) ∈ A. Otherwise, both Y [rY . . rY + |R|) and
Y [r′Y . . r′Y + |R|) are occurrences of R in Y . Moreover, 0 < |rY − r′Y | ≤ |rY − rX | + |r′Y − rX | ≤
edwA(X,Y) + |pY − pX | ≤ 2k. Hence, per(R) ≤ |rY − r′Y | ≤ 2k and exp(R) ≥ |R|

2k ≥ 4k + 1. Since
Y [r′Y . . r′Y + |R|) is contained in Y [pY . . pY + 21k3) = P [0 . . 21k3), this contradicts the assumption
about P [0 . . 21k3) avoiding k-periodicity.

A symmetric argument shows that (pX + |P | − e, pY + |P | − e) holds for some e ∈ [0 . . 21k3],
which lets us conclude that X[pX + d . . pX + |P | − e) ∼A Y [pY + d . . pY + |P | − e).

By Claim 2.12, we have X[pX + d . . pX + |P | − e) ∼A Y [pY + d . . pY + |P | − e). Both fragments
match P [d . . |P | − e), so the optimality of A guarantees X[pX + d . . pX + |P | − e) ≃A Y [pY +
d . . pY + |P | − e). Hence, if P = X[pX . . pX + |P |) = Y [pY . . pY + |P |) is replaced with P ′, we
can interpret this as P [d . . |P | − e) = X[pX + d . . pX + |P | − e) = Y [pY + d . . pY + |P | − e) with
P ′[d . . |P ′|−e). Since X[pX +d . . pX + |P |−e) ≃A Y [pY +d . . pY + |P |−e), the alignment A can be
trivially adapted without modifying its cost, and therefore edw(X ′, Y ′) ≤ edwA(X,Y) = edw(X,Y).
The converse inequality follows by symmetry between (X,Y, P) and (X ′, Y ′, P ′).

2.4 Algorithm

The following lemma lets us transform any string P to a string P ′ that avoids k-periodicity and is
edw≤k-equivalent to P for every weight function w. It is stated in a general form so that it can be
reused in subsequent sections.

Lemma 2.13. Let e ∈ Z+ and let Q be a family of primitive strings of length at most e. There
is an algorithm that repeatedly transforms an input string P by replacing an occurrence of Qe+1

(for some Q ∈ Q) with an occurrence of Qe, arriving at a string P ′ that does not contain any
occurrence of Qe+1 (for any Q ∈ Q). Moreover, this algorithm can be implemented in linear time
using a constant-time oracle that tests whether a given primitive fragment of P belongs to Q.

Proof. At preprocessing, we construct data structures for LCE and 2-Period queries in P ; see Theo-
rems 2.1 and 2.2. In the main phase, our algorithm scans the string P from left to right maintaining
a string R and an index r ∈ [0 . . |P |] such that R · P [r . . |P |):

• is obtained from P by repeatedly replacing an occurrence of Qe+1 (for some Q ∈ Q) with an
occurrence of Qe,

• does not contain any occurrence of Qe+1 (for Q ∈ Q) starting at position smaller than |R|.
We initialize the process with R := ε and r := 0. At each step, we test if P [r . . r + 2q) is periodic;
if so, we retrieve its shortest period q; otherwise, we set q := 1. Then, we further check whether
P [r . . r + q) ∈ Q and P [r . . r + eq) = P [r + q . . r + q + eq). If both tests are successful, we move
the index r to position r + q. Otherwise, we append P [r] to R and increment r.

Let us analyze the correctness of this algorithm. First, suppose that P [r . . |P |) does not have
a prefix of the form Qe+1 for any Q ∈ Q. In particular, P [r . . r + q) /∈ Q or m < eq. Thus, our
algorithm appends P [r] to R and increments r. The invariant remains satisfied because R·P [r . . |P |)
did not change and P [r . . |P |) had no prefix of the form Qe+1 for any Q ∈ Q.

15

Algorithm 1: Caps the exponent of every power of Q ∈ Q occurring in P to at most e.

1 PeriodicityReduction(P, e,Q):
2 R← ε;
3 r ← 0;
4 while r < |P | do
5 if r + 2e ≤ |P | and P [r . . r + 2e) is periodic then q ← per(P [r . . r + 2e));
6 else q ← 1;
7 m← max{ℓ : P [r . . r + ℓ) = P [r + q . . r + q + ℓ)};
8 if m ≥ eq and P [r . . r + q) ∈ Q then
9 r ← r + q;

10 else
11 R← R · P [r];
12 r ← r + 1;

13 return R;

Next, suppose that P [r . . |P |) has a prefix of the form Qe+1 for some Q ∈ Q. If |Q| 6= 1, then
|Q| is the shortest period of P [r . . r + 2e) because Q is primitive and |Q| ≤ e. If |Q| = 1, on the
other hand, then P [r . . r + 2e) either has period 1 or at least e + 2. In all cases, the algorithm
correctly identifies q = |Q|. Moreover, the subsequent tests whether P [r . . r + q) belongs to Q
and m ≥ eq are successful. Hence, the algorithm transforms R · P [r . . |P |) into R · P [r + q . . |P |),
which is a valid operation because the prefix Qe+1 of P [r . . |P |) is replaced with the prefix Qe of
P [r + q . . |P |). Thus, it remains to prove that R · P [r + q . . |P |) does not contain any occurrence
of Q̂e+1 (for any Q̂ ∈ Q) starting at position smaller than |R|. Since R · P [r . . |P |) did not contain
such an occurrence, the occurrence of Q̂e+1 would need to end at position |R|+ m or larger. The
fragment P [r + q . . r + q + m) thus has periods q and q̂ := |Q̂|. Moreover, by primitivity of Q and
Q̂, the Periodicity Lemma [FW65] implies q = q̂ due to m ≥ eq ≥ e + q − 1 ≥ q̂ + q − 1. However,
this means that q is a period of P [r . . r + q + m], contradicting the definition of m.

The overall running time is linear, including the preprocessing and the query time of the data
structures of Theorems 2.1 and 2.2, because each iteration of the while loop costs constant time.

Corollary 2.14. There exists a linear-time algorithm that, given a string P and an integer k ∈ Z+,
constructs a string of length at most 42k3 that is edw≤k-equivalent to P for every weight function w.

Algorithm 2: Construct a string of length at most 42k3 that is edw≤k-equivalent to P .

1 StringReduction(P, k):
2 P ′ ← PeriodicityReduction(P, 4k, {Q ∈ Σ+ : |Q| ≤ 2k and Q is primitive});
3 if |P ′| ≥ 42k3 then return P ′[0 . . 21k3) · P ′[|P ′| − 21k3 . . |P ′|);
4 else return P ′;

Proof. We set P ′ := PeriodicityReduction(P, 4k,Q) with Q consisting of all primitive strings
of length in [1 . . 2k]. We return P ′′ := P ′[0 . . 21k3) · P ′[|P ′| − 21k3 . . |P ′|) or P ′ depending on
whether |P ′| ≥ 42k3 or not. By Lemmas 2.9 and 2.13, the string P ′ is edw≤k-equivalent to P and
avoids k-periodicity. Thus, if |P ′| ≤ 42k3, then the algorithm is correct. Otherwise, Lemma 2.11
implies that P ′′ is edw≤k-equivalent to P ′ (and, by transitivity, to P) because P ′[0 . . 21k3) and

16

P ′[|P ′|−21k3 . . |P ′|) avoid k-periodicity. Due to Lemma 2.13, the running time is linear (a primitive
fragment belongs toQ if and only if its length does not exceed 2k, which takes O(1) time to test).

Theorem 2.15. There exists a linear-time algorithm that, given strings X, Y and an integer
k ∈ Z+, constructs strings X ′, Y ′ of lengths at most 85k4 such that edw≤k(X,Y) = edw≤k(X ′, Y ′)
holds for every weight function w.

Algorithm 3: Construct strings X ′, Y ′ of length at most 85k4 such that edw≤k(X,Y) =
edw≤k(X ′, Y ′)

1 StringKernel(X,Y, k):
2 if |X| ≤ 85k4 and |Y | ≤ 85k4 then return (X,Y);

3 if ed(X,Y) > k then return (ak+1, ε) for some a ∈ Σ;
4 Let (xt, yt)

m
t=0 ∈ A(X,Y) be an alignment satisfying edA(X,Y) ≤ k;

5 X ′, Y ′, P ← ε;
6 for t← 0 to m do
7 if t < m and xt+1 > xt and yt+1 > yt and X[xt] = Y [yt] then
8 P ← P ·X[xt]
9 else

10 P ← StringReduction(P, k);
11 X ′ ← X ′ · P ;
12 Y ′ ← Y ′ · P ;
13 P ← ε;
14 if t < m and xt+1 > xt then X ′ ← X ′ ·X[xt];
15 if t < m and yt+1 > yt then Y ′ ← Y ′ · Y [yt];

16 return (X ′, Y ′)

Proof. Our procedure is implemented as Algorithm 3. First, if X and Y are already of length
at most 85k4, then we return X and Y unchanged. If ed(X,Y) > k, we return strings ak+1 and
ε, where a ∈ Σ is an arbitrary character. If ed(X,Y) ≤ k, we construct an alignment A :=
(xt, yt)

m
t=0 ∈ A(X,Y) of (unweighted) cost at most k. We then build the output strings X ′ and Y ′

during a left-to-right scan of the alignment A: We append to X ′ and Y ′ every character of X and
Y (respectively) that A edits. Moreover, for every pair of maximal fragments in X and Y that
A matches perfectly, we apply the reduction of Corollary 2.14 and append the resulting string to
both X ′ and Y ′.

Let us now prove that the resulting instance (X ′, Y ′) satisfies edw≤k(X,Y) = edw≤k(X ′, Y ′). This
is trivial when the algorithm returns (X,Y) in Line 2. If ed(X,Y) > k, then ed≤k(X,Y) =
∞ = ed≤k(ak+1, ε) and thus also edw≤k(X,Y) = ∞ = edw≤k(ak+1, ε) because the weighted edit
distance with a normalized weight function is at least as large as the unweighted edit distance.
In the remaining case of ed(X,Y) ≤ k, we maintain an invariant that |X ′| − |Y ′| = xt − yt and
edw≤k(X,Y) = edw≤k(X ′ · P ·X[xt . . xm), Y ′ · P · Y [yt . . ym)) hold at the beginning of every iteration
of the for loop as well as after every execution of Line 10 and Line 13. It is easy to see that
the strings X ′ · P ·X[xt . . xm) and Y ′ · P · Y [yt . . ym) change only at Line 10, when P is replaced
with StringReduction(P, k). The correctness of this step follows directly from the definition of
edw≤k-equivalence (Definition 2.8) since StringReduction(P, k) is edw≤k-equivalent to P .

Next, we show that the returned strings are of length at most 85k4. This is clear when the
algorithm terminates at Line 2 or 3. Otherwise, we apply Fact 2.7 to observe that X is decomposed

17

into at most k characters that A deletes or substitutes (which are copied to X ′) and at most
k + 1 maximal fragments that A matches perfectly to fragments of Y (which are copied to X ′

after applying StringReduction). By the guarantee of Corollary 2.14, we conclude that |X ′| ≤
k + (k + 1) · 42k3 ≤ 85k4. Symmetrically, we have |Y ′| ≤ 85k4.

It remains to analyze the time complexity of our procedure. We use the Landau–Vishkin
algorithm [LV88] to check whether ed(X,Y) ≤ k and, if so, construct the alignment A. This costs
O(n + k2) time, which is O(n) because we perform this step only if n ≥ k4 ≥ k2. The scan of the
alignment A takes O(m) = O(n) time, including the applications of Corollary 2.14, which operate
on strings of total length at most n.

Having reduced the string lengths toO(k4), we can use the classic dynamic programming [WF74]
to compute edw≤k(X,Y) in O(k8) time. However, since w is a normalized, the running of [WF74]
can be reduced to O(nk). For completeness, we describe this improvement below.

Proposition 2.16. Given strings X,Y of length at most n, an integer k ∈ Z+, and a weight
function w, the value edw≤k(X,Y) can be computed in O(nk) time.

Proof. Recall that the algorithm of [WF74] maintains a table D[0 . . |X|, 0 . . |Y |] such that D[i, j] =
edw(X[0 . . i), Y [0 . . j)) holds for each i ∈ [0 . . |X|] and j ∈ [0 . . |Y |]. We have D[0, 0] = 0, whereas
the remaining entries are constructed in O(1) time each using the following formula:

D[i, j] = min

D[i− 1, j] + w(X[i − 1], ε) if i > 0,

D[i, j − 1] + w(ε, Y [j − 1]) if j > 0,

D[i− 1, j − 1] + w(X[i − 1], Y [j − 1]) if i, j > 0.

(1)

In order to compute edw≤k(X,Y), we use a modified table D′[0 . . |X|, 0 . . |Y |] such that D′[0, 0] = 0,
D′[i, j] =∞ if |i−j| > k, whereas the remaining entries are computed using (1) (with D replaced by
D′). A straightforward inductive argument shows that D′[i, j] ≥ D[i, j] holds for all i ∈ [0 . . |X|] and
j ∈ [0 . . |Y |] and, moreover, D[i, j] ≤ k implies D′[i, j] = D[i, j]. For |i− j| > k, this is true because
w is normalized and thus D[i, j] = edw(X[0 . . i), Y [0 . . j)) ≥ ed(X[0 . . i), Y [0 . . j)) ≥ |i − j| > k.
For |i− j| ≤ k, on the other hand, the argument is based on the inductive hypothesis and the fact
that the weight function w has non-negative values. The entries D′[i, j] =∞ for |i− j| > k can be
set implicitly, which reduces the running time to O(nk).

Theorem 1.1. Given strings X,Y of length at most n, an integer k ∈ Z+, and a weight function w,
the value edw≤k(X,Y) can be computed in O(n + k5) time.

Proof. We first apply Theorem 2.15 to build strings X ′, Y ′ of length O(k4) such that edw≤k(X ′, Y ′) =
edw≤k(X,Y). Then, we compute edw≤k(X ′, Y ′) using Proposition 2.16. The running times of these
two steps are O(n) and O(k4 · k) = O(k5), respectively, for a total of O(n + k5).

3 Tree Edit Distance

3.1 Preliminaries

For an alphabet Σ, we define a set PΣ :=
⋃

a∈Σ{(a,)a} of parentheses with labels over Σ. A forest
with node labels over Σ is a balanced string of parentheses over Σ. Formally, the set of forests with
labels over Σ is defined as the smallest subset FΣ ⊆ P∗

Σ satisfying the following conditions:

• ε ∈ FΣ,

18

• F ·G ∈ FΣ for every F,G ∈ FΣ,
• (a · F ·)a ∈ FΣ for every F ∈ FΣ and a ∈ Σ.

For a forest F , we define the set of nodes VF as the set of pairs (i, j) ∈ [0 . . |F |) such that
F [i] is an opening parenthesis, F [j] is a closing parenthesis, and F [i . . j] is balanced. For a node
u = (i, j) ∈ VF , we denote the positions of the opening and the closing parenthesis by o(u) := i
and c(u) := j. A forest F is a tree if (0, |F | − 1) ∈ VF .

Fact 3.1. A forest F can be preprocessed in linear time so that one can test in constant time
whether any given fragment F [i . . j) is balanced.

Proof. Let us define the height function H : [0 . . |F |] → Z so that H(i) equals the number of
opening parentheses in F [0 . . i) minus the number of closing parentheses in F [0 . . i). Since F is
balanced, the fragment F [i . . j) is balanced if and only if H(i) = H(j) = minm∈[i. .j]H(m). This
condition can be tested in O(1) time after linear-time preprocessing using range minimum queries
(RMQ) [HT84].

A context with node labels over Σ is a pair C = 〈CL;CR〉 ∈ PΣ × PΣ such that CL · CR is a
tree. The node set VC of a context C is identified with the node set of the underlying tree CL ·CR.
The depth of a context C is the number of nodes u ∈ VC whose opening parenthesis belongs to CL

and closing parenthesis belongs to CR, that is, o(u) < |CL| < c(u).
The (vertical) composition of contexts C,D results in a context C ⋆ D := 〈CL · DL;DR · CR〉.

Moreover, vertical composition of a context C and a forest F results in a tree C ⋆F := CL ·F ·CR.
A context C is primitive if it cannot be expressed as vertical composition of e ≥ 2 copies of the
same context.

A context C occurs in a forest F at node u ∈ VF if CL = F [o(u) . . o(u) + |CL|) and CR =
F (c(u) − |CR| . . c(u)], or equivalently, F [o(u) . . c(u)] = C ⋆ G for some forest G

3.2 Forest Alignments and Weighted Forest Edit Distance

We begin our discussion of weighted tree edit distance by formally defining forest alignments,
which are similar to alignments on strings with just a few additional restrictions to make sure the
alignments make valid edits on forests.

Definition 3.2. We say that an alignment A ∈ A(F,G) is a forest alignment of forests F and G
if the following consistency conditions are satisfied for each u ∈ VF :

• either A deletes both F [o(u)] and F [c(u)], or
• there exists v ∈ VG such that F [o(u)] ∼A G[o(v)] and F [c(u)] ∼A G[c(v)].

The set of all forests alignments of F onto G is denoted with TA(F,G) ⊆ A(F,G).

Define PΣ = PΣ ∪ ε and a mapping λ : PΣ → Σ̄ such that λ((a) = λ()a) = a for each
a ∈ Σ, and λ(ε) = ε. For a weight function w : Σ̄ × Σ̄ → R≥0, we define a correspond-
ing weight function w̃ : PΣ × PΣ → R≥0 so that w̃(p, q) = w(λ(p), λ(q)) for all p, q ∈ PΣ.
The cost of a forest alignment A ∈ TA(F,G) with respect to a weight function w is defined as
tedwA(F,G) := 1

2ed
w̃
A(F,G). Moreover, for any two forests F,G, we define the weighted tree edit

distance tedw(F,G) = minA∈TA(F,G) ted
w
A(F,G), and for a threshold k ∈ R≥0, we set

tedw≤k(F,G) =

{

tedw(F,G) if tedw(F,G) ≤ k,

∞ otherwise.

The superscript is omitted if w is the discrete metric over Σ̄.

19

Fact 3.3. If w is a quasimetric on Σ̄, then tedw is a quasimetric on FΣ. In that case, tedw(F,G)
can be equivalently defined as the minimum cost of a sequence of edits transforming F into G, where
inserting a node with label b costs w(ε, b), deleting a node with label a costs w(a, ε), and changing
a node label from a to b costs w(a, b).

Proof. Consider arbitrary forests F,G,H ∈ FΣ as well as alignments A = (xt, yt)
m
t=0 ∈ TA(F,G)

and B = (ŷt, ẑt)
m̂
t=0 ∈ TA(G,H). We can construct the product alignment A ⊗ B as in the proof

of Fact 2.5, which has edwA⊗B(F,H) ≤ edwA(F,G) + edwB (G,H). Therefore, it remains to prove that
A⊗ B is a tree alignment.

Consider an arbitrary node uF ∈ VF . If A deletes uF (that is, it deletes both characters F [o(uF)]
and F [c(uF)]), then A⊗B also deletes uF ; see Case 2 in the recursive definition of A⊗B. The other
possibility is that A aligns uF with some node uG ∈ VG (that is, it aligns F [o(uF)] with G[o(uG)]
and F [c(uF)] with G[c(uG)]). If B deletes uG, then A⊗ B deletes uF ; see Case 6 in the recursive
definition of A ⊗ B. Finally, if B aligns uG with some node uH ∈ VH , then A ⊗ B aligns uF with
uH ; see Case 7 in the recursive definition of A⊗ B.

3.3 Combinatorial Foundations

3.3.1 Forests

Similar to our discussion of weighted string edit distance, before giving our tree edit distance algo-
rithms we prove the existence of small edit distance equivalent forests for synchronized occurrences
of large subforests in the input instance forests.

Definition 3.4. For k ∈ Z≥0 and a weight function w, forests P,P ′ are called tedw≤k-equivalent if

tedw≤k(F,G) = tedw≤k(F [0 . . pF) · P ′ · F [pF + |P | . . |F |), G[0 . . pG) · P ′ ·G[pG + |P | . . |G|))
holds for all forests F and G in which P occurs at positions pF and pG, respectively, satisfying
|pF − pG| ≤ 2k.

Lemma 3.5. Let k ∈ Z+, let Q be a forest, and let e, e′ ∈ Z≥4k. Then, Qe and Qe′ are tedw≤k-
equivalent for every normalized weight function w.

Proof. We assume without loss of generality that Q is primitive. (If Q = Rm for m ∈ Z≥2, then
Qe = Rme and Qe′ = Rme′ can be interpreted as powers of R rather than powers of Q.) Suppose
that Qe occurs in forests F and G at positions pF and pG, respectively, satisfying |pF − pG| ≤ 2k.
Denote F ′ = F [0 . . pF) · Qe′ · F [pF + |Qe| . . |F |) and G′ = G[0 . . pG) · Qe′ · G[pG + |Qe| . . |G|).
Moreover, let q = |Q| and let A be a forest alignment such that tedw(F,G) = tedwA(F,G) ≤ k.

Claim 3.6. There exist iF , iG ∈ [0 . . 3k] such that

F [pF + iF · q . . pF + (iF + 1) · q) ≃A G[pG + iG · q . . pG + (iG + 1) · q).

Proof. Let (fb, gb) ∈ A be the leftmost element of A such that fb ≥ pF and gb ≥ pG. By symmetry
between F and G, we assume without loss of generality that fb = pF . Consider the k+1 occurrences
of Q in F starting at positions pF + i · q for i ∈ [0 . . k]. Since Q is balanced, the alignment A (of
unweighted cost at most k) matches at least one of them exactly; we can thus define iF ∈ [0 . . k] so
thatAmatches F [pF+iF ·q . . pF+(iF +1)·q) exactly to some fragment G[ga . . ga+q). By definition of
b, we have a ≥ b and thus ga ≥ gb ≥ pG. Moreover, since tedA(F,G) ≤ k and F [pF +iF ·q] ∼A G[ga],
we have ga ≤ (pF + iF · q) + 2k ≤ pF +kq+ 2k ≤ pG +kq+ 4k ≤ pG + 3kq, where the last inequality
follows from q ≥ 2 (recall that Q is balanced, so its length is even). Furthermore, since Q is
primitive (i.e., distinct from all its non-trivial cyclic rotations), we conclude that ga = pG + iG · q
for some iG ∈ [0 . . 3k].

20

() ()

{}

()

{}

Horizontal Periodicity: Vertical Periodicity:

Figure 3: Pictured left: horizontal periodicity with string representation
“([. . .][. . .][. . .][. . .])”. Pictured right: vertical periodicity with string representation
“([. . .]{([. . .]{[. . .][. . .]}[. . .])[. . .]}[. . .])”.

Now, if Qe = F [pF . . pF + e · q) = G[pG . . pG + e · q) is replaced with Qe′ for e′ ≥ e− 1, we can
interpret this as replacing Q = F [pF + iF · q . . pF + (iF + 1) · q) = G[pG + iG · q . . pG + (iG + 1) · q)
with Q1+e′−e. By Claim 3.6, A can be trivially adapted without modifying its cost, and hence
tedw(F ′, G′) ≤ tedwA(F,G) = tedw(F,G). If e′ < e− 1, we repeat the above argument to decrement
the exponent one step at a time, still concluding that tedw(F ′, G′) ≤ tedw(F,G). In either case,
the converse inequality follows by symmetry between (F,G, e) and (F ′, G′, e′).

We say that a forest F avoids horizontal k-periodicity if there is no forest Q of length |Q| ∈
[1 . . 4k] such that Q4k+1 occurs in F .

Lemma 3.7. Let k ∈ Z+ and let P,P ′ be forests of length |P |, |P ′| ≥ 74k3 avoiding horizontal
k-periodicity. Then, P and P ′ are tedw≤k-equivalent for every normalized quasimetric w.

Proof. Suppose that P occurs in forests F and G at positions pF and pG, respectively, satisfying
|pF−pG| ≤ 2k. Denote F ′ = F [0 . . pF)·P ′·F [pF +|P | . . |F |) and G′ = G[0 . . pG)·P ′·G[pG+|P | . . |G|).

Let A = (ft, gt)
m
t=0 be an alignment such that tedw(F,G) = tedwA(F,G) ≤ k. Moreover, let

(fa, ga) ∈ A be the leftmost element of A such that fa ≥ pF or ga ≥ pG, and let (fb, gb) ∈ A be the
leftmost element of A such that fb ≥ pF + |P | and gb ≥ pG + |P |. We construct an alignment A′

so that it:

• aligns F [0 . . fa) with G[0 . . ga) in the same way as A does;
• deletes F [fa . . pF) and inserts G[ga . . pG) (at least one of these fragments is empty);
• matches F [pF . . pF + |P |) = P with G[pG . . pG + |P |) = P ;

21

• deletes F [pF + |P | . . fb) and inserts G[pG+ |P | . . gb) (at least one of these fragments is empty);
• aligns F [fb . . |F |) with G[gb . . |G|) in the same way as A does.

To prove that A′ is a forest alignment, let us consider several possibilities for a node u in F .

• If u is inside P = F [pF . . pF + |P |), then A′ matches u to the corresponding node inside
P = G[pG . . pG + |P |).

• If u is outside P = F [pF . . pF + |P |) and A aligns u to a node v of G inside P = G[pG . . pG +
|P |), then o(u), c(u) ∈ [fa . . pF) ∪ [pF + |P | . . fb) because of the non-crossing property of
A ∋ (fa, ga), (fb, gb). Hence, A′ deletes u.

• If u is outside P = F [pF . . pF + |P |) and A aligns u to a node v of G outside P =
G[pG . . pG + |P |), then o(u), c(u) ∈ [0 . . fa) ∪ [fb . . |F |) because of the non-crossing property
of A ∋ (fa, ga), (fb, gb). Hence, A′ also aligns u to v.

• If u is outside P = F [pF . . pF + |P |) and A deletes u, then A′ also deletes u.

Our next goal is to prove that tedwA′(F,G) ≤ tedwA(F,G). This relies on the following claim.

Claim 3.8. There exists t ∈ [a . . b] such that ft − gt = pF − pG.

Proof. Let us partition P = F [pF . . pF + |P |) into individual characters representing deletions
or substitutions of A and maximal fragments that A matches perfectly (to fragments of G). By
Fact 2.7, the number of such fragments is at most 2k + 1 and their total length is at least |P | − 2k.

Hence, one of these fragments, denoted R = F [rF . . rF + |R|), is of length at least |P |−2k
2k+1 ≥ 24k2.

Suppose that the fragment of G matched perfectly to R is G[rG . . rG + |R|). If rF − pF = rG− pG,
the claim holds for t such that (ft, gt) = (rF , rG). Otherwise, we note that R has period q :=

|(rF − pF)− (rG − pG)| ∈ [1 . . 4k]. Let q = R[0 . . q) and observe that |R|
q ≥ 24k2

4k ≥ 4k + 2. Hence,

Q4k+2 is a substring of P ; since P avoids horizontal k-periodicity, we conclude that no cyclic
rotation of Q is balanced.

As Q is a substring of a balanced string P , this means that the number of opening parentheses
in Q does not match the number of closing parentheses in Q. By symmetry (up to reversal),
we assume without loss of generality that Q has more opening than closing parentheses. Thus,
there exists a node u in F such that o(u) ∈ [rF . . rF + q) yet c(u) ≥ rF + |R|. In particular,
c(u) − o(u) ≥ |R| − q ≥ 24k2 − 4k > 8k. Let v, v′ be the nodes in G matched with u by A and
A′, respectively. Note that |o(v) − o(v′)| ≤ 4k and |c(v) − c(v′)| ≤ 4k. Due to c(v′) − o(v′) =
c(u) − o(u) > 8k, we conclude that v is ancestor of v′ or vice versa. In either case, we have
0 ≥ (o(v′) − o(v)) · (c(v′) − c(v)) = ((o(u) − o(v)) − (pF − pG)) · ((c(u) − c(v)) − (pF − pG)). The
value (ft − gt) − (pF − pG) can change by at most one for subsequent indices t. The sign of this
value is different when (ft, gt) = (o(u), o(v)) and (ft, gt) = (c(u), c(v)), so it must be equal to 0 at
some intermediate index t.

The alignments A and A′ only differ in how they align F [fa . . ft) with G[ga . . gt) and F [ft . . fb)
with G[gt . . gb), and, by Fact 2.6, A′ provides an optimum alignment of these fragments. Now,
if P = F [pF . . pF + |P |) = G[pG . . pG + |P |) is modified to P ′, then A′ can be trivially adapted
without modifying its cost and hence tedw(F ′, G′) ≤ tedwA′(F,G) = tedw(F,G). The converse
inequality follows by symmetry between (F,G,P) and (F ′, G′, P ′).

22

3.3.2 Contexts

Definition 3.9. For k ∈ Z≥0 and a weight function w, contexts P = 〈PL;PR〉 and P ′ = 〈P ′
L;P ′

R〉
are called tedw≤k-equivalent if

tedw≤k(F,G) = tedw≤k(F [0 . . o(u)) · P ′
L · F [o(u) + |PL| . . c(u)− |PR|] · P ′

R · F (c(u) . . |F |),
G[0 . . o(v)) · P ′

L ·G[o(v) + |PL| . . c(u)− |PR|] · P ′
R ·G(c(v) . . |G|))

holds for all forests F and G in which P occurs at nodes u and v, respectively, satisfying |o(u) −
o(v)| ≤ 2k and |c(u) − c(v)| ≤ 2k.

Lemma 3.10. Let k ∈ Z+, let Q be a context, and let e, e′ ∈ Z≥6k. Then, Qe and Qe′ are
tedw≤k-equivalent for every normalized weight function w.

Proof. We assume without loss of generality that Q is primitive. (If Q = Rm for m ∈ Z≥2, then
Qe = Rme and Qe′ = Rme′ can be interpreted as powers of R rather than powers of Q.) Let
Q = 〈QL;QR〉 with qL = |QL| and qR = |QR|. Suppose that Qe occurs in forests F and G at nodes
u and v, respectively, satisfying |o(u) − o(v)| ≤ 2k and |c(u)− c(v)| ≤ 2k. Denote

F ′ = F [0 . . o(u)) ·Qe′
L · F [o(u) + |Qe

L| . . c(u)− |Qe
R|] ·Qe′

R · F (c(u) . . |F |),
G′ = G[0 . . o(v)) ·Qe′

L ·G[o(v) + |Qe
L| . . c(u) − |Qe

R|] ·Qe′

R ·G(c(v) . . |G|).

For i ∈ [0 . . e), let ui be the node of F with o(ui) = o(u) + i · qL (and c(ui) = c(u)− i · qR) and let
vi be the node of G with o(vi) = o(v) + i · qL (and c(vi) = c(v) − i · qR). Moreover, let A be an
optimal forest alignment such that ted(F,G) = tedA(F,G) ≤ k.

Claim 3.11. There exist iF , iG ∈ [0 . . 5k] such that

F [o(u) + iF · qL . . o(u) + (iF + 1) · qL) ≃A G[o(v) + iG · qL . . o(v) + (iG + 1) · qL),

F (c(u)− (iF + 1) · qR . . c(u) − iF · qR] ≃A G(c(v) − (iF + 1) · qR . . c(v) − iG · qR].

Proof. Let (fb, gb) ∈ A be the leftmost element of A such that fb ≥ o(u) and gb ≥ o(v). By
symmetry between F and G, we may assume without loss of generality that fb = o(u). Consider
the k + 1 disjoint occurrences of C in F at positions (o(u) + i · qL, c(u) + i · qR) for i ∈ [0 . . k]. The
alignment A (of unweighted cost at most k) must match one of these occurrences perfectly to a
context within G. We pick the index iF ∈ [0 . . k] of one such perfectly matched occurrence and
suppose that it occurs at a node v′ of G.

In particular,

F [o(uiF) . . o(uiF) + qL) ≃A G[o(v′) . . o(v′) + qL),

F (c(uiF)− qR . . c(uiF)] ≃A G(c(v′)− qR . . c(v′)].

Since (fb, gb) ∈ A, we must have o(v′) ≥ gb ≥ o(v) by the non-crossing property of A. At the
same time, since the unweighted cost of A does not exceed k, we have o(v′) ≤ o(uiF) + 2k ≤
o(u) + kqL + 2k ≤ o(v) + kqL + 4k ≤ o(v) + 5kqL. Similarly, c(v′) ≥ c(v)− 5kqR, which also implies
c(v′) ≤ c(v).

Our next goal is to show that v′ = viG for some iG ∈ [0 . . 5k]. For a proof by contradiction,
suppose that o(vi) < o(v′) < o(vi+1) for some i ∈ [0 . . 5k). Due to c(v′) > c(v) − 5kqR, this also
implies that c(vi) > c(v′) > c(vi+1), i.e., that v′ is a node on the path between vi and vi+1. Suppose
that the length of this path is ℓ and the node v′ is at distance ℓ′ from vi. Hence, G[o(vi) . . o(v′)) has

23

ℓ′ unmatched opening parentheses out of the ℓ unmatched opening parentheses in QL. Moreover,
G[o(vi) . . o(v′)) · G[o(v′) . . o(vi+1)) = QL = G[o(v′) . . o(vi+1)) ·G[o(vi) . . o(v′)), and thus there is a
primitive string QL such that G[o(v′) . . o(vi+1)) and G[o(vi) . . o(v′)) are both powers of QL. The
number of unmatched opening parentheses is QL must be a common divisor of ℓ and ℓ′, i.e., QL

can be expressed as a string power with exponent ℓ/ gcd(ℓ, ℓ′). A symmetric argument shows that
QR can be expressed as a string power with exponent ℓ/ gcd(ℓ, ℓ′). Overall, we conclude that C
can be expressed as a context power with exponent ℓ/ gcd(ℓ, ℓ′), contradicting the primitivity of C.
Hence, v′ = viG for some iG ∈ [0 . . 5k] holds as claimed and, in particular, o(v′) = o(v) + iGqL and
c(v′) = c(v)− iGqR.

Now, if the occurrences of Qe at nodes u, v are replaced with Qe′ for e′ ≥ e−1, we can interpret
this as replacing the occurrences of Q at nodes uiF , viG with Q1+e′−e. By Claim 3.11, A can be
trivially adapted without modifying its cost, and hence tedw(F ′, G′) ≤ tedwA(F,G) = tedw(F,G).
If e′ < e − 1, we repeat the above argument to decrement the exponent one step at a time,
still concluding that tedw(F ′, G′) ≤ tedw(F,G). In either case, the converse inequality follows by
symmetry between (F,G, e) and (F ′, G′, e′).

We say that a context P = 〈PL;PR〉 avoids vertical k-periodicity if it cannot be expressed as
P = C ⋆ Q6k+1 ⋆ D for some contexts C,Q,D satisfying |Q| ∈ [1 . . 8k].

Lemma 3.12. Let k ∈ Z+, let P = 〈PL;PR〉, P ′ = 〈P ′
L;P ′

R〉 be contexts of length |PL|+ |PR|, |P ′
L|+

|P ′
R| ≥ 578k4 that avoid vertical k-periodicity and whose halves do not contain any balanced sub-

string of length more than 74k3. Then, P and P ′ are tedw≤k-equivalent for every normalized weight
function w.

Proof. Suppose that P occurs in forests F and G at nodes u and v, respectively, satisfying |o(u)−
o(v)| ≤ 2k and |c(u) − c(v)| ≤ 2k, Denote

F ′ = F [0 . . o(u)) · P ′
L · F [o(u) + |PL| . . c(u)− |PR|] · P ′

R · F (c(u) . . |F |),
G′ = G[0 . . o(v)) · P ′

R ·G[o(v) + |PL| . . c(v) − |PR|] · P ′
R ·G(c(v) . . |G|).

Let A = (ft, gt)
m
t=0 be an optimal forest alignment such that ted(F,G) = tedA(F,G) ≤ k. Moreover,

let (fa, ga) ∈ A be the leftmost element of A such that fa ≥ o(u) or ga ≥ o(v), (fb, gb) ∈ A be the
leftmost element of A such that fb ≥ o(u) + |PL| and gb ≥ o(v) + |PL|, (fc, gc) ∈ A be the leftmost
element of A such that fc > c(u)−|PR| or gc > c(v)−|PR|, and let (fd, gd) be the leftmost element
of A such that fd > c(u) and gd > c(v). We construct an alignment A′ so that it:

• aligns F [0 . . fa) with G[0 . . ga) in the same way as A does;
• deletes F [fa . . o(u)) and inserts G[ga . . o(v)) (at least one of these fragments is empty);
• matches F [o(u) . . o(u) + |PL|) = PL with G[o(v) . . o(v) + |PL|) = PL;
• if b > c, deletes F [o(u) + |PL| . . c(u) − |PR|] and inserts G[o(v) + |PL| . . c(v)− |PR|];
• if b ≤ c, deletes F [o(u) + |PL| . . fb) and inserts G[o(v) + |PL| . . gb) (at least one of these

fragments is empty);
• if b ≤ c, aligns F [fb . . fc) with G[gb . . gc) in the same way as A does;
• if b ≤ c, deletes F [fc . . c(u) − |PR|] and inserts G[gc . . c(v) − |PR|] (at least one of these

fragments is empty);
• matches F (c(u) − |PR| . . c(u)] = PR with G(c(v) − |PR| . . c(v)] = PR;
• deletes F (c(u) . . fd) and inserts G(c(v) . . gd) (at least one of these fragments is empty);
• aligns F [fd . . |F |) with G[gd . . |G|) in the same way as A does.

To prove that A′ is a forest alignment, let us consider several possibilities for a node u′ in F .

24

• If u′ belongs to P = 〈F [o(u) . . o(u) + |PL|);F (c(u)− |PR| . . c(u)]〉, then A′ matches u′ to the
corresponding node that belongs to P = 〈G[o(v) . . o(v) + |PL|);G(c(v) − |PR| . . c(v)]〉.

• If u′ is outside F [o(u) . . c(u)] and A aligns u′ to a node v′ of G inside G[o(v) . . c(v)], then
o(u′), c(u′) ∈ [fa . . o(u))∪(c(u) . . fd) because of the non-crossing property ofA ∋ (fa, ga), (fd, gd).
Hence, A′ deletes u′.

• If u′ is outside F [o(u) . . c(u)] and A aligns u′ to a node v′ of G outside G[o(v) . . c(v)], then
o(u′), c(u′) ∈ [0 . . fa)∪ [fd . . |F |) because of the non-crossing property of A ∋ (fa, ga), (fd, gd).
Hence, A′ also aligns u′ to v′.

• If u′ is outside F [o(u) . . c(u)] and A deletes u′, then A′ also deletes u′.
• If b > c and u′ is inside F [o(u) + |PL| . . c(u)− |PR|], then A′ deletes u′.
• If b ≤ c, u′ is inside F [o(u) + |PL| . . c(u) − |PR|], and A aligns u′ to a node v′ of G outside
G[o(v) + |PL| . . c(v) − |PR|], then o(u′), c(u′) ∈ [o(u) + |PL| . . fb) ∪ [fc . . c(u) − |PR|] because
of the non-crossing property of A ∋ (fb, gb), (fc, gc). Hence, A′ deletes u′.

• If b ≤ c, u′ is inside F [o(u) + |PL| . . c(u) − |PR|], and A aligns u′ to a node v′ of G inside
G[o(v) + |PL| . . c(v)− |PR|], then o(u′), c(u′) ∈ [fb . . fc) because of the non-crossing property
of A ∋ (fb, gb), (fc, gc). Hence, A′ also aligns u′ to v′.

• If b ≤ c, u′ is inside F [o(u) + |PL| . . c(u)− |PR|], and A deletes u′, then A′ also deletes u′.

Let us now prove that tedwA′(F,G) ≤ tedwA(F,G). This relies on the following claim.

Claim 3.13. There exist tL ∈ [a . . b] such that ftL − gtL = o(u) − o(u) and tR ∈ [c . . d] such that
ftL − gtL = c(u)− c(u).

Proof. By symmetry (up to reversal), we can focus without loss of generality on the first claim.
Moreover, by symmetry between F and G, we can assume without loss of generality that fa = o(u);
in particular, this implies fa − ga ≥ o(u) − o(v). If there exists t ∈ [a . . b] such that ft − gt ≤
o(u) − o(v), then, since ft − gt may change by at most one for subsequent positions, there is also
tL ∈ [a . . b] such that ftL − gtL = o(u) − o(v), Consequently, it remains to consider the case when
ft − gt > o(u)− o(v) holds for all t ∈ [a . . b].

Let us express P as a vertical composition of e contexts P = P0 ⋆ · · · ⋆ Pe−1, where e is the
depth of P . Observe that the occurrences of P at node u in F and v in G, for each i ∈ [0 . . e),
induce occurrences of Pi at some nodes ui in F and vi in G. Since F (o(ui) . . o(ui) + |Pi,L|) and
F (c(ui) − |Pi,R| . . c(ui)) are balanced, we conclude that |Pi| ≤ 2 · (74k3 + 1) ≤ 150k3. We can
decompose [0 . . e) into at most k individual indices i such that A does not match perfectly the
occurrence of Pi at vi and at most k + 1 intervals [i . . i′) such that A matches the occurrence
Pi ⋆ · · · ⋆ Pi′−1 at vi perfectly to a context in F . Let us choose such an interval [i . . i′) maximizing

|Pi ⋆ · · · ⋆Pi′−1|; this length is at least 578k4−k·150k3

k+1 ≥ 214k3. Let i′′ ∈ [i . . i′) be the maximum index

such that |Pi′′ ⋆ · · · ⋆ Pi′−1| > 8k; note that |Pi ⋆ · · · ⋆ Pi′′−1| ≥ 214k3 − (150k3 + 8k) ≥ 56k2.
For each j ∈ [i . . i′′], denote by u′j be the node of matched with vj by A. Note that |o(u′j) −

o(uj)| ≤ 4k and |c(u′j)− c(uj)| ≤ 4k. Moreover, o(u′j)− o(vj) > o(u)− o(v) = o(uj)− o(vj) implies
o(u′j) > o(uj). Since |Pj ⋆ · · · ⋆ Pi′−1| > 8k, we conclude that u′j = uj′ for some j′ ∈ [j . . i′).
Moreover, if j > i, then u′j must be a child of u′j−1. Hence, there exists δ > 0 such that u′j =
uj+δ holds for all j ∈ [i . . i′′]. For j ∈ [i . . i′′), this implies Pj = Pj+δ and that both halves of
Pj ⋆ · · · ⋆ Pj+δ−1 are of length at most 4k. In particular, if we define Q = Pi ⋆ · · · ⋆ Pi+δ−1, then,

due to
|Pi⋆···⋆Pi′′−1|

8k ≥ 56k2

8k ≥ 6k + 1, we conclude that Q6k+1 occurs in F and G at positions ui and
vi, respectively. This contradicts the assumption that P avoids vertical periodicity.

The alignments A and A′ only differ in how they align the following fragments:

25

• F [fa . . ftL) with G[ga . . gtL): here, A′ matches one fragment perfectly with a suffix of the
other; by Fact 2.6, this is optimal.

• F [ftL . . ftR) with G[gtL . . gtR) if b > c: here, the cost of A′ is equal to the cost of deleting
F [o(u) + |PL| . . c(u)− |PR|] and inserting G[o(v) + |PL| . . c(v)− |PR|]. By Fact 2.6, these two
costs do not exceed the cost of A aligning F [ftL . . fc) with G[gtL . . gc) and aligning F [fb . . ftR)
with G[gb . . gtR).

• F [ftL . . fb) with G[gtL . . gb) if b ≤ c: here, A′ matches one fragment perfectly with a prefix of
the other; by Fact 2.6, this is optimal.

• F [fc . . ftR) with G[gc . . ftR) if b ≤ c: here, A′ matches one fragment perfectly with a suffix of
the other; by Fact 2.6, this is optimal.

• F [ftR . . fd) with G[gtR . . gd): here, A′ matches one fragment perfectly with a prefix of the
other; by Fact 2.6, this is optimal.

If the occurrences of P at nodes u in F and v in G are modified to occurrences of P ′, then A′ can
be trivially adapted without modifying its cost and hence tedw(F ′, G′) ≤ tedwA′(F,G) = tedw(F,G).
The converse inequality follows by symmetry between (F,G,P) and (F ′, G′, P ′).

3.4 Algorithms

We say a piece of a forest F is a balanced fragment F [i . . j) or a pair of fragments 〈F [i . . i′);F [j′ . . j)〉
that form a context, that is, F [i . . j) is a tree and F [i′ . . j′) is balanced. For a fragment F [i . . j), we
denote the set of pieces contained in F [i . . j) by P(F [i . . j)). Moreover, let P(F) = P(F [0 . . |F |)).

Definition 3.14. A set D ⊆ P(F [i . . j)) is a piece decomposition of a balanced fragment F [i . . j)
of a forest F if it satisfies one of the following conditions:

• D = ∅ and i = j;
• D = {F [i . . j)} and i < j;
• D = DL ∪ DR for some piece decompositions DL of F [i . . m) and DR of F [m. . j), where
m ∈ (i . . j).

• D = {〈F [i . . i′);F [j′ . . j)〉} ∪D′ for a context 〈F [i . . i′);F [j′ . . j)〉 ∈ P(F) and a piece decom-
position D′ of F [i′ . . j′).

Lemma 3.15. There exists a linear-time algorithm that, given a forest F and an integer t ≥ 2,
constructs a piece decomposition D of F consisting of at most max(1, 6|F |

t − 1) pieces of length at
most t each.

Algorithm 4: D(i, j): Construct a decomposition of a balanced fragment F [i . . j).

1 if j = i then return ∅;
2 if j ≤ i + t then return {F [i . . j)};
3 i′ ← i; j′ ← j;
4 while true do // F [i′ . . j′) is balanced and (i′ − i) + (j − j′) ≤ t
5 Let m ∈ [i′ . . j′] be such that F [i′ . . m) is a tree;
6 if (m− i) + (j − j′) ≤ t then i′ ← m;
7 else if m < j′ and (i′ − i) + (j −m) ≤ t then j′ ← m;
8 else if F [i . . j) is not a tree then return D(i, i′) ∪ D(i′,m) ∪ D(m, j′) ∪ D(j′, j);
9 else if m = j′ and (i′ + 1− i) ≤ (j − j′ + 1) ≤ t then i′ ← i′ + 1; j′ ← j′ − 1;

10 else return {〈F [i . . i′);F [j′ . . j)〉} ∪ D(i′,m) ∪D(m, j′);

26

Proof. Algorithm 4 provides a recursive procedure that, for every balanced fragment F [i . . j) of F ,
constructs a piece decomposition D(i, j) of F [i . . j) consisting of pieces of size at most t. In the
corner cases of j = i and j ∈ (i . . i+ t], we return D(i, j) = ∅ and D(i, j) = {F [i . . j)}, respectively.
Otherwise, we iteratively grow fragments F [i . . i′) and F [j′ . . j) (initially empty) maintaining the
following invariants:

(a) F [i′ . . j′) is balanced;
(b) |F [i . . i′)|+ |F [j′ . . j)| ≤ t;
(c) if F [i . . j) is a tree, then F [i . . i′) = F [j′ . . j) = ε or 〈F [i . . i′);F [j′ . . j)〉 is a context;
(d) if F [i . . j) is not a tree, then F [i . . i′) and F [j′ . . j) are balanced.

At each iteration, we identify a position m ∈ (i′ . . j′] such that F [i′ . . m) is a tree (such a position
always exists due to j − i > t and by invariants (a), (b)).

(1) We set i′ ← m as long as it would not violate invariant (b).
(2) If m 6= j′, we set j ← m as long as it would not violate invariant (b).
(3) If m = j′ and F [i . . j) is a tree, we set (i′, j′)← (i′ + 1, j′ − 1) as long as it would not violate

invariant (b).
(4) Otherwise, we return D(i, j) := {〈F [i . . i′);F [j′ . . j)〉}∪D(i′,m)∪D(m, j′) if F [i . . j) is a tree

and D(i, j) := D(i, i′) ∪ D(i′,m) ∪ D(m, j′) ∪ D(j′, j) if F [i . . j) is not a tree.

It is easy to see that cases (1)–(3) preserve the invariants and hence case (4) results in a valid piece
decomposition with pieces of size at most t.

Next, we prove that the number of pieces is at most max(1, 6(j−i)
t − 3) if F [i . . j) is a tree and

at most max(1, 6(j−i)
t −1) otherwise. This holds trivially if j ≤ i+ t, where Algorithm 4 terminates

at Line 1 or 2. If F [i . . j) is a tree of size j − i > t, then Algorithm 4 terminates at Line 10. We
consider several sub-cases:

1. If m− i′ ≤ 2t
3 and j′ −m ≤ t

3 , then |D(i, j)| ≤ 3 < 6(j−i)
t − 3 because j − i > t.

2. If m−i′ ≤ 2t
3 and j′−m > t

3 , then (m−i)+(j−j′) > t because the test in Line 6 failed. Hence,

j′ −m < j − i− t and |D(i, j)| ≤ 2 + |D(m, j′)| ≤ 2 + 6(j′−m)
t − 1 < 6(j−i−t)

t + 1 < 6(j−i)
t − 3.

3. If m−i′ > 2t
3 and j′−m = 0, then (i′+1−i)+(j−j′ +1) > t because the test in Line 9 failed.

Hence, j′− i′ ≤ j − i− t+ 1 and |D(i, j)| ≤ 1 + |D(i′, j′)| ≤ 1 + 6(j′−i′)
t − 3 ≤ 6(j−i−t+1)

t − 2 <
6(j−i)

t − 3.
4. If m− i′ > 2t

3 and 0 < j′−m ≤ t
3 , then (i′− i) + (j−m) > t because the test in Line 7 failed.

Hence, m−i′ < j−i−t and |D(i, j)| ≤ 2+|D(i′,m)| ≤ 2+ 6(m−i′)
t −3 < 6(j−i−t)

t −1 < 6(j−i)
t −3.

5. If m− i′ > 2t
3 and j′ −m > t

3 , then |D(i, j)| ≤ 1 + |D(i′,m)|+ |D(m, j′)| ≤ 1 + 6(m−i′)
t − 3 +

6(j′−m)
t − 1 ≤ 6(j−i)

t − 3.

If F [i . . j) is not a tree, then Algorithm 4 terminates at Line 8. We consider several sub-cases:

1. If m− i′ ≤ 2t
3 and j′ −m ≤ t

3 , then |D(i, j)| ≤ 4 < 6(j−i)
t − 1 because j − i > t.

2. If m−i′ ≤ 2t
3 and j′−m > t

3 , then (m−i)+(j−j′) > t because the test in Line 6 failed. Hence,

j′ −m < j − i− t and |D(i, j)| ≤ 3 + |D(m, j′)| ≤ 3 + 6(j′−m)
t − 1 < 6(j−i−t)

t + 2 < 6(j−i)
t − 1.

3. If m− i′ > 2t
3 and j′ −m = 0, then |D(i, j)| ≤ 2 + |D(i′, j′)| ≤ 2 + 6(j′−i′)

t − 3 ≤ 6(j−i)
t − 1.

4. If m− i′ > 2t
3 and 0 < j′−m ≤ t

3 , then (i′− i) + (j−m) > t because the test in Line 7 failed.

Hence, m− i′ < j− i− t and |D(i, j)| ≤ 3+ |D(i′,m)| ≤ 3+ 6(m−i′)
t −3 < 6(j−i−t)

t < 6(j−i)
t −1.

5. If m− i′ > 2t
3 and j′ −m > t

3 , then |D(i, j)| ≤ 2 + |D(i′,m)|+ |D(m, j′)| ≤ 2 + 6(m−i′)
t − 3 +

6(j′−m)
t − 1 ≤ 6(j−i)

t − 2 < 6(j−i)
t − 1.

27

It remains to provide a linear-time implementation of our algorithm. We assume that there
are bidirectional pointers between the opening and the closing parentheses representing the same
node. Such pointers can be constructed using a linear-time stack-based preprocessing of the input
forest F . Each iteration of the while loop increases j − j′ + i′ − i (except for the final one), so
a single call to the D(i, j) function costs O(t) due to invariant (b). The total number of calls is
O(|D(0, |F |)|) = O(1t · |F |), so the overall running time, including preprocessing, is O(|F |).

Lemma 3.16. Given forests F and G of total size n, a piece decomposition D of F , and an integer
s ∈ Z+, one can find in O(n + |D|s3) time a maximum-size set S ⊆ D × P(G) that, for some
alignment A ∈ TA(F,G) of width at most s, contains only pairs of pieces that A matches perfectly.

Algorithm 5: Compute a maximum-size element of S(Di,j , G[i′ . . j′)).

1 Pairs(Di,j, G[i′ . . j′)):
2 S ← ∅;
3 if i′ < min(j′, i + s) then S

max← Pairs(Di,j , G[i′ + 1 . . j′));

4 if j′ > max(i′, j − s) then S
max← Pairs(Di,j , G[i′ . . j′ − 1));

5 if Di,j = {F [i . . j)} and F [i . . j) = G[i′ . . j′) then

6 S
max← {(F [i . . j), G[i′ . . j′))};

7 if Di,j = Di,m ∪ Dm,j for some m ∈ (i . . j) then
8 foreach m′ ∈ [m− s . .m + s] ∩ [i′ . . j′] do

9 S
max← Pairs(Di,m, G[i′ . . m′)) ∪ Pairs(Dm,j , G[m′ . . j′));

10 if Di,j = {〈F [i . . i + ℓ);F [j − r . . j)〉} ∪ Di+ℓ,j−r then
11 if F [i . . i + ℓ) = G[i′ . . i′ + ℓ) and F [j − r . . j) = G[j′ − r . . j′) and G[i′ + ℓ . . j′ − r)

is balanced then

12 S
max← {(〈F [i . . i + ℓ);F [j − r . . j)〉, 〈G[i′ . . i′ + ℓ);G[j′ − r . . j′)〉)} ∪
Pairs(Di+ℓ,j−r, G[i′ + ℓ . . j′ − r))

13 S
max← Pairs(Di+ℓ,j−r, G[max(i + ℓ− s, i′) . .min(j − r + s, j′)));

14 return S;

Proof. For a piece decomposition Di,j of a balanced fragment F [i . . j) and a fragment G[i′ . . j′),
let S(Di,j , G[i′ . . j′)) be the family of all subsets of Di,j × P(G[i′ . . j′)) that, for some alignment
A ∈ A(F [i . . j), G[i′ . . j′)) of width at most s, contain only pairs of pieces that A matches perfectly.
Algorithm 5 implements a recursive procedure Pairs(Di,j , G[i′ . . j′)) that computes a maximum-
size element of S(Di,j, G[i′ . . j′)) assuming that i′ ∈ [i − s . . i + s] and j′ ∈ [j − s . . j + s]. It uses

an S
max← S′ operator that assigns S ← S′ if |S′| > |S|. The algorithm returns the largest of the

following candidates:

1. ∅. This is trivially valid because every alignment A ∈ A(F [i . . j), G[i′ . . j′)) of width at most
s witnesses ∅ ∈ S(Di,j , G[i′ . . j′)).

2. Pairs(Di,j , G[i′+1 . . j′)) if i′ < min(j′, i+s). Let S = Pairs(Di,j , G[i′+1 . . j′)) with a witness
alignment A′ ∈ A(F [i . . j), G[i′+1 . . j′)). An alignment obtained from A′ by prepending (i, i′),
which corresponds to inserting Y [i′], witnesses S ∈ S(Di,j , G[i′ . . j′)).

3. Pairs(Di,j , G[i′ . . j′ − 1)) if j′ > max(i′, j − s). Let S = Pairs(Di,j, G[i′ . . j′ − 1)) with
a witness alignment A′ ∈ A(F [i . . j), G[i′ . . j′ − 1)). An alignment obtained from A′ by
appending (j, j′), which corresponds to inserting Y [j′ − 1], witnesses S ∈ S(Di,j , G[i′ . . j′)).

28

4. {(F [i . . j), G[i′ . . j′))} if Di,j = {F [i . . j)} and F [i . . j) = G[i′ . . j′). The alignment (i + t,

j + t)i
′−i
t=0 ∈ A(F [i . . j), G[i′ . . j′)) witnesses {(F [i . . j), G[i′ . . j′))} ∈ S(Di,j, G[i′ . . j′)).

5. Pairs(Di,m, G[i′ . .m′)) ∪ Pairs(Dm,j , G[m′ . . j′)) if Di,j = Di,m ∪ Dm,j for some m ∈ (i . . j)
and m′ ∈ [m − s . .m + s] ∩ [i′ . . j′]. Denote SL = Pairs(Di,m, G[i′ . . m′)) and SR =
Pairs(Dm,j , G[m′ . . j′)) with witness alignments AL ∈ A(F [i . . m), G[i′ . . m′)) and AR ∈
A(F [m. . j), G[m′ . . j′)), respectively. Stitching AL and AR at the common endpoint (m,m′)
yields an alignment witnessing SL ∪ SR ∈ S(Di,j, G[i′ . . j′)).

6. {(〈F [i . . i+ℓ);F [j−r . . j)〉, 〈G[i′ . . i′+ℓ);G[j′−r . . j′)〉)}∪Pairs(Di+ℓ,j−r, G[i′+ℓ . . j′−r)) if
Di,j = {〈F [i . . i+ℓ);F [j−r . . j)〉}∪Di+ℓ,j−r and 〈G[i′ . . i′+ℓ);G[j′−r . . j′)〉 is a context in G
matching 〈F [i . . i+ℓ);F [j−r . . j)〉. Consider a set S′ = Pairs(Di+ℓ,j−r, G[i′ +ℓ . . j′−r)) and
a witness alignment A′ ∈ A(F [i+ℓ . . j−r), G[i′+ℓ . . j′−r)). Stitching (i+t, i′+t)ℓt=0, A′, and
(j+ t, j′ + t)0t=−r at the common endpoints yields an alignment witnessing S′∪{(〈F [i . . i + ℓ);
F [j − r . . j)〉, 〈G[i′ . . i′ + ℓ);G[j′ − r . . j′)〉)} ∈ S(Di,j , G[i′ . . j′)).

7. Pairs(Di+ℓ,j−r, G[max(i+ℓ−s, i′) . .min(j−r+s, j′))) if Di,j = {〈F [i . . i+ℓ);F [j−r . . j)〉}∪
Di+ℓ,j−r. Let S = Pairs(Di+ℓ,j−r, G[i′ + ℓ′ . . j′ − r′)), where ℓ′ = max(0, i + ℓ − s − i′) and
r′ = max(0, j′ − j + r− s), with a witness alignment A′ ∈ A(F [i + ℓ, j − r), G[i′ + ℓ′, j′ − r′)).
Stitching (i+ t, i′ + t)ℓ

′

t=0, (i+ t, i′ + ℓ′)ℓt=ℓ′ , A′, (j + t, j′− r′)−r′

t=−r, and (j + t, j′ + t)0t=−r′ yields
an alignment witnessing S ∈ S(Di,j, G[i′ . . j′)).

Next, consider a maximum-size element S ∈ S(Di,j , G[i′ . . j′)) and a witness alignment A ∈
A(F [i . . j), G[i′ . . j′)) of width at most s.

(a) If Di,j = ∅, we must have S = ∅, which is covered by candidate 1.
(b) Suppose that Di,j = {F [i . . j)}. The case of S = ∅ is covered by candidate 1. Otherwise,

S = {(F [i . . j), G[i′′ . . j′′))} for some i′′ ∈ [i′ . . i + s] and j′′ ∈ [j − s . . j′]. This is covered by
i′′−i′ applications of candidate 2, j′−j′′ applications of candidate 3, and finally an application
of candidate 4.

(c) Suppose that Di,j = Di,m∪Dm,j for some m ∈ (i . . j). Since the width of A does not exceed s,
we must have (m,m′) ∈ A for some m′ ∈ [m−s . .m+s]∩ [i′ . . j′]. Consequently, S can be ex-
pressed as a union of an element of S(Di,m, G[i′ . .m′)) and an element of S(Dm,j , G[m′ . . j′)).
This case is thus covered by candidate 5.

(d) Suppose that Di,j = {〈F [i . . i+ℓ);F [j−r . . j)〉}∪Di+ℓ,j−r. If S does not contain any pair of the
form (〈F [i . . i+ℓ);F [j−r . . j)〉, 〈G[i′′ . . i′′+ℓ);G[j′′−r . . j′′)〉), then S ∈ S(Di+ℓ,j−r, G[max(i+
ℓ − s, i′) . .min(j − r + s, j′))), and this case is covered by candidate 7. Otherwise, we must
have i′′ ∈ [max(i′, i − s) . . i + s] and j′′ ∈ [j − s . .min(j′, j + s)]. This is covered by i′′ − i′

applications of candidate 2, j′ − j′′ applications of candidate 3, and finally an application
of candidate 4 because S \ {(〈F [i . . i + ℓ);F [j − r . . j)〉, 〈G[i′ . . i′ + ℓ);G[j′ − r . . j′)〉)} ∈
S(Di+ℓ,j−r, G[i′ + ℓ . . j′ − r)).

This completes the proof that Algorithm 5 is correct. The sought set S is obtained via a call
Pairs(D, G[0 . . |G|)) which is valid as long as s ≥

∣

∣|F | − |G|
∣

∣. Otherwise, there is no alignment
A ∈ TA(F,G) of width at most s, and thus we return S = ∅.

As for the efficient implementation, we use memoization to make sure that each call to Pairs is
executed at most once. The number of calls is O(|D| · s2) and each one performs O(s) instructions.
In order to implement every instruction in O(1) time, we implement sets as persistent linked
lists augmented with their size (this is valid because the arguments of every union operation are
guaranteed to be disjoint). Moreover, we use Theorem 2.1 (for checking whether fragments of F
match fragments of G) and Fact 3.1 (for checking whether fragments of G are balanced). Including
the necessary preprocessing, the overall runtime is O(n + |D|s3).

29

Lemma 3.17. There exists a linear-time algorithm that, given a forest P and an integer k ∈
Z+, constructs a forest of length at most 74k3 that is tedw≤k-equivalent to P for every normalized
quasimetric w.

Algorithm 6: Construct a forest of length at most 74k3 that is tedw≤k-equivalent to P .

1 HorizontalReduction(P, k):
2 P ′ ← PeriodicityReduction(P, 4k, {Q ∈ Σ+ : |Q| ≤ 4k and Q is a primitive forest});
3 if |P ′| ≥ 74k3 then return (

37k3
a)

37k3
a for some a ∈ Σ;

4 else return P ′;

Proof. We apply Lemma 2.13 with e = 4k and Q consisting of all primitive forests of length at
most 4k. We return P ′′ := (37k

3

a)37k
3

a (for an arbitrary label a ∈ Σ) or P ′ depending on whether
|P ′| ≤ 74k3 or not.

Observe that Q is chosen so that P ′ avoids horizontal k-periodicity and, by Lemma 3.5, P ′ is
tedw≤k-equivalent to P for every normalized quasimetric w. Thus, the algorithm is correct if |P ′| <
74k3. Otherwise, Lemma 3.7 implies that P ′ and P ′′ are tedw≤k-equivalent for every normalized
quasimetric w (both avoid horizontal k-periodicity and are of length at least 74k3).

The oracle testing in constant time whether a given fragment of P belongs to Q can be imple-
mented using Fact 3.1. Thus, by Lemma 2.13, the overall running time is linear.

Lemma 3.18. There exists a linear-time algorithm that, given a context P and an integer k ∈ Z+,
constructs a context of length at most 578k4 that is tedw≤k-equivalent to P for every normalized
quasimetric w.

Algorithm 7: Construct a context of length at most 578k4 that is tedw≤k-equivalent to P .

1 VerticalReduction(P, k):
2 Let P = P0 ⋆ · · · ⋆ Pe−1, where each Pi is a context of depth 1;
3 for i← 0 to e do
4 Let Pi = 〈(aiFi;Gi)ai〉;
5 P← P · 〈(ai · HorizontalReduction(Fi, k); HorizontalReduction(Gi, k) ·)ai〉;
6 Q ← {Q : ⋆

|Q|−1
i=0 Q[i] is a primitive context of length at most 8k};

7 P′ ← PeriodicityReduction(P, 6k,Q);

8 P ′ ← ⋆
|P′|−1
i=0 P′[i];

9 if |P ′| ≥ 578k4 then return ⋆
17k2−1
i=0 〈(a((a)a)i; ((a)a)17k

2−1−i)a〉 for some a ∈ Σ;
10 else return P ′;

Proof. Let P = P0 ⋆ · · · ⋆ Pe−1, where each Pi is a context of depth 1, that is, Pi = 〈(aiFi;Gi)ai〉
for some label ai ∈ Σ and forests Fi, Gi. As the first step, our algorithm constructs a string
P[0 . . e) whose characters are depth-1 contexts defined so that P[i] = 〈(aiF ′

i ;G
′
i)ai〉, where forests

F ′
i = HorizontalReduction(Fi, k) and G′

i = HorizontalReduction(Gi, k) are constructed using
Lemma 3.17. Next, we transform P using Lemma 2.13 with e = 6k and a family Q defined
so that P[i . . j) ∈ Q if and only if P[i] ⋆ · · · ⋆ P[j − 1] is a primitive context of length at most
8k (this implies j − i ≤ 4k). In order to apply Lemma 2.13 to P, we use linear-time string

30

sorting [PT87, AN94] to map characters of P (depth-1 contexts) to integer identifiers. By composing
the contexts corresponding to the resulting string P′, we obtain a context P ′. We return P ′′ :=
⋆

17k2−1
i=0 〈(a((a)a)i; ((a)a)17k

2−1−i)a〉 (for an arbitrary label a ∈ Σ) or P ′ depending on whether
|P ′| ≥ 578k4 or not.

Note that |P ′′| = ∑17k2−1
i=0 (1 + 2 · i + 2 · (17k2 − 1− i) + 1) = 17k2 · 2 · 17k2 = 578k4. Thus, the

resulting context (either P ′ or P ′′) is guaranteed to be of length at most 578k4. Let us now argue
that it is tedw≤k-equivalent to P for every normalized quasimetric w. By Lemma 3.17, the forests F ′

i

and G′
i are tedw≤k-equivalent to Fi and Gi, respectively, and thus ⋆e−1

i=0P[i] is tedw≤k-equivalent to P .

By Lemma 2.13, the context P ′ is obtained from ⋆
e−1
i=0P[i] by repeatedly replacing Q6k+1 with Q6k

for primitive contexts Q of length at most 8k. By Lemma 3.10, Q6k+1 is then tedw≤k-equivalent to

Q6k, so this operation preserves tedw≤k-equivalence, i.e., P ′ is also tedw≤k-equivalent to P . Moreover,
each depth-1 context in P′ originates from P, so each forest occurring in (either half of) P ′ is of
length at most 74k3. Furthermore, Lemma 2.13 guarantees that P ′ is not of the form C ⋆Q6k+1 ⋆D
for any context Q of length at most 8k, and thus P ′ avoids vertical k-periodicity. By construction,
P ′′ avoids vertical k-periodicity and its halves contain only forests of lengths at most 74k3 (in
fact, at most 34k2). Consequently, Lemma 3.12 implies that P ′′ is tedw≤k-equivalent to P ′ (and, by
transitivity, to P) provided that |P ′′| ≥ 578k4.

As for the running time analysis, we note that all applications of Lemma 3.17 concern disjoint
fragments of P , so the total cost of the calls to HorizontalReduction is linear. Assigning in-
teger identifiers to contexts P[i] and applying Lemma 2.13 also takes linear time. Finally, P ′′ is
constructed only if |P ′| ≥ 578k4, so the cost of this step is also be bounded by O(k4) = O(|P |).

Theorem 3.19. There exists an O(n)-time algorithm that, given forests F , G of size at most
n ≥ 12716k5 and an integer k ∈ Z+, constructs forests F ′, G′ of lengths at most n

2 + 6358k5 such
that tedw≤k(F,G) = tedw≤k(F ′, G′) holds for every normalized quasimetric w.

Proof. By symmetry, we assume without loss of generality that |F | ≥ |G|. We start by applying
Lemma 3.15 to construct a piece decomposition D of F consisting of at most 12k−1 pieces of length
at most ⌈ n

2k ⌉ each. Next, we use Lemma 3.16 to identify a maximum-size set S ⊆ D × P(G) that,
for some alignment A ∈ A(F,G) of width at most 2k, contains only pairs of pieces that A matches
perfectly. If |S| < |D| − k, we return F ′ = ((a)a)k+1 and G′ = ε for some a ∈ Σ. Otherwise, for
each pair of matching forests F [i . . j) = P = G[i′ . . j′) in S, we use Lemma 3.17 to construct a
forest P ′ of length at most 74k3 that is tedw≤k-equivalent to P for every normalized quasimetric w.
We replace the occurrences of P at F [i . . j) and G[i′ . . j′) by occurrences of P ′. Similarly, for every
pair of matching contexts 〈F [i . . i + ℓ);F [j − r . . j)〉 = P = 〈G[i′ . . i′ + ℓ);G[j′ − r . . j′)〉 in S, we
use Lemma 3.18 to construct a context P ′ of length at most 578k4 that is tedw≤k-equivalent to P
for every normalized quasimetric w. We replace the occurrences of P at 〈F [i . . i + ℓ);F [j − r . . j)〉
and 〈G[i′ . . i′ + ℓ);G[j′ − r . . j′)〉 by occurrences of P ′.

If tedw(F,G) ≤ k holds for any normalized weight function w, then the unweighted cost of the
underlying optimal alignment does not exceed k. Thus, its width is at most 2k, and it matches
perfectly all but at most k pieces of D. Consequently, in that case, |S| ≥ |D| − k. In particular,
if we return F ′ = ((a)a)k+1 and G′ = ε for some a ∈ Σ, then tedw≤k(F,G) = ∞ = tedw≤k(F ′, G′)
holds as claimed. In that case, |F ′|, |G′| ≤ 2k + 2 ≤ 4k < 6358k5. Otherwise, by definition of
tedw≤k-equivalence, the resulting forests F ′ and G′ satisfy tedw≤k(F,G) = tedw≤k(F ′, G′). Moreover,
|F ′| ≤ k · ⌈ n

2k ⌉+ (11k − 1) · 578k4 ≤ n
2 + k + (11k − 1) · 578k4 ≤ n

2 + 11 · 578 · k5 = n
2 + 6358k5 and

|G′| = |F ′|+ |G| − |F | ≤ |F ′| ≤ n
2 + 6358k5.

The applications of Lemmas 3.15 and 3.16 cost O(n) and O(n+ k4) = O(n) time, respectively.
The calls to HorizontalReduction and VerticalReduction concern disjoint pieces of F , so their

31

total cost is O(n) by Lemmas 3.17 and 3.18, respectively.

Corollary 3.20. There exists a linear-time algorithm that, given forests F , G and an integer
k ∈ Z+, constructs forests F ′, G′ of lengths at most 12717k5 such that tedw≤k(F,G) = tedw≤k(F ′, G′)
holds for every normalized quasimetric w.

Proof. We iteratively apply Theorem 3.19 as long as max(|F |, |G|) > 12717k5 and return the
resulting pair of forests. Formally, we construct a sequence (Fi, Gi)

t
i=0 such that (F0, G0) = (F,G)

and tedw≤k(Fi+1, G)i+1 = tedw≤k(Fi, Gi) holds for every i ∈ [0 . . t). Consider forests (Fi, Gi) at
iteration i. If ni := max(|Fi|, |Gi|) ≤ 12717k5, we set t := i and return (F ′, G′) := (Fi, Gi).
Otherwise, we apply Theorem 3.19 to derive forests Fi+1 and Gi+1 of lengths at most ni+1 :=
max(|Fi+1|, |Gi+1|) ≤ 1

2ni + 6358k5 such that tedw≤k(Fi+1, G)i+1 = tedw≤k(Fi, Gi). Since ni+1 −
12716k5 ≤ 1

2(ni − 12716k5), the value ni strictly decreases at each iteration and thus the process
terminates. Moreover, the running time of each iteration is O(ni) = O(ni − 12716k5). The latter
values form a geometric series dominated by the leading term at i = 0. Hence, the total running
time is linear in the input size.

Theorem 1.2. Given forests F,G of length at most n, an integer k ∈ Z+, and a quasimetric w,
the value tedw≤k(F,G) can be computed in O(n+ k15) time. Moreover, ted≤k(F,G) can be computed
in O(n + k7 log k) time.

Proof. We first apply Corollary 3.20 to build forests F ′, G′ of length O(k5) such that tedw≤k(F,G) =
tedw≤k(F ′, G′). Then, we compute tedw≤k(F ′, G′) using the algorithm of Demaine, Mozes, Rossman,
and Weimann [DMRW10]. The running times of these two steps are O(n) and O((k5)3), respec-
tively, for a total of O(n+ k15). If w is the discrete metric (the unweighted case), then we compute
ted≤k(F ′, G′) using the algorithm of Akmal and Jin [AJ21], which costs O(k5 · k2 · log(k5)) =
O(k7 log k) time.

4 Dyck Edit Distance

In this section we give a deterministic algorithm that computes weighted Dyck edit distance of a
given input string. Formally we show the following.

Theorem 1.3. Given a string X of length n, an integer k ∈ Z+, and a skewmetric w, the value
dyckw≤k(X) can be computed in O(n + k12) time.

4.1 Preliminaries

In Dyck Language, the alphabet Σ consists of two disjoint sets T and T of opening and closing
parentheses, respectively, with a bijection f : T → T mapping each opening parenthesis to the
corresponding closing parenthesis. We extend this mapping to an involution f : T ∪ T → T ∪ T
and then to an involution f : Σ∗ → Σ∗ mapping each string X[0]X[1] · · ·X[|X| − 1] to its reverse
complement X[|X| − 1] · · ·X[1]X[0]. Given two strings X,Y , we denote their concatenation by
XY or X · Y .

The Dyck language Dyck(Σ) ⊆ Σ∗ consists of all well-parenthesized expression over Σ; formally,
it can be defined using a context-free grammar whose only non-terminal S admits productions
S → SS, S → ∅ (empty string), and S → aSa for all a ∈ T .

Definition 4.1 (Heights). Given an alphabet set Σ, define the function h : Σ → {−1, 1} where
h(a) = 1 if a ∈ Σ is an opening parenthesis and h(a) = −1 otherwise. Given a string X ∈ Σn,
define the height of a position i where 0 ≤ i ≤ n, as H(i) =

∑i−1
j=0 h(X[j]).

32

Here H(i) is the difference between the number of opening parentheses and the number of
closing parentheses in X[0..i).

Definition 4.2 (Peaks and valleys). Given a string X ∈ Σ, an index i ∈ [1 . . . n) is called a peak
if H(i− 1) < H(i) > H(i + 1) and a valley if H(i− 1) > H(i) < H(i + 1).

4.2 Dyck Language Alignments and Weighted Dyck Edit Distance

We say that M ⊆ {(i, j) ⊆ Z
2 : i < j} is a non-crossing matching if any two distinct pairs

(i, j), (i′, j′) ∈ M satisfy i < j < i′ < j′ or i < i′ < j′ < j. Such a matching can also be interpreted
as a function M : Z → Z ∪ {⊥} with M(i) = j if (i, j) ∈ M or (j, i) ∈ M for some j ∈ Z, and
M(i) = ⊥ otherwise. For a string X ∈ Σ∗ we define its Dyck language alignment to be a matching
function M as defined above.

For two fragments X[p . . q) and X[p′ . . q′) of X, we write X[p . . q) ≃M X[p′ . . q′) if X[p . . q) =
X[p′ . . q′) ∈ T ∗ and (r, q′ − r − 1) holds for every r ∈ [p . . q).

Similar to Section 2.2 we define a weight function w on Σ̄ := Σ ∪ {ε}. We call this weight
function a skewmetric if it satisfies the triangle inequality, that is, w(a, b) + w(b, c) ≥ w(a, c) holds
for every a, b, c ∈ Σ̄ and skew-symmetry, that is, w(a, b) = w(b, a) holds for every a, b ∈ Σ̄. In the
rest of this section we assume the weight function w to be skewmetric unless stated otherwise.

Definition 4.3. The weighted Dyck edit distance of a string X ∈ Σ∗ with respect to a weight
function w is the minimum edit distance edw(X,Y) between X and a string Y ∈ Dyck(Σ). Formally,

dyckw(X) = min
Y ∈Dyck(Σ)

edw(X,Y).

For k ∈ R≥0, we also denote

dyckw≤k(X) =

{

dyckw(X) if dyckw(X) ≤ k,

∞ otherwise.

The cost of an alignment M ∈ M(X) with respect to a weight function w, denoted dyckwM(X),
is defined as

dyckwM(X) =
∑

(i,j)∈M

dyckw(X[i]X[j]) +
∑

i∈[0. .|X|):M(i)=⊥

dyckw(X[i]).

Fact 4.4. For every string X and weight function w, we have dyckw(X) = minM∈M(X) dyck
w
M(X).

Proof. We first show by induction on |X| that dyckw(X) ≤ dyckwM(X) holds for every M∈ M(X).
The claim is trivial if |X| = 0. If M(0) = ⊥, then we construct M′ := {(i− 1, j − 1) : (i, j) ∈ M}
and X ′ := X[1 . . |X|). By the inductive assumption, dyckw(X) ≤ dyckw(X ′) + dyckw(X[0]) ≤
dyckwM′(X ′)+dyckw(X[0]) = dyckwM(X). IfM(0) = |X|−1, then we constructM′ := {(i−1, j−1) :
(i, j) ∈ M \ {(0, |X| − 1)} and X ′ = [1 . . |X| − 1). By the inductive assumption, dyckw(X) ≤
dyckw(X ′)+dyckw(X[0]X[|X|−1]) ≤ dyckwM′(X ′)+dyckw(X[0]X[|X|−1]) = dyckwM(X). Otherwise,
we have (0, p) ∈M for some p ∈ [1 . . |X|−1). In this case, we constructM′ := {(i, j) ∈ M : j ≤ p}
and X ′ := X[0 . . p], as well as M′′ := {(i − p − 1, j − p − 1) : (i, j) ∈ M and i > p} and
X ′′ := X[p + 1 . . |X|). By the inductive assumption, dyckw(X) ≤ dyckw(X ′) + dyckw(X ′′) ≤
dyckwM′(X ′) + dyckwM′′(X ′′) = dyckwM(X); here, the last equality follows from the fact that |M| =
|M′|+ |M′′|: any (i, j) ∈M with i ≤ p and j > p would violate the non-crossing property of M.

33

Next, we show by induction on |X| that there exists M ∈ M(X) such that dyckwM(X) ≤
dyckw(X); again, the claim is trivial for |X| = 0. Let us fix Y ∈ Dyck(Σ) and A ∈ A(X,Y) such
that dyckw(X) = edwA(X,Y). If A deletes X[0], we consider X ′ := X[1 . . |X|). The inductive
assumption yields a matching M′ such that dyckwM′(X ′) ≤ dyckw(X ′). In this case, we set M :=
{(i + 1, j + 1) : (i, j) ∈ M′} so that dyckwM(X) = dyckw(X[0]) + dyckwM′(X ′) ≤ edw(X[0], ε) +
dyckw(X ′) ≤ w(X[0], ε)+ edw(X ′, Y ′) ≤ edwA(X,Y) = dyckw(X). The case when A deletes X[|X|−
1] is symmetric, so we may assume that A deletes neither X[0] nor X[|X|−1]; in particular, Y 6= ε.

Suppose that Y = Y ′ · Y ′′ for some non-empty strings Y ′, Y ′′ ∈ Dyck(Σ). This yields a decom-
position X = X ′ ·X ′′ such that edw(X,Y) = edw(X ′, Y ′) + edw(X ′′, Y ′′). Moreover, the optimality
of Y guarantees that X ′ and X ′′ are both non-empty. The inductive assumption yields matchings
M′,M′′ such that dyckwM′(X ′) ≤ dyckw(X ′) and dyckwM′(X ′′) ≤ dyckw(X ′′). In this case, we set
M := M′ ∪ {(i + |X ′|, j + |X ′|) : (i, j) ∈ M′′} so that dyckwM(X) = dyckwM′(X ′) + dyckwM′(X ′′) ≤
dyckw(X ′) + dyckw(X ′′) ≤ edw(X ′, Y ′) + edw(X ′′, Y ′′) ≤ edwA(X,Y) = dyckw(X).

In the remaining case, we must have Y = aY ′a for a ∈ T and Y ′ ∈ Dyck(Σ). Let us first
suppose that A aligns Y [0] = a with X[0] and Y [|Y |−1] = a with X[|X|−1]. In this case, A aligns
Y [1 . . |Y |−1) = Y ′ with X ′ := X[1 . . |X|−1). The inductive assumption yields a matchingM′ such
that dyckwM′(X ′) ≤ dyckw(X ′). In this case, we setM := {(0, |X|−1)}∪{(i+1, j+1) : (i, j) ∈ M′}
so that dyckwM(X) = dyckw(X[0]X[|X|−1])+dyckwM′(X ′) ≤ edw(X[0]X[|X|−1], aa)+dyckw(X ′) ≤
w(X[0], a) +w(X[|X|− 1], a) + edw(X ′, Y ′) ≤ edwA(X,Y) = dyckw(X). Next, suppose that A aligns
Y [0] = a with X[0] but inserts Y [|Y |−1] = a. In this case, A aligns Y [1 . . |Y |−1) = Y ′ with X ′ :=
X[1 . . |X|). The inductive assumption yields a matchingM′ such that dyckwM′(X ′) ≤ dyckw(X ′). In
this case, we setM := {(i+1, j+1) : (i, j) ∈ M′} so that dyckwM(X) = dyckw(X[0])+dyckwM′(X ′) ≤
edw(X[0], aa) + dyckw(X ′) ≤ w(X[0], a) + w(ε, a) + edw(X ′, Y ′) ≤ edwA(X,Y) = dyckw(X). The
case when A inserts Y [0] = a and aligns Y [|Y | − 1] = a with X[|X| − 1] is symmetric. The case
when A inserts both Y [0] = a and Y [|Y | − 1] = a is impossible by optimality of Y . Finally, we
note that, since A deletes neither X[0] nor X[|X| − 1], the alignment A cannot align Y [0] to any
character other than X[0] and Y [|Y | − 1] to any character other than Y [|Y | − 1]. Thus, the case
analysis above is complete.

Claim 4.5. For every x ∈ Σ and skewmetric weight function w, dyckw(x) = w(x, ǫ) = w(ǫ, x).

Proof. We consider the following three different cases.

Case 1: x is deleted. In this case dyckw(x) = w(x, ǫ).

Case 2: x is inserted after x if x ∈ T and before x if x ∈ T . In this case dyckw(x) = w(ǫ, x) =
w(x, ǫ). The last equality follows as w is skew-symmetric. Thus an insertion can be replaced with
a deletion. From now on wards we assume that only allowed edits are deletion and substitutions.

Case 3: x is substituted by some y ∈ Σ. Here we also need to insert y. Thus dyckw(x) =
w(x, y) +w(ǫ, y) = w(x, y) +w(y, ǫ) ≥ w(x, ǫ). The second equality follows as w is skew-symmetric
and the last inequality follows as w obeys triangle inequality. Trivially dyckw(x) ≤ w(x, ǫ). Thus
the claim follows.

Claim 4.6. For every x, y ∈ Σ̄ and skewmetric weight function w, dyckw(xy) = minz∈T∪{ǫ}w(x, z)+
w(y, z).

Proof. Let z ∈ T ∪{ǫ} minimizes w(x, z)+w(y, z). It is straight forward to argue that dyckw(xy) ≤
w(x, z) + w(y, z) as x, y can be substituted by z, z respectively. Next we argue the converse.
Following Claim 4.5 we assume the only allowed edits are deletions and substitutions.

34

Case 1: Both x and y are deleted. Here dyckw(xy) ≥ w(x, ǫ) + w(y, ǫ). The claim follows as
ǫ ∈ T ∪ {ǫ} and ǫ = ǫ.

Case 2: x is substituted by y. Here dyckw(xy) ≥ w(x, y) = w(x, y) + w(y, y). Thus the claim
follows as y ∈ T .

Case 3: y is substituted by x. Here dyckw(xy) ≥ w(y, x) = w(x, x) + w(y, x). Thus the claim
follows as x ∈ T .

Case 3: x is substituted by z and y is substituted by z. Here dyckw(xy) ≥ w(x, z) +w(y, z). Thus
the claim follows as z ∈ T .

From now on wards we assume w to be skew-symmetric.

4.2.1 Preprocessing.

Given the input string X ∈ Σn, preprocess X as follows. As long as there are two neighboring
indices i, i+ 1 such that X[i+ 1] = X[i] and X[i] ∈ T remove them. Let the resulting string be X ′.
We make the following claim.

Claim 4.7. dyckw(X) = dyckw(X ′).

Proof. LetM be an optimal alignment of X. For contradiction assume for two consecutive indices
i, i + 1, X[i + 1] = X[i], X[i] ∈ T but (i, i + 1) /∈ M. Next depending on the matching indices of
i, i + 1, we consider the following three cases.

Case 1: Let (j, i), (i + 1, k) ∈ M where j ∈ [0 . . . i) ∪ {⊥} and k ∈ (i + 1 . . . |X|) ∪ {⊥}. In
this case we create another alignment M′ = M\ {(j, i), (i + 1, k)} ∪ {(i, i + 1), (j, k)}. We argue
dyckw(X[j]X[k]) ≤ dyckw(X[j]X[i]) + dyckw(X[i+ 1]X[k]), thus proving dyckwM′(X) ≤ dyckwM(X).
Following Claim 4.6, let a, b ∈ T ∪ {ǫ} be such that dyckw(X[j]X[i]) = w(X[j], a) + w(X[i], a) and
dyckw(X[i + 1]X[k]) = w(X[i + 1], b) + w(X[k], b). Thus,

dyckw(X[j]X[i]) + dyckw(X[i + 1]X[k]) = w(X[j], a) + w(X[i], a) + w(X[i + 1], b) + w(X[k], b)

= w(X[j], a) + w(a,X[i]) + w(X[i + 1], b) + w(X[k], b)

≥ w(X[j],X[i]) + w(X[i + 1], b) + w(X[k], b)

≥ w(X[j], b) + w(X[k], b)

≥ dyckw(X[j],X[k])

The second equality follows as w is skew-symmetric; thus w(X[i], a) = w(a,X[i]). The third and
fourth inequality follows as w follows triangle inequality and X[i] = X[i + 1]. The last inequality
follows from Claim 4.6.

Case 2: Let (k, i), (j, i + 1) ∈ M where k, j ∈ [0 . . . i) ∪ {⊥} and j < k. In this case we create
another alignment M′ = M\ {(k, i), (j, i + 1)} ∪ {(i, i + 1), (j, k)}. We argue dyckw(X[j]X[k]) ≤
dyckw(X[k]X[i])+dyckw(X[j]X[i+1]), thus proving dyckwM′(X) ≤ dyckwM(X). Following Claim 4.6,
let a, b ∈ T ∪{ǫ} be such that dyckw(X[k]X[i]) = w(X[k], a)+w(X[i], a) and dyckw(X[j]X[i+1]) =

35

w(X[j], b) + w(X[i + 1], b). Thus,

dyckw(X[k]X[i]) + dyckw(X[j]X[i + 1]) = w(X[k], a) + w(X[i], a) + w(X[j], b) + w(X[i + 1], b)

= w(X[k], a) + w(a,X[i]) + w(X[j], b) + w(X[i + 1], b)

≥ w(X[k],X[i]) + w(X[i + 1], b) + w(X[j], b)

≥ w(X[k], b) + w(X[j], b)

≥ dyckw(X[j],X[k])

Case 3: Let (i, k), (i+1, j) ∈ M where k, j ∈ (i+1 . . . |X|)∪{⊥} and j < k. In this case we create
another alignment M′ = M\ {(i, k), (i + 1, j)} ∪ {(i, i + 1), (j, k)}. We argue dyckw(X[j]X[k]) ≤
dyckw(X[i]X[k])+dyckw(X[i+1]X[j]), thus proving dyckwM′(X) ≤ dyckwM(X). Following Claim 4.6,
let a, b ∈ T ∪{ǫ} be such that dyckw(X[i]X[k]) = w(X[i], a)+w(X[k], a) and dyckw(X[i+1]X[j]) =
w(X[i + 1], b) + w(X[j], b). Thus,

dyckw(X[i]X[k]) + dyckw(X[i + 1]X[j]) = w(X[i], a) + w(X[k], a) + w(X[i + 1], b) + w(X[j], b)

= w(X[i], a) + w(X[k], a) + w(X[j], b) + w(b,X[i + 1])

≥ w(X[i], a) + w(X[k], a) + w(X[j],X[i + 1])

≥ w(X[j], a) + w(X[k], a)

≥ dyckw(X[j],X[k])

The preprocessing can be done in time O(n). Also, we can assume that in the preprocessed
string no two neighbouring symbols can be aligned. Following this and Claim 35 from [], we can
make the following claim.

Claim 4.8. Let X ∈ Σn. There exists an algorithm that preprocesses X in O(n) time, and either
declares dyckw(X) > k, or outputs a string X ′ of length at most n such that dyckw(X) = dyckw(X ′)
and X ′ has at most 2k valleys.

Thus from now on wards we assume X to be preprocessed and has at most 2k valleys.

4.3 Periodicity Reduction

Definition 4.9. For k ∈ Z≥0 a fragments X[a . . b) and X[c . . d) of a string X are k-synchronized
if X[a . . b) ∈ T ∗, X[c . . d) ∈ T

∗
, b− a = d− c, b ≤ c, and H(b) + H(c)− 2 minm∈[b. .c]H(m) ≤ 2k.

Note that X[a . . b) and X[c . . d) are 0-synchronized if and only if (a, b, c, d) is a trapezoid.

Definition 4.10. For k ∈ Z≥0 and a skewmetric weight function w, strings P,P ′ ∈ T ∗ are called
dyckw≤k-equivalent if

dyckw≤k(X) = dyckw≤k(X[0 . . a) · P ′ ·X[b . . c) · P ′ ·X[d . . |X|))

holds for every string X with k-synchronized fragments X[a . . b) = P and X[c . . d) = P .

Fact 4.11 (Fact 36, [BO16]). Let M be an alignment such that dyckwM(X) ≤ k. If X[a . . b) ≃M

X[c . . d), then the fragments X[a . . b) and X(c . . d] are k-synchronized.

36

Fact 4.12. Consider a string X and an alignment M ∈ M(X) such that dyckM(X) ≤ k for
some k ∈ Z≥0. Moreover, let X[a . . b) and X[c . . d) be k-synchronized fragments of length ℓ > 6k.
Then, there exist k-synchronized fragments X[a′ . . b′) and X[c′ . . d′) of length ℓ′ ≥ ℓ−6k

k+1 , such that

X[a′ . . b′) ≃M X[c′ . . d′) and a ≤ a′ ≤ b′ ≤ b ≤ c ≤ c′ ≤ d′ ≤ d. Furthermore, we then have
|(a + d)− (a′ + d′)| ≤ 4k.

Proof. SinceM is non-crossing, it is disjoint with [a . . b)×[d . . |X|) or [0 . . a)×[c . . d). By symmetry
(up to the reverse complement), let us assume thatM is disjoint with [a . . b)× [d . . |X|). Consider
x ∈ [a . . b − 4k) such that X[x] ≃M X[y]. The assumption implies that y < d. Moreover,
b − x = H(b) −H(x) > 4k, so H(x) < H(b) − 4k. At the same time, |H(y + 1) −H(x)| ≤ 2k, so
H(y+1) < H(b)−2k. Since X[a . . b) and X[c . . d) are k-synchronized, this means that y+1 /∈ [b . . c],
i.e., y ∈ [c . . d). Consider the fragment X[a . . b − 4k) and the minimal subfragment of X[c . . d)
containing positions that M matches perfectly to positions X[x] with x ∈ [a . . b− 4k). These two
fragments contain at most 2k positions that are deleted or matched imperfectly. The remaining
positions constitute a common subsequence of X[a . . b − 4k) and X[c . . d); this subsequence can
be interrupted at most k times, so there is a contiguous subsequence X[a′ . . b′) ≃M X[c′ . . d′)
of length at least ℓ−6k

k+1 . Due to |H(a) − H(d)| ≤ 2k and |H(a′) − H(d′)| ≤ 2k, we have 4k ≥
|H(a)−H(d)−H(a′) + H(d′)| = |a− a′ + d− d′|.

Lemma 4.13. Let k ∈ Z+, let Q ∈ T ∗ be a string, and let e, e′ ∈ Z≥8k. Then Qe and Qe′ are
dyckw≤k-equivalent for every skewmetric weight function w.

Proof. We assume without loss of generality that Q is primitive. (If Q = Rm for m ∈ Z≥2,
then Qe = Rme and Qe′ = Rme′ can be interpreted as powers of R rather than powers of Q.)
Let q = |Q|. Consider a string X and positions pT , pT such that Qe = X[pT . . pT + e · q) and

Qe = X(pT − e · q . . pT] are k-synchronized fragments. Denote X[0 . . pT) ·Qe′ ·X[pT + e · q . . pT −
e · q] · Qe′ · X(pT . . |X|). Moreover, let M ∈ M(X) be an alignment such that dyckw(X,Y) =
dyckwM(X,Y) ≤ k.

Claim 4.14. There exist iT , iT ∈ [0 . . 7k] such that

X[pT + iT · q . . pT + (iT + 1) · q) ≃M X(pT − (iT + 1) · q . . pT − iT · q].

Proof. Consider the 8k occurrences of Q starting at positions pT + i · q for i ∈ [0 . . 7k] (let this
fragment be P) and 8k occurrences of Q ending at positions pT−i·q for i ∈ [0 . . 7k] (let this fragment
be P). Note P,P are also are k-synchronized fragments. Thus following Fact 4.12, there exists at
least one occurrence of Q in P , starting at index ℓ such thatM matches it exactly with a fragment
in P . We can thus define iT ∈ [0 . . 7k] so thatM matches X[pT + iT ·q . . pT +(iT +1) ·q) exactly to
some fragment X(sT − q . . sT] ∈ P . By definition of P , we have sT ≥ pT − 7kq. Furthermore, since
Q is primitive (i.e., distinct from all its non-trivial cyclic rotations), we conclude that sT = pT−iT ·q
for some iT ∈ [0 . . 7k].

Now, if Qe = X[pT . . pT + e · q) is replaced with Qe′ and Qe = X(pT − e · q . . pT] is replaced

with Qe′ for e′ ≥ e− 1, we can interpret this as replacing Q = X[pT + iT · q . . pT + (iT + 1) · q) with

Q1+e′−e and Q = X(pT − (iT + 1) · q . . pT − iT · q] with Q1+e′−e. By Claim 4.14,M can be trivially
adapted without modifying its cost, and hence dyckw(X ′) ≤ dyckwM(X) = dyckw(X). If e′ < e− 1,
we repeat the above argument to decrement the exponent e one step at a time, still concluding
that dyckw(X ′) ≤ dyckw(X). In either case, the converse inequality follows by symmetry between
(X, e) and (X ′, e′).

37

We say that a string P ∈ T ∗ avoids k-periodicity if it does not contain any substring Q8k+1

with |Q| ∈ [1 . . 4k].

Lemma 4.15. Let k ∈ Z+ and let P,P ′ ∈ T ∗ be strings of lengths at least 156k3 such that
P [0 . . 78k3) = P ′[0 . . 78k3) and P [|P | − 78k3 . . |P |) = P ′[|P ′| − 78k3 . . |P ′|) avoid k-periodicity.
Then, P and P ′ are dyckw≤k-equivalent for every skewmetric weight function w.

Proof. Consider a string X and positions pT , pT such that P = X[pT . . pT + |P |), P = X(pT −
|P | . . pT] are k-synchronized fragments. Denote X ′ = X[0 . . pT) · P ′ · X[pT + |P | . . pT − |P |] · P ′ ·
X(pT . . |X|]. Moreover, let M ∈ M(X) be an alignment such that dyckw(X) = dyckwM(X) ≤ k.

Claim 4.16. There exist d, e ∈ [0 . . 78k3] such that (pT + d, pT − d) ∈ M and (pT + |P | − e, pT −
|P |+ e) ∈M.

Proof. By Fact 4.12, X[pT . . pT + 78k3) contains a fragment of length at least 78k3−6k
k+1 ≥ 36k2

that M matches perfectly to a fragment of X(pT − 78k3 . . pT] Thus, let R := X[rT . . rT + |R|)
be a fragment of length at least 36k2 contained in X[pT . . pT + |P |) that M matches perfectly to
X[rT − |R| . . rT) = R. Moreover, let r′

T
:= pT + pT − rT . If rT = r′

T
, then the claim is satisfied for

d = rT − pT = pT − rT . Otherwise, both X[rT − |R| . . rT) and X[r′
T
− |R| . . r′

T
) are occurrences of

R in X. Moreover, 0 < |rT − r′
T
| ≤ |(pT − r′

T
)− (pT − rT)| ≤ |(rT − pT)− (pT − rT)|+ |(rT − pT)−

(pT − r′
T

)| ≤ 2dyckwM(X) + 2k ≤ 4k. Hence, per(R) ≤ |rT − r′
T
| ≤ 4k and exp(R) ≥ |R|

4k ≥ 9k. Since

X[r′
T
− |R| . . r′

T
) is contained in X(pT − |P | . . pT] = P [0 . . 78k3), this contradicts the assumption

that P [0 . . 78k3) and thus P [0 . . 78k3) avoids k-periodicity.
The second part of the claim is proved analogously.

As X[pT + d . . pT + |P | − e) ∈ T and X[pT + d . . pT + |P | − e) = X(pT − |P |+ e . . pT − d], the

optimality of M guarantees that X[pT + d . . pT + |P | − e) ≃M X(pT − |P |+ e . . pT − d]. Hence, if

P = X[pT . . pT + |P |) = X(pT − |P | . . pT] is replaced with P ′, we can interpret this as P [d . . |P | −
e) = X[pT + d . . pT + |P | − e) = X(pT − |P |+ e . . pT − d] with P ′[d . . |P ′| − e). Since X[pT +

d . . pT + |P | − e) ≃M X(pT − |P |+ e . . pT − d], the alignment M can be trivially adapted without
modifying its cost, and therefore dyckw(X ′) ≤ dyckwM(X) = dyckw(X). The converse inequality
follows by symmetry between (X,P) and (X ′, P ′).

Corollary 4.17. Let k ∈ Z+. For every string P ∈ T ∗, there exists a string of length at most
156k3 that is dyckw≤k-equivalent to P for every skewmetric weight function w.

Proof. We proceed by induction on |P | with the trivial base case of |P | ≤ 156k3. If |P | ≥ 156k3 and
P avoids k-periodicity, then Lemma 4.15 implies that P is equivalent to a string P ′ := P [0 . . 78k3) ·
P [|P | − 78k3 . . |P |) of length 156k3. Thus, suppose that P contains a fragment P [i . . j) = Q8k+1

and |Q| ∈ [1 . . 4k]. By Lemma 4.13, Q8k+1 is equivalent to Q8k, and thus P is equivalent to a string
P ′ := P [0 . . i) · P [i + |Q| . . |P |). By the inductive assumption, P ′ is equivalent to some string P ′′

of length at most 156k3, and, by transitivity of the considered equivalence, P is also equivalent
to P ′′.

4.4 Algorithm

Lemma 4.18. There exists a linear-time algorithm that, given a string P and an integer k ∈ Z+,
constructs a string P ′ of length at most 156k3 that is dyckw≤k-equivalent to P for every skewmetric
weight function w. Moreover P ′ avoids k-periodicity.

38

Algorithm 8: Construct a string of length at most 156k3 that is dyckw≤k-equivalent to P .

1 DyckReduction(P, k):
2 P ′ ← PeriodicityReduction(P, 8k, {Q ∈ T+ : |Q| ≤ 4k and Q is primitive});
3 if |P ′| ≥ 156k3 then return P ′[0 . . 78k3) · P ′[|P ′| − 78k3 . . |P ′|);
4 else return P ′;

Proof. We apply Algorithm 1 with e = 8k and Q consisting of all primitive strings in T ∗ of length
in [1 . . 4k]. If the resulting string P ′ satisfies |P ′| < 156k3, we return P ′. By Lemmas 4.13 and 2.13,
the string P ′ is dyckw≤k-equivalent to P and avoids k-periodicity. Thus, if |P ′| ≤ 156k3, then the
algorithm is correct. Otherwise, we return P ′[0 . . 78k3) · P ′[|P ′| − 78k3 . . |P ′|). P ′[0 . . 78k3) and
P ′[|P ′| − 78k3 . . |P ′|) both avoid k-periodicity, so P ′[0 . . 78k3) · P ′[|P ′| − 78k3 . . |P ′|) is dyckw≤k-
equivalent to P by Lemma 4.15. Due to Lemma 2.13, the running time is linear (testing whether
a primitive fragment belongs to Q simplifies to checking if its length does not exceed 4k.)

Theorem 4.19. There exists a O(n+k5)-time algorithm that, given a preprocessed string X and an
integer k ∈ Z+, constructs strings X ′ of lengths at most 630k4 such that dyckw≤k(X) = dyckw≤k(X ′)
holds for every skewmetric weight function w.

Proof. Our procedure is implemented as Algorithm 9. First, if X is already of length at most
630k4, then we return X as it is. If dyck(X) > k, we return strings ak+1, where a ∈ Σ is an
arbitrary character. If dyck(X) ≤ k, we construct a Dyck language alignment M ∈ M(X) of
(unweighted) cost at most k. We then build the output string X ′ using M as follows: scan X
from left to right, if the the scanned character X[i] is edited by M we append it to X ′ (here
Order(i, j) = 1 if j > i otherwise it is 0). Otherwise X[i] is matched under M. If X[i] ∈ T , we
proceed with scanning the following characters to identify the maximal fragment P = X[i . . j) ∈ T ∗

such that there is a fragment X(i′ . . j′] where dyck(X[i . . j)X(i′ . . j′]) = 0 andM matches X[i . . j)
with X(i′ . . j′]. Next we apply the reduction of Lemma 4.18 on P and append the reduced string
to X ′. Otherwise X[i] ∈ T . Here also we proceed with scanning the following characters to
identify the maximal fragment Q = X[i . . j) ∈ T

∗
such that there is a fragment X(i′ . . j′] where

dyck(X(i′ . . j′]X[i . . j)) = 0 andM matches X[i . . j) with X(i′ . . j′]. Next we consider the Q (note
Q ∈ T ∗), apply the reduction of Lemma 4.18 on Q and append the reverse complement of the
reduced string to X ′.

Let us now prove that the resulting string X ′ satisfies dyckw≤k(X) = dyckw≤k(X ′). This is trivial

when the algorithm returns X in Line 2. If dyck(X) > k, then dyck≤k(X) = dyck≤k(ak+1) = ∞
and thus also dyckw≤k(X) = dyckw≤k(ak+1) = ∞ because the weighted Dyck edit distance with
a normalized weight function is at least as large as the unweighted Dyck edit distance. In the
remaining case we assume dyck(X) ≤ k. Let S = {P1, . . , Pℓ} be the set of fragments from T ∗

that are ever generated and processed using DyckReduction() routine at Line 13. Similarly let
S = {Q1, . . , Qℓ′} be the set of fragments from T

∗
that are ever generated and whose reveres

complements are processed using DyckReduction() routine at Line 20. By construction it is trivial
to follow that (i) the fragments are disjoint; (ii) for all i ∈ [0 . . n), if X[i] ∈ T and is not edited byM,
then there exist some Pj such that X[i] ∈ Pj and if X[i] ∈ T and is not edited byM, then there exist
some Qj such that X[i] ∈ Qj; (iii) The fragments are maximal in a sense that if Pi = X[a . . b) ∈ S,

then either M(b) 6= M(b − 1) − 1 or X[b] 6= X[M(b)] and same holds for the fragments in S.
Next we prove for each Pi = X[a . . b) ∈ S, ∃Qj = X(c . . d] ∈ S, such that |Pi| = |Qj| and for all

k ∈ [0 . . |Pi|), (a + k, d − k) ∈ M and X[a + k] = X[d− k]. For this we first claim that M(b− 1)

39

Algorithm 9: Construct strings X ′ of length at most 630k4 such that dyckw≤k(X) =
dyckw≤k(X ′)

1 DyckKernel(X, k):
2 if |X| ≤ 630k4 then return (X);

3 if dyck(X) > k then return (ak+1) for some a ∈ Σ;
4 Let M∈ M(X) be a dyck language alignment satisfying dyckM(X) ≤ k;
5 X ′, P,Q← ε;
6 for i← 0 to n− 1 do
7 if M(i) = ⊥ or dyck(X[i]X[M(i)]) · Order(i,M(i)) = 1 or

dyck(X[M(i)]X[i]) · Order(M(i), i) = 1 then
8 X ′ ← X ′ ·X[i]
9 else if X[i] ∈ T and M(i + 1) =M(i)− 1 and dyck(X[i + 1]X[M(i) − 1]) = 0

then
10 P ← P ·X[i]
11 else if X[i] ∈ T then
12 P ← P ·X[i];
13 P ← DyckReduction(P, k);
14 X ′ ← X ′ · P ;
15 P ← ε;

16 else if X[i] ∈ T and M(i + 1) =M(i)− 1 and dyck(X[M(i) − 1]X[i + 1]) = 0
then

17 Q← Q ·X[i]
18 else
19 Q← Q ·X[i];

20 Q← DyckReduction(Q, k);
21 X ′ ← X ′ ·Q;
22 Q← ε;

23 return (X ′)

40

is a starting index of some Qj ∈ S. As otherwise M(b) = M(b − 1) − 1 and X[b] 6= X[M(b)];
this contradicts the maximality of Pi. Further by construction for all k ∈ [a . . b), X[M(k)] ∈ Qj .
Finally we argue M(a) is a ending index of Qj . As otherwise M(a − 1) = M(a) + 1 and this
contradicts the fact that a is the starting index of some segment from S. Similarly we can show for
each Qj ∈ S there is a corresponding match Pi ∈ S and this provides an one to one correspondence
between a pair of fragments from S and S. Thus for a fragment Pi ∈ S let M(Pi) represents
the corresponding matched fragments from S and we can represent S ∪ S = ∪i∈[ℓ](Pi,M(Pi)).
Following Fact 4.11, Pi,M(Pi) are k-synchronized. Next in the algorithm for each pair (Pi,M(Pi))
we add strings DyckReduction(Pi) representing Pi and DyckReduction(Pi) (note M(Pi) = Pi)
representing M(Pi) to X ′. Following the fact that every character that is not contained in a
fragment from S ∪ S is edited by M and thus copied to X ′ directly, by applying Lemma 4.18
repeatedly for every pair (Pi,M(Pi)), we claim dyckw≤k(X) = dyckw≤k(X ′).

Next, we show that the returned string is of length at most 630k4. This is clear when the
algorithm terminates at Line 2 or 3. Otherwise, we create a string X ′, to which we directly copy
the characters that are edited by M. However there are at most 2k characters that M deletes or
substitutes. Next we identify maximal fragments P = X[i . . j) ∈ T ∗ such that there is another
fragment X(i′ . . j′] ∈ T

∗
that is matched with P byM. The maximality of P and the preprocessing

of X ensure that at least one of X[j] and X[i′] is edited byM, We call these characters the boundary
characters for P . Notice for any two distinct fragments P,P ′ ∈ T ∗, the the boundary characters
are different and by construction P,P ′ are disjoint. As there are at most 2k characters that M
edits, we conclude there can be at most 2k fragments over T ∗, that our algorithm can construct.
For each such fragment following the reduction of Lemma 4.18, we add a substring of length 156k3

to X ′. Thus the total length of all the substrings is 312k4. Similarly we can argue for the fragments
Q ∈ T

∗
. Thus we can bound the total length of X ′ by 2 · 312k4 + 2k < 630k4.

It remains to analyze the complexity of our procedure. We use the algorithm [FGK+22a] to
check whether dyck(X) ≤ k and, if so, construct the alignmentM. This costs O(n+k5) time. Next
we perform a single left to right scan of X. Throughout, all the conditions in the if/else statements
can be checked in O(1) time. Moreover any character is passed to the DyckReduction() routine at
most twice. Thus following Lemma 4.18, given X andM, X ′ can be constructed in linear time.

Proof of Theorem 1.3. We first preprocess X in linear time following the steps described in Sec-
tion 4.2.1 to build strings X ′ such that dyckw≤k(X ′) = dyckw≤k(X). Next we apply Theorem 4.19
on X ′, to build strings X ′′ of length O(k4) such that dyckw≤k(X ′′) = dyckw≤k(X ′). This takes time

O(n + k5). Lastly if X = ak+1 (this can be checked in time O(k)) output the distance is > k.
Otherwise we compute dyckw≤k(X ′′) using the dynamic program algorithm from [Mye95] in time
O(k12). Thus the total running time is O(n + k12).

A Deferred Proofs from Section 2

In the following, we give the missing proofs of facts from Section 2.

Fact 2.5. If w is a quasimetric on Σ̄, then edw is a quasimetric on Σ∗. In this case, edw(X,Y)
can be equivalently defined as the minimum cost of a sequence of edits transforming X into Y .

Proof. Consider arbitrary strings X,Y,Z ∈ Σ∗ as well as alignments A = (xt, yt)
m
t=0 ∈ A(X,Y)

and B = (ŷt, ẑt)
m̂
t=0 ∈ A(Y,Z). We construct a product alignment A ⊗ B ∈ A(X,Z) such that

edwA⊗B(X,Z) ≤ edwA(X,Y) + edwB (Y,Z). Let us denote A′ = (xt, yt)
m−1
t=0 and B′ = (ŷt, ẑt)

m̂−1
t=0 , as

well as X ′ = X[0 . . |X|−1) if X 6= ε, Y ′ = Y [0 . . |Y |−1) if Y 6= ε, and Z ′ = Z[0 . . |Z|−1) if Z 6= ε.

41

We proceed by induction on m + m̂ and consider several cases based on how A and B handle the
trailing characters of X, Y , and Z.

1. m = m̂ = 0. In this case, X = Y = Z = ε, and we define A ⊗ B := (0, 0). Trivially,
edwA⊗B(X,Z) = 0 = edwA(X,Y) + edwB(Y,Z).

2. (xm−1, ym−1) = (|X| − 1, |Y |), that is, A deletes X[|X| − 1]. In this case, A′ ∈ A(X ′, Y), and
we define A⊗B := (A′⊗B)⊙(|X|, |Z|), where ⊙ denotes concatenation, so that A⊗B deletes
X[|X| − 1]. By the induction hypothesis, edwA⊗B(X,Z) = edwA′⊗B(X ′, Z) +w(X[|X| − 1], ε) ≤
edwA′(X ′, Y) + edwB(Y,Z) + w(X[|X| − 1], ε) = edwA(X,Y) + edwB(Y,Z).

3. (ŷm̂−1, ẑm̂−1) = (|Y | − 1, |Z|), that is, B inserts Z[|Z| − 1]. In this case, B′ ∈ A(Y,Z ′), and
we define A⊗ B := (A⊗ B′)⊙ (|X|, |Z|) so that A⊗ B inserts Z[|Z| − 1]. By the induction
hypothesis, edwA⊗B(X,Z) = edwA⊗B′(X,Z ′) + w(ε, Z[|Z| − 1]) ≤ edwA(X,Y) + edwB′(Y,Z ′) +
w(ε, Z[|Z| − 1]) = edwA(X,Y) + edwB (Y,Z).

4. (xm−1, ym−1) = (|X|, |Y | − 1) and (ŷm̂−1, ẑm̂−1) = (|Y | − 1, |Z|), that is, A inserts Y [|Y | − 1]
and B deletes Y [|Y | − 1]. In this case, A′ ∈ A(X,Y ′) and B′ ∈ A(Y ′, Z), and we define
A⊗B := A′⊗B′. By the induction hypothesis, edwA⊗B(X,Z) = edwA′⊗B′(X,Z) ≤ edwA′(X,Y ′)+
edwB′(Y ′, Z) ≤ edwA(X,Y) + edwB (Y,Z).

5. (xm−1, ym−1) = (|X|, |Y |−1) and (ŷm̂−1, ẑm̂−1) = (|Y |−1, |Z|−1), that is, A inserts Y [|Y |−1]
and B aligns Y [|Y | − 1] with Z[|Z| − 1]. In this case, A′ ∈ A(X,Y ′) and B′ ∈ A(Y ′, Z ′), and
we define A⊗ B := (A′ ⊗ B′)⊙ (|X|, |Z|) so that A⊗ B inserts Z[|Z| − 1]. By the induction
hypothesis, edwA⊗B(X,Z) = edwA′⊗B′(X,Z ′) + w(ε, Z[|Z| − 1]) ≤ edwA′(X,Y ′) + edwB′(Y ′, Z ′) +
w(ε, Y [|Y | − 1]) + w(Y [|Y | − 1], Z[|Z| − 1]) = edwA(X,Y) + edwB (Y,Z).

6. (xm−1, ym−1) = (|X|−1, |Y |−1) and (ŷm̂−1, ẑm̂−1) = (|Y |−1, |Z|), that is, A aligns X[|X|−1]
with Y [|Y | − 1] and B deletes Y [|Y | − 1]. In this case, A′ ∈ A(X ′, Y ′) and B′ ∈ A(Y ′, Z), and
we define A⊗B := (A′ ⊗B′)⊙ (|X|, |Z|) so that A⊗B deletes X[|X| − 1]. By the induction
hypothesis, edwA⊗B(X,Z) = edwA′⊗B′(X ′, Z) + w(X[|X| − 1], ε) ≤ edwA′(X ′, Y ′) + edwB′(Y ′, Z) +
w(X[|X| − 1], Y [|Y | − 1]) + w(Y [|Y | − 1], ε) = edwA(X,Y) + edwB(Y,Z).

7. (xm−1, ym−1) = (|X| − 1, |Y | − 1) and (ŷm̂−1, ẑm̂−1) = (|Y | − 1, |Z| − 1), that is, A aligns
X[|X|−1] with Y [|Y |−1] and B aligns Y [|Y |−1] with Z[|Z|−1]. In this case, A′ ∈ A(X ′, Y ′)
and B′ ∈ A(Y ′, Z ′), and we define A ⊗ B := (A′ ⊗ B′) ⊙ (|X|, |Z|) so that A ⊗ B aligns
X[|X| − 1] with Z[|Z| − 1]. By the induction hypothesis, edwA⊗B(X,Z) = edwA′⊗B′(X ′, Z ′) +
w(X[|X| − 1], Z[|Z|−1]) ≤ edwA′(X ′, Y ′)+edwB′(Y ′, Z)+w(X[|X|−1], Y [|Y |−1])+w(Y [|Y | − 1],
Z[|Z| − 1]) = edwA(X,Y) + edwB (Y,Z).

It is easy to check that the above cases cover all the possibilities. In particular, Case 2 covers the
case of m̂ = 0 < m whereas Case 3 covers the case of m = 0 < m̂. We also remark that Cases 2
and 3 are sometimes both applicable; by convention, we then follow Case 2. Finally, we note that
Cases 5–7 rely on the assumption that w satisfies the triangle inequality. This completes the proof
of the first part of the fact.

To show that edw(X,Y) can be equivalently defined as the minimum cost of a sequence of edits
transforming X into Y , we first consider each of the operations in a minimum alignment A of X
and Y individually to build a sequence of edits S from A. We iterate through all pairs (xt, yt) of
A from right to left starting with t = m− 1, stopping after t = 0 has been handled, and building
S according to the definition of alignments:

1. If (xt, yt) = (xt+1 − 1, yt+1 − 1) and X[xt] = Y [yt], we add nothing to S.
2. If (xt, yt) = (xt+1 − 1, yt+1 − 1) and X[xt] 6= Y [yt], we add a substitution of X[xt] with Y [yt]

to S.
3. If (xt, yt) = (xt+1 − 1, yt+1), we add a deletion of X[xt] to S.

42

4. If (xt, yt) = (xt+1, yt+1 − 1), we add an insertion of Y [yt] at position xt in X to S.

In all cases, we decrement t by 1. Clearly the resulting sequence of edits has the same cost
as A, and by the definition of alignments, S transforms X into Y . We now consider a minimum
sequence of edits S that transforms X to Y and build an alignment A ∈ A(X,Y) from S such
that edwA(X,Y) ≤ cost(S) (we let cost(S) denote the total cost of edits by S). We use notation
A′,X ′, Y ′ as before, and proceed by induction to construct A:

1. If X[|X| − 1] is deleted by S and a character is inserted at the end of X, then A′ ∈ A(X ′, Y ′)
and we set A = A′ ⊙ (|X|, |Y |). We note that the inserted character c may be substituted
to Y [|Y | − 1]. We let S′ be the sequence S without the insertion, deletion, and if possible
substitution on the last character of X. By the induction hypothesis and triangle inequality,
edA(X,Y) = edA′(X ′, Y ′) + w(X[|X| − 1], Y [|Y | − 1]) ≤ edA′(X ′, Y ′) + w(X[|X| − 1], ε) +
w(ε, Y [|Y | − 1]) ≤ edA′(X ′, Y ′) + w(X[|X| − 1], ε) + w(ε, c),+w(c, Y [|Y | − 1]) ≤ cost(S′) +
w(X[|X| − 1], ε) + w(ε, c),+w(c, Y [|Y | − 1]) = cost(S).

2. If X[|X| − 1] is deleted by S and no character is inserted at the end of X, then A′ ∈
A(X ′, Y) and we set A = A′ ⊙ (|X|, |Y |). We let S′ be the sequence S without the deletion
of X[|X| − 1]. By the induction hypothesis, edA(X,Y) = edA′(X ′, Y) + w(X[|X| − 1], ε) ≤
cost(S′) + w(X[|X| − 1], ε) = cost(S).

3. If a character is inserted at the end of X, then A′ ∈ A(X,Y ′) and we set A = A′odot(|X|, |Y |).
We let S′ be the sequence S without this insertion. By the induction hypothesis, edA(X,Y) =
edA′(X,Y ′) + w(ε, Y [|Y | − 1], ε) ≤ cost(S′) + w(ε, Y [|Y | − 1]) = cost(S).

4. If X[|X| − 1] is substituted by S, then A′ ∈ A(X ′, Y ′) and we set A = A′ ⊙ (|X|, |Y |).
We let S′ be the sequence of S without any substitutions of X[|X| − 1] and let C be an
ordered list of characters substituted by S at X[|X| − 1]. Then, by the induction hypothesis,

edA(X,Y) = edA′(X ′, Y ′) + w(X[|X| − 1], Y [|Y | − 1]) ≤ edA′(X ′, Y ′) +
∑|C|−1

i=0 w(ci, ci+1) ≤
cost(S′) +

∑|C|−1
i=0 w(ci, ci+1) = cost(S).

By induction, we can see that there exists an alignment A with cost at most that of S.

Fact 2.6. Consider a string X and its fragment X[i . . j). Then, for every quasimetric w, we have
edw(X,X[i . . j)) = edw(X[0 . . i) ·X[j . . |X|), ε).

Proof. The unique alignment in A(X[0 . . i) · X[j . . |X|), ε) deletes all characters, and therefore
edw(X[0 . . i) ·X[j . . |X|), ε) =

∑

u∈[0. .i)∪[j. .|X|)w(X[u], ε).
Next, consider an alignmentA ∈ A(X,X[i . . j)) that deletes X[0 . . i), matches X[i . . j) perfectly,

and deletes X[j . . |X|). Hence, edw(X,X[i . . j)) ≤ edwA(X,X[i . . j)) =
∑

u∈[0. .i)∪[j. .|X|)w(X[u], ε) =
edw(X[0 . . i) ·X[j . . |X|), ε).

Now, let Y = X[i . . j) and consider an arbitrary alignment B ∈ A(X,Y). For each u ∈
[0 . . i)∪ [j . . |X|), we recursively define a sequence (cu,t)

mu

t=0 so that cu,0 = u, the alignment B aligns
X[cu,t] to Y [cu,t+1 − i] = X[cu,t+1] for t ∈ [0 . . mu), and B deletes X[cu,mu

]. By construction,
the sequences (cu,t)

mu

t=0 are finite and each position in X belongs to at most one such sequence.
Moreover, since w is quasimetric, w(X[cu,t], ε) ≤ w(X[cu,t],X[cu,t+1]) + w(X[cu,t+1], ε) holds for
every t ∈ [0 . . mu), and thus w(X[cu,0], ε) ≤ w(X[cu,mu

], ε) +
∑

t∈[0. .mu)
w(X[cu,t],X[cu,t+1]). Since

43

B deletes X[cu,mu
] and X[cu,t] ∼B Y [cu,t+1 − i] = X[cu,t+1] holds for t ∈ [0 . . mu), this yields

edwB (X,Y) ≥
∑

u∈[0. .i). .[j∪|X|)

w(X[cu,mu
], ε) +

∑

t∈[0. .mu)

w(X[cu,t],X[cu,t+1])

≥
∑

u∈[0. .i). .[j∪|X|)

w(X[u], ε)

= edw(X[0 . . i) ·X[j . . |X|), ε).

Since B was chosen arbitrarily, we conclude that edw(X,Y) ≥ edw(X[0 . . i) ·X[j . . |X|), ε).

References

[Abb14] Amir Abboud. Hardness for easy problems, 2014. Pre-
sented at Satellite Workshop of ICALP (YR-ICALP). URL:
https://www.dropbox.com/s/jt9uzljjmormkb7/EasyHardness.pdf.

[ABW18] Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current
clique algorithms are optimal, so is Valiant’s parser. SIAM Journal on Computing,
47(6):2527–2555, 2018. doi:10.1137/16M1061771.

[AJ21] Shyan Akmal and Ce Jin. Faster algorithms for bounded tree edit dis-
tance. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th
International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of
LIPIcs, pages 12:1–12:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.12.

[AKO10] Alexandr Andoni, Robert Krauthgamer, and Krzysztof Onak. Polylogarithmic approx-
imation for edit distance and the asymmetric query complexity. In Proceedings of the
2010 IEEE 51st Annual Symposium on Foundations of Computer Science, FOCS ’10,
page 377–386, USA, 2010. IEEE Computer Society. doi:10.1109/FOCS.2010.43.

[AN94] Arne Andersson and Stefan Nilsson. A new efficient radix sort. In 35th
Annual Symposium on Foundations of Computer Science, Santa Fe, New Mex-
ico, USA, 20-22 November 1994, pages 714–721. IEEE Computer Society, 1994.
doi:10.1109/SFCS.1994.365721.

[AN20] Alexandr Andoni and Negev Shekel Nosatzki. Edit distance in near-linear time: it’s a
constant factor. In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages
990–1001. IEEE, 2020. doi:10.1109/FOCS46700.2020.00096.

[AO09] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time.
In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
STOC ’09, page 199–204, New York, NY, USA, 2009. Association for Computing
Machinery. doi:10.1145/1536414.1536444.

[AP72] Alfred V Aho and Thomas G Peterson. A minimum distance error-correcting parser
for context-free languages. SIAM Journal on Computing, 1(4):305–312, 1972.

44

https://www.dropbox.com/s/jt9uzljjmormkb7/EasyHardness.pdf
https://doi.org/10.1137/16M1061771
https://doi.org/10.4230/LIPIcs.ICALP.2021.12
https://doi.org/10.1109/FOCS.2010.43
https://doi.org/10.1109/SFCS.1994.365721
https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1145/1536414.1536444

[BEG+21] Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi Hajiaghayi,
and Saeed Seddighin. Approximating edit distance in truly subquadratic time: Quan-
tum and mapreduce. J. ACM, 68(3):19:1–19:41, 2021. doi:10.1145/3456807.

[BES06] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. Oblivious string embeddings and
edit distance approximations. In Proceedings of the Seventeenth Annual ACM-SIAM
Symposium on Discrete Algorithm, SODA ’06, page 792–801, USA, 2006. Society for
Industrial and Applied Mathematics. doi:10.1145/1109557.1109644.

[BGHS19] Mahdi Boroujeni, Mohammad Ghodsi, MohammadTaghi Hajiaghayi, and Saeed Sed-
dighin. 1+ǫ approximation of tree edit distance in quadratic time. In Moses Charikar
and Edith Cohen, editors, Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages
709–720. ACM, 2019. doi:10.1145/3313276.3316388.

[BGK03] Peter Buneman, Martin Grohe, and Christoph Koch. Path queries on com-
pressed xml. In Proceedings of the 29th International Conference on Very Large
Data Bases - Volume 29, VLDB ’03, page 141–152. VLDB Endowment, 2003.
doi:10.1016/b978-012722442-8/50021-5.

[BGMW20] Karl Bringmann, Pawe l Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit
distance cannot be computed in strongly subcubic time (unless apsp can). ACM Trans.
Algorithms, 16(4), jul 2020. doi:10.1145/3381878.

[BGSW19] Karl Bringmann, Fabrizio Grandoni, Barna Saha, and Virginia Vassilevska Williams.
Truly subcubic algorithms for language edit distance and RNA folding via fast
bounded-difference min-plus product. SIAM Journal on Computing, 48(2):481–512,
2019. doi:10.1137/17M112720X.

[BI18] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). SIAM J. Comput., 47(3):1087–1097, 2018.
doi:10.1137/15M1053128.

[BII+17] Hideo Bannai, Tomohiro I, Shunsuke Inenaga, Yuto Nakashima, Masayuki Takeda,
and Kazuya Tsuruta. The “runs” theorem. SIAM J. Comput., 46(5):1501–1514, 2017.
doi:10.1137/15m1011032.

[Bil05] Philip Bille. A survey on tree edit distance and related problems. Theor. Comput.
Sci., 337(1–3):217–239, jun 2005. doi:10.1016/j.tcs.2004.12.030.

[BO16] Arturs Backurs and Krzysztof Onak. Fast algorithms for parsing sequences of parenthe-
ses with few errors. In Tova Milo and Wang-Chiew Tan, editors, 35th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2016, pages
477–488. ACM, 2016. doi:10.1145/2902251.2902304.

[BR20] Joshua Brakensiek and Aviad Rubinstein. Constant-factor approximation of
near-linear edit distance in near-linear time. In 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 685–698. ACM, 2020.
doi:10.1145/3357713.3384282.

[BS98] Horst Bunke and Kim Shearer. A graph distance metric based on the max-
imal common subgraph. Pattern Recogn. Lett., 19(3–4):255–259, mar 1998.
doi:10.1016/S0167-8655(97)00179-7.

45

https://doi.org/10.1145/3456807
https://doi.org/10.1145/1109557.1109644
https://doi.org/10.1145/3313276.3316388
https://doi.org/10.1016/b978-012722442-8/50021-5
https://doi.org/10.1145/3381878
https://doi.org/10.1137/17M112720X
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15m1011032
https://doi.org/10.1016/j.tcs.2004.12.030
https://doi.org/10.1145/2902251.2902304
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1016/S0167-8655(97)00179-7

[BW08] Miko laj Bojańczyk and Igor Walukiewicz. Forest algebras. In Jörg Flum, Erich Grädel,
and Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor
of Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 107–132. Amster-
dam University Press, 2008.

[BYJKK04] Ziv Bar-Yossef, T. S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approximating
edit distance efficiently. In Proceedings of the 45th Annual IEEE Symposium on Foun-
dations of Computer Science, FOCS ’04, page 550–559, USA, 2004. IEEE Computer
Society. doi:10.1109/FOCS.2004.14.

[CDG+20] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and Michael
Saks. Approximating edit distance within constant factor in truly sub-quadratic time.
J. ACM, 67(6), oct 2020. doi:10.1145/3422823.

[CDX22] Shucheng Chi, Ran Duan, and Tianle Xie. Faster algorithms for bounded-difference
min-plus product. In 33rd Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2022, pages 1435–1447. Society for Industrial and Applied Mathematics, jan
2022. doi:10.1137/1.9781611977073.60.

[Cha99] Sudarshan S. Chawathe. Comparing hierarchical data in external memory. In Mal-
colm P. Atkinson, Maria E. Orlowska, Patrick Valduriez, Stanley B. Zdonik, and
Michael L. Brodie, editors, VLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages
90–101. Morgan Kaufmann, 1999. URL: http://www.vldb.org/conf/1999/P8.pdf.

[CIG22] Kateryna Chumachenko, Alexandros Iosifidis, and Moncef Gabbouj. Weighted edit
distance for country code recognition in license plates. In 30th European Sig-
nal Processing Conference, EUSIPCO 2022, pages 1111–1115. IEEE, 2022. URL:
https://ieeexplore.ieee.org/document/9909869.

[DGH+22] Debarati Das, Jacob Gilbert, MohammadTaghi Hajiaghayi, Tomasz Kociumaka, Barna
Saha, and Hamed Saleh. Õ(n+poly(k))-time algorithm for bounded tree edit distance.
In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022.
IEEE, 2022. arXiv:2209.07524.

[DKS22] Debarati Das, Tomasz Kociumaka, and Barna Saha. Improved approximation
algorithms for dyck edit distance and RNA folding. In Mikolaj Bojanczyk,
Emanuela Merelli, and David P. Woodruff, editors, 49th International Collo-
quium on Automata, Languages, and Programming, ICALP 2022, volume 229 of
LIPIcs, pages 49:1–49:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ICALP.2022.49.

[DMRW10] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Weimann. An optimal
decomposition algorithm for tree edit distance. ACM Trans. Algorithms, 6(1), dec
2010. doi:10.1145/1644015.1644017.

[Dür22] Anita Dürr. Improved bounds for rectangular monotone min-plus product, 2022.
doi:10.48550/arXiv.2208.02862.

[FFF+16] Lionel Fontan, Isabelle Ferrané, Jérôme Farinas, Julien Pinquier, and Xavier Au-
mont. Using phonologically weighted levenshtein distances for the prediction

46

https://doi.org/10.1109/FOCS.2004.14
https://doi.org/10.1145/3422823
https://doi.org/10.1137/1.9781611977073.60
http://www.vldb.org/conf/1999/P8.pdf
https://ieeexplore.ieee.org/document/9909869
http://arxiv.org/abs/2209.07524
https://doi.org/10.4230/LIPIcs.ICALP.2022.49
https://doi.org/10.1145/1644015.1644017
https://doi.org/10.48550/arXiv.2208.02862

of microscopic intelligibility. In 17th Annual Conference of the International
Speech Communication Association, Interspeech 2016, pages 650–654. ISCA, 2016.
doi:10.21437/Interspeech.2016-431.

[FFM00] Martin Farach-Colton, Paolo Ferragina, and S. Muthukrishnan. On the
sorting-complexity of suffix tree construction. J. ACM, 47(6):987–1011, 2000.
doi:10.1145/355541.355547.

[FGK+22a] Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, and Ta-
tiana Starikovskaya. An improved algorithm for the k-Dyck edit distance prob-
lem. In Joseph (Seffi) Naor and Niv Buchbinder, editors, 33rd Annnual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2022, pages 3650–3669. SIAM, 2022.
doi:10.1137/1.9781611977073.144.

[FGK+22b] Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, and Tatiana
Starikovskaya. An improved algorithm for the k-Dyck edit distance problem, 2022.
arXiv:2111.02336v2.

[FLMM09] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S. Muthukrishnan. Com-
pressing and indexing labeled trees, with applications. J. ACM, 57(1), nov 2009.
doi:10.1145/1613676.1613680.

[FW65] Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions. Proc.
Am. Math. Soc., 16(1):109–114, 1965. doi:10.2307/2034009.

[GKS19] Elazar Goldenberg, Robert Krauthgamer, and Barna Saha. Sublinear algorithms
for gap edit distance. In David Zuckerman, editor, 60th IEEE Annual Sym-
posium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland,
USA, November 9-12, 2019, pages 1101–1120. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00070.

[GRS20] Elazar Goldenberg, Aviad Rubinstein, and Barna Saha. Does preprocessing help in
fast sequence comparisons? In 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, pages 657–670. ACM, 2020. doi:10.1145/3357713.3384300.

[Gus97] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Sci-
ence and Computational Biology. Cambridge University Press, USA, 1997.
doi:10.1017/cbo9780511574931.

[GWK21] Andrew Gerlach, Adam Wiemerslage, and Katharina Kann. Paradigm clustering with
weighted edit distance. In 18th SIGMORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology, pages 107–114. Association for Computa-
tional Linguistics, 2021. doi:10.18653/v1/2021.sigmorphon-1.12.

[Har78] Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1st edition, 1978.

[HRS19] Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. Near-linear time
insertion-deletion codes and (1 + ǫ)-approximating edit distance via indexing. In Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC
2019, page 697–708, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3313276.3316371.

47

https://doi.org/10.21437/Interspeech.2016-431
https://doi.org/10.1145/355541.355547
https://doi.org/10.1137/1.9781611977073.144
http://arxiv.org/abs/2111.02336v2
https://doi.org/10.1145/1613676.1613680
https://doi.org/10.2307/2034009
https://doi.org/10.1109/FOCS.2019.00070
https://doi.org/10.1145/3357713.3384300
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.18653/v1/2021.sigmorphon-1.12
https://doi.org/10.1145/3313276.3316371

[HT84] Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM J. Comput., 13(2):338–355, may 1984. doi:10.1137/0213024.

[Ind01] P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Pro-
ceedings of the 42nd IEEE Symposium on Foundations of Computer Science, FOCS
’01, page 10, USA, 2001. IEEE Computer Society. doi:10.1109/sfcs.2001.959878.

[JM09] Dan Jurafsky and James H. Martin. Speech and language processing: an introduction
to natural language processing, computational linguistics, and speech recognition, 2nd
Edition. Prentice Hall series in artificial intelligence. Prentice Hall, Pearson Education
International, 2009. URL: https://www.worldcat.org/oclc/315913020.

[Kle98] Philip N. Klein. Computing the edit-distance between unrooted ordered trees. In
Proceedings of the 6th Annual European Symposium on Algorithms, ESA ’98, page
91–102, Berlin, Heidelberg, 1998. Springer-Verlag. doi:10.1007/3-540-68530-8_8.

[Koz97] Dexter C. Kozen. Automata and Computability. Springer New York, 1997.
doi:10.1007/978-1-4612-1844-9.

[KRRW15] Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń. Inter-
nal pattern matching queries in a text and applications. In Piotr Indyk, editor, 26th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, pages 532–551.
SIAM, 2015. doi:10.1137/1.9781611973730.36.

[KS20a] Tomasz Kociumaka and Barna Saha. Sublinear-time algorithms for computing & em-
bedding gap edit distance. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19,
2020, pages 1168–1179. IEEE, 2020. doi:10.1109/FOCS46700.2020.00112.

[KS20b] Michal Koucký and Michael E. Saks. Constant factor approximations to edit dis-
tance on far input pairs in nearly linear time. In 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 699–712. ACM, 2020.
doi:10.1145/3357713.3384307.

[Kur96] Stefan Kurtz. Approximate string searching under weighted edit distance. In 3rd
South American Workshop on String Processing, WSP 1996, pages 156–170. Carleton
University Press, 1996.

[Kus19] William Kuszmaul. Dynamic time warping in strongly subquadratic time: Algorithms
for the low-distance regime and approximate evaluation. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International
Colloquium on Automata, Languages, and Programming, ICALP 2019, volume 132 of
LIPIcs, pages 80:1–80:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICALP.2019.80.

[KXI20] Satoshi Koide, Chuan Xiao, and Yoshiharu Ishikawa. Fast subtrajectory similarity
search in road networks under weighted edit distance constraints. Proceedings of the
VLDB Endowment, 13(12):2188–2201, 2020. doi:10.14778/3407790.3407818.

[Lev65] Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet physics. Doklady, 10:707–710, 1965.

48

https://doi.org/10.1137/0213024
https://doi.org/10.1109/sfcs.2001.959878
https://www.worldcat.org/oclc/315913020
https://doi.org/10.1007/3-540-68530-8_8
https://doi.org/10.1007/978-1-4612-1844-9
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1109/FOCS46700.2020.00112
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.4230/LIPIcs.ICALP.2019.80
https://doi.org/10.14778/3407790.3407818

[LMS98] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incre-
mental string comparison. SIAM J. Comput., 27(2):557–582, apr 1998.
doi:10.1137/s0097539794264810.

[LV88] Gad M. Landau and Uzi Vishkin. Fast string matching with k dif-
ferences. Journal of Computer and System Sciences, 37(1):63–78, 1988.
doi:10.1016/0022-0000(88)90045-1.

[Mao21] Xiao Mao. Breaking the cubic barrier for (unweighted) tree edit distance.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS
2021, Denver, CO, USA, February 7-10, 2022, pages 792–803. IEEE, 2021.
doi:10.1109/FOCS52979.2021.00082.

[Mye86] Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(2):251–266, 1986. doi:10.1007/BF01840446.

[Mye95] Gene Myers. Approximately matching context-free languages. Information Processing
Letters, 54(2):85–92, 1995. doi:10.1016/0020-0190(95)00007-y.

[NW70] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Journal of Molecular
Biology, 48(3):443–453, mar 1970. doi:10.1016/0022-2836(70)90057-4.

[PM02] Guillermo Peris and Andrés Marzal. Fast cyclic edit distance computation with
weighted edit costs in classification. In 16th International Conference on Pat-
tern Recognition, ICPR 2002, pages 184–187. IEEE, IEEE Computer Society, 2002.
doi:10.1109/ICPR.2002.1047428.

[PR05] Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for real-
weighted undirected graphs. SIAM Journal on Computing, 34(6):1398–1431, 2005.
doi:10.1137/s0097539702419650.

[PT87] Robert Paige and Robert Endre Tarjan. Three partition refinement algorithms. SIAM
J. Comput., 16(6):973–989, 1987. doi:10.1137/0216062.

[Sah14] Barna Saha. The Dyck language edit distance problem in near-linear time. In 55th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2014, pages
611–620. IEEE Computer Society, 2014. doi:10.1109/focs.2014.71.

[Sah17] Barna Saha. Fast & space-efficient approximations of language edit distance and rna
folding: An amnesic dynamic programming approach. In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS), pages 295–306. IEEE, 2017.

[Sel77] Stanley M. Selkow. The tree-to-tree editing problem. Information Processing Letters,
6(6):184–186, 1977. doi:10.1016/0020-0190(77)90064-3.

[Ski20] Steven Skiena. The Algorithm Design Manual, Third Edition. Texts in Computer
Science. Springer, 2020. doi:10.1007/978-3-030-54256-6.

[SS22] Masoud Seddighin and Saeed Seddighin. 3+ǫ approximation of tree edit distance
in truly subquadratic time. In Mark Braverman, editor, 13th Innovations in The-
oretical Computer Science Conference, ITCS 2022, January 31 - February 3, 2022,

49

https://doi.org/10.1137/s0097539794264810
https://doi.org/10.1016/0022-0000(88)90045-1
https://doi.org/10.1109/FOCS52979.2021.00082
https://doi.org/10.1007/BF01840446
https://doi.org/10.1016/0020-0190(95)00007-y
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1109/ICPR.2002.1047428
https://doi.org/10.1137/s0097539702419650
https://doi.org/10.1137/0216062
https://doi.org/10.1109/focs.2014.71
https://doi.org/10.1016/0020-0190(77)90064-3
https://doi.org/10.1007/978-3-030-54256-6

Berkeley, CA, USA, volume 215 of LIPIcs, pages 115:1–115:22. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.115.

[SZ90] Bruce A. Shapiro and Kaizhong Zhang. Comparing multiple RNA secondary
structures using tree comparisons. Comput. Appl. Biosci., 6(4):309–318, 1990.
doi:10.1093/bioinformatics/6.4.309.

[Tai79] Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, jul 1979.
doi:10.1145/322139.322143.

[Tou05] Hélène Touzet. A linear tree edit distance algorithm for similar ordered trees. In Pro-
ceedings of the 16th Annual Conference on Combinatorial Pattern Matching, CPM’05,
page 334–345, Berlin, Heidelberg, 2005. Springer-Verlag. doi:10.1007/11496656_29.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem.
Journal of the ACM, 21(1):168–173, 1974. doi:10.1145/321796.321811.

[ZS89] Kaizhong Zhang and Dennis E. Shasha. Simple fast algorithms for the editing dis-
tance between trees and related problems. SIAM J. Comput., 18(6):1245–1262, 1989.
doi:10.1137/0218082.

50

https://doi.org/10.4230/LIPIcs.ITCS.2022.115
https://doi.org/10.1093/bioinformatics/6.4.309
https://doi.org/10.1145/322139.322143
https://doi.org/10.1007/11496656_29
https://doi.org/10.1145/321796.321811
https://doi.org/10.1137/0218082

	1 Introduction
	1.1 Related Work
	1.2 Our Contribution
	1.3 Overview
	1.3.1 Weighted String Edit Distance
	1.3.2 Weighted Tree Edit Distance
	1.3.3 Weighted Dyck Edit Distance

	2 String Edit Distance
	2.1 Preliminaries
	2.2 Edit-Distance Alignments and Weighted Edit Distance
	2.3 Combinatorial Foundations
	2.4 Algorithm

	3 Tree Edit Distance
	3.1 Preliminaries
	3.2 Forest Alignments and Weighted Forest Edit Distance
	3.3 Combinatorial Foundations
	3.3.1 Forests
	3.3.2 Contexts

	3.4 Algorithms

	4 Dyck Edit Distance
	4.1 Preliminaries
	4.2 Dyck Language Alignments and Weighted Dyck Edit Distance
	4.2.1 Preprocessing.

	4.3 Periodicity Reduction
	4.4 Algorithm

	A Deferred Proofs from Section 2

