
First-Order Model Checking on

Structurally Sparse Graph Classes

Jan Dreier
TU Wien

dreier@ac.tuwien.ac.at

Nikolas Mählmann
University of Bremen

maehlmann@uni-bremen.de

Sebastian Siebertz
University of Bremen

siebertz@uni-bremen.de

Abstract

A class of graphs is structurally nowhere dense if it can be constructed from a nowhere dense
class by a first-order transduction. Structurally nowhere dense classes vastly generalize nowhere
dense classes and constitute important examples of monadically stable classes. We show that the
first-order model checking problem is fixed-parameter tractable on every structurally nowhere
dense class of graphs.

Our result builds on a recently developed game-theoretic characterization of monadically sta-
ble graph classes. As a second key ingredient of independent interest, we provide a polynomial-
time algorithm for approximating weak neighborhood covers (on general graphs). We combine
the two tools into a recursive locality-based model checking algorithm. This algorithm is efficient
on every monadically stable graph class admitting flip-closed sparse weak neighborhood covers,
where flip-closure is a mild additional assumption. Thereby, establishing efficient first-order
model checking on monadically stable classes is reduced to proving the existence of flip-closed
sparse weak neighborhood covers on these classes – a purely combinatorial problem. We com-
plete the picture by proving the existence of the desired covers for structurally nowhere dense
classes: we show that every structurally nowhere dense class can be sparsified by contracting
local sets of vertices, enabling us to lift the existence of covers from sparse classes.

ar
X

iv
:2

30
2.

03
52

7v
1

 [
cs

.L
O

]
 7

 F
eb

 2
02

3

Contents

1 Introduction 1

2 Technical Overview 5

3 Preliminaries 9
3.1 Graphs . 9
3.2 Logic . 10
3.3 Stability . 11
3.4 Flipper Game . 12
3.5 Weak Neighborhood Covers . 14

4 Guarded Formulas and Local Types 14
4.1 Guarded Formulas . 14
4.2 Games . 15
4.3 Local Games . 16
4.4 Local Games Determine Global Games . 16
4.5 Local Games and Local Types . 19
4.6 Games and Types with Guards . 20

5 Model Checking 22
5.1 Setup . 22
5.2 Computing Guarded Formulas . 23
5.3 Reducing the Evaluation Radius . 29
5.4 Main Result . 32
5.5 A Note on the Computability of f(|ϕ|) . 33

6 Approximating Weak Neighborhood Covers 34
6.1 Linear Programming . 34
6.2 ILP Formulation . 35
6.3 Fractional Weak Neighborhood Covers . 36
6.4 Randomized Sampling . 37
6.5 Minimum Membership Set Cover Reduction . 38

7 Weak Neighborhood Covers in Structurally Sparse Classes 40
7.1 Local Contractions and Weak Neighborhood Covers 40
7.2 Background on Structurally Sparse Graphs . 41
7.3 Quasi-Bush Decompositions of Structurally Nowhere Dense Classes 44
7.4 Sibling Contractions in Quasi-Bushes . 46
7.5 Outline of the Contraction Procedure . 48
7.6 Phase One: Eliminating Coat Hangers . 52
7.7 Phase Two: Bounding In and Out Sets . 54
7.8 Sparsity of the Contraction . 59
7.9 Wrapping Up . 62

1 Introduction

Logic provides a versatile and elegant formalism for describing algorithmic problems. For example,
the k-colorability problem (for every fixed k) and Hamiltonian path problem can be formulated in
monadic second-order logic (MSO), while the k-independent set problem, k-dominating set problem,
and many more, can be formulated in first-order logic (FO). Therefore, the tractability of the model
checking problem for a logic, that is, the problem of deciding for a given structure and formula
whether the formula is true in the structure, implies tractability for a whole class of problems,
namely for all problems definable in that logic. For this reason, model checking results for logics
are often called algorithmic meta-theorems. Due to the rich structure theory that graph theory
offers, many algorithmic meta-theorems are formulated for graphs, but most of them can easily be
extended to general relational structures. In the following, we will hence restrict our discussion
to (colored) graphs and graph classes. Probably the best-known algorithmic meta-theorem is the
celebrated theorem of Courcelle, stating that every graph property definable in MSO can be decided
in linear time on every class of graphs with bounded treewidth [Cou90]. Due to their generality and
wide applicability, algorithmic meta-theorems have received significant attention in contemporary
research. We refer to the surveys [Gro08, GK11, Kre11].

Every fixed first-order formula with quantifier rank q can be tested on n-vertex graphs in
time nO(q) by a straight-forward recursive algorithm. In general this running time cannot be
expected to be improved, as, for example, the k-independent set problem cannot be solved in time
f(k) ·no(k) for any function f , assuming the exponential time hypothesis (ETH) [IP01, IPZ01], and
the k-independent set problem is expressible by an FO formula with quantifier rank k. This raises
the question of classifying graph classes on which we can evaluate the truth of an FO formula ϕ in
time f(ϕ) · nO(1) for some function f . Phrased in terms of parameterized complexity theory, the
question is on which graph classes the FO model checking problem is fixed-parameter tractable1.
While the classification of tractable MSO model checking is essentially complete [GHL+14, KT10],
we are far from a full classification of tractable FO model checking.

The starting point for such a classification on sparse graph classes is Seese’s result that every FO
property of graphs can be decided in linear time on every class of graphs of bounded degree [See96].
His result was extended to more and more general classes of sparse graphs [FG01a, FG01b, DGK07,
DKT10, Kre11, GKS17]. The last result of Grohe, Kreutzer and Siebertz [GKS17] shows that every
FO definable property of graphs is decidable in nearly linear time on every nowhere dense class
of graphs. Nowhere dense classes of graphs are very general classes of sparse graphs and turn out
to be a tractability barrier for FO model checking on monotone classes (that is, classes that are
closed under taking subgraphs): if a monotone class of graphs is not nowhere dense, then testing
first-order properties for inputs from this class is as hard as for general graphs [DKT10, Kre11].

Hence, the classification of tractable FO model checking on monotone classes is complete, which
led to a shift of attention to hereditary graph classes (that is, classes that are closed under taking
induced subgraphs), where model checking beyond sparse classes may be possible. One important
result for classes of dense graphs is the extension of Courcelle’s theorem for MSO to graphs of
bounded cliquewidth [CMR00], which also implies tractability for FO on classes of locally bounded
cliquewidth, for example, on map graphs [EK17]. Positive results were also obtained for some
dense graph classes definable by geometric means, for example, for restricted subclasses of interval
graphs [GHK+13], and for restricted subclasses of circular-arc, circle, box, disk, and polygon-
visibility graphs [HPR17]. Many of these results for dense graph classes are generalized by the
recent breakthrough showing that FO model checking is fixed-parameter tractable on every class

1When the function f is not computable one also speaks of non-uniform fixed-parameter tractability. We will
comment on the uniformity of our result in Section 5.5.

1

with bounded twin-width [BKTW21] if a witnessing contraction sequence is given as additional
input. In fact, it turns out that when considering classes of ordered graphs, then classes of bounded
twin-width define the tractability border for efficient FO model checking [BGOdM+22].

In an attempt to extend the sparsity-based methods also to dense graph classes, researchers
considered structurally sparse graph classes, which are defined as first-order transductions of sparse
graph classes, see [GKN+20, NdM16]. Intuitively, a first-order transduction creates a graph H
from a graph G on (a subset of) the vertices of G by coloring the vertices of G, replacing the edge
relation by a first-order definable edge relation, and finally restricting the vertex set to a definable
subset. We call a binary relation R definable in a graph G if there is a formula η(x, y) such that
(u, v) ∈ R ⇔ G |= η(u, v). Similarly, a set U is definable if there is a formula ν(x) such that
v ∈ U ⇔ G |= ν(v). We will formally define transductions in Section 3. Simple examples of first-
order transductions are graph complementations and fixed graph powers. Another elementary and
yet particularly important example of a transduction is that of a flip. Given two sets A,B ⊆ V (G)
that are each marked with a color, a flip complements the adjacency between vertices of A and B,
which is easily definable by an atomic formula. We say that a class D of graphs is structurally
nowhere dense if there exists a nowhere dense class C such that D is a first-order transduction
of C . Note that structurally nowhere dense classes are vastly more general than nowhere dense
classes, and in particular include classes of dense graphs. On the other hand, structurally nowhere
dense classes are incomparable to classes with bounded twin-width.

As nowhere dense classes stand on top of the hierarchy of tractable sparse classes, structurally
nowhere dense classes arguably form the most general structurally sparse classes for which one could
hope to achieve efficient model checking. Until now, there was no indication on how to solve even
special cases like the Independent Set problem, let alone the full FO model checking problem
on these classes. In this work, we set a milestone in this line of research by proving the following
theorem.

Theorem 1. For every structurally nowhere dense class C there exists a function f : N→ N such
that, given a graph G ∈ C and sentence ϕ, one can decide whether G |= ϕ in time f(|ϕ|) · |V (G)|11.

Until now, efficient model checking algorithms could be lifted from tractable base classes to
transductions of classes with bounded degree [GHO+20] and transductions of classes with bounded
local cliquewidth [BDG+22]. In the latter result, the degree of the polynomial running time is
non-uniform and depends on the class under consideration. For classes with structurally bounded
expansion (every class of bounded expansion is nowhere dense but the notion of nowhere dense-
ness is strictly more general than that of bounded expansion), efficient model checking is possible
when additionally a special coloring is given with the input [GKN+20]. We remark that also the
model checking algorithm on classes of unordered graphs of bounded twin-width requires a so-called
contraction sequence as additional input and until now is only a conditional result [BKTW21].

At this point we want to highlight that our algorithm does not depend on any additional
colorings or decompositions as part of the input and has a polynomial running time whose de-
gree is independent of the class C , setting it apart from the existing algorithms for classes with
bounded twin-width, structurally bounded expansion and transductions of classes with bounded
local cliquewidth.

Our result builds on notions from classical model theory. As observed in [AA14], a monotone
class of graphs is stable if and only if it is nowhere dense. The notion of stability provides one
of the most important dividing lines between wild and tame theories in model theory [She90].
Another important notion is NIP, which includes even larger graph classes. Surprisingly, it turns
out that on monotone classes all three notions of dependence, stability and nowhere denseness are

2

equivalent. Important subclasses of stable and NIP classes are monadically stable and monadically
NIP classes. These remain stable/NIP when graphs from the class are expanded by an arbitrary
number of unary predicates (colors). All concepts relevant for this work will be formally defined in
Section 3.

All hereditary classes on which the model checking problem is known to be fixed-parameter
tractable are monadically NIP, which led to the conjecture that a hereditary class of graphs admits
fixed-parameter tractable model checking if and only if it is monadically NIP, see for example [war16,
GPT22]. It turns out that a hereditary class of ordered graphs is NIP if and only if it has bounded
twin-width [BGOdM+22]. Furthermore, a hereditary graph class is stable/NIP if and only if it
is monadically stable/NIP [BL22], which further highlights the importance of these notions on
hereditary graph classes. Every structurally nowhere dense class is monadically stable [PZ78, AA14]
and in fact it has been conjectured that the notions of monadic stability and structural nowhere
denseness coincide, see for example [GPT22].

Let us give a brief sketch of our approach to prove Theorem 1, which will allow us to highlight
further contributions. By Gaifman’s Locality Theorem [Gai82], the problem of deciding whether a
first-order sentence ϕ is true in a graph can be reduced to first testing whether other local formulas
are true in the graph and then solving a colored variant of the (distance-d) independent set problem.
The independent set problem itself can then also be reduced to the evaluation of local formulas in
a coloring of the graph. Local formulas can be evaluated in bounded-radius neighborhoods of the
graph, where the radius depends only on ϕ. Hence, whenever the local neighborhoods in graphs
from a class C admit efficient model checking, then one immediately obtains an efficient model
checking algorithm for C . This technique was first employed in [FG01b] and is also the basis
of the model checking algorithm of [GKS17] on nowhere dense graph classes. A key ingredient
on these classes was a characterization of these classes in terms of a recursive decomposition of
local neighborhoods using a game called Splitter game [GKS17]. As the Splitter game can only
decompose sparse graphs, we replace it in our algorithm by a recently developed characterization of
monadically stable classes via the so-called Flipper game [GMM+23]. We will give a more detailed
technical overview below, where we highlight in particular the many significant differences with the
approach of [GKS17].

The algorithmic idea of [GKS17] is to reduce the evaluation of a formula ϕ to the evaluation
of formulas in local neighborhoods and use the Splitter game decomposition to guide a recursion
into local neighborhoods. Doing this naively would lead to a branching degree of n and a running
time of Ω(n`), where the depth ` of the recursion grows with ϕ. The solution presented in [GKS17]
was to work with a rank-preserving normal form of formulas and to cluster nearby neighborhoods
and handle them together in one recursive call using so-called sparse r-neighborhood covers. An
r-neighborhood cover with degree d and spread s of a graph G is a family X of subsets of V (G),
called clusters, such that the r-neighborhood of every vertex is contained in some cluster, every
cluster has radius at most s, and every vertex appears in at most d clusters. We say a class C
admits sparse neighborhood covers if for every r and ε > 0 there exist constants c(r, ε) and σ(r)
such that every G ∈ C admits an r-neighborhood cover with spread at most σ(r) and degree at
most c(r, ε) · |G|ε. It was proved in [GKS17] that every nowhere dense graph class admits sparse
neighborhood covers. By scaling ε appropriately the recursive data structure needed for model
checking can be constructed in the desired fpt running time.

Neighborhood covers are an important tool with applications, for example, in the design of dis-
tributed algorithms. We refer to [Pel00] for extensive background on applications and constructions
of sparse neighborhood covers. As mentioned above, sparse neighborhood covers exist for nowhere
dense graph classes [GKS17], and in fact for monotone classes their existence characterizes nowhere

3

dense classes [GKR+18]. On the other hand, sparse neighborhood covers are known not to exist for
general graph classes: for every r and s ≥ 3 there exist infinitely many graphs G for which every
r-neighborhood cover of spread at most s has degree Ω(|G|1/s) [TZ05]. For monadically stable
classes we neither know whether sparse r-neighborhood covers exist, nor, if they should exist, how
to efficiently compute them.

For our model checking algorithm we may relax the assumptions on neighborhood covers and
consider weak neighborhood covers. A weak r-neighborhood cover with degree d and spread s of a
graph G is a family X of subsets of V (G), again called clusters, such that the r-neighborhood of
every vertex is contained in some cluster, every cluster is a subset of an s-neighborhood in G (but
does not necessarily have radius at most s itself), and every vertex occurs in at most d clusters.
We say that a class C admits sparse weak neighborhood covers if for every r and ε > 0 there exist
constants c(r, ε) and σ(r) such that every G ∈ C admits a weak r-neighborhood cover with spread
at most σ(r) and degree at most c(r, ε) · |G|ε. It is easy to modify the proof of [TZ05] to show
that general graph classes do not admit sparse weak neighborhood covers. However, note that
the classes exhibited in [TZ05] are not monadically NIP. While we are still not able to prove that
sparse weak neighborhood covers exist for monadically stable classes, as a main contribution of
independent interest we prove that weak r-neighborhood covers can be efficiently approximated in
general. We prove the following theorem.

Theorem 10. There is an algorithm that gets as input an n-vertex graph G and numbers r, s ∈ N
and computes in time O(n9.8) a weak r-neighborhood cover with degree O(log(n)2+1)d∗ and spread s,
where d∗ is the smallest number such that G admits a weak r-neighborhood cover with degree d∗ and
spread s.

Note that the logarithmic factors are negligible when we aim for neighborhood covers of de-
gree O(nε). As a consequence of the theorem, when a class of graphs admits sparse weak neigh-
borhood covers, then they are efficiently computable. With Theorem 10 established, we provide a
clear path towards generalizing tractable model checking to all monadically stable graph classes,
as made precise in the following theorem.

Theorem 5. Let C be a monadically stable graph class admitting flip-closed sparse weak neighbor-
hood covers. There exists a function f : N → N such that, given a graph G ∈ C and sentence ϕ,
one can decide whether G |= ϕ in time f(|ϕ|) · |V (G)|11.

Here, flip-closure is a mild closure condition requiring that each class C` obtained by applying `
flips to graphs from C admits sparse weak neighborhood covers with the same bound on the spread
as C . We expect that this closure property will be fulfilled naturally, as we are mainly interested in
properties of graph classes that are closed under transductions, and thus also under any constant
number of flips. With Theorem 5, the question of efficient model checking on monadically stable
graph classes reduces to a purely combinatorial question about the existence of sparse weak neigh-
borhood covers. We conjecture that the required neighborhood covers exist even for monadically
NIP classes.

Conjecture 1. Every monadically NIP class admits flip-closed sparse weak neighborhood covers.

We conclude Theorem 1 from Theorem 5 and the following theorem, establishing that struc-
turally nowhere dense classes admit flip-closed sparse weak neighborhood covers.

Theorem 11. Let C be a structurally nowhere dense class of graphs. For every r ∈ N and ε > 0
there exists c(r, ε) such that for every G ∈ C there exists a weak r-neighborhood cover with degree
at most c(r, ε) · |G|ε and spread at most 34r. In particular, C admits flip-closed sparse weak
neighborhood covers.

4

We believe that the methods to prove Theorem 11 are again of independent interest. We say
that the contraction of an arbitrary (possibly not even connected) subset A of vertices to a single
vertex is a k-contraction if there is a vertex v such that A is contained in the k-neighborhood of v.
A k-contraction of a graph is obtained by simultaneously performing k-contractions of pairwise
disjoint sets. Note that k-contractions can absorb local dense parts of a graph while at the same
time approximately preserving distances. In particular, if a k-contraction of a graph G admits
a weak r-neighborhood cover, then also G admits a weak r-neighborhood cover with the same
degree and a slightly larger spread (depending on k). We prove that for every structurally nowhere
dense class C and every G ∈ C we can find an 8-contraction G′ of G such that the class of all G′

is almost nowhere dense. We will formalize the notion of almost nowhere denseness via the so-
called generalized coloring numbers. We defer the formal definition of the weak r-coloring number
of a graph G, denoted wcolr(G), to Section 7.2. As proved in [GKS17], every graph admits an
r-neighborhood cover with spread 2r and degree wcol2r(G), hence, Theorem 11 will follow almost
immediately from the following theorem.

Theorem 12. Let C be a structurally nowhere dense class of graphs. For every G ∈ C there exists
an 8-contraction contract(G) of G, which is sparse in the following sense: for every ε > 0 and
r ∈ N there exists c(r, ε) such that for every G ∈ C

wcolr(contract(G)) ≤ c(r, ε) · |G|ε.

2 Technical Overview

In this section, we give a more detailed technical overview of our proof. For this overview we assume
some background from graph theory and logic. We will provide all formal definitions in Section 3
below.

As outlined above, the approach of Grohe, Kreutzer and Siebertz [GKS17] on nowhere dense
classes is based on the locality properties of first-order logic. By Gaifman’s Locality Theorem [Gai82],
the problem to decide whether a general first-order sentence ϕ is true in a graph can be reduced
to testing whether other local formulas are true in the graph. To evaluate local formulas, we can
restrict to bounded-radius neighborhoods of the graph, where the radius depends only on ϕ.

As proved in [GKS17], the r-neighborhoods of vertices from a graph from a nowhere dense class
behave well, which is witnessed by a characterization of nowhere dense graph classes in terms of
a game, called the Splitter game. In the radius-r Splitter game, two players called Connector and
Splitter, engage on a graph and thereby recursively decompose local neighborhoods. Starting with
the input graph G, in each of the following rounds, Connector chooses a subgraph of the current
game graph of radius at most r and Splitter deletes a single vertex from this graph. The game
continues with the resulting graph and terminates when the empty graph is reached. A class of
graphs is nowhere dense if and only if for every r there exists ` such that Splitter can win the
radius-r Splitter game in ` rounds.

While this game characterization shows that graphs from nowhere dense classes have simple
neighborhoods, it does not immediately lead to an efficient model checking algorithm. There are
two central challenges that need to be overcome:

• The first problem is that the algorithm needs to be called recursively on the local neighbor-
hoods, where the graphs in the recursion get simpler and simpler by deleting vertices guided
by the Splitter game. The deletion of a vertex can be encoded by coloring the neighbors of the
vertex, so that the formulas can be rewritten to equivalent formulas, which, however, have to

5

be localized again in each recursive step. By simply applying Gaifman’s theorem again, this
leads to an increase in the quantifier rank, and hence of the locality radius of the formulas,
so that one can no longer play the Splitter game with the original radius. It is forbidden
to increase the radius of the game during play. This problem was handled in [GKS17] by
establishing a rank-preserving local normal form for first-order formulas, where localization
is possible without increasing the quantifier rank.

• As mentioned before, a second problem arises as one cannot simply recursively branch into
all local neighborhoods, as this would in the worst case lead to a branching degree of n, and a
running time of Ω(n`), where ` is the depth of the recursion. Therefore, nearby neighborhoods
were clustered and handled together in one recursive call using sparse r-neighborhood covers.
As proved in [GKS17] for every nowhere dense graph class C , every r and ε > 0 there exists a
constant c(r, ε) such that every G ∈ C admits an r-neighborhood cover with spread at most
2r and degree at most c(r, ε)·|G|ε. With some technical work, formulas were incorporated into
the neighborhood covers. Finally, by setting ρ = ε/` and starting with an r-neighborhood
cover of degree c(r, ρ) · |G|ρ, the complete recursive data structure could be constructed in
time c(r, ρ) · |G|1+ε.

Very recently, based on a notion of flip wideness [DMST22], monadically stable graph classes
were characterized by a game, called the Flipper game [GMM+23], which is similar in spirit to the
Splitter game. In the radius-r Flipper game, two players called Connector and Flipper, engage on
a graph and thereby recursively decompose local neighborhoods. Starting with the input graph G,
in each of the following rounds, Connector chooses a subgraph of the current game graph of radius
at most r and Flipper chooses two sets of vertices A and B and flips the adjacency between the
vertices of these two sets. The game continues with the resulting graph. Flipper wins once a graph
consisting of a single vertex is reached. A class of graphs is monadically stable if and only if for
every r there exists `(r) such that Flipper can win the radius-r Flipper game in `(r) rounds. This
new characterization suggests approaching the model checking problem just as on nowhere dense
classes, where we just replace the Splitter game by the Flipper game. However, on dense graphs,
both of the above challenges reveal additional difficulties:

• The by far most involved aspect of the algorithm in [GKS17] was the introduction of a rank-
preserving local normal form to keep the quantifier rank steady during each localization step.
Even more problems arise when adapting the rank-preserving normal form to account for flips
instead of vertex deletions. For example, in the construction of [GKS17], to avoid introducing
new quantifiers, some local distances have to be encoded by colors around deleted elements.
More precisely, when a vertex v is deleted, one colors for all i ≤ k the vertices at distance
i from v with a predicate Di. Then one can query dist(x, y) ≤ d for d ≤ k in G − v using
the formula dist(x, y) ≤ d ∨

∨
i+j≤dDi(x) ∧Dj(y). Note that this trick is not possible if we

deal with a flip between A and B, since A and B may be arbitrarily large, and we would
have to introduce a distance atom for each element of A ∪ B. We completely sidestep this
and other problems arising from the rank-preserving local normal form by instead building
a much simpler and more powerful rank-preservation mechanism using local types, which we
explain soon.

• For nowhere dense graph classes, the existence and algorithmic construction of sparse neigh-
borhood covers follows elegantly from a bound on the so-called generalized coloring numbers.
These arguments are specific to nowhere dense classes and do not transfer to more general
classes. In the next few pages, we explain how to overcome this problem.

6

Outline of the Algorithm. Locality of first-order logic is a key tool both for the study of the
expressive power of FO and for logic-based applications. For a graph G, v ∈ V (G) and q ∈ N, we
call the set of all formulas ϕ(x) of quantifier rank at most q such that G |= ϕ(v) the q-type of v in G.
We write Nr[v] for the closed r-neighborhood of v in G. By Gaifman’s Locality Theorem [Gai82],
there is a function g : N → N such that the following holds. Whenever two vertices u, v ∈ V (G)
have the same g(q)-type in G[N7q [u]] and G[N7q [v]], respectively, then they have the same q-type
in G. This statement is made explicit, for example, in the proof of Lemma 1.5.2 of [EF99].

One obvious reason for the increase of quantifier rank from q to g(q) that happens in the
proof of Gaifman’s theorem is that new quantifiers are needed to express distances. This can be
avoided by introducing distance atoms, which led to the technical rank-preserving normal form for
FO in [GKS17]. Another not so obvious reason for the increase of quantifier rank is that nearby
elements whose local neighborhoods overlap must be handled in a non-trivial combinatorial way,
which in Gaifman’s theorem leads to a locality radius of 7q. This is not satisfying because it is well
known that FO with q quantifiers can express distances only up to 2q.

This observation led to the notion of local types, which were introduced in [GPPT22] in the
context of twin-width. The localization of a formula ϕ with free variables is the formula with
the same free variables as ϕ that replaces every subformula ∃x ψ(x, ȳ) with quantifier rank k with
∃x∈N2k−1 [ȳ] ψ(x, ȳ). Likewise, every subformula ∀x ψ(x, ȳ) with quantifier rank k is replaced with
∀x∈N2k−1 [ȳ] ψ(x, ȳ). We call a formula local if it is the localization of some formula. The local
q-type of v ∈ V (G) is the set of all local formulas ϕ(x) such that G |= ϕ(v). Observe that syntactic
localization does not increase the quantifier rank of a formula, since ψ has quantifier rank k − 1
and with this number of quantifiers we can express distances up to 2k−1.

We follow the approach of [GPPT22] to relate local types and a local variant of Ehrenfeucht-
Fräıssé games and extend the results of [GPPT22] to provide a fine-grained analysis of the locality
properties of first-order logic. We prove (Theorem 4) that for any two sets U1, U2 ⊆ V (G) whose
local neighborhoods look alike and which are sufficiently far from each other, if we find an element
a ∈ U1 satisfying a first-order property ϕ(x), then we also find an element b ∈ U2 satisfying the
same property.

We now incorporate ideas from an elegant approach to model checking of [GGK20], showing
that FO model checking can be reduced to deciding whether two vertices have the same q-type.
In this approach, the recursive evaluation trees are reduced by keeping only a bounded number of
representative vertices. Our technical implementation of this idea is independent from [GGK20],
and instead based on guarded formulas, which are naturally defined as follows. Given a set of
unary predicates U , we say that a formula is U-guarded if every quantifier is of the form ∃x ∈ U or
∀x ∈ U for some U ∈ U . It is an easy observation that when evaluating guarded sentences, we can
ignore all vertices outside the guarding sets. We now proceed to compute a constant number t of
representative guarding sets U1, . . . , Ut, where t depends only on ϕ and the class C . While the Ui
can contain arbitrarily many vertices (here we also deviate from the approach of [GGK20]), each Ui
is contained in a local neighborhood of the input graph. The candidate sets for Ui are derived from
the recursive computation of types of clusters from a sparse weak neighborhood cover, where the
recursion is guided by the Flipper game. As we proved before, for two sets U1, U2 ⊆ V (G) whose
local neighborhoods look alike and which are far from each other, if we find an element a ∈ U2

satisfying a first-order property ϕ(x), then we also find an element b ∈ U2 satisfying the same
property, which allows us to reduce to a bounded number of representative sets. By appropriately
grouping the remaining Ui, we have reduced the model checking problem to a local problem, where
the locality radius remains stable over the recursion.

7

Our approach avoids the complicated construction of the rank-preserving local normal form in
the model checking algorithm of [GKS17]. It also greatly simplifies the interplay between local for-
mulas and neighborhood covers. We believe that our results are of interest beyond the scope of this
paper. The idea of using local types in combination with neighborhood covers for model checking
in sparse graphs arose in discussions with Szymon Toruńczyk. This approach is also explored in our
companion paper with Szymon, where we present a simplified proof of model checking on nowhere
dense classes [AT]. We want to thank Szymon for these many useful discussions.

Contribution: Construction of Neighborhood Covers. The missing piece for our model
checking algorithm is the construction of sparse neighborhood covers. As a second main contribution
of our paper, we prove in Theorem 10 that weak r-neighborhood covers on general graphs can be
efficiently approximated.

To prove the theorem, we provide a robust ILP formulation for weak r-neighborhood covers. A
solution to the LP relaxation can then be turned efficiently into a fractional weak r-neighborhood
cover, which is a set of covering clusters equipped with a real value between 0 and 1, which can intu-
itively be understood as a probability assignment, such that the sum of values for each neighborhood
to be covered sum up to at least one. Crucially, the constructed fractional weak r-neighborhood
covers have at most O(n2) clusters. Now, instead of having to consider the exponential number
of all subsets of s-neighborhoods, we can search for our r-neighborhood cover among the at most
O(n2) clusters. Via randomized rounding, we turn the fractional weak r-neighborhood cover into
a weak r-neighborhood cover whose degree is at most a logarithmic factor larger. This algorithm
can be derandomized using standard methods. The running time of this procedure, and in fact of
our whole model checking algorithm, is dominated by the time needed to solve LPs.

We want to highlight that our algorithm based on ILP formulations and randomized rounding is
elementary and easy to understand. This is in sharp contrast to the previous algorithm on nowhere
dense graph classes, which relied on the structure theory for these graph classes.

Contribution: Structurally Nowhere Dense Graph Classes. Finally, we demonstrate that
structurally nowhere dense graph classes admit flip-closed sparse weak neighborhood covers and
thereby establish fixed-parameter tractability of FO model checking on these classes, that is,
Theorem 1.

To prove the existence of sparse weak neighborhood covers on structurally nowhere dense graph
classes, we delve into the structure theory for these graph classes and again develop tools that we
believe are interesting beyond the scope of the paper. To describe our contribution, let us first give
an intuitive overview over nowhere dense and structurally nowhere dense classes. Nowhere dense
graph classes are very general classes of sparse graphs. They were originally defined as classes C
such that for every radius r ∈ N, some graph Hr is excluded as a depth-r minor in graphs from C .
Intuitively, a depth-r minor of a graph is obtained by contracting pairwise disjoint connected
subgraphs of radius at most r to single vertices. Observe that the class property of nowhere
denseness is preserved under taking depth-r minors for any fixed r. Nowhere dense graph classes
are very well understood and admit many combinatorial characterizations. In particular, nowhere
dense graph classes admit sparse neighborhood covers. As mentioned before, the construction of
sparse neighborhood covers for these classes is based on a characterization via generalized coloring
numbers wcolr(G). As proved in [GKS17], every graph admits an r-neighborhood cover with
spread 2r and degree wcol2r(G).

8

For our construction of neighborhood covers we work with local contractions instead of bounded
depth minors. Observe that k-contractions do not necessarily preserve the class property of nowhere
denseness, however, they preserve distances up to factors (2k + 1), and hence the property of
admitting sparse weak neighborhood covers. In particular, neighborhood covers can be lifted from
a k-contraction H of a graph G to the original graph G with the same degree and a spread that is
larger by at most a factor of (2k + 1). The use of the k-contraction is to absorb local dense parts
of the graph into single vertices. As a key result, we obtain the following theorem.

Theorem 12. Let C be a structurally nowhere dense class of graphs. For every G ∈ C there exists
an 8-contraction contract(G) of G, which is sparse in the following sense: for every ε > 0 and
r ∈ N there exists c(r, ε) such that for every G ∈ C

wcolr(contract(G)) ≤ c(r, ε) · |G|ε.

Note that the theorem is only existential, and we cannot efficiently construct the 8-contraction
contract(G) for a given graph G. Nevertheless, the theorem gives strong insights into the structure
of graphs from structurally nowhere dense classes, and as described above, we can then derive the
existence of sparse weak r-neighborhood covers for graphs from these classes. Since the property
of structural nowhere denseness is preserved under flips, and from Theorem 12 one can derive the
existence of weak neighborhood covers with a spread depending only on r and not on the class,
we naturally derive the existence of flip-closed sparse weak neighborhood covers for structurally
nowhere dense classes, that is, Theorem 11.

The key to proving Theorem 12 is based on a structural characterization of structurally nowhere
dense graph classes in terms of quasi-bushes [DGK+22a]. Quasi-bushes have the form of a tree of
bounded depth with additional links that define the edges of the decomposed graph. Furthermore,
the quasi-bushes of structurally nowhere dense classes have bounded weak r-coloring numbers. The
sought k-contractions will be found by careful contraction of certain subtrees of the quasi-bushes.

3 Preliminaries

We write N for the set of natural numbers {1, 2, . . .}. For m ∈ N we let [m] = {1, . . . ,m}. We
write x̄, ȳ, . . . for tuples of variables and ā, b̄, v̄, w̄, . . . for tuples of elements and usually leave it to
the context to determine the length of a tuple. We access the elements of a tuple using subscripts,
that is, x̄ = x1x2 . . . x|x̄|.

3.1 Graphs

All graphs in this paper are finite, loopless, and vertex-colored. More precisely, a graph G is a
relational structure with a finite universe V (G) over a finite signature Σ consisting of the binary,
irreflexive edge relation E and a finite number of unary color predicates. Note that we do not
require that colors from Σ are interpreted by disjoint sets, that is, vertices may carry multiple
colors. Most of the time, the signature Σ will be clear from the context and we will not mention
it explicitly. We will commonly expand graphs with additional colors. For a graph G over the
signature Σ and a subset of its vertices W ⊆ V (G), we write G〈X 7→W 〉 for the graph G over the
signature Σ ∪ {X} where X is interpreted as W , that is, in G we color the vertices of W with the
new color X. We write G〈W 〉 as a shorthand for G〈W 7→ W 〉, where by slight abuse of notation
we identify a relation symbol with its interpretation. For a family U = {U1, . . . , Ut} of subsets
of V (G), we write G〈U〉 or G〈U1, . . . , Ut〉 as a shorthand for G〈U1〉 . . . 〈Ut〉.

9

Unless explicitly stated otherwise, graphs are undirected, that is, we assume that E is interpreted
by a symmetric and irreflexive relation. We often denote an undirected edge between u and v by
{u, v} and a directed edge, which we will call an arc, pointing from u to v by (u, v). We write
E(G) for the edge set of a graph G and |G| for the number of its vertices. We use the standard
notation from graph theory from Diestel’s textbook [Die12], which we extend to colored graphs in
the natural way.

Induced subgraphs. For a set of vertices X ⊆ V (G), we write G[X] for the subgraph of G
induced by X, and G−X for the subgraph of G induced by V (G)−X. We say a class of graphs
is hereditary if it is closed under taking induced subgraphs.

Distances and neighborhoods. Let G be a graph. For two vertices u, v ∈ V (G), we write
dist(u, v) for the distance between u and v, which is set to ∞ if u and v are not connected in G.
If ā and b̄ are tuples (or sets) of vertices we write dist(ā, b̄) for the minimum distance between some
a ∈ ā and some b ∈ b̄. For r ∈ N and v ∈ V (G) we write Nr[v] := {u ∈ V (G) | dist(u, v) ≤ r} for
the (closed) r-neighborhood of v in G, and more generally, for a tuple (or set) ā we let Nr[ā] =⋃
a∈āNr[a].

3.2 Logic

We use standard terminology from model theory and refer to [Hod97] for extensive background.
Every formula in this paper will be a first-order formula. However, we will often not explicitly write
down the formulas if the properties they express are obviously expressible. For example, x ∈ Nr[ȳ]
stands for the first-order formula expressing that x is contained in the r-neighborhood of ȳ. Also
for a color predicate P , we often write ∃x ∈ P ϕ as a shorthand for ∃x P (x) ∧ ϕ and ∀x ∈ P ϕ
as a shorthand for ∀x P (x) → ϕ. For a formula ϕ, we write free(ϕ) for the set of free variables
appearing in ϕ, and we write ϕ(x̄) to indicate that the free variables of ϕ are in x̄.

Every formula η(x, y) on a graph G defines the relation η(G) := {(u, v) ∈ V (G)2 | G |= η(u, v)}.
Similarly, a formula ν(x) defines the set {v ∈ V (G) | G |= ϕ(v)}. We call a formula η(x, y)
symmetric and irreflexive if on all graphs the relation it defines is symmetric and irreflexive.

Normalization. For every finite signature Σ, quantifier rank q, and tuple of free variables x̄, up
to equivalence there only exist a finite number of distinct formulas ϕ(x̄) over Σ with quantifier rank
at most q . Testing equivalence of first-order formulas is undecidable. However, given a formula we
can effectively compute an equivalent normalized formula of the same quantifier rank, such that
again there only exist a finite number of distinct normalized formulas ϕ(x̄) over Σ with quantifier
rank at most q. In particular, the length of a normalized formula ϕ(x̄) with quantifier rank q
over Σ only depends on |x̄|, q, and Σ. The normalization process works by renaming quantified
variables, reordering boolean combinations into conjunctive normal form, and deleting duplicates
from conjunctions and disjunctions. We will assume throughout this paper that all appearing
formulas are normalized. This also includes formulas which we construct ourselves: normalization
is always performed implicitly as the last step of a construction.

Types. Let G be a graph and ā ∈ V (G)|ā| be a tuple in G. We denote by tpq(G, ā) the finite
set of all normalized formulas ϕ(x̄) with |x̄| = |ā| and quantifier rank at most q over the signature
of G such that G |= ϕ(ā). We write tpq(G) := tpq(G,∅) for the set of all normalized sentences of
quantifier rank at most q that hold in G.

10

3.3 Stability

The bipartite graph ({a1, . . . , a`}, {b1, . . . , b`}, E), where aibj ∈ E(G) if and only if i ≤ j, is called
the half graph of order `. The half graph of order 5 is depicted in Figure 1.

Figure 1: The half graph of order 5.

Half graphs form the graph theoretical equivalent of linear orders. Intuitively, monadically stable
classes of graphs are those classes which do not admit the encoding of arbitrary large half graphs.
The precise notion of encoding will be that of a transduction. A transduction is an operation
mapping an input graph with signature Σ to a set of output graphs with the same signature2.
Every transduction T consists of two first-order formulas ν(x) and η(x, y) over the signature Σ]Γ
for an infinite set of color predicates Γ, where η is symmetric and irreflexive. The set of output
graphs T(G) is generated from the input graph G as follows.

1. G is mapped to its (infinite) set of Γ-colorings.

2. Every colored graph G+ is mapped to a graph H with signature Σ,

• whose vertex set {v ∈ V (G+) | G+ |= ν(v)} is defined by ν,

• whose edge set {{u, v} | G+ |= η(u, v), u, v ∈ V (H)} is defined by η, and

• where the color predicates from Σ are interpreted as in G.

As η and ν can only reference a finite number of colors, the resulting set of output graphs is finite
as well. As η is symmetric and irreflexive, every output graph is undirected and loopless.

The definition of transductions lifts to classes of graphs where we say a class D is a transduction
of a class C if there exists a fixed transduction T that produces from D all graphs from C , that
is, D ⊆

⋃
G∈C T(G). A class D is called structurally nowhere dense if it is a transduction of

a nowhere dense class C . The notion of monadic stability is originally defined in terms of more
general interpretations. However, by results of [BS85] we can define them in terms of transductions.
We call a class C monadically stable if the class of all half graphs cannot be transduced in C . Every
structurally nowhere dense class is also monadically stable [PZ78, AA14]. Generalizing this notion,
we call a class C monadically NIP if the class of all graphs cannot be transduced in C .

Transductions can be composed, hence, for classes C ,D ,E we have that if E is a transduction
of D and D is a transduction of C , then also E is a transduction of C . Combining this observation
with the fact that there exists a transduction yielding all induced subgraphs of an input graph,
we will from now on assume without loss of generality that all structurally nowhere dense and
monadically stable classes are hereditary.

2Transductions may also be defined with arbitrary (and differing) input and output signatures and may include
copy operations. However, we will not need this flexibility.

11

3.4 Flipper Game

A flip F = (A,B) is a pair of sets of vertices. We write G ⊕ F for the graph on the vertex
set of G where the adjacency between vertices of A and B is complemented, that is, we have
{u, v} ∈ E(G⊕F) if and only if {u, v} ∈ E(G) xor (u, v) ∈ (A×B)∪ (B×A). With this definition,
we have G⊕ (A,B) = G⊕ (A∩ V (G), B ∩ V (G)), so there is no need to require A,B to be subsets
of V (G). This is useful for working with induced subgraphs. For a set F = {F1, . . . ,Fn} of flips,
we write G ⊕ F for the graph G ⊕ F1 ⊕ · · · ⊕ Fn. Note that the order in which we carry out the
flips does not matter.

We are going to use the Flipper game, which was introduced in [GMM+23] and is defined as follows.

Definition 1 (Flipper game). Fix a radius r. The radius-r Flipper game is played by two players,
Flipper and Connector, on a graph G as follows. At the beginning, set G0 := G. In the ith round,
for i > 0, the game proceeds as follows.

• If |Gi−1| = 1, then Flipper wins.

• Connector chooses Gloc
i−1 as the subgraph of Gi−1 induced by a subset3 of an r-neighborhood

in Gi−1.

• Flipper chooses a flip F and applies it to produce Gi, that is, Gi = Gloc
i−1 ⊕ F.

We will use the fact that, when playing in monadically stable classes, Flipper has an efficient,
algorithmic strategy that wins the Flipper game in a bounded number of rounds. We will formalize
this fact by defining strategies and their corresponding runtime.

Strategies. Fix a graph class C and a radius r ∈ N. A radius-r Connector strategy is a function

con : (Gi) 7→ (Gloc
i)

mapping the graph Gi of round i to the graph Gloc
i induced by a subset of an r-neighborhood in Gi.

A radius-r Flipper strategy is a function

flip : (Gloc
i , Ii) 7→ (F, Ii+1)

mapping Connectors move Gloc
i−1 of round i to a flip F. Additionally, Flipper receives an internal

state Ii that is updated to a successor state Ii+1 during the computation. In the algorithmic
context, this is a convenient abstraction from the usual definition of strategies based on game
histories. We will not define the precise shape of an internal state as it is an implementation-detail
which may vary between different Flipper strategies. Flipper can utilize the internal states, for
example, as a memory to store past Connector moves or precomputed flips for future turns. An
initial state I0 = I0(flip, G) will be computed from the initial graph at the beginning of the Flipper
game.

Given radius-r Connector and Flipper strategies con and flip and a graph G ∈ C , the Flipper
run R(con, flip, G) is the infinite sequence of positions

R(con, flip, G) = (G0, I0), (G1, I1), (G2, I2), (G3, I3), . . .

3In the definition of the Flipper game given in [GMM+23], Connector is required to choose the entire r-
neighborhood of v as Gloc

i−1. The version defined in this paper is referred to as Induced-Subgraph-Flipper game in
[GMM+23]. However, the difference is insignificant. Using the algorithmic strategy provided in [GMM+23], Flipper
wins both versions of the game in monadically stable classes. For brevity we will always refer to the Induced-
Subgraph-Flipper game as Flipper game.

12

such that G0 = G and I0 = I0(flip, G), and for all i ≥ 0 we have

(Gi+1 = Gloc
i ⊕ F, Ii+1) where Gloc

i = con(Gi) and (Ii+1,F) = flip(Ii, Gloc
i).

A winning position is a tuple (Gi, Ii) such that Gi contains only a single vertex. A radius-r
Flipper strategy flip is `-winning, if for every G ∈ C and for every radius-r Connector strategy
con, the `th position of R(con, flip, G) is a winning position. Note that, while R(con, flip, G) is an
infinite sequence, once a winning position is reached, it is only followed by winning positions.

Runtimes. Let C be a class of graphs, let r ∈ N, and let flip be a radius-r Flipper strategy. For a
graph G ∈ C and a radius-r Connector strategy con, let t0(con, G) be the time needed to compute
the initial internal state I1(flip, G). For i ≥ 0, let ti+1(con, G) be the time needed to compute the
output of flip given as input con(Gi) and Ii, where (Gi, Ii) is the (i+1)th position in R(con, flip, G).
The runtime of flip on C is the function f defined by

f(n) = max
G∈C ,|G|≤n

sup
radius-r Connector

strategy con

sup
i≥0

ti(con, G).

In words, f(n) is the maximum time need by Flipper to compute a move on any play of the game
on a graph from the class C.

We are now ready to state the following theorem, which is one of the main results of [GMM+23].

Theorem 2 ([GMM+23, Theorem 11.2]). For every monadically stable class C there exists a
function f : N → N, such that for every radius r ∈ N there exist ` ∈ N and an `-winning radius-r
Flipper strategy flip? with runtime f(r) · n2.

For every monadically stable class C and radius r ∈ N, the algorithmic strategy flip? given by
Theorem 2 is the one we will be using throughout the paper. We define game-depth(C , r) to be
the bound on the number of rounds needed for Flipper to win the radius-r Flipper game on any
graph from C while following flip?. We will call a sequence of positions H = (G0, I0), . . . , (G`, I`)
a (C , r)-history of length `, if it is a prefix of the Flipper run R(con, flip?, G0) for some radius-r
Connector strategy con and some graph G0 ∈ C . Note that, by definition, the time needed to
calculate Flippers next move flip?(Gloc

` = con(G`), I`) depends on the size of G0 and not on the
(possibly much smaller) size of G`. Also note that, in order to apply flip?, we only require G0

to be contained in C . The current input graph Gloc
` might not be contained in C and, indeed,

this is usually the case since Gloc
` was obtained from G0 by ` rounds of flipping (and localizing).

However as localizing and flipping for a bounded number of rounds is expressible by a transduction,
if C is monadically stable (structurally nowhere dense), then Gloc

` will be from a class that is still
monadically stable (structurally nowhere dense).

13

3.5 Weak Neighborhood Covers

A weak r-neighborhood cover with degree d and spread s of a graph G is a family X of subsets
of V (G), called clusters, such that

• every cluster is a subset of an s-neighborhood in G, that is, for every X ∈ X there exists a
vertex center(X) ∈ V (G) with X ⊆ Ns[center(X)],

• the r-neighborhood of every vertex is contained in some cluster, that is, for every w ∈ V (G)
there exists cluster(w) ∈ X with Nr[w] ⊆ cluster(w), and

• every vertex occurs in at most d clusters, that is, for all v ∈ V (G) we have

|{X ∈ X | v ∈ X}| ≤ d.

We note that the above definition is a relaxation of the more common notion of an (non-weak)
r-neighborhood cover, where for every cluster X, the induced subgraph G[X] is required to have
radius at most s.

Definition 2. A graph class C admits sparse weak neighborhood covers if there exist func-
tions g(r, ε) and σ(r) ≥ r such that for every r ∈ N, every ε > 0, every n-vertex graph G ∈ C
admits a weak r-neighborhood cover with degree g(r, ε) · nε and spread σ(r).

When C is a class of graphs and ` ∈ N, we write C` for the class containing all graphs that can
be obtained by applying at most ` flips to graphs from C . The following definition will be the key
to decompose graphs into their local neighborhoods during a play of the Flipper game.

Definition 3. A class C of graphs admits flip-closed sparse weak neighborhood covers if there
exist functions g(r, ε, `) and σ(r) ≥ r such that for every r ∈ N, every ε > 0, and every ` ∈ N,
every n-vertex graph G ∈ C` admits a weak r-neighborhood cover with degree g(r, ε, `) · nε and
spread σ(r).

In the above definition, it is crucial that the spread bound σ remains independent of `.

4 Guarded Formulas and Local Types

4.1 Guarded Formulas

Given a set of unary predicates U , we say a formula is U-guarded if every quantifier is of the form
∃x ∈ U or ∀x ∈ U for some U ∈ U . Our model checking algorithm crucially builds on the simple
observation that when evaluating guarded sentences, we can ignore all vertices outside the guarding
sets.

Observation 1. Given a graph G and a family U = {U1, . . . , Ut} of subsets of V (G). Interpreting
each set from U ∈ U as a unary predicate, we have for every U-guarded sentence ϕ that

G〈U1, . . . , Ut〉 |= ϕ ⇐⇒ G〈U1, . . . , Ut〉[U1 ∪ . . . ∪ Ut] |= ϕ.

Our goal is to compute a representative set of guards U = {U1, . . . , Ut} such that we can
translate our input formula ϕ into an equivalent U-guarded formula. Here, crucially, the size t of
U shall depend only on ϕ (and eventually the depth of the recursion on C). Assume for now that
we have recursively computed a large set of candidate guards {V1, . . . , Vm}. Then the selection of
the set U is based on the following key theorem that we prove in the remainder of this section.

14

Theorem 4. Let G be a graph and let A,B ⊆ V (G) be vertex sets such that dist(A,B) > 2k and
tpk(G〈X 7→ A〉

[
N2k−1−1[A]

]
) = tpk(G〈X 7→ B〉

[
N2k−1−1[B]

]
). Let w̄ ∈ V (G)|ȳ| be vertices with

dist(w̄, A∪B) ≥ 2k. Then for every formula ϕ(ȳ, x) of quantifier rank at most k−1 in the signature
of G we have G〈A〉 |= ∃x ∈ A ϕ(w̄, x) ⇐⇒ G〈B〉 |= ∃x ∈ B ϕ(w̄, x).

Intuitively, the theorem states the following. Given a graph G and two sets A and B whose
neighborhoods look alike and which are far from each other. If we find an element a ∈ A satisfying
a first-order property ϕ(x), then we also find an element b ∈ B satisfying the same property, which
will allow us to restrict quantification to appropriately chosen guard sets.

Note that the locality radius in the theorem naturally corresponds to distances that can be
expressed with k − 1 quantifiers. The proof of the theorem is based on the notion of local types,
which were introduced in [GPPT22]. Local types over graphs beautifully capture the locality
properties of FO by identifying the semantic restriction to 2k−1-neighborhoods with the ability
of FO to syntactically make these restrictions. We remark that the results of this section do not
directly translate to structures with relations of arity greater than 2, since defining distances in
(the Gaifman graph of) such structures may require the use of additional quantifiers. Some of the
results we prove here were proved in a different notation already in [GPPT22] and in the lecture
notes of Szymon Toruńczyk [Tor22], while some lemmas and in particular the main theorem of this
section, Theorem 4, is new. We provide all proofs for consistency and completeness.

Our proof of Theorem 4 proceeds as follows. In Section 4.2 we recall the notion of Ehrenfeucht-
Fräıssé games (short EF-games), which are a classical tool of (finite) model theory to understand
the expressiveness of first-order logic. We introduce a local variant of the games in Section 4.3,
where all moves are restricted to the local neighborhoods of elements that were played before.
Classically, EF-games can be played on two different structures. In Section 4.4 we show that when
playing on the same graph local games determine global games. We relate local games with local
types in Section 4.5. Up to this point, most of the results were provided in a similar form already
in [GPPT22]. Towards the proof of Theorem 4 we now extend the framework and incorporate
guards into local games in Section 4.6.

4.2 Games

The EF-game is played by two players called Spoiler and Duplicator on two structures. It is
Spoiler’s goal to distinguish the two structures, while Duplicator wants to show that the structures
cannot be distinguished. The connection with first-order logic is as follows: Duplicator has a
winning strategy in the q-round EF-game on two structures if and only if the two structures satisfy
the same sentences of quantifier rank at most q. In this work, we consider only games that are
played on a single graph with different distinguished vertices ā and b̄. We refer to the literature for
extensive background on EF-games, for example, to the textbook [Lib04].

Each position of the game is a tuple (G, ā, b̄, k) consisting of a graph G that is fixed throughout
the game, two non-empty tuples of vertices ā, b̄ of equal length, and a counter k ∈ N that keeps
track of the number of rounds that are still to play. The game starts in some position (G, ā0, b̄0, q).
If we are currently at a position (G, ā, b̄, k), one round of the game proceeds as follows.

• Spoiler selects a vertex of G as ak (he makes an a-move) or as bk (he makes a b-move).

• If Spoiler made an a-move, then Duplicator has to reply with a b-move, that is, select a vertex
of G as bk, or if he made a b-move, then she has to reply with an a-move, that is, select a
vertex of G as ak.

• The game continues at position (G, āak, b̄bk, k − 1).

15

The game terminates when k = 0. Assume that a final position (G, a`, . . . , a1, b`, . . . , b1, 0) is
reached (` = k + |ā|). We say this is a winning position for Duplicator if (a`, . . . , a1, b`, . . . , b1)
defines a partial automorphism on G, that is, for all 1 ≤ i, j ≤ `,

• ai = aj ⇐⇒ bi = bj ,

• ai and bi have the same colors in G, and

• (ai, bj) ∈ E(G) ⇐⇒ (ai, bj) ∈ E(G).

We say that Duplicator has a winning strategy from a position if she can play such that she
reaches – no matter how Spoiler plays – a winning position for Duplicator. Otherwise, we say
Spoiler has a winning strategy. We write (G, ā) ∼=k (G, b̄) if Duplicator has a winning strategy from
position (G, ā, b̄, k). The proof of the following classical result can be found, for example, in [Lib04,
Theorem 3.9].

Lemma 1. (G, ā) ∼=k (G, b̄) if and only if tpk(G, ā) = tpk(G, b̄).

4.3 Local Games

It is well known that first-order logic can express only local properties of graphs. In particular, for
every k and d ≤ 2k there exists a formula of quantifier rank k that can determine if the distance
between two elements is exactly d, while there is no formula with k quantifiers that can distinguish
between distances strictly greater than 2k. This fact motivates our next definition of local games.
The key observation is that in a position (G, ā, b̄, k) when an element ak at distance at most 2k−1

from ā is chosen by Spoiler, then Duplicator must respond with an element bk at the exactly same
distance to b̄, (and vice versa) as otherwise Spoiler can change his strategy to simply point out the
difference in distances. On the other hand, these locality properties imply that Spoiler will never
select an element at distance greater than 2k−1 from both ā and b̄, as this element could simply be
copied by Duplicator.

At a position (G, ā, b̄, k), we say that a move (by Spoiler or Duplicator) is local if it is an a-move
and contained in N2k−1 [ā] or if it is a b-move and contained in N2k−1 [b̄]. We define the local EF-game
as the EF-game where we require that both players are only allowed to play local moves. We call
the regular EF-game global to distinguish it from the local game. We write (G, ā) ∼=local

k (G, b̄) if
Duplicator has a winning strategy for the local game from position (G, ā, b̄, k).

4.4 Local Games Determine Global Games

We will argue that the local and global EF-games are equivalent when we start from positions
(G, ā, b̄, k) such that ā and b̄ are at distance greater than 2k+1. Towards this goal, we formally
prove the above observations. First, we observe that Duplicator has to respond to a local move of
Spoiler with her own local move.

Lemma 2 (see Lemma 9.2 of [Tor22]). Consider the global game at a position (G, ā, b̄, k). Assume
Spoiler made a local a-move ak ∈ N2k−1 [ā], say ak ∈ N2k−1 [aj] for aj ∈ ā and Duplicator answers
with a b-move bk 6∈ N2k−1 [b̄j], or symmetrically, Spoiler made a local b-move bk ∈ N2k−1 [b̄], say
bk ∈ N2k−1 [bj] for some bj ∈ b̄ and Duplicator answers with an a-move ak 6∈ N2k−1 [āj]. Then
Spoiler has a winning strategy for the remaining global game from position (G, āak, b̄bk, k − 1). In
particular, if Duplicator answers with a non-local move to a local move, she loses the game.

16

Proof. We prove the statement by induction on k. By symmetry, we may assume that Spoiler
makes an a-move. For k = 1 the claim is true, as a1 ∈ N1[aj] ⇔ b1 ∈ N1[bj] is is necessary for
(āa1, b̄b1) to be a partial automorphism.

Now assume k > 1. As ak ∈ N2k−1 [aj], Spoiler can play ak−1 ∈ N2k−2 [ak] ∩ N2k−2 [aj] as
his next move. As bk 6∈ N2k−1 [bj], no matter which bk−1 Duplicator plays as a response, either
bk−1 6∈ N2k−2 [bk] or bk−1 6∈ N2k−2 [bj]. If bk−1 6∈ N2k−2 [bk], then by induction hypothesis applied to
position (G, ak, bk, k− 1), Spoiler wins from position (G, akak−1, bkbk−1, k− 2). If bk−1 6∈ N2k−2 [bj],
then by induction hypothesis applied to position (G, aj , bj , k − 1), Spoiler wins from position
(G, ajak−1, bjbk−1, k − 2). Since adding more preselected vertices only helps Spoiler, he would
win in particular the remaining game from the positions (G, āakak−1, b̄bk, b̄k−1, k − 2).

Lemma 3 (see Lemma 3.5 of [GPPT22]). Consider tuples of vertices ā, ā′, b̄, b̄′ in a graph G
such that dist(ā, ā′) > 2k and dist(b̄, b̄′) > 2k. Then (G, āā′) ∼=local

k (G, b̄b̄′) if and only if both
(G, ā) ∼=local

k (G, b̄) and (G, ā′) ∼=local
k (G, b̄′).

Proof. We prove the statement by induction on k. For k = 0, observe that dist(ā, ā′),dist(b̄, b̄′) >
20 = 1, and thus there are no edges between ā and ā′ or between b̄ and b̄′ in G. This means (āā′, b̄b̄′)
is a partial automorphism if and only if both (ā, b̄) and (ā′, b̄′) are partial automorphisms. This
proves the statement for k = 0. Next, assume the statement holds for k − 1 and we will prove it
for k.

Assume (G, ā) ∼=local
k (G, b̄) and (G, ā′) ∼=local

k (G, b̄′). Note that in particular (G, ā′) ∼=local
k−1

(G, b̄′). We consider the local game at position (G, āā′, b̄b̄′, k) and show that Duplicator has a
winning strategy. By symmetry, without loss of generality, Spoiler starts with an a-move ak ∈
N2k−1 [ā]. Duplicator responds according to the winning strategy for the local game at position
(G, ā, b̄, k) yielding bk ∈ N2k−1 [b̄] such that (G, āak) ∼=local

k−1 (G, b̄bk). By assumption, dist(ā, ā′) > 2k

and dist(b̄, b̄′) > 2k, and thus dist(āak, ā
′) > 2k−1 and dist(b̄bk, b̄

′) > 2k−1. By induction, since
(G, āak) ∼=local

k−1 (G, b̄bk) and (G, ā′) ∼=local
k−1 (G, b̄′), we have (G, āakā

′) ∼=local
k−1 (G, b̄bk b̄

′). Since we

made no assumptions on Spoiler’s local move, this implies (G, āā′) ∼=local
k (G, b̄b̄′).

Conversely, assume (G, ā) 6∼=local
k (G, b̄) or (G, ā′) 6∼=local

k (G, b̄′). Without loss of generality,
(G, ā) 6∼=local

k (G, b̄). We consider the local game at position (G, āā′, b̄b̄′, k). Spoiler chooses ak ∈
N2k−1 [ā] according to his winning strategy at position (G, ā, b̄, k). By Lemma 2, Duplicator responds
with bk ∈ N2k−1 [b̄], which is a valid turn in the local game on position (G, ā, b̄, k). As Spoiler played
according to his winning strategy on that position, we have (G, āak) 6∼=local

k−1 (G, b̄bk). Again we have

dist(āak, ā
′) > 2k−1 and dist(b̄bk, b̄

′) > 2k−1 and, by induction, we have (G, āakā
′) 6∼=local

k−1 (G, b̄bk b̄
′).

Since we made no assumptions on Duplicator’s local move this implies (G, āā′) 6∼=local
k (G, b̄b̄′).

Theorem 3 (see Lemma 9.4 of [Tor22]). Consider a graph G with tuples ā, b̄ such that dist(ā, b̄) >
2k+1. Then

(G, ā) ∼=k (G, b̄) ⇐⇒ (G, ā) ∼=local
k (G, b̄).

Proof. The forward direction is easy. Duplicator’s winning strategy for the global game when
Spoiler makes only local moves is also a winning strategy for the local game, since by Lemma 2 her
winning strategy anyways responds locally to local moves.

We prove the backward direction by induction on k. For k = 0 the global and local game are
the same, hence the statement is true. Assume it holds for k − 1 and we will prove that it also
holds for k. We first prove the following claim.

Claim 1. If Duplicator a winning strategy for the game from position (G, ā, b̄, k) where the first
round is local and the remaining rounds are global, then she also has a winning strategy for the
global game from position (G, ā, b̄, k).

17

Proof. We will give a winning strategy for Duplicator for the global game at position (G, ā, b̄, k).
Without loss of generality, we can assume Spoiler starts the game with an a-move. If Spoiler
opens with a local move, then Duplicator can respond according to her given first-local-then-global
winning strategy for the position and win the game.

Thus, we may assume that Spoiler opens with a non-local move ak 6∈ N2k−1 [ā]. We start by
arguing that there exists an element bk 6∈ N2k−1 [b̄] with (G, ak) ∼=local

k−1 (G, bk): if ak 6∈ N2k−1 [b̄],
then we can choose bk = ak and are done. Thus assume ak ∈ N2k−1 [b̄]. We will use a role-
swapping argument: if Spoiler had played the local element ak ∈ N2k−1 [b̄] as a b-move (under the
name bk), then Duplicator’s winning strategy of the first-local-then-global game would have replied
by Lemma 2 with an element bk ∈ N2k−1 [ā] as an a-move (under the name ak). Duplicator would
win the remaining (k − 1)-round global game, or in other words (G, b̄ak) ∼=k−1 (G, ābk). By the
forward direction of the theorem, which was already proved above, also (G, b̄ak) ∼=local

k−1 (G, ābk). In

particular, we also have (G, ak) ∼=local
k−1 (G, bk). Since bk ∈ N2k−1 [ā] and dist(ā, b̄) > 2k+1 > 2k we

have bk 6∈ N2k−1 [b̄]. This yields the desired bk 6∈ N2k−1 [b̄] with (G, ak) ∼=local
k−1 (G, bk).

Duplicator now responds to Spoiler’s move ak with bk. Since Duplicator has a k-round winning
strategy for the game with preselected tuples ā, b̄ where the first round is local and the remaining
rounds are global, she in particular has a (k − 1)-round winning strategy for these tuples, that is,
(G, ā) ∼=k−1 (G, b̄), and hence (G, ā) ∼=local

k−1 (G, b̄) by the forward direction of the theorem. Since

ak 6∈ N2k−1 [ā], bk 6∈ N2k−1 [b̄], we have dist(ā, ak) > 2k−1 and dist(b̄, bk) > 2k−1. We can thus apply
Lemma 3 for k − 1 to the tuples ā, ak, b̄, bk: Since (G, ak) ∼=local

k−1 (G, bk) and (G, ā) ∼=local
k−1 (G, b̄),

it follows that (G, āak) ∼=local
k−1 (G, b̄bk). By induction hypothesis we have (G, āak) ∼=k−1 (G, b̄bk).

Since we made no assumptions on Spoiler’s first move, Duplicator has a winning strategy in the
global game from position (G, ā, b̄, k).

We are ready to prove the backwards direction of the statement. Assume (G, ā) ∼=local
k (G, b̄).

By the previous claim it suffices to show that Duplicator has a winning strategy for the game from
position (G, ā, b̄, k) where the first round is local and the remaining rounds are global. Hence, let
ak ∈ N2k−1 [ā] be a local a-move of Spoiler. We let bk ∈ N2k−1 [b̄] be Duplicator’s response that she
would play as a winning move in the local game, that is, we have (G, āak) ∼=local

k−1 (G, b̄bk).

Since dist(ā, b̄) > 2k+1, and ak ∈ N2k−1 [ā], bk ∈ N2k−1 [b̄], it follows that dist(āak, b̄bk) > 2k (see
Figure 2).

>2k+1︷ ︸︸ ︷︸ ︷︷ ︸
>2k+1−2·2k−1=2k

︸ ︷︷ ︸
2k−1

︸ ︷︷ ︸
2k−1

ā b̄

ak

bk
N2k−1 [ā] N2k−1 [b̄]

Figure 2: Bounding dist(āak, b̄bk) from below.

By induction hypothesis we have (G, āak) ∼=k−1 (G, b̄bk). As the first move was an arbitrary local
a-move, this yields a winning strategy of Duplicator for the game at position (G, ā, b̄, k) where the
first round is local and the remaining rounds are global. By the previous claim, (G, ā) ∼=k (G, b̄).

18

While we do not prove, whether or not the distance requirement dist(ā, b̄) > 2k+1 in Theorem 3
is tight, the example in Figure 3 illustrates that some form of distance requirement is necessary
for the theorem to hold. Let k = 1. Then (G, a) ∼=local

k (G, b). However, (G, a) 6∼=k (G, b) as in the
global game, Spoiler can choose the uppermost red element as a global b-move. Duplicator cannot
reply with a red element that is not adjacent to a, and hence loses the game.

a b

Figure 3: An example illustrating the need for a distance constraint in Theorem 3.

4.5 Local Games and Local Types

We now establish the connection between local games and local first-order logic. Unlike in Gaifman’s
Locality Theorem, we do not increase the quantifier rank when localizing formulas.

Let G be a graph and ā be a tuple of vertices of G. It is well known that tpq(G, ā) = tpq(G, b̄) if
and only if (G, ā) ∼=q (G, b̄). The localization of a formula ϕ with free variables is the formula with
the same free variables as ϕ that replaces every subformula ∃x ψ(x, ȳ) with ∃x∈N2k−1 [ȳ] ψ(x, ȳ)
(or more precisely ∃x x∈N2k−1 [ȳ] ∧ ψ(x, ȳ)). Likewise, every subformula ∀x ψ(x, ȳ) is replaced
with ∀x∈N2k−1 [ȳ] ψ(x, ȳ) (or more precisely ∀x x∈N2k−1 [ȳ]→ ψ(x, ȳ)).

We call a formula local if it is the localization of some formula. As shown in the following
lemma, one can express with k−1 quantifiers that x ∈ N2k−1 [ȳ], and thus localizing a formula does
not change its quantifier rank.

Lemma 4. There exists a formula with quantifier rank k and free variables xȳ expressing that
x ∈ N2k [ȳ].

Proof. We can check whether x ∈ N20 [ȳ] using the quantifier-free formula
∨
y∈ȳ E(x, y) ∨ x = y.

For k > 0, we note that x ∈ N2k [ȳ] if and only if ∃z(z ∈ N2k−1 [x] ∧ z ∈ N2k−1 [ȳ]).

Let G be a graph and ā ∈ V (G)|ā| be a tuple in G. We partition the finite set of all (normalized)
local formulas ϕ(x̄) with |x̄| = |ā| and quantifier rank at most q over the signature of G into the sets

tplocal
q (G, ā) and tp

local
q (G, ā) such that ϕ(x̄) ∈ tplocal

q (G, ā) if and only if G |= ϕ(ā) and conversely

ϕ(x̄) ∈ tp
local
q (G, ā) if and only if G 6|= ϕ(ā). We call tplocal

q (G, ā) the local q-type of ā in G.

We next relate local types and local games.

Lemma 5. If tplocal
k (G, ā) = tplocal

k (G, b̄), then (G, ā) ∼=local
k (G, b̄).

Proof. We prove the claim by induction on k. For k = 0, tplocal
k (G, ā) and tplocal

k (G, b̄) are known
as the atomic types of ā and b̄. These are equal if and only if the mapping ā 7→ b̄ is a partial
isomorphism, which in turn is equivalent to (G, ā) ∼=local

0 (G, b̄).

19

Let us assume that the statement holds for k − 1 and show that it also holds for k. Consider
the local game at position (G, ā, b̄, k). Without loss of generality, Spoiler starts the game by an
a-move ak ∈ N2k−1(ā). Let

τ(ȳ, x) =
∧

ϕ(ȳx)∈tplocal
k−1 (G,āak)

ϕ(ȳx) ∧
∧

ϕ(ȳx)∈tp
local
k−1 (G,āak)

¬ϕ(ȳx)

be the local formula that exactly captures tplocal
k−1 (G, āak). More precisely, for every tuple ā′a′k ∈

V (G)|a|+1 we have tplocal
k−1 (G, ā′a′k) = tplocal

k−1 (G, āak) if and only if G |= τ(ā′, a′k).
The formula ψ(ȳ) = ∃x ∈ N2k−1 [ȳ] τ(ȳx) is a local formula with quantifier rank k, and is

therefore contained in tplocal
k (G, ā) as witnessed by instantiating x with ak. By assumption on

equality of local k-types we then also have that ψ(ȳ) ∈ tplocal
k (G, b̄) and hence there exists an element

bk ∈ N2k−1(b̄) such that tplocal
k−1 (G, b̄bk) = tplocal

k−1 (G, āak). Duplicator chooses bk as her response. The

remaining game continues from position (G, āak, b̄bk, k − 1). Since tplocal
k−1 (G, b̄bk) = tplocal

k−1 (G, āak)
Duplicator wins by induction hypothesis.

If is not difficult to prove that also the converse of the lemma is true, however, we refrain from
giving the proof as it is not needed for our further argumentation.

4.6 Games and Types with Guards

Theorem 3 and Lemma 5 together already show that for tuples of sufficiently large distance equality
of local types implies equality of global types. We will need a stronger statement for graphs
where a specific set of vertices is highlighted. To this end, we introduce special starting positions
(G,A,B, k), where A,B ⊆ V (G) are sets of vertices (for the global and local EF-game), which we
call guards. Spoiler and Duplicator select elements ak and bk in the usual way with the constraints
ak ∈ A and bk ∈ B, and afterwards the (global or local) game continues at position (G, ak, bk, k−1)
as usual. Hence, both for the global and the local game, the role of the sets A and B is merely to
constrain (guard) the choices for the first round. We write (G,A) ∼=k (G,B) or (G,A) ∼=local

k (G,B)
if Duplicator has a winning strategy for the global or local game starting from position (G,A,B, k).

First, we extend Lemma 5 to our new starting positions. Note that the following theorem no
longer mentions local types, but global types of neighborhoods. Recall that G〈X 7→ W 〉 denotes
the graph G with the additional color predicate X interpreted as the vertex set W ⊆ V (G).

Lemma 6. If tpk(G〈X 7→ A〉
[
N2k−1−1[A]

]
) = tpk(G〈X 7→ B〉

[
N2k−1−1[B]

]
), then (G,A) ∼=local

k

(G,B).

Proof. Fix G, A and B with tpk(G〈X 7→ A〉
[
N2k−1−1[A]

]
) = tpk(G〈X 7→ B〉

[
N2k−1−1[B]

]
). For

brevity, let GA := G〈X 7→ A〉 and GB := G〈X 7→ B〉. To prove the statement, we need the
following observation about local formulas.

Claim 2. Let ϕ(x) be a local formula with quantifier rank at most k−1. Then GA |= ∃x ∈ X ϕ(x)
if and only if GB |= ∃x ∈ X ϕ(x).

Proof. Since GA
[
N2k−1−1[A]

]
and GB

[
N2k−1−1[B]

]
have the same k-type, they agree in their eval-

uation of the sentence ∃x ∈ X ϕ(x) with quantifier rank at most k.
Since ϕ(x̄) is local and has quantifier rank k − 1, all the quantified variables in ϕ(x) can only

lie within distance at most
∑k−1

i=1 2i−1 =
∑k−2

i=0 2i = 2k−1−1 from x. Hence, all variables quantified
in ∃x ∈ X ϕ(x) must lie within distance at most 2k−1 − 1 from X. Therefore, evaluating it on
GA
[
N2k−1−1[A]

]
and GA yields the same answer. The same holds for GB

[
N2k−1−1[B]

]
and GB.

Hence, also GA and GB agree in their evaluation of ∃x ∈ X ϕ(x).

20

Consider the local game at position (G,A,B, k). Without loss of generality, Spoiler starts the
game by an a-move ak ∈ A. Let

τ(x) =
∧

ϕ(x)∈tplocal
k−1 (GA,ak)

ϕ(x) ∧
∧

ϕ(x)∈tp
local
k−1 (GA,ak)

¬ϕ(x)

be the local formula that defines tplocal
k−1 (GA, ak).

The sentence ∃x ∈ X τ(x) holds on GA, as witnessed by instantiating x with ak. By Claim 2,
as τ(x) has quantifier rank k − 1, ∃x ∈ X τ(x) is also true on GB. Hence, there exists an element
bk ∈ B such that tplocal

k−1 (GA, ak) = tplocal
k−1 (GB, bk). Then in particular tplocal

k−1 (G, ak) = tplocal
k−1 (G, bk).

Duplicator chooses bk as his next element. Then by Lemma 5 we have (G, ak) ∼=local
k−1 (G, bk). Since

we made no assumptions on Spoiler’s first move ak ∈ A, and Duplicator’s response always yields a
bk ∈ B, we now have (G,A) ∼=local

k (G,B) as desired.

Since for starting positions (G,A,B, k), the local and global game allow the same first moves,
we get the following simple consequence of Theorem 3.

Lemma 7. Consider a graph G with sets A,B ⊆ V (G) such that dist(A,B) > 2k. Then (G,A) ∼=k

(G,B) if and only if (G,A) ∼=local
k (G,B).

We can use these new starting positions to determine the truth values of formulas in graphs
where the starting sets are highlighted.

Lemma 8. Assume (G,A) ∼=k (G,B). Then for every formula ϕ(x) of quantifier rank at most
k − 1 in the signature of G we have G〈A〉 |= ∃x ∈ A ϕ(x) ⇐⇒ G〈B〉 |= ∃x ∈ B ϕ(x).

Proof. Assume G〈A〉 |= ∃x ∈ A ϕ(x), that is, there exists ak ∈ A with G |= ϕ(ak). Spoiler
chooses ak ∈ A and Duplicator responds with bk ∈ B such that (G, ak) ∼=k−1 (G, bk). Hence,
tpk−1(G, ak) = tpk−1(G, bk), and in particular G |= ϕ(bk). We have G〈B〉 |= ∃x ∈ B ϕ(x). The
converse holds by symmetry.

We combine Lemma 6, Lemma 7 and Lemma 8 into the following statement.

Lemma 9. Assume dist(A,B) > 2k and

tpk(G〈X 7→ A〉
[
N2k−1−1[A]

]
) = tpk(G〈X 7→ B〉

[
N2k−1−1[B]

]
).

Then for every formula ϕ(x) of quantifier rank at most k − 1 in the signature of G we have
G〈A〉 |= ∃x ∈ A ϕ(x) ⇐⇒ G〈B〉 |= ∃x ∈ B ϕ(x).

Again, Figure 3 illustrates that the distance constraint is necessary. For k = 2, A = {a} and
B = {b}, we have that both G〈X 7→ A〉

[
N2k−1−1[A]

]
and G〈X 7→ B〉

[
N2k−1−1[B]

]
have the same

type: both are a star, whose center is marked X and whose leaves are marked red. However, for
ϕ(x) := ∀y Red(y)→ E(x, y) we have

G〈A〉 |= ∃x ∈ A ϕ(x) and G〈B〉 6|= ∃x ∈ B ϕ(x).

Extending the statement to accommodate for further free variables in ϕ, will yield Theorem 4,
which we restate for convenience.

Theorem 4. Let G be a graph and let A,B ⊆ V (G) be vertex sets such that dist(A,B) > 2k and
tpk(G〈X 7→ A〉

[
N2k−1−1[A]

]
) = tpk(G〈X 7→ B〉

[
N2k−1−1[B]

]
). Let w̄ ∈ V (G)|ȳ| be vertices with

dist(w̄, A∪B) ≥ 2k. Then for every formula ϕ(ȳ, x) of quantifier rank at most k−1 in the signature
of G we have G〈A〉 |= ∃x ∈ A ϕ(w̄, x) ⇐⇒ G〈B〉 |= ∃x ∈ B ϕ(w̄, x).

21

Proof. Assume w̄ = w1, . . . , w`. We define G′ to be the graph extended with 2` new color predi-
cates Wi and Ni for 1 ≤ i ≤ `. We interpret Wi = {wi} and Ni = N [wi] \ {wi} for 1 ≤ i ≤ `. We
define ϕ′(x) to be the formula obtained from ϕ(ȳ, x) by replacing all atoms E(wi, z) and E(z, wi)
with Ni(z) and all atoms (wi = z) and (z = wi) with Wi(z). Then for every v ∈ V (G) we have
G |= ϕ(w̄, v) ⇐⇒ G′ |= ϕ′(v) and thus it is sufficient to show G′〈A〉 |= ∃x ∈ A ϕ′(x) ⇐⇒
G′〈B〉 |= ∃x ∈ B ϕ′(x). Since dist(w̄, A) ≥ 2k, we have G

[
N2k−1−1[A]

]
= G′

[
N2k−1−1[A]

]
. The

same holds for B and thus tpk(G
′[N2k−1−1(A)]〈A 7→ X〉) = tpk(G

′[N2k−1−1(B)]〈B 7→ X〉). The
statement then follows from Lemma 9.

5 Model Checking

In this section, we present our model checking theorem for structurally nowhere dense graph classes.

Theorem 1. For every structurally nowhere dense class C there exists a function f : N→ N such
that, given a graph G ∈ C and sentence ϕ, one can decide whether G |= ϕ in time f(|ϕ|) · |V (G)|11.

As a stepping stone, we prove the following conditional theorem for monadically stable classes
of graphs.

Theorem 5. Let C be a monadically stable graph class admitting flip-closed sparse weak neighbor-
hood covers. There exists a function f : N → N such that, given a graph G ∈ C and sentence ϕ,
one can decide whether G |= ϕ in time f(|ϕ|) · |V (G)|11.

Note that the condition on C is an existential statement: if C admits flip-closed sparse weak
neighborhood covers, then we can solve the model checking problem on C efficiently. To actually
calculate the required covers during our algorithm, we will make use of the following theorem whose
proof is deferred to Section 6.

Theorem 10. There is an algorithm that gets as input an n-vertex graph G and numbers r, s ∈ N
and computes in time O(n9.8) a weak r-neighborhood cover with degree O(log(n)2+1)d∗ and spread s,
where d∗ is the smallest number such that G admits a weak r-neighborhood cover with degree d∗ and
spread s.

For structurally nowhere dense classes, we are able to prove the existence of the desired covers
as stated in the following theorem, which we will prove in Section 7.

Theorem 11. Let C be a structurally nowhere dense class of graphs. For every r ∈ N and ε > 0
there exists c(r, ε) such that for every G ∈ C there exists a weak r-neighborhood cover with degree
at most c(r, ε) · |G|ε and spread at most 34r. In particular, C admits flip-closed sparse weak
neighborhood covers.

As every structurally nowhere dense class is monadically stable, combining Theorem 5 and
Theorem 11 now yields Theorem 1.

5.1 Setup

Recall that game-depth(C , ρ) is the smallest number such that the Flipper strategy flip? wins
the radius-ρ Flipper game on C in game-depth(C , ρ) rounds. This means, graphs resulting from
game-depth(C , ρ) many rounds of play by flip? are winning positions for Flipper, that is, single
vertices. Here, model checking is trivial. We assume an algorithm for graphs resulting from ` + 1

22

rounds of play (with the precise definition given by the following Definition 4), and use it to also
do model checking on for graphs with only ` rounds played. Repeating this procedure gives us an
algorithm for graphs on which zero rounds have been played, that is, a model checking algorithm
for all graphs from C . The choice ρ := (6qσ(2q) + 1)(2q + 1) for the radius of the game emerges
from the details of our proofs.

Definition 4. Let C be a monadically stable graph class admitting flip-closed sparse weak neigh-
borhood covers with spread σ, and let q, `, c ∈ N. We choose a radius ρ := (6qσ(2q) + 1)(2q + 1) for
the Flipper game. Note that ρ depends only on C and q. Consider an algorithm that gets as input

• a (C , ρ)-history (G0, I0), . . . , (G`, I`) of length ` from the Flipper game,

• a coloring G of G` with a signature of at most c colors, and

• a sentence ϕ with quantifier rank at most q

and decides whether G |= ϕ. We say this is an efficient MC(C , q, `, c)-algorithm, if there exists a
function fMC bounding the runtime for every ε > 0 by

fMC(q, `, c, ε) · |V (G)|((1+ε)d) · |V (G0)|9.8,

where d := game-depth(C , ρ)−` bounds the number of rounds needed to win the remaining Flipper
game.

5.2 Computing Guarded Formulas

As central building block of our algorithm, the following theorem converts sentences into guarded
sentences, assuming we already have an efficient model checking algorithm for graphs where the
game has progressed by one extra round.

Theorem 6. Let C be a monadically stable graph class admitting flip-closed sparse weak neighbor-
hood covers with spread σ, and let ρ = (6qσ(2q) + 1)(2q + 1). Given as input

• a
(
C , ρ)-history H = (G0, I0), . . . , (G`, I`) of length `,

• a coloring G of G` with a signature of at most c colors,

• a sentence ϕ with quantifier rank at most q, and

• an efficient MC(C , q, `+ 1, c+ 3)-algorithm,

one can compute sets U1, . . . , Ut ⊆ V (G), for some constant t depending only on q and c, as well
as a (U1, . . . , Ut)-guarded sentence ξ of quantifier rank q. Each Ui is contained in an (q · 3σ(2q))-
neighborhood of G and

G |= ϕ ⇐⇒ G〈U1, . . . , Ut〉 |= ξ.

There exists a function f(q, c, `, ε) such that for every ε > 0, the running time of this procedure
is bounded by

f(q, c, `, ε) · |V (G)|((1+ε)d) · |V (G0)|9.8,

where d := game-depth(C , ρ)− ` bounds the number of rounds needed to win the remaining Flipper
game.

Instead of guarding all quantifiers at once, we start with guarding only one outermost quantifier.
The following theorem will be the central step of our construction.

23

Theorem 7. Let C be a monadically stable graph class admitting flip-closed sparse weak neighbor-
hood covers with spread σ, and let ρ = (6qσ(2q) + 1)(2q + 1). Given as input

• a
(
C , ρ

)
-history H = (G0, I0), . . . , (G`, I`) of length `,

• a coloring G of G` with a signature of at most c colors,

• a formula ∃x ϕ(ȳ, x) of quantifier rank at most q,

• sets W1, . . . ,W|ȳ|, each contained in an r-neighborhood of G, and

• an efficient MC(C , q, `+ 1, c+ 3)-algorithm,

one can compute sets U1, . . . , Ut ⊆ V (G), for some constant t depending only on q, c, and |ȳ|.
Each Ui is contained in an (r + 3σ(2q))-neighborhood of G and for all tuples w̄ ∈W1 × . . .×W|y|,
we have

G |= ∃x ϕ(w̄, x) ⇐⇒
t∨
i=1

G〈Ui〉 |= ∃x ∈ Ui ϕ(w̄, x).

There exists a function f(q, c, `, ε, |ȳ|) such that for every ε > 0, the running time of this
procedure is bounded by

f(q, c, `, ε, |ȳ|) · |V (G)|((1+ε)d) · |V (G0)|9.8,

where d := game-depth(C , ρ)− ` bounds the number of rounds needed to win the remaining Flipper
game.

Proof. Let n be the number of vertices of G. Our goal is to compute the set of guards U =
{U1, . . . , Ut}.

Neighborhood Cover Computation. We use Theorem 10 to compute in time O(n9.8) a weak
2q-neighborhood cover of G with degree O(log(n)2+1)·d∗ and spread σ(2q), where d∗ is the smallest
number such that G admits a weak 2q-neighborhood cover with degree d∗ and spread σ(2q). Let
us argue the existence of a function g1(q, ε, `) such that for every ε > 0, this computes a cover of
degree g1(q, ε, `) · nε.

Let ε > 0. The graph G is obtained from G0 ∈ C by performing at most ` flips and removing
vertices. Hence, by Definition 3, there exists a function g(q, ε, `) such that G has a weak 2q-
neighborhood cover with degree g(q, ε, `) · nε/2 and spread σ(2q). Hence, d∗ ≤ g(q, ε, `) · nε/2
and the computed neighborhood cover has degree at most O(log(n)2 + 1) · g(q, ε, `) · nε/2. Since
logarithmic factors are dominated by any polynomial factor, this can be bounded by g1(q, ε, `) · nε
for some appropriately chosen function g1(q, ε, `).

Let {C1, . . . , Cm} be the computed weak 2q-neighborhood cover. Without loss of generality, we
can assume m ≤ n, since otherwise redundant sets can be removed. We partition the vertices of G
into sets V1, . . . , Vm such that for all v ∈ Vi, N2q [v] ⊆ Ci. Ties are broken arbitrarily.

Splitting the Existential Quantifier. It will be useful to partition the existential quantification
of x in our input formula ∃x ϕ(ȳ, x) into a quantification over sets that are near and that are far

from W1, . . . ,W|ȳ|. To this end, let V ′i := Vi \N2q

[⋃|ȳ|
k=1Wk

]
. Since every vertex of G is in some Vi,

24

for all tuples w̄ ∈W1 × . . .×W|y|

G |= ∃x ϕ(w̄, x) ⇐⇒
|ȳ|∨
i=1

G〈N2q [Wi]〉 |= ∃x ∈ N2q [Wi] ϕ(w̄, x) ∨
m∨
i=1

G〈V ′i 〉 |= ∃x ∈ V ′i ϕ(w̄, x). (1)

Remember that the size of our solution U may depend only on q, c, and |ȳ|. Adding the sets
N2q [W1], . . . , N2q [W|ȳ|] to U would respect this size constraint. However, since m may depend on n,
we are not allowed to add all sets V ′1 , . . . , V

′
m to U . In the remainder of this proof, we will use

Theorem 4 and the fact that each V ′i is sufficiently far away from W1, . . . ,W|y| to construct a set
S ⊆ [m] with the following property.

Property 1. The size of S ⊆ [m] depends only on q and c and for all tuples w̄ ∈W1 × . . .×W|y|
m∨
i=1

G〈V ′i 〉 |= ∃x ∈ V ′i ϕ(w̄, x) =⇒
∨
i∈S

G〈X 7→ N2q+2σ(2q)[V
′
i]〉 |= ∃x ∈ X ϕ(w̄, x).

After we found such a set S, we set

U = {N2q [W1], . . . , N2q [W|ȳ|]} ∪ {N2q+2σ(2q)[V
′
i] | i ∈ S}.

Note that |U| depends only on q, c, and |ȳ|. Combining (1) and Property 1, it holds for all tuples
w̄ ∈W1 × . . .×W|y| that

G |= ∃x ϕ(w̄, x) =⇒
∨
U∈U

G〈U〉 |= ∃x ∈ U ϕ(w̄, x).

The backwards implication of this statement holds obviously, since the right-hand side merely
restricts the quantification of x. This yields the central statement

G |= ∃x ϕ(w̄, x) ⇐⇒
∨
U∈U

G〈U〉 |= ∃x ∈ U ϕ(w̄, x).

Since each Wi is contained in an r-neighborhood of G, each N2q [Wi] is contained in an (r+ 2q)-
neighborhood and (with σ(2q) ≥ 2q) also in an (r + σ(2q))-neighborhood. Each set N2q [V

′
i] is

contained in Ci, which by construction is contained in an σ(2q)-neighborhood of G. It follows that
N2q+2σ(2q)[V

′
i] = N2σ(2q)[N2q [V

′
i]] is contained in a 3σ(2q)-neighborhood in G. Hence, each U ∈ U

is contained in an (r+ 3σ(2q))-neighborhood of G. To finish the proof, we have to compute a small
representative set S with Property 1.

Flip and Type Computation. As a first step towards computing S, we show how to use
our given efficient MC(C , q, ` + 1, c + 3)-algorithm to compute tpq(G[N2q−1−1[V ′i]]〈X 7→ V ′i 〉) for
all i ∈ [m]. To this end, we do for every i ∈ [m] the following computations. Let H`+1 :=
G[N2q−1−1[V ′i]]. Note that this corresponds to a Connector move in the radius-σ(2q) ≤ ρ Flip-
per game. We apply the radius-ρ Flipper strategy flip? (for the class C 3 G0) to the graph H`+1

and internal state I`, yielding a flip F and a new internal state I`+1. By Theorem 2, this takes time

g2(q) · |V (G0)|2,

25

for some function g2(q). Let G`+1 := H`+1⊕F. We can now extend H to a (C , ρ)-history of length
`+ 1 by appending the new pair (G`+1, I`+1). We spend 3 additional colors to construct G+

`+1 by
marking in G`+1 with unary predicates the two flip sets from F, as well as the vertices from V ′i .
Next, we enumerate the set Φ of normalized first-order sentences with quantifier rank at most q
over the signature of G+

`+1. Recall that |Φ| is bounded by a function of q and c. We use the given

efficient MC(C , q, ` + 1, c + 3)-algorithm to evaluate every formula from Φ on G+
`+1 and therefore

compute tpq(G
+
`+1) in time

g3(q, c) · fMC(q, `+ 1, c+ 3, ε) · |V (G+
`+1)|((1+ε)d−1) · |V (G0)|9.8,

for some function g3(q, c). Let us now argue how to derive tpq(G[N2q−1−1[V ′i]]〈V ′i 〉) from tpq(G
+
`+1).

This is easy to do by observing that for every sentence ψ, we have ψ ∈ tpq(G[N2q−1−1[V ′i]]〈V ′i 〉) if

and only if ψ′ ∈ tpq(G
+
`+1) where ψ′ is obtained from ψ by substituting every occurrence of the

edge relation E(x, y) with E(x, y)⊕
(
(x ∈ A ∧ y ∈ B) ∨ (x ∈ B ∧ y ∈ A)

)
where A and B are the

color predicates marking the flip sets of F. Similarly, we can derive tpq(G[N2q−1−1[V ′i]]〈X 7→ V ′i 〉).

Computing a Representative Set. Now we use the previously computed q-types to pick S as
a minimal subset of [m] such that

{tpq(G[N2q−1−1[V ′i]]〈X 7→ V ′i 〉) | i ∈ [m]} = {tpq(G[N2q−1−1[V ′i]]〈X 7→ V ′i 〉) | i ∈ S}.

The size of S is at most the number of possible q-types on graphs with c + 3 colors, and thus
can be bounded as a function of q and c. In order to show that S satisfies Property 1, let us fix
w̄ ∈W1 × · · · ×W|ȳ| and argue that

m∨
i=1

G〈V ′i 〉 |= ∃x ∈ V ′i ϕ(w̄, x) =⇒
∨
i∈S

G〈X 7→ N2q+2σ(2q)(V
′
i)〉 |= ∃x ∈ X ϕ(w̄, x).

Assume G〈V ′i 〉 |= ∃x ∈ V ′i ϕ(w̄, x) for some i. If V ′i ⊆
⋃
j∈S N2q+2σ(2q)[V

′
j] for some j ∈ S, then

the right-hand side follows immediately, so we can assume V ′i 6⊆
⋃
j∈S N2q+2σ(2q)[V

′
j] for all j ∈ S.

Fix some j ∈ S and let us show that dist(V ′i , V
′
j) > 2q and dist(w̄, V ′i ∪ V ′j) > 2q. Since we have

V ′i 6⊆
⋃
j∈S N2q+2σ(2q)[V

′
j], there exists a vertex in V ′i that has distance greater than 2q + 2σ(2q)

from every vertex in V ′j . Since V ′i embeds in a subgraph of G with diameter at most 2σ(2q), every
vertex in V ′i has distance greater than 2q from every vertex in V ′j . This means dist(V ′i , V

′
j) > 2q.

We finally establish dist(w̄, V ′i ∪ V ′j) > 2q by combining

V ′i := Vi \N2q

[|ȳ|⋃
k=1

Wk

]
, V ′j := Vj \N2q

[|ȳ|⋃
k=1

Wk

]
, w̄ ∈W1 × · · · ×W|ȳ|.

The set S was chosen representative in the sense that there is some j ∈ S with

tpq(G[N2q−1−1[V ′i]]〈V ′i → X〉) = tpq(G[N2q−1−1[V ′j]]〈V ′j → X〉).

Since G〈V ′i 〉 |= ∃x ∈ V ′i ϕ(w̄, x), by Theorem 4, also G〈V ′j 〉 |= ∃x ∈ V ′j ϕ(w̄, x) and the right-
hand side holds. Hence, S satisfies Property 1.

26

Running Time Analysis. At first, we analyze the running time spent for the computations in
the paragraph Flip and Type Computation. As stated there, the run time is (using m ≤ n) bounded
by ∑

i∈[m]

g2(q) · |V (G0)|2 ≤ n · g2(q) · |V (G0)|2 (2)

for computing the flips, plus∑
i∈[m]

g3(q, c) · fMC(q, `+ 1, c+ 3, ε) · |N2q [V
′
i]|((1+ε)d−1) · |V (G0)|9.8

for computing the q-types. Note that for all α ≥ 1 and non-negative numbers n1, . . . , nm we have∑
i∈[m] n

α
i ≤ (

∑
i∈[m] ni)

α, bounding the running time for the q-type computation by

g3(q, c) · fMC(q, `+ 1, c+ 3, ε) ·
(∑
i∈[m]

|N2q [V
′
i]|
)((1+ε)d−1)

· |V (G0)|9.8.

For every i ∈ m, we have N2q [V
′
i] ⊆ N2q [Vi] ⊆ Ci, yielding∑

i∈[m]

|N2q [V
′
i]| ≤

∑
i∈[m]

|Ci| ≤ g1(q, ε, `) · n1+ε,

where the last bound follows from the fact that we have n vertices, each occurring in at most
g1(q, ε, `) · nε clusters of the cover {C1, . . . , Cm}. Combining the previous two inequalities bounds
the running time of the type computation by

g3(q, c) · fMC(q, `+ 1, c+ 3, ε) ·
(
g1(q, ε, `) · n1+ε

)((1+ε)d−1)
· |V (G0)|9.8,

which is equal to

g3(q, c) · fMC(q, `+ 1, c+ 3, ε) · g1(q, ε, `)((1+ε)d−1) · n((1+ε)d) · |V (G0)|9.8. (3)

The total running time spent in this paragraph, as given by the sum of (2) and (3) can by

bounded by g4(q, ε, `) · n((1+ε)d) · |V (G0)|9.8, for some function g4(q, ε, `).
The computation in the paragraph Neighborhood Cover Computation takes time O(n9.8). Since

the size of the representative set is bounded by a function of q and c, we can bound the computation
time for the paragraphs Splitting the Existential Quantifier and Computing a Representative Set
by g5(q, c, |ȳ|) · n2, for some function g5(q, c, |ȳ|). Since n ≤ |V (G0)|, we can choose a function
f(q, c, `, ε, |ȳ|) such that the total running time is bounded by

f(q, c, `, ε, |ȳ|) · n((1+ε)d) · |V (G0)|9.8.

Now we obtain our main result Theorem 6 by simply applying Theorem 7 repeatedly, once for
each quantifier. This will require no new insights, but will be a bit tedious to analyze. To help our
inductive proof, we prove the following stronger statement. Then Theorem 6 follows as a special
case when ϕ has no free variables, p = q and r = 0.

27

Lemma 10. Let C be a monadically stable graph class admitting flip-closed sparse weak neighbor-
hood covers with spread σ, and let ρ = (6qσ(2q) + 1)(2q + 1). Given as input

• a
(
C , ρ

)
-history H = (G0, I0), . . . , (G`, I`) of length `,

• a coloring G of G` with a signature of at most c colors,

• a formula ϕ(ȳ) with quantifier rank at most p ≤ q,

• sets W1, . . . ,W|ȳ|, each contained in an r-neighborhood of G, and

• an efficient MC(C , q, `+ 1, c+ 3)-algorithm,

one can compute sets U1, . . . , Ut ⊆ V (G), for some constant t depending only on p, q, c, and |ȳ|,
as well as a (U1, . . . , Ut)-guarded formula ξ(ȳ) of quantifier rank p. Each Ui is contained in an
(r + q · 3σ(2q))-neighborhood of G and for all tuples w̄ ∈W1 × . . .×W|y| we have

G |= ϕ(w̄) ⇐⇒ G〈U1, . . . , Ut〉 |= ξ(w̄).

There exists a function f(p, q, c, `, ε) such that for every ε > 0, the run time of this procedure
is bounded by

f(p, q, c, `, ε) · |V (G)|((1+ε)d) · |V (G0)|9.8,

where d := game-depth(C , ρ)− ` bounds the number of rounds needed to win the remaining Flipper
game.

Proof. Let ε > 0. We prove the lemma by induction on p. For p = 0, note that every quantifier-free
formula is ∅-guarded, and thus we can set ξ(ȳ) := ϕ(ȳ) and there is nothing more to show. Thus
assume p > 0 and that the statement holds for p − 1. We will construct an algorithm for p using
the assumed algorithm for p− 1 as a subroutine.

By normalization, |ϕ| depends only on p, c and |ȳ|. Furthermore ϕ(ȳ) is a boolean combination
of formulas of the form ∃x ψ(ȳ, x) of quantifier rank at most p. Thus, it is sufficient to prove the
theorem for a single such formula ∃x ψ(ȳ, x). We apply Theorem 7 giving it as input

• the history H = (G0, I0), . . . , (G`, I`),

• the coloring G of G` with a signature of at most c colors,

• the formula ∃x ψ(ȳ, x) of quantifier rank at most p ≤ q,

• the sets W1, . . . ,W|ȳ|, each contained in an r-neighborhood of G, and

• the given MC(C , q, `+ 1, c+ 3)-algorithm.

In time
f ′(q, c, `, ε, |ȳ|) · |V (G)|((1+ε)d) · |V (G0)|9.8 (4)

this yields sets R1, . . . , Rt′ ⊆ V (G) for some constant t′ depending only on q, c, and |ȳ|. Each Ri
is contained in an (r+ 3σ(2q))-neighborhood of G, such that for all tuples w̄ ∈W1× . . .×W|y|, we
have

G |= ∃x ψ(w̄, x) ⇐⇒
t′∨
i=1

G〈Ri〉 |= ∃x ∈ Ri ψ(w̄, x). (5)

28

For each i ∈ [t′] we apply the algorithm for p− 1 given by the induction hypothesis on

• the history H, graph G, and MC(C , q, `+ 1, c+ 3)-algorithm,

• the formula ψ(ȳ, x) of quantifier rank at most p− 1 ≤ q,

• the sets W1, . . . ,W|y|, Ri ⊆ V (G), each contained in an (r + 3σ(2q))-neighborhood of G.

In time
f(p− 1, q, c, `, ε, |ȳ|+ 1) · |V (G)|((1+ε)d) · |V (G0)|9.8 (6)

this yields a family of guarding sets Ui with |Ui| depending on p − 1, q, c, and |ȳ|, as well as a
Ui-guarded formula ξi(ȳ) of quantifier rank q − 1. Each U ∈ Ui is contained in an

(
r + 3σ(2q) +

(q − 1) · 3σ(2q−1)
)
-neighborhood of G (and thus in an (r + q · 3σ(2q))-neighborhood of G). For all

tuples w̄v ∈W1 × . . .×W|ȳ| ×Ri we have

G |= ψ(w̄, v) ⇐⇒ G〈Ui〉 |= ξi(w̄, v).

Since the above statement holds no matter how v ∈ Ri is chosen, existentially quantifying
v ∈ Ri preserves the equivalence. Hence, for all tuples w̄ ∈W1 × . . .×W|y|

G〈Ri〉 |= ∃x ∈ Ri ψ(w̄, x) ⇐⇒ G〈Ri〉〈Ui〉 |= ∃x ∈ Ri ξi(w̄, x). (7)

Combining (5) and (7) yields for every w̄ ∈W1 × . . .×W|y|,

G |= ∃x ψ(w̄, x) ⇐⇒
t′∨
i=1

G〈Ri〉〈Ui〉 |= ∃x ∈ Ri ξi(w̄, x),

which is equivalent to

G〈R1〉〈U1〉 . . . 〈Rt′〉〈Ut′〉 |=
t′∨
i=1

∃x ∈ Ri ξi(w̄, x).

Thus, we can define our guarding sets U = {U1, . . . , Ut} as U := {R1, . . . , Rt′} ∪
⋃t′

i=1 Ui.
The running time is bounded by the bound (4) for the invocation of Theorem 7, plus t′ times

the bound (6) for the recursive calls with p − 1, plus some minor bookkeeping overhead. We can
choose f(p, q, c, `, ε) such that this is at most

f(p, q, c, `, ε) · |V (G)|((1+ε)d) · |V (G0)|9.8.

5.3 Reducing the Evaluation Radius

Our overall goal is to evaluate a sentence with quantifier rank q on a graph G. In the previous
section, we have rewritten the sentence into an equivalent U-guarded sentence of the same quantifier
rank using guards U = {U1, . . . , Ut}. Each of the sets Ui ⊆ V (G) is contained in an r := q · 3σ(2q)-
neighborhood of G and thus the induced graph G[U1 ∪ · · · ∪ Ut] consists of components, which are
contained in neighborhoods with radius at most (2r + 1)t in G.

One could imagine evaluating the U-guarded sentence on G by recursing into each of these
components and to compute flips using the strategy for the radius-(2r + 1)t Flipper game. Let us
argue that this cannot work. The radius of the Flipper game is not allowed to grow over time, since
otherwise the game is not guaranteed to terminate in a fixed number of rounds. In our construction,

29

however, the number t of guards depends on the number of colors c added over time and thus grows
with the number of rounds of the Flipper game played so far. Thus, we are not allowed to recurse
into components with radius (2r + 1)t. We have to choose a fixed radius ρ for the Flipper game,
depending only on q and C .

In this section, we show that we can evaluate the U-guarded sentence by only looking at sub-
graphs of G that are contained in neighborhoods of radius ρ := (2r + 1)(2q + 1), a quantity that
depends only on q and C and does not grow over time. This is a consequence of the following
Theorem 8. Remember that, to avoid lengthy additional notation, U will refer both to unary predi-
cates guarding a formula, as well as the corresponding vertex sets in a graph G that interpret these
predicates. It will be clear from the context which one is meant.

Theorem 8. For a given U-guarded sentence ϕ with quantifier rank at most q and symmetric
relation R ⊆ U × U , one can compute a sentence ϕR such that for every graph G and set U ⊆
P(V (G)) satisfying R = {(U,W) ∈ U × U | U and W share a vertex or a connecting edge in G},
we have

G〈U〉 |= ϕ ⇐⇒ G〈U〉 |= ϕR.

Moreover, ϕR is a boolean combination of sentences with quantifier rank at most q and each
sentence mentioned in ϕR is U ′-guarded for some U ′ ⊆ U such that the graph (U ,R)[U ′] has
diameter at most 2q.

In particular, if each set of U ⊆ P(V (G)) is contained in an r-neighborhood of G, then
⋃
U ′ is

contained in a subgraph of G with diameter at most (2r + 1)(2q + 1).

To see that the final “In particular, . . . ” part follows from the central part of the statement,
assume each set of U ⊆ P(V (G)) is contained in an r-neighborhood of G. For a U ′-guarded
sentence ξ in ψR, the graph (U ,R)[U ′] has diameter at most 2q and all (U1, U2) ∈ R share a vertex
or a connecting edge in G. As can be seen in the figure below,

⋃
U ′ is contained in a subgraph of G

with diameter at most (2r + 1)(2q + 1).

r · · ·

diameter ≤ 2q, ≤ 2q + 1 balls︷ ︸︸ ︷
1 1 1 1r r r r r r r

We prove the central part of Theorem 8 inductively using a stronger statement involving for-
mulas with free variables.

Lemma 11. For a given U-guarded formula ϕ(ȳ) with quantifier rank at most q, symmetric relation
R ⊆ U × U and sequence U1, . . . , U|ȳ| ∈ U once can compute a formula ϕR(ȳ) such that for every
graph G, set U ⊆ P(V (G)) associated with the predicates U satisfying R = {(U,W) ∈ U × U | U
and W share a vertex or a connecting edge in G}, and every w̄ ∈ U1 × · · · × U|ȳ| we have

G〈U〉 |= ϕ(w̄) ⇐⇒ G〈U〉 |= ϕR(w̄).

Moreover, ϕR(ȳ) is a boolean combination of formulas with quantifier rank at most q and for
each formula ξ mentioned in ϕR there exists U ′ ⊆ U such that ξ is U ′-guarded, (U ,R)[U ′] has
diameter at most 2q, and {Ui | yi ∈ free(ξ)} ⊆ U ′.

30

Proof. We consider an arbitrary graph G and U ⊆ P(V (G)) associated with the predicates U such
that for all U,W ∈ U we have (U,W) ∈ R if and only if U,W share a vertex or a connecting
edge in G. Let us also fix a sequence U1, . . . , U|ȳ| ∈ U . We prove the claim by induction over the
structure of ϕ.

Atoms. Since ϕ is an atom, it is ∅-guarded and has either one or two free variables. Assume ϕ(y1)
has a single free variable. We set ϕR := ϕ and U ′ := {U1}. Then ϕR itself is U ′-guarded and
(U ,R)[U ′] trivially has diameter 0 ≤ 20. Assume now ϕ(y1, y2) is a binary atom, that is, without
loss of generality either E(y1, y2) or (y1 = y2). If (U1, U2) ∈ R we set ϕR := ϕ and U ′ := {U1, U2}.
Again, ϕR is U ′-guarded and (U ,R)[U ′] has diameter 1 = 20. Otherwise, (U1, U2) 6∈ R and U1, U2

neither share a vertex nor a connecting edge in G. This implies G 6|= E(w1, w2) and G 6|= (w1 = w2)
for all w1 ∈ Ux, w2 ∈ Uy. We set ϕR to be the false atom ⊥ and U ′ = ∅.

Boolean Combinations. If ϕ is of the form ψ1 ∧ ψ2 or ¬ψ1 the construction is obvious: We
obtain ϕ1

R and ϕ2
R via induction and set either ϕR := ψ1

R ∧ ψ2
R or ϕR := ¬ψ1

R.

Existential Quantifiers. Assume ϕ(ȳ) = ∃x ∈ U ψ(ȳx). We apply the statement inductively
on ψ(ȳx) (extending the sequence U1, . . . , U|ȳ| with U) and obtain a boolean combination ψR(ȳx)
of formulas with quantifier rank at most q − 1 such that for every w̄v ∈ Uy1 × · · · × Uy|ȳ| × U

G〈U〉 |= ψ(w̄v) ⇐⇒ G〈U〉 |= ψR(w̄v).

For each formula ξ mentioned in ψR(ȳx) we have, by induction, a set Uξ ⊆ U such that ξ is
Uξ-guarded and (U ,R)[Uξ] has diameter at most 2q−1. The additional crucial property we obtain
by induction is that x ∈ free(ξ) implies U ∈ Uξ. We partition the formulas mentioned in ψR(ȳx)
into sets Ψx and Ψx, where Ψx contains all formulas ξ with x ∈ free(ξ), and Ψx contains all ξ with
x 6∈ free(ξ). The formulas in Ψx are independent of x and we can thus write

∃x ∈ U ψR(ȳx) ≡
∨

t:Ψx→{⊥,>}

((∧
ξ∈Ψx

(
ξ(ȳ)↔ t(ξ)

))
∧ ∃x ∈ U ψR(ȳx)

)
.

Now on the right-hand side, every occurrence of ψR is in a scope where the truth value of every
ξ ∈ Ψx is determined. Thus, we can replace every occurrence of ξ in ψR with said truth value
t(ξ) ∈ {⊥,>}. Let ψtR be the formula obtained from ψR by replacing each occurrence of ξ ∈ Ψx

with t(ξ). We obtain the equivalence

∃x ∈ U ψR(ȳx) ≡ ϕR(ȳ) :=
∨

t:Ψx→{⊥,>}

((∧
ξ∈Ψx

(
ξ(ȳ)↔ t(ξ)

))
∧ ∃x ∈ U ψtR(ȳx)

)
.

Hence, for every w̄ ∈ Uy1 × · · · × Uy|ȳ|
G〈U〉 |= ϕ(w̄) ⇐⇒ G〈U〉 |= ϕR(w̄).

We observe that ϕR(ȳ) is a boolean combination of old formulas from Ψx and new formulas of
the form ∃x ∈ U ψtR. All these formulas have quantifier rank at most q.

Consider now a new formula ω := ∃x ∈ U ψtR and let Uω :=
⋃
ξ∈Ψx

Uξ. Since ψtR eliminated
all formulas from Ψx, we know that ω is Uω-guarded. For all ξ ∈ Ψx we have x ∈ free(ξ) and
thus, as noted previously, U ∈ Uξ. By induction, each graph (U ,R)[Uξ] has diameter at most 2q−1.
This means (U ,R)[Uω] is covered by graphs that all overlap in U and have diameter at most 2q−1,
implying that (U ,R)[Uω] has diameter at most 2q. Since free(ω) ⊆

⋃
ξ∈Ψx

free(ξ), we also have
{Ui | yi ∈ free(ω)} ⊆ Uω.

31

We remark that one obtains the classical Feferman–Vaught theorem [Fef57, Mak04] for disjoint
unions as a corollary of Theorem 8: Assume one wants to evaluate a sentence on the disjoint union
of graphs G1 and G2. Replace every quantifier ∃x ψ with ∃x ∈ V (G1) ψ ∨ ∃x ∈ V (G2) ψ, and
proceed similarly for all universal quantifiers. This gives us an equivalent U-guarded sentence with
U = {V (G1), V (G2)}. For the relation R ⊆ U × U corresponding to the disjoint union of G1

and G2, the graph (U ,R) consists of two vertices V (G1) and V (G2) that are not connected by an
edge. We apply Theorem 8 with relation R. Each sentence in the boolean combination we obtain
is U ′-guarded for some U ′ ⊆ U such that (U ,R)[U ′] is connected. This leaves only U ′ ⊆ {V (G1)}
and U ′ ⊆ {V (G2)}. Hence, we have a boolean combination of sentences that are evaluated in either
G1 or G2.

5.4 Main Result

We are ready to prove the main result. We start by combining the observations from the previous
two subsections into an inductive step on the depth of the Flipper game.

Theorem 9. Let C be a monadically stable graph class admitting flip-closed sparse weak neighbor-
hood covers with spread σ, and let q, ` ∈ N. If C for every c ∈ N has an efficient MC(C , q, `+ 1, c)-
algorithm, then C for every c ∈ N also has an efficient MC(C , q, `, c)-algorithm.

Proof. Let ρ := (6qσ(2q)+1)(2q+1). The MC(C , q, `, c)-algorithm we will construct gets as input a
(C , ρ)-history (G0, I0), . . . , (G`, I`), a coloring G of G` with at most c colors, and a sentence ϕ with
quantifier rank q. At first, we call Theorem 6. This gives us a U-guarded sentence ξ of quantifier
rank q such that

G |= ϕ ⇐⇒ G〈U〉 |= ξ. (8)

Here, U ⊆ P(V (G)) is a set with |U| depending only on q, c, such that each U ∈ U is contained
in an (q · 3σ(2q))-neighborhood of G.

In time O(|U|2 · |V (G)|2), compute the relation R := {(U,W) ∈ U ×U | U and W share a vertex
or a connecting edge in G}. Next, we invoke Theorem 8. This gives us a boolean combination ξ∗

of sentences ξ1, . . . , ξk with quantifier rank at most q such that

G〈U〉 |= ξ ⇐⇒ G〈U〉 |= ξ∗. (9)

Each sentence ξi is Ui-guarded for some Ui ⊆ U such that
⋃
Ui is contained in a subgraph of G

with diameter at most ρ = (6qσ(2q) + 1)(2q + 1), and thus also in a ρ-neighborhood of G. The
running time of Theorem 8 is insignificant compared to the running time of Theorem 6. The time
spent so far is bounded by

f(q, c, `, ε) · |V (G)|((1+ε)d) · |V (G0)|9.8 (10)

for some function f(q, c, `, ε) and every ε > 0, where d := game-depth(C , ρ)− ` bounds the number
of rounds needed to win the remaining Flipper game.

Now for every i ∈ [k], we proceed similarly as in the paragraph Flip and Type Computation of
Theorem 7 to decide whether G〈U〉 |= ξi. Let H`+1 := G[

⋃
Ui] and as ξi is Ui-guarded, we have

G〈U〉 |= ξi ⇐⇒ H`+1〈U〉 |= ξi. (11)

Note that since
⋃
Ui is contained in a ρ-neighborhood of G, the restriction to H`+1 corresponds

to a Connector move in the radius-ρ Flipper game. We apply the radius-ρ Flipper strategy flip?

(for the class C 3 G0) to the graph H`+1 and internal state I`, yielding a flip F specified by flip
sets A,B and a new internal state I`+1. By Theorem 2, this takes time

g2(q) · |V (G0)|2, (12)

32

for some function g2(q).
Let G`+1 := H`+1 ⊕ F and G+

`+1 = G`+1〈U〉〈A,B〉. We construct ξ′i from ξi by substituting

every occurrence of the edge relation E(x, y) with E(x, y)⊕
(
(x ∈ A ∧ y ∈ B) ∨ (x ∈ B ∧ y ∈ A)

)
.

Then
H`+1〈U〉 |= ξi ⇐⇒ G+

`+1 |= ξ′i. (13)

We can now extend H to a (C , ρ)-history of length `+1 by appending the new pair (G`+1, I`+1).
We use the given efficient MC(C , q, `+ 1, c+ 2 + |U|)-algorithm to decide in time

fMC(q, `+ 1, c+ 2 + |U|, ε) · |V (G+
`+1)|((1+ε)d−1) · |V (G0)|9.8 (14)

whether G+
`+1 |= ξ′i. By (11) and (13), this decides whether G〈U〉 |= ξi.

Since we decided G〈U〉 |= ξi for all i, we can plug the truth values into the boolean combina-
tion ξ∗, telling us the answer to whether G〈U〉 |= ξ∗. By (8) and (9), this finally gives us the answer
whether G |= ϕ.

The total running time is bounded by (10) plus k times (12) and (14). Since both k and |U| are
bounded by a function of q and c, we can choose fMC(q, `, c, ε) such that for every ε > 0, the total
running time is bounded by

fMC(q, `, c, ε) · |V (G)|((1+ε)d) · |V (G0)|9.8.

We are ready to prove the stepping stone theorem. We control the run time by choosing ε > 0
as a function of the game depth.

Theorem 5. Let C be a monadically stable graph class admitting flip-closed sparse weak neighbor-
hood covers. There exists a function f : N → N such that, given a graph G ∈ C and sentence ϕ,
one can decide whether G |= ϕ in time f(|ϕ|) · |V (G)|11.

Proof. Let q be the quantifier rank of ϕ and ρ := (6qσ(2q)+1)(2q+1). Recall that game-depth(C , ρ)
bounds the number of rounds the Flipper strategy flip? needs to win the Flipper game, that is, until
a graph is reached that consists only of a single vertex. On such graphs, model checking is trivial.
Hence, C for every c ∈ N has an efficient MC(C , q, game-depth(C , ρ), c)-algorithm. By repeated
application of Theorem 9, C also has an efficient MC(C , q, 0, |Σ|)-algorithm, where Σ is the signature
of C . Such an MC(C , q, 0, |Σ|)-algorithm can decide for every graph G ∈ C whether ϕ holds, and
thus solves our problem. The running time is bounded by

fMC(q, 0, |Σ|, ε) · |V (G)|((1+ε)game-depth(C ,ρ)) · |V (G)|9.8.

By choosing ε := 1.21/game-depth(C ,ρ) − 1 > 0, we get a running time of

fMC(q, 0, |Σ|, ε) · |V (G)|1.2 · |V (G)|9.8 ≤ fMC(q, 0, |Σ|, ε) · |V (G)|11.

As our choice of ε and all other parameters of fMC depends only on |ϕ| and C , we can choose for
every class C a function f(|ϕ|) such that the runtime is bounded by f(|ϕ|) · |V (G)|11.

5.5 A Note on the Computability of f(|ϕ|)

In the previous theorems, we have proven a run time bound depending on a function f(|ϕ|). It
should be clear that f(|ϕ|) is an incredibly fast-growing function, and it has to be, as shown
in [FG04]. But let us stress that f(|ϕ|) may in fact not even be computable. This is because
in monadically stable or structurally nowhere dense classes the functions bounding the order of

33

transducible half graphs or the size of shallow clique minors may not be computable. This implies
that the depth of the Flipper game game-depth(C , ρ) may not be computable, which in turn is
a lower bound for f(|ϕ|). Following [GKS17], one may define effectively nowhere dense classes
where one requires the size of r-shallow clique minors to be bounded by a computable function of r.
Similarly, in effectively monadically stable classes, the order of largest transducible half graph is
bounded by a computable function of the transduction. Under the promise that the graph class
of interest is effective, we believe that revisiting all underlying proofs from [DGK+22a, DMST22,
GMM+23] in fact gives us a computable function f(|ϕ|).

6 Approximating Weak Neighborhood Covers

Sparse neighborhood covers have been a central tool in the design of model checking algorithms
on nowhere dense graphs, where they have been computed using mechanisms that are deeply tied
to the sparse structure of the input graph. In this section, we observe that these ties can be cut,
and in fact sparse weak neighborhood covers can be computed in any graph where they exist.
While finding for a fixed spread s an r-neighborhood cover whose degree is minimal is NP-complete
(with s = 1, r = 0 via a simple reduction from minimum membership set cover [KvRW+05]), we
nevertheless find a O(log(n)2 + 1)-approximation in polynomial time. In our context, this is good
enough, as logarithmic factors are insignificant (see Definition 4). Note that the running time of
Theorem 10 is independent of r and s.

Theorem 10. There is an algorithm that gets as input an n-vertex graph G and numbers r, s ∈ N
and computes in time O(n9.8) a weak r-neighborhood cover with degree O(log(n)2+1)d∗ and spread s,
where d∗ is the smallest number such that G admits a weak r-neighborhood cover with degree d∗ and
spread s.

6.1 Linear Programming

In this section, we use randomized rounding to approximate neighborhood covers. For a given
matrix A ∈ RM×N and vectors b ∈ RM , c ∈ RN , the corresponding integer linear program (ILP)
asks for a vector x ∈ RN maximizing or minimizing cTx under the constraint that Ax ≥ b and
x ∈ ZN . While solving ILPs is NP-complete, one can solve the corresponding linear programming
(LP) relaxation, obtained by removing the integrality constraint x ∈ ZN in polynomial time. The
idea behind randomized rounding [RT87] is to express the problem of choice as an ILP, solve
the corresponding LP relaxation and to then round the fractional solution to get an approximate
solution to the original problem. This method has recently been used by Dvořák to compactly
represent short distances [Dvo22]. For more background to this technique we refer, for example, to
Chapter 14 Rounding Applied to Set Cover of Vazirani’s book on approximation algorithms [Vaz10].

The running time of this approach is primarily dominated by the time it takes to solve an LP.
While the best running time bounds approach matrix multiplication time [CLS21], for simplicity,
we use the classical algorithm by Vaidya [Vai89] with a running time of O((N+M)1.5NL), where N
is the number of variables, M is the number of constraints, and L roughly equals the number of
bits in the input. The precise definition of L is a bit cumbersome: For a given LP with matrix
A ∈ ZM×N and vectors b ∈ ZM , c ∈ ZN , the factor L is defined as

L := log(1 + detmax) + log(N +M),

34

where detmax denotes the largest absolute value of the determinant of any square submatrix of(
cT 0
A b

)
.

If all entries in A, b, c are integers from {−1, 0, 1}, the running time bound can be simplified.
With Sn being the set of all permutations on {1, . . . , n}, we can bound for every n×n submatrix A′

of the above matrix

det(A′) :=
∑
σ∈Sn

sgn(σ)
n∏
i=1

A′i,σ(i) ≤ |Sn| ≤ n! ≤ nn.

This gives us with n ≤ N +M ,

L ≤ log
(
1 + (N +M)N+M

)
+ log(N +M) ≤ O

(
(N +M) · log(N +M)

)
≤ O

(
(N +M)1.1

)
.

Thus, Vaidya’s algorithm has a running time of O
(
(N +M)2.6 ·N

)
.

6.2 ILP Formulation

We believe the central contribution of this section is the following robust ILP formulation for
weak r-neighborhood covers. Let G be a graph and let X be a weak r-neighborhood cover of G
with spread s. Recall that for every X ∈ X there exists a vertex center(X) ∈ V (G) with X ⊆
Ns[center(X)]. By merging all clusters with the same center, we can assume that there exists a set
S ⊆ V (G), such that X = {Xw | w ∈ S}. We call Xw the cluster around w.

In order to compute a weak r-neighborhood cover with minimal degree and spread s in a
graph G, we denote by cover-ILP(G, r, s) the following ILP with variable d ∈ Z and binary variables
pvw, quw ∈ {0, 1} for u, v, w ∈ V (G) with the following intuitive meaning. We want pvw ≥ 1
whenever Nr[v] is contained in the cluster around w, that is, Nr[v] ⊆ Xw, and quw ≥ 1 whenever u
is contained in the cluster around w, that is, u ∈ Xw. This intuition leads to the following ILP.

minimize d such that

∀v ∈ V (G)
∑

w:Nr[v]⊆Ns[w]

pvw ≥ 1 (1)

∀u ∈ V (G)
∑
w

quw ≤ d (2)

∀v, w ∈ V (G) ∀u ∈ Nr[v] quw ≥ pvw (3)

∀w ∈ V (G) ∀u /∈ Ns[w] quw = 0 (4)

Equations (1) enforce that for all v, the neighborhood Nr[v] is contained in a cluster centered
around a nearby vertex w. Similarly, (2) enforces that each v is contained in at most d clusters
centered around some vertex w. The crucial equation (3) relates the variables quw and pvw by
stating that if a cluster around w contains Nr[v], then it also contains u for all u ∈ Nr[v].

Equations (4) ensure that the spread of the resulting cover is bounded by s. They are however
not needed and only listed for the sake of presentation: no pvw with u ∈ Nr[v] and u /∈ Ns[w] is
subject to an equation from (1), as we have Nr[v] 6⊆ Ns[w]. We can therefore set pvw = 0, and
hence also quw = 0, without violating a constraint or increasing the cost.

35

Lemma 12. If a graph G has a weak r-neighborhood cover with degree d and spread s, then
cover-ILP(G, r, s) has a solution of value at most d.

Proof. Assume G has a weak r-neighborhood cover X with degree d and spread s. As discussed
above, we may assume that there exists a set S ⊆ V (G) such that X = {Xw | w ∈ S} with
Xw ⊆ Ns[w]. Set pvw = 1 ⇐⇒ Nr[v] ⊆ Xw and quw = 1 ⇐⇒ u ∈ Xw. If Nr[v] ⊆ Xw then
Nr[v] ⊆ Ns[w] and thus (1) is satisfied. The degree bound d of X implies that (2) is satisfied.
Since X has spread s, we have u /∈ Xw if u /∈ Ns[w] and consequently quw = 0, satisfying (4). At
last, (3) simply states that for all v, w ∈ V (G), and u ∈ Nr[v] with Nr[v] ⊆ Xw we have u ∈ Xw.
Thus, (3) is also true. We conclude that the ILP has a solution with value at most d.

The LP relaxation of an ILP is obtained by removing all integrality constraints. For the ILP
above this means one allows d ∈ R, and 0 ≤ pvw, quw ≤ 1 instead of just pvw, quw ∈ {0, 1} for
all u, v, w ∈ V (G). The matrix A and vectors b, c representing this LP only contain entries from
{−1, 0, 1}. As discussed above, such an LP can be solved using Vaidya’s algorithm [Vai89] in time
O((N +M)2.6N). Here, N ∈ O(|V (G)|2) and M ∈ O(|V (G)|3), proving the following lemma.

Lemma 13. One can solve the LP relaxation of cover-ILP(G, r, s) in time O(|V (G)|9.8).

6.3 Fractional Weak Neighborhood Covers

Since the LP relaxation is less restrictive than the original ILP and by Lemma 12, the solution given
by Lemma 13 is at least as good as the minimum d such that G has a weak r-neighborhood cover
with degree d and spread s. Next, we convert the solution to the LP relaxation into a so-called
fractional weak r-neighborhood cover defined as follows.

Definition 5. A fractional weak r-neighborhood cover with degree d and spread s of a graph G is
a family X of subsets of V (G), called clusters, together with a function f : X → [0, 1] (which can
be thought of as probability assignments) such that

• every cluster is a subset of an s-neighborhood in G,

• for every vertex v, the probabilities of the clusters in which the r-neighborhood around v is
fully contained sum up to at least 1, that is,∑

X∈X :Nr[v]⊆X

f(X) ≥ 1,

• for every vertex, the probabilities of the clusters containing it sum up to at most d, that is,∑
X∈X :v∈X

f(X) ≤ d.

Note that every fractional weak r-neighborhood cover with integer probabilities f : X → {0, 1}
is also a weak r-neighborhood cover.

Lemma 14. Every solution to the LP relaxation of cover-ILP(G, r, s) with degree d can be converted
in time O(|V (G)|2) into a fractional weak r-neighborhood cover with degree d+ 1 and spread s.

36

Proof. Let the solution to the LP relaxation be 0 ≤ pvw, quw ≤ 1 for u, v, w ∈ V (G) and let
|V (G)| = n. We define Pvw, Quw ∈ [n] as Pvw := dn · pvwe and Quw := dn · quwe. Then

∀v ∈ V (G)
∑

w:Nr[v]⊆Ns[w]

Pvw ≥ n (1)

∀u ∈ V (G)
∑
w

Quw ≤
∑
w

(1 + n · qvw) ≤ (d+ 1) · n (2)

∀v, w ∈ V (G) ∀u ∈ Nr[v] Quw ≥ Pvw (3)

∀w ∈ V (G) ∀u /∈ Ns[w] Quw = 0 (4)

We build the desired fractional cover X by creating for every w ∈ V (G) and i ∈ [n] a cluster
Xi
w := {u ∈ V (G) | Quw ≥ i} with probability f(Xi

w) = 1/n. Using (4), the spread of X is clearly
bounded by s. For every vertex u observe that {X ∈ X : u ∈ X} = {Xi

w : w ∈ V (G) ∧ Quw ≥ i}
and therefore

|{X ∈ X : u ∈ X}| =
∑
w

Quw (5)

Thus, the degree of u in X is bounded by

∑
X∈X :u∈X

f(X) =
∑

X∈X :u∈X
1/n

by (5)
=

∑
w

Quw/n
by (2)

≤ (d+ 1).

Let i ≤ Pvw. Then by (3) for all u ∈ Nr[v] we have i ≤ Quw, and thus u ∈ Xi
w. Thus, for all

1 ≤ i ≤ Pvw we have Nr[v] ⊆ Xi
w. Therefore

∑
X∈X :Nr[v]⊆X

f(X) =
∑

X∈X :Nr[v]⊆X

1/n ≥
∑

w∈Ns[v]

Pvw/n
by (1)

≥ 1.

6.4 Randomized Sampling

The previous lemmas together let us compute a good fractional weak r-neighborhood cover (X , f)
of G. By simply sampling clusters X from X with probability 24 ln(|V (G)|)f(X), the following
Lemma 15 proves the existence of a (non-fractional) weak r-neighborhood cover whose degree is at
most a factor 36 ln(|V (G)|) larger than the optimum. The argument can be easily turned into a ran-
domized algorithm with high success probability. However, we ultimately want a fully deterministic
algorithm. One may derandomize the algorithm using the method of conditional probabilities and
an adequate pessimistic estimator, but the details of this process are a bit tedious. Instead, we use
the purely existential Lemma 15 to reduce the search space for our weak r-neighborhood cover from
the exponential number of all subsets of s-neighborhoods in G to the at most O(|V (G)|2) clusters
from X . After the reduction of the search space, we will compute the final weak r-neighborhood
cover by a simple reduction to a set cover variant called Minimum Membership Set Cover, which
can be efficiently approximated.

Lemma 15. Assume a graph G with n ≥ 5 vertices has a fractional weak r-neighborhood cover
(X , f) with degree d and spread s. Then G has a weak r-neighborhood cover Y ⊆ X with degree
36 ln(n)d and spread s.

37

Proof. We use the probabilistic method. Let us sample a multiset Y of clusters from X by sampling
each X ∈ X independently 24 ln(n) many times with probability f(X). Note that Y is a multiset
in the sense that it can contain multiple copies (up to 24 ln(n) many) of each cover from X . For
every vertex v, let Av be the number of clusters in Y fully containing the r-neighborhood around v.
By linearity of expectation,

E[Av] = 24 ln(n) ·
∑

X∈X :Nr[v]⊆X

f(X) ≥ 24 ln(n).

Similarly, let Bv be the number of clusters in Y that contain v. We argue as above that

E[Av] ≤ E[Bv] = 24 ln(n) ·
∑

X∈X :v∈X
f(X) ≤ 24 ln(n)d.

Since Av is a sum of independent binary variables, the Chernoff bound4 yields

P (|Av − E[Av]| ≥ E[Av]/2) ≤ 2e−E[Av]/12 ≤ 2e−24 ln(n)/12 = 2(eln(n))−2 = 2/n2.

Using E[Bv] ≥ E[Av] we have

P (|Bv − E[Bv]| ≥ E[Bv]/2) ≤ 2e−E[Bv]/12 ≤ 2e−E[Av]/12 ≤ 2/n2.

By the union bound, the probability that for some v either |Av − E[Av]| ≥ E[Av]/2 or
|Bv − E[Bv]| ≥ E[Bv]/2 is (with n ≥ 5) at most

∑
v∈V (G)(2/n

2 + 2/n2) = 4/n < 1. Hence, there
exists Y such that |Av − E[Av]| ≤ E[Av]/2 and |Bv − E[Bv]| ≤ E[Bv]/2 for all v ∈ V (G). This
implies Av ≥ 1

2E[Av] ≥ 12 ln(n) ≥ 1 and Bv ≤ 3
2E[Bv] ≤ 36 ln(n)d for all v ∈ V (G), proving the

statement.

6.5 Minimum Membership Set Cover Reduction

We have computed a good fractional weak r-neighborhood cover (X , f) and know that a sufficiently
good (non-fractional) weak r-neighborhood cover can be chosen as a subset of X . Hence, to find
our solution it is sufficient to choose a subset of Y ⊆ X covering all r-neighborhoods of G such that
the maximal number of sets a vertex is contained in is as small as possible.

As we will see soon, the remaining difficulty is captured by the following Minimum Membership
Set Cover (MMSC) problem. Let V be our universe and X be a collection of subsets of V such
that

⋃
X∈X X = V . The MMSC problem asks for a subset Y ⊆ X covering all elements in V such

that the maximal number of times a vertex is covered M(V,Y) := maxv∈V |{X ∈ Y | v ∈ X}| is
minimal. While the problem is NP-hard, it can be approximated within a logarithmic factor.

Lemma 16 (Theorem 3 of [KvRW+05]). For any MMSC instance (V,X), one can compute in time
O((|V |+ |X |)2.6|X |) a set Y ⊆ X with

M(V,Y) ≤ (1 +O(1/
√
z))(log(|V |) + 1)z,

where
z = min{M(V,Y∗) | Y∗ ⊆ X covers V }.

4For µ = E(X) the Chernoff bound states P (|X − µ| ≥ δµ) ≤ 2e−δ
2µ/3.

38

Proof. In [KvRW+05], the authors merely claim “a deterministic polynomial-time” algorithm with-
out bounding the degree of the polynomial. We complete the proof by going through the in-
dividual steps of the algorithm and bounding the running time. Assume the input consists of
V = {u1, . . . , un} and X = {S1, . . . , Sm}. In [KvRW+05, Section 5.1], the authors construct an
equivalent ILP with m+ 1 variables and 2n constraints whose matrix representation contains only
entries from {−1, 0, 1}. As discussed in Section 6.1, the corresponding LP relaxation can be solved
with in time O((n + m)2.6m) [Vai89]. This gives for each set Si a fractional value 0 ≤ x′i ≤ 1.
Then [KvRW+05, Section 5.2] defines numbers α and β and assigns each set Si a probability
pi := min(1, αx′i). The paper then defines a pessimistic estimator

P (p1, . . . , pm) := 2−
n∏
i=1

(1−Ai)−
n∏
i=1

(1−Bi)

where
Ai :=

∏
Sj3ui

(1− pj) and Bi :=
∏
Sj3ui

(1 + (β − 1)pj).

The final derandomization procedure in [KvRW+05, Section 5.3] loops over 1 ≤ i ≤ m and
rounds pi to either 0 or 1 such that P (p1, . . . , pm) is maximal. The evaluation of Ai and Bi takes
time O(m), and thus each evaluation of P (p1, . . . , pm) takes time O(nm). Since we loop over
1 ≤ i ≤ m, the total running time of this step is O(nm2). All in all, we arrive at running time of
O((n+m)2.6m).

Note that one may also directly apply the above pessimistic estimator of [KvRW+05] to deran-
domize Lemma 15. Instead, we prove Theorem 10 by a simple reduction to MMSC.

Proof of Theorem 10. Without loss of generality, we assume that n ≥ 5. By Lemma 12 and
Lemma 13, we can compute in time O(n9.8) a solution to the LP relaxation of cover-ILP(G, r, s)
with value at most d∗. Next, Lemma 14 converts the solution in time O(n2) into a fractional
r-neighborhood cover (X , f) with degree at most d∗+ 1 and spread s. By Lemma 15, G has a weak
r-neighborhood cover Y ⊆ X with degree at most 36 ln(n)(d∗+1) and spread s. We will reduce the
computation of a good approximation of this cover to the approximation of an MMSC solution.

We construct an MMSC instance (V ′,X ′) where the universe V ′ = V (G) × {0, 1} contains for
every vertex v ∈ V (G) two copies (v, 1) and (v, 2), and the set system X ′ contains for every cluster
X ∈ X a set

X ′ = {(v, 1) | v ∈ V (G), Nr[v] ⊆ X} ∪ {(v, 2) | v ∈ X}.

Claim 3. For every z ∈ N, Y ′ = {X ′1, . . . , X ′`} ⊆ X ′ is a solution for the MMSC instance (V ′,X ′)
with M(V ′,Y ′) ≤ z if and only if Y = {X1, . . . , X`} ⊆ X is a weak r-neighborhood cover with
degree z and spread s.

Proof. Assume Y ′ is an MMSC solution. For every vertex v ∈ V (G), we have (v, 1) ∈ X ′ ∈ Y ′. By
construction, we also have Nr[v] ⊆ X ∈ X . Furthermore, for every v ∈ V (G), we have that (v, 2) is
only contained in at most z sets of Y ′. Hence, v is contained in at most z clusters of Y. As X has
spread s, the same holds for Y. We conclude that X is a weak r-neighborhood cover with degree z
and spread s.

39

Assume Y is a weak r-neighborhood cover with the degree z and spread s. Every v ∈ V (G)
appears in at most z clusters from Y. Thus, (v, 2) appears in at most z sets from Y ′. As (v, 1) ∈ X ′
implies (v, 2) ∈ X ′ for every X ′ ∈ X ′, the same holds for (v, 1). For every v ∈ V (G), its r-
neighborhood is covered in some cluster X ∈ Y. We therefore have (v, 1) ∈ X ′ ∈ Y ′ and also
(v, 2) ∈ X ′. We conclude that Y ′ is an MMSC solution. �

Having established the above reduction, we run Lemma 16 on the instance (V ′,X ′) in time
O((|V ′| + |X ′|)2.6|X ′|) and convert the output into a weak r-neighborhood cover Y ⊆ X with
spread s and degree at most (1 + O(1/

√
z))(log(|V ′|) + 1)z, where z = 36 ln(n)(d∗ + 1). The

degree is bounded by O(log(n)2 + 1)d∗. Since |V ′| = n and |X ′| = O(n2), Lemma 16 runs in time
O(n7.2), which dominates the time required to convert instances and solutions between the two
problems.

7 Weak Neighborhood Covers in Structurally Sparse Classes

In this section, we prove that structurally nowhere dense graph classes admit flip-closed sparse
weak neighborhood covers.

Theorem 11. Let C be a structurally nowhere dense class of graphs. For every r ∈ N and ε > 0
there exists c(r, ε) such that for every G ∈ C there exists a weak r-neighborhood cover with degree
at most c(r, ε) · |G|ε and spread at most 34r. In particular, C admits flip-closed sparse weak
neighborhood covers.

The key to establishing our main theorem is a sparsification of the input graph by local con-
tractions. To measure sparsity, we are going to use the weak coloring numbers wcolr(G), which
were introduced by Kierstead and Yang [KY03]. We will formally define these numbers below. The
weak coloring numbers are very useful for our purposes, since graphs with bounded weak coloring
numbers admit neighborhood covers with good properties.

Lemma 17 ([GKS17, Lemma 6.10]). Let r ∈ N. Every graph G has an r-neighborhood cover with
spread at most 2r and degree at most wcol2r(G).

The key to proving Theorem 11 is the following.

Theorem 12. Let C be a structurally nowhere dense class of graphs. For every G ∈ C there exists
an 8-contraction contract(G) of G, which is sparse in the following sense: for every ε > 0 and
r ∈ N there exists c(r, ε) such that for every G ∈ C

wcolr(contract(G)) ≤ c(r, ε) · |G|ε.

We will first define local contractions and prove that we can lift sparse neighborhood covers
from a contracted graph to the original graph. Then, by combining Lemma 17 and Theorem 12 we
conclude Theorem 11.

7.1 Local Contractions and Weak Neighborhood Covers

The following definition of local contractions is the key to our approach.

Definition 6 (Contractions). Let G be a graph and let A ⊆ V (G) and Ā = V (G) \ A. The
contraction GJAK is defined as the graph obtained by contracting A into a new vertex vA that is
connected to every w ∈ Ā with N [w] ∩ A 6= ∅. For disjoint subsets A1, . . . , Al ⊆ V (G) such that
each Ai is contained in a k-neighborhood of G, we call GJA1K . . . JAlK a k-contraction of G.

40

Note that k-contractions are not necessarily depth-k minors, as the sets Ai may have large
radius or may not even be connected (while they embed into low radius subgraphs). In particular,
k-contractions in graphs from a nowhere dense class may not preserve nowhere denseness. However,
we observe that a cover for a k-contraction of G can be lifted to a cover for G.

Lemma 18. Let G′ be a k-contraction of a graph G. If there exists a weak r-neighborhood cover
with spread s and degree d for G′, then there exists a weak r-neighborhood cover with spread at most
(2k + 1) · s and degree d for G.

Proof. Let A be the partition of the vertex set of G, such that each set A ∈ A is fully contained
in a k-neighborhood in G and G′ is obtained from G by contracting the parts of A, that is, we
have V (G′) = A and {A1, A2} ∈ E(G′) if and only if there exist v1 ∈ A1 and v2 ∈ A2 such that
{v1, v2} ∈ E(G).

Let X ′ be a weak neighborhood cover of spread s for G′. For a vertex v ∈ V (G), denote by
A(v) the set A ∈ A containing v. We construct the neighborhood cover X for G as follows. For
each cluster X ′ ∈ X ′, we define the cluster X =

⋃
A∈X′{v : A(v) = A} and let X = {X : X ′ ∈ X ′}.

We prove that X is a weak r-neighborhood cover of G with spread at most (2k + 1) · s and the
same degree as X ′.

Covering neighborhoods. We first show that for every vertex w ∈ V (G) there exists a cluster X ∈ X
containing NG

r [w]. Let X ′ = cluster′(A(w)) ∈ X ′ be the cluster containing NG′
r [A(w)] and let X

be the cluster from which X ′ was created. Let z be a vertex at distance at most r from w, which
is witnessed by a path P in G between w and z of length at most r. Let P ′ = {A(x) : x ∈ V (P)}.
Since P is a path of length at most r, the subgraph induced by P ′ in G′ is connected and has
diameter at most r in G′. It follows that A(z) is at distance at most r from A(w) in G′ and
therefore contained in X ′. By construction, z is contained in X. Thus, X covers NG

r [w].

Bounding spread. Let us now show that every cluster X ∈ X is a subset of a ((2k + 1) · s)-
neighborhood in G. Let A1 = center′(X ′), where X ′ is the cluster from which X was created.
Choose an arbitrary vertex v ∈ A1 and let w ∈ X. We show that w is at distance at most (2k+1) ·s
from v in G. By construction, we have A(w) ∈ X ′. Since X ′ has spread s, we have that A1 and A(w)
are at distance at most s in G′, witnessed by a path P = (A1 = A(v), A2, A3, . . . , Ai = A(w)) of
length i ≤ s. Since any two vertices of Aj , 1 ≤ j ≤ i, have distance at most 2k in G and there
exist vj ∈ Aj and vj+1 ∈ Aj+1 with {vj , vj+1} ∈ E(G), 1 ≤ j < i, we conclude that v and w have
distance at most (2k + 1) · i in G.

Bounding degree. A vertex v ∈ V (G) is contained in exactly those clusters X of X such that A(v)
is contained in X ′ of X ′. Since A(v) appears in at most d clusters of X ′, v appears in at most d
clusters of X .

7.2 Background on Structurally Sparse Graphs

The key to proving Theorem 12 is based on a structural characterization of structurally nowhere
dense graph classes in terms of quasi-bushes [DGK+22a]. Let us recall the necessary background
about nowhere dense and structurally nowhere dense graph classes.

41

7.2.1 Generalized Coloring Numbers and Sparsity Measures

A graph H is an r-shallow minor of a graph G if there is a set of pairwise disjoint vertex subsets
{Vu ⊆ V (G)}u∈V (H) each of radius at most r such that if {u, v} ∈ V (H), then there exists a vertex
of Vu connected to a vertex of Vv. A graph H is an r-shallow topological minor if there is a set of
vertices {p(u)}u∈V (H) and a set {P (u, v)}{u,v}∈E(H) of internally vertex disjoint paths of length at
most 2r + 1 such that P (u, v) has endpoints p(u) and p(v).

In the following, ∇r(G) and ∇̃r(G) denote the maximal ratio of edges divided by vertices among
all r-shallow minors and r-shallow topological minors in G, respectively.

We are going to use the weak coloring numbers, which were introduced by Kierstead and
Yang [KY03]. Fix a graph G and an order ≺ on the vertices of G. We say that a vertex u is weakly
r-reachable from a vertex v if there is a path of length at most r between v and u such that u is the
smallest vertex on the path (with respect to ≺). The set of all vertices weakly r-reachable from v
is denoted by WReachr[G,≺, v]. We let

wcolr(G,≺) = max
v∈V (G)

|WReachr[G,≺, v]|,

and define the weak r-coloring number of G as

wcolr(G) = min
order ≺ on V (G)

wcolr(G,≺).

By Lemma 17 every graph G has an r-neighborhood cover with spread at most 2r and degree
at most wcol2r(G).

Additionally, admr(G) stands for the r-admissibilty of G, a sparsity measure we only use as
an auxiliary concept to bound the other sparsity measures and whose exact definition does not
concern us. The relations between these measures are nicely collected in chapter one and two of
the sparsity lecture notes of Marcin and Micha l Pilipczuk [PPS20].

Proposition 1. For every r ∈ N and graph G we have

wcolr(G) ≤ 1 + r(admr(G)− 1)r
2

[PPS20, Corollary 2.7] (15)

admr(G) ≤ 1 + 6r
(
d∇̃r−1(G)e

)3
[PPS20, Lemma 3.2] (16)

∇̃r(G) ≤ ∇r(G) by definition (17)

∇r(G) ≤ wcol4r+1(G) [PPS20, Lemma 3.1] (18)

Note that by Proposition 1 the values in wcolr(G), ∇̃r(G) and ∇r(G) are polynomially related
(where the degree of the polynomial depends on r). This allows us to routinely use one notion to
bound the other. The following link between average and minimum degree will also be useful.

Lemma 19 (Folklore, see for example (3.4) of [NDM12]). Every graph with average degree at least d
contains a subgraph with minimum degree at least d

2 .

7.2.2 Structurally Nowhere Dense Graph Classes

Nowhere dense graph classes can be defined using the weak r-coloring numbers.

Definition 7 (Nowhere Dense). A graph class C is nowhere dense if for every r ∈ N and ε > 0 there
exists c(r, ε) such that for every subgraph G of a graph from C satisfies wcolr(G) ≤ c(r, ε) · |G|ε.

Structurally nowhere dense graph classes were defined in [GKN+20] as first-order transductions
of nowhere dense classes. We will not rely on this definition, but instead use a decompositional
result involving so-called almost nowhere dense quasi-bushes [DGK+22a] that we present below.

42

7.2.3 Almost Nowhere Dense Graph Classes

We can use the weak r-coloring numbers not only to define nowhere dense graph classes, but also
to define the slightly more general notion of almost nowhere dense graph classes [DGK+22a].

Definition 8 (Almost Nowhere Dense). A graph class C is almost nowhere dense if for every r ∈ N
and ε > 0 there exists c(r, ε) such that every G ∈ C satisfies wcolr(G) ≤ c(r, ε) · |G|ε.

Observe that a hereditary graph class is almost nowhere dense if and only if it is nowhere dense.
However, graphs from an almost nowhere dense class can contain dense subgraphs, for example,
cliques of size log(n), if these appear as subgraphs of sufficiently large sparse graphs. By the
previous Lemma 17, almost nowhere dense classes admit sparse neighborhood covers.

7.2.4 Quasi-Bushes

Following the local separator-based approach of [Dre21], quasi-bushes were introduced in [DGK+22a]
to derive structural properties such as low shrubdepth covers for structurally nowhere dense graph
classes. Let T be a rooted tree. For nodes v, w ∈ V (T), we say that v is above w if it lies on the
unique path from w to the root. Node v is below w if w is above v. Note that each node is above
and below itself. For a rooted tree T and node w in the tree, the ancestors and descendants of w
are all nodes above and below w in T (including w), respectively. Let us stress that each node is
both an ancestor and descendant of itself. We write v ≤T w if v is an ancestor of w and v <T w if
additionally v 6= w, in which case we call v a strict ancestor of w. Hence, the root is the smallest
node of T and the leaves are the maximal nodes of T with respect to the tree order ≤T . We define
≥T and >T analogously as expected. For a vertex w ∈ V (T), let T (w) be the subtree of T rooted
at w containing all descendants of w, and L(w) be the set of leaves of T that are descendants of w.

Definition 9. A quasi-bush consists of

• a rooted tree T , represented by a directed graph in which all edges are directed away from
the root,

• a set D of directed arcs (called pointers) from the leaves of T to the nodes of T (we require
that every leaf points to the root of T)5,

• a labeling function λ : D → {0, 1}.

A quasi-bush B defines a directed graph G(B) whose vertices are the leaves of T and where the
arc set is defined as follows: let u, v be two distinct leaves, and let w be the lowest (largest with
respect to ≤T) ancestor of v such that (u,w) ∈ D. Then (u, v) is an arc in G(B) if and only if
λ((u,w)) = 1. In this case w is called the connection point of (u, v). Note that the connection point
of an arc (u, v) is uniquely determined. Equivalently, (u, v) is an arc in G(B) if on the shortest
directed path from u to v in B that uses as its first arc a pointer (u,w) ∈ D and all other arcs
from T , the pointer (u,w) is labeled 1. We call this shortest path the tunnel of (u, v) in B. The
depth of a quasi-bush is the depth of the tree T .

We say u has a pointer to v if (u, v) ∈ D. If λ((u, v)) = 1, we call the pointer positive. In
this work G(B) will always be treated as a directed graph. We will encode only undirected graphs,
hence, G(B) will be a symmetric, directed graph, that is, it will contain an arc (u, v) if and only
if it contains the arc (v, u). We will then make use of the fact that each arc (u, v) is encoded
redundantly: via an ancestor of u and via an ancestor of v.

5In [DGK+22a] pointers can only point to internal nodes of T , for us it will be convenient to deal with the slightly
more general definition and allow pointers to all vertices of T .

43

uv

w

Figure 4: A quasi-bush (above the gray line) and the graph it describes (below the gray line).
Dotted blue arcs represent pointers labeled 0 and orange arcs represent pointers labeled 1. The
node w is the connection point of (u, v).

The Gaifman graph of a quasi-bush is the (undirected) graph whose edge set consists of the
tree-edges and the pointers. We extend all graph theoretic concepts to quasi-bushes via their
Gaifman graphs. For example, the generalized coloring number wcolr(B) of a quasi-bush B refers
to wcolr(H), where H is the Gaifman graph of G. We can thus speak, for example, about almost
nowhere dense classes of quasi-bushes.

7.3 Quasi-Bush Decompositions of Structurally Nowhere Dense Classes

The central observation of [DGK+22a] shows that structurally nowhere dense classes can be de-
scribed by almost nowhere dense quasi-bushes of bounded depth.

Theorem 13 ([DGK+22a, Theorem 3]). Let D be a structurally nowhere dense class of graphs.
Then for every G ∈ D , there is a quasi-bush BG representing G such that the class of quasi-bushes
{BG : G ∈ D} has bounded depth and is almost nowhere dense.

Since {BG : G ∈ D} is almost nowhere dense, we know by definition that for every r ∈ N
and ε > 0 there exists c(r, ε) such that for all G ∈ D there exists an ordering ≺ such that
wcolr(G,≺) ≤ c(r, ε) · |G|ε. For our purposes, we additionally need that ≺ can be chosen indepen-
dently of r and ε and respecting the tree order, meaning that for all u, v ∈ V (T) with u ≤T v we
have u � v.

Definition 10. Let B = (T,D, λ) be a quasi-bush. We call an order ≺ on V (T) ancestor respecting
if for all nodes u, v ∈ V (T) with u ≤T v, we have u � v.

To see that we may make this assumption, we analyze the proofs of the full version [DGK+22b]
of the paper that introduced quasi-bushes. The paper defines the notion of r-separator quasi-bushes
in Definition 29. Given a graph G ∈ D derived from a graph H from a nowhere dense class C via a
transduction with Gaifman radius r, the paper then shows in the Proof of Theorem 28 using
Theorem 30, how to derive a quasi-bush of G (as we defined it above) via an r-separator quasi-
bush of H with the same underlying tree and pointer set. Given an order ≺, an explicit construction
of an r-separator quasi-bush of H, called Bsep

r (H,≺), is given in Definition 37. Lemma 39 then
chooses the order ≺ such that {Bsep

r (H,≺) | H ∈ C } is almost nowhere dense. The (internal)
nodes of Bsep

r (H,≺) are subsets of V (H) with the property that for all nodes X,Y where X is an
ancestor of Y we have X ⊆ Y . Lemma 39 first chooses a good weak-reachability order ≺ on H and
extends it to the internal nodes of Bsep

r (H,≺) so that for any two internal nodes X,Y ⊆ V (H),
X ≺ Y if and only if the maximum of X is smaller than the maximum of Y (with respect to ≺).
This means, the order ≺ places every ancestor before its descendant in Bsep

r (H,≺) and thus also
in the quasi-bush of G. Furthermore, the construction is independent of r and ε, as desired. This
yields the following result.

44

Theorem 14. Let D be a structurally nowhere dense class of graphs. For every G ∈ D , there exists
a quasi-bush BG representing G and an ancestor respecting order ≺G such that {BG : G ∈ D} has
bounded depth. Additionally, for every r ∈ N and ε > 0, there exists c(r, ε) ∈ N such that for all
G ∈ D we have

wcolr(BG,≺G) ≤ c(r, ε) · |G|ε.

Over the course of the following construction, we will modify quasi-bushes by contracting sets
of nodes and adding additional pointers. To control the density of the resulting quasi-bushes, we
need the following closure operation on Gaifman graphs of quasi-bushes.

Definition 11. Let B = (T,D, λ) be a quasi bush rooted at vertex w0. We denote by B∗ the
undirected graph obtained by taking the Gaifman graph of B and adding to it for every pointer
(v, w) ∈ D from a leaf v to a vertex w ∈ V (T), the edge set {{v′, w′} | v′ ≤T v, w′ ≤T w}.

We also need a second kind of closure property that does not act on the Gaifman graph, but
on the quasi-bush itself.

Definition 12. A quasi-bush (T,D, λ) is upwards closed if for all pointers (u,w) ∈ D and ancestors
w′ ≤T w in T there also exists a pointer (u,w′) ∈ D.

Note that λ((u,w′)) may differ from λ((u,w)).

Lemma 20. For every quasi-bush B of depth d with order ≺, there exists an upwards closed quasi-
bush B′ such that G(B) = G(B′), B and B′ have the same underlying tree, and for every r ∈ N,
we have

wcolr(B
′∗,≺) ≤ wcold·r(B,≺).

In particular, since B and B′ have the same underlying tree, if ≺ is ancestor respecting on B, then
the same is true on B′.

Proof. We construct B′ from B adding for all (u,w) ∈ D and ancestors w′ of w in T , also the pointer
(u,w′) to D′. Remember that w is an ancestor of itself. We will specify the value of λ′(u,w′) soon.
However, note that we already have – independent of λ′ – that B′ is upwards closed, and B and B′

have the same underlying tree.
We define λ′ such that G(B) = G(B′): We set λ′(u,w′) = λ(u,w′′), where w′′ is the lowest

ancestor of w′ with (u,w′′) ∈ D. Since every node has a pointer to the root, such a node w′′ always
exists. Let u, v be two nodes. Let w′ be the lowest ancestor of v with (u,w′) ∈ D′. Let w′′ be the
lowest ancestor of w′ with (u,w′′) ∈ D (note that w′ = w′′ is possible). Since D ⊆ D′, we observe
that w′′ is the lowest common ancestor of v with (u,w′′) ∈ D. Thus, u and v are connected in G(B)
if and only if λ((u,w′′)) = 1. By construction and choice of w′ and w′′, λ′((u,w′)) = λ((u,w′′)),
and thus u and v are connected in G(B′) if and only if λ′((u,w′)) = λ((u,w′′)) = 1. We conclude
that u and v have the same connection in G(B) as in G(B′).

Note that B′∗ = B∗. It hence remains to show that for every r ∈ N we have wcolr(B
∗,≺) ≤

wcol2d·r(B,≺). Let u, v ∈ V (T) be vertices such that v weakly r-reaches u in B∗ with respect to ≺.
This is witnessed by a path P ∗ = (v, . . . , u) of length at most r in B∗ where u is the smallest
element in the path. We prove the claim by constructing a path P of length at most 2d · r in B
from v to u where u is the smallest element on the path according to ≺, witnessing that v weakly
(2d · r)-reaches u in B.

We build P from P ∗ by replacing each edge of P ∗ with a path in B of length at most 2d whose
vertices are all greater or equal to u with respect to ≺. Edges in P ∗ that are edges of T are also
edges in B and do not need to be replaced. For every edge (a, b) in P ∗ that is not an edge in T , by

45

the definition of B∗, there exist descendants a′ of a and b′ of b in T that are connected by a pointer
in B. Therefore there exists a path Pab = (a, . . . , a′, b′, . . . , b) in B that traverses T downwards
from a to a′, uses the pointer to get to b′ and traverses T upwards to get to b. Since Pab only uses
descendants of a and b and ≺ is ancestor respecting, we know that all its vertices are greater or
equal to u. Since T has depth at most d, Pab has length at most 2d + 1. We notice that the root
vertex of T can be reached from every other vertex of T in at most d steps by traversing down T
to a leaf and using a pointer to the root. We can therefore assume that neither a nor b is the root
vertex, which improves our bound on the length of Pab to 2(d− 1) + 1 ≤ 2d.

As a direct consequence of combining Theorem 14 and Lemma 20, we finally transform the
decompositional result of [DGK+22a] into the shape we need.

Theorem 15. Let C be a structurally nowhere dense class of graphs. For every G ∈ C there exists
an upwards closed quasi-bush BG representing G and an ancestor respecting order ≺G such that
{BG : G ∈ C } has bounded depth. Additionally, for every r ∈ N and ε > 0 there exists c(r, ε) ∈ N
such that for all G ∈ C we have

wcolr(B
∗
G,≺G) ≤ c(r, ε) · |G|ε.

7.4 Sibling Contractions in Quasi-Bushes

Our goal, as stated in Theorem 12, is to find for a graph G from a structurally nowhere dense graph
class a sparse 8-contraction. We will construct this 8-contraction as a sequence of so-called sibling
contractions on the quasi-bush of G, defined as follows. In the following, when we want to stress
that we refer to the leaves L(w) of a node w in the tree T of a specific bush B = (T,D, λ) we write
LB(w) for L(w).

Let B = (T,D, λ) be a quasi-bush. We call a set of vertices S = {a1, . . . , ak} ⊆ V (T) with
the same parent p in T a sibling set. Let T (S) denote the forest consisting of the disjoint union of
T (a1), . . . , T (ak) and let LB(S) := LB(a1)∪ . . .∪LB(ak). Let a be a vertex not in V (T) \V (T (S)).
We define the sibling contraction BJa← SK = (T ′, D′, λ′) as follows.

1. T ′ is built by removing the vertices V (T (S)) from T and inserting a below p as a leaf.

2. For the unmodified nodes, the pointers are inherited from B. To be more precise, for all nodes
v, w ∈ V (T) ∩ V (T ′) we set (v, w) ∈ D′ if and only if (v, w) ∈ D and λ′((v, w)) = λ((v, w)).

3. It remains to define the pointers from and to the new leaf a. For every w ∈ V (T ′) \ {a} we
define the following rules, that we will later refer to as (3a), (3b), (3c), (3d).

(a) We set (a,w) ∈ D′ if and only if (u,w) ∈ D for some u ∈ LB(S).

(b) We set (v, a) ∈ D′ if and only if (v, w) ∈ D for some w ∈ V (T (S)).

(c) We set λ′((a,w)) = 1 if and only if there exists u ∈ LB(S) and v ∈ V (T) \V (T (S)) with
(u, v) ∈ E(G(B)) such that w lies on the tunnel of (u, v).

(d) We set λ′((v, a)) = 1 if and only if there is u ∈ LB(S) with (v, u) ∈ E(G(B)).

In case the name of the new vertex a is not important, we also write BJSK instead of BJa← SK.
An example of a sibling contraction is given in Figure 5. Let us first argue that the result of applying
a sibling contraction to a quasi-bush is still a quasi-bush representing an undirected graph, namely
the undirected graph obtained from G(B) by contracting the vertices of LB(S) into a single vertex.

46

a1 a2 a3 a4

p

p

a

Figure 5: Quasi-bush B at the top and sibling contraction BJa← {a1, a2, a3, a4}K at the bottom.

Lemma 21. Given a quasi-bush B representing an undirected graph and a sibling set S in B, then
also BJSK is a quasi-bush representing an undirected graph and we have

G(BJSK) = G(B)JLB(S)K.

Proof. Let B = (T,D, λ), G = G(B), B′ = (T ′, D′, λ′) = BJa← SK, G′ = G(B′), T (S) and LB(S)
be as above. Denote by p the parent of the vertices in S. By definition V (G′) = V (GJLB(S)K) =
(V (G) \ LB(S)) ∪ {a}. Since a is a leaf, for any two vertices u 6= a, v 6= a, the bush induced by u
and v and their ancestors is the same in B and B′ and we have that u and v are connected (in
both directions) in G′ if and only if they are connected in G if and only if they are connected in
GJLB(S)K. It remains to verify the connections from and to a.

Claim 4. Let v ∈ V (GJLB(S)K) = V (G′) be a vertex adjacent to a in GJLB(S)K. Then v is
adjacent to a in G′, that is, (a, v) ∈ E(G′) and (v, a) ∈ E(G′).

Proof. We first show (a, v) ∈ E(G′). By definition of GJLB(S)K there exists u ∈ LB(S) adjacent
to v in G. Let w′ be the connection point in B of (u, v) and let w be the lowest ancestor of v in T
such that (a,w) ∈ D′. By (3a) such w exists and satisfies w′ ≤T w ≤T v, with possibly w = w′.
Then w lies on the tunnel of (u, v) and λ′((a,w)) is set to 1 by (3c). Since w is the lowest ancestor
of v in T with (a,w) ∈ D′ we have (a, v) ∈ E(G′).

Now we show (v, a) ∈ E(G′). First assume (v, a) 6∈ D′. Then, by (3b), there is no w ∈ V (T (S))
such that (v, w) ∈ D. Since (v, u) ∈ E(G), the connection point w of (v, u) satisfies w ≤T p. This
means w is the lowest ancestor of p in T with (v, w) ∈ D and λ((v, w)) = 1. As B and B′ agree on
V (T)∩V (T ′), w also is the lowest ancestor of p in T ′ with (v, w) ∈ D′ and λ′((v, w)) = 1. Since p is
the parent of a in T ′ and (v, a) 6∈ D′, w is the connection point of (v, a) and we have (v, a) ∈ E(G′).

Now assume (v, a) ∈ D′. We have that λ′((v, a)) is set to 1 as (v, u) ∈ E(G) by (3d). It follows
immediately that (v, a) ∈ E(G′). �

47

Claim 5. Let v ∈ V (GJLB(S)K) = V (G′) be a vertex non-adjacent to a in GJLB(S)K. Then v is
non-adjacent to a in G′, that is, (a, v) 6∈ E(G′) and (v, a) 6∈ E(G′).

Proof. By definition of GJLB(S)K, v is non-adjacent to all of LB(S) in G.

We first show (a, v) 6∈ E(G′). Let w be the lowest ancestor of v in T ′ such that (a,w) ∈ D′.
Then by (3a), w is the lowest ancestor of v in T such that (u,w) ∈ D for some u ∈ LB(S). For
the graph G, this means every u ∈ LB(S) is connected uniformly to all descendants of w: for all
u ∈ LB(S) and descendants v1, v2 of w, (u, v1) ∈ E(G) if and only if (u, v2) ∈ E(G). Assume
for contradiction that (a, v) ∈ E(G′) and therefore λ′((a,w)) = 1. By (3c) there exists leaves
u ∈ LB(S) and v′ ∈ V (T) \ V (T (S)) with (u, v′) ∈ E(G) such that w lies on the tunnel of (u, v′).
Since v′ and v are both descendants of w, also (u, v) ∈ E(G). This contradicts u ∈ LB(S) and we
conclude that (a, v) 6∈ E(G′).

We now show that (v, a) 6∈ E(G′). If (v, a) ∈ D′, then by (3d) we have λ′((v, a)) = 0, as there
is no u ∈ LB(S) with (v, u) ∈ E(G). Thus assume (v, a) 6∈ D′. Let w be the lowest ancestor of
a such that (v, w) ∈ D′. By assumption w ≤T p, hence also (v, w) ∈ D. Since v is non-adjacent
to all of LB(S) in G we have λ′((v, w)) = λ((v, w)) = 0. As w is the lowest ancestor of a with
(v, w) ∈ D′, we conclude that (v, a) 6∈ E(G′). �

Now G(BJSK) = G(B)JLB(S)K follows.

Note that sibling contractions preserve upwards closure, as shown in the next lemma.

Lemma 22. Let B be an upwards closed quasi-bush and S be a sibling set. Then BJa ← SK is
upwards closed.

Proof. It suffices to analyze the new pointers in BJSK which point from and to the contracted
vertex a. If a points to a vertex w in BJSK, then by (3a) some u ∈ LB(S) must also point to w
in B. As B is upwards closed, u also points to all ancestors of w. It follows that also a points to
all ancestors of w.

Conversely, if a vertex v points to a in BJSK, then by (3b) it must have pointed to a vertex
u in a subtree beneath one of the siblings from S in B. As B is upwards closed it points to all
ancestors of u in B, which is a superset of the ancestors of a in BJSK. Those pointers are still
present in BJSK.

7.5 Outline of the Contraction Procedure

Given a structurally nowhere dense graph class C , we use Theorem 15 to associate with every
G ∈ C an upwards closed bounded-depth quasi-bush BG representing G. Furthermore, by that
theorem, each BG is equipped with an ancestor respecting order ≺G witnessing at the same time
that B∗G is uniformly sparse, that is, for every r ∈ N and ε > 0 there exists c(r, ε) ∈ N such that
for all G ∈ C we have

wcolr(B
∗
G,≺G) ≤ c(r, ε) · |G|ε.

We will now perform a sequence of sibling contractions to arrive at a sparse 8-contraction
of G(B) whose existence we claim in Theorem 12. The sibling contractions will be performed in
two phases, followed by an analysis.

• In phase one, we will simplify the quasi-bush by eliminating certain patters called coat hangers.
This phase only uses sibling contractions with sibling sets of size one. The goal of this phase
is to gain ultimate control over tunnels.

48

Recall that for every arc (u, v) of G(B) the shortest directed path from u to v in B that uses
as its first arc a pointer (u,w) ∈ D and all other arcs from T is the tunnel of (u, v) in B,
where w is called the connection point of (u, v). After eliminating coat hangers, we will have
the property that every tunnel for (u, v) will either be of the form u, v, that is, the endpoint
v of (u, v) is the connection point of the arc itself, of the form u,w, v, that is, the connection
point w of (u, v) is the parent of v.

• Hence, after the first phase, for all arcs (u, v) of G(B) with a connection point w (possibly
equal to v) we have u as an in-neighbor (in D) of w and v as an out-neighbor (in T) of w
(or v = w). This naturally motivates the definition of sets In(w) and Out(w).

In phase two, we contract sibling sets of unbounded size to bound the cardinality of the sets
In(w) and Out(w).

• Afterwards, we argue that a sparse quasi-bush with small sets In(w) and Out(w) for all
necessarily represents a sparse graph, thereby proving Theorem 12.

The sibling contractions insert new nodes and edges into the bush. For our final analysis, we
require that this does not make the resulting quasi-bush too dense. In phase one, we start with
a quasi-bush B = B0 and repeatedly contract sibling sets of size one. This means we contract
quasi-bushes Bi = (Ti, Diλi) into quasi-bushes Bi+1 = (Ti+1, Di+1λi+1) = BiJa ← {a}K for some
node a. To bound the density of these operations, we note that all newly introduced edges in Bi+1

originate from edges in Bi with endpoints below a, and thus the closure B∗i+1 is a subgraph of the
closure B∗i . Since by Theorem 15 wcolr(B

∗
0) is small, wcolr(B

∗
i),wcolr(B

∗
i+1), . . . are small, too.

However, this is not enough. To start phase two, we not only require that the weak coloring
numbers are small, but even that they are small with respect to an ancestor respecting order. For
directed graphs H ′ and H, let us write H ′ @ H if V (H ′) ⊆ V (H) and E(H ′) ⊆ E(H). Note that
this means nothing else than that H ′ is a subgraph of H, but we want to stress that V (H ′) ⊆ V (H)
and we want to distinguish between isomorphic subgraphs.

We will show that B∗i+1 @ B∗i and Ti+1 @ Ti. Note that the latter means Ti+1 is a subtree
of Ti. Theorem 15 gives us an ancestor respecting order ≺ such that wcolr(B

∗
0 ,≺) is small. Since

B∗i+1 @ B∗i , the coloring numbers with respect to ≺ stay small, and since Ti+1 @ Ti, the order ≺
stays ancestor respecting. Thus, the following lemma is crucial to prepare the quasi-bush for the
second phase.

Lemma 23. For every quasi-bush B, a ∈ V (T) and B′ = (T ′, D′, λ′) := BJa ← {a}K we have
B′∗ @ B∗ and T ′ @ T .

Proof. It is clear from the construction of B′ that T ′ @ T and that V (B′∗) = V (B′) ⊆ V (B) =
V (B∗). Recall that B∗ is a supergraph of the Gaifman graph of B and therefore contains undirected
edges. To also show that E(B′∗) ⊆ E(B∗), consider an edge {u, v} ∈ E(B′∗). If {u, v} originates
from an arc of T ′ then, with T ′ @ T , the edge {u, v} is also in in E(B∗). Therefore, assume
{u, v} ∈ E(B′∗) to not originate from a tree-arc.

Otherwise, the edge {u, v} originates from a pointer (in any direction) between u0 and v0 in B′

with u ≤T ′ u0 and v ≤T ′ v0. If neither u0 nor v0 is equal to the leaf a, then the pointer between u0

and v0 is also present in B. Since u ≤T u0 and v ≤T v0, B∗ also contains the edge {u, v}.
Otherwise, assume by symmetry that u0 = a. During the construction of B′, by (3a) and (3b),

there must have a pointer between some a0 ∈ T (a) and v0. Since u ≤T u0 = a ≤T a0 and v ≤T v0,
B∗ also contains the edge {u, v}.

49

Unfortunately, B′∗ @ B∗ only holds for sibling contractions B′ = BJa ← SK with |S| = 1 in
general. In phase two, we will contract multiple sibling sets of larger cardinality. We will still
ensure that our operations preserves the sparsity of our quasi-bushes, by

1. only contracting non-overlapping sibling sets, which we will call independent, and

2. embedding the contracted quasi-bush into a slightly larger but still sparse graph, which we
will call copy product.

Definition 13 (Copy product). Given a graph G, we define its copy product cp(G) as the graph
obtained by taking the disjoint union of G with its copy G′ and connecting every node v from G
with its copy cp(v) in G′ and making v and cp(v) true twins. If ≺ is an order on G, then cp(≺) is
the order on cp(G) obtained from ≺ by inserting each element cp(v) right before v.

Observe that the copy product is equal to the lexicographic product of G with K2. Taking the
lexicographic product with a clique of bounded size is known to preserve sparsity (see for example
[NDM12, Proposition 4.6.]).

Lemma 24. For every graph G, every order ≺ and every r ∈ N we have

wcolr(cp(G), cp(≺)) ≤ 2 · wcolr(G,≺).

Proof. By definition, if WReachr[G,≺, v] = {v1, . . . , vl} then both WReachr[cp(G), cp(≺), v] and
WReachr[cp(G), cp(≺), cp(v)] are subsets of {v1, . . . , vl, cp(v1), . . . , cp(vl)}.

Definition 14. Two sibling sets S1 and S2 are independent in a quasi-bush B if they have different
parent vertices and LB(a) and LB(b) are disjoint for all a ∈ S1 and b ∈ S2 (see Figure 6). Let
S1, . . . , Sl be pairwise independent sibling sets in B and let {a1, . . . , al} be distinct nodes not in
B. It follows that the quasi-bushes B0 = B and Bi = Bi−1Jai ← SiK = BJa1 ← S1K . . . Jai ← SiK
for i ∈ [l] are valid sibling contractions: ai is not contained in Bi−1 and Si is a sibling set in Bi−1

for every i ∈ [l]. We write B⦃a1 ← S1, . . . , al ← Sl⦄ to denote iterated contraction of pairwise
independent sibling sets.

S1 S2

S3

L(S3)L(S2)L(S1)

Figure 6: Three sibling sets S1, S2, S3 in a quasi-bush (pointers omitted). S1 and S2 are not
independent because they share the same parent. S2 and S3 are not independent because their leaf
sets L(S2) and L(S3) overlap. S1 and S3 are independent.

In phase two, we will only contract pairwise independent sibling sets and use the following
observation to bound the sparsity of the contraction.

Lemma 25. For every quasi-bush B0, pairwise independent sibling sets S1, . . . , Sl with parents
p1, . . . , pl, and sibling contraction Bl := B⦃cp(p1)← S1, . . . , cp(pl)← Sl⦄ we have B∗l @ cp(B∗0).

50

Proof. Let B0 = (T0, D0, λ0) = B and Bi = (Ti, Di, λi) = Bi−1Jcp(pi)← SiK for all i ∈ [l].

Observation 2. For all i ∈ [l] we have V (Ti) \ {cp(p1), . . . , cp(pi)} ⊆ V (T0).

Then it is clear that V (B∗l) = V (Tl) ⊆ V (T0) ∪ {cp(p1), . . . , cp(pl)} ⊆ V (cp(B∗0)). We now
prove by induction for all i ∈ [l] that every edge in B∗i is also an edge of cp(B∗). For i = 0 we have
B0 = B and B∗0 = B∗ @ cp(B∗) holds by definition.

Assume the statement holds for B∗i . Let {u, v} be an edge in B∗i+1 but not in B∗i , as otherwise
the statement follows by induction. If {u, v} originates from a tree arc in B∗i+1, then we have that
the edge {u, v} = {pi, cp(pi)} is contained in cp(B∗) by definition of the copy product. Otherwise,
{u, v} originates from a pointer (in any direction) between nodes u0 ≥Ti+1 u and v0 ≥Ti+1 v in Bi+1.

Claim 6. Either u0 = cp(pi+1) or v0 = cp(pi+1).

Proof. Assume towards a contradiction that neither u0 nor v0 is cp(pi+1). Then also neither u
nor v is cp(pi+1) and both are contained in Bi. As the sibling contraction only modified pointers
from and to cp(pi+1), the pointer between u0 and v0 is present in Bi already. Therefore, {u, v} is
an edge in B∗i , contradicting our previous assumption. �

By symmetry, we can assume that u0 = cp(pi+1). As there is a pointer between u0 = cp(pi+1)
and v0 and by (3a) and (3b), there must exist a vertex u′0 ≥Ti pi+1 and a pointer between u′0 and v0

in Bi. By pi+1 ≤Ti u′0 and v ≤Ti v0, the edges {pi+1, v0} and {pi+1, v} exist in B∗i .

Claim 7. u = u0 = cp(pi+1).

Proof. Assume towards a contradiction that u 6= cp(pi+1) = u0. Then u �Ti+1 cp(pi+1). As pi is
the parent of cp(pi+1) in Ti+1 we conclude that u ≤Ti+1 pi+1. Since Ti+1 differs from Ti only in the
subtree below pi, we also have u ≤Ti pi+1. Together with the edge {pi+1, v} in B∗i , this implies the
edge {u, v} in B∗i , contradicting our previous assumption. �

Recall that u′0 ≥Ti pi+1. As the sibling sets S1, . . . , Si+1 are independent, we must have that
u′0 /∈ {cp(p1), . . . , cp(pi)} and u′0 ∈ V (T0), by Observation 2.

Assume v0 /∈ {cp(p1), . . . , cp(pi)}. Again, we know that v0 ∈ V (T0), by Observation 2. The
pointer between u′0 and v0 is therefore already present in B. Then B∗0 contains the edge {pi+1, v}.
By definition of the copy product, cp(B∗0) contains the edge {u = cp(pi+1), v} as desired.

Finally, assume v0 = cp(pj) for some j ∈ [i]. Then the pointer between v0 and u′0 in Bi must have
been introduced in Bj . By (3a) and (3b), there must be a pointer between some v′0 ≥Tj−1 pj and u′0
in Bj−1. As the sibling sets S1, . . . , Sj are independent, we have that v′0 /∈ {cp(p1), . . . , cp(pj−1)}
and v′0 ∈ V (T0) by Observation 2. Then the pointer between u′0 and v′0 is also present in B0. It
follows that the edge {pi+1, pj} is in B∗0 . Recall that v ≤Ti+1 v0. If v = v0 = cp(pj), then the edge
{cp(pi+1), cp(pj)} = {u, v} in cp(B∗0) results from the edge {pi+1, pj} in B∗0 and the definition of the
copy product. Otherwise, v �Ti+1 cp(pj) and since cp(pj) is inserted below pj , also v ≤Ti+1 pj . As
the nodes on the path from pj to the root of T0 remain unchanged during the sibling contraction,
we also have that v ∈ T0 and v ≤T0 pj . From the edge {pi+1, pj} in B∗0 we conclude that the
edge {pi+1, v} exists in B∗0 , and by the definition of the copy product, cp(B∗0) contains the edge
{u = cp(pi+1), v} as desired.

51

7.6 Phase One: Eliminating Coat Hangers

Definition 15. Given a quasi-bush B = (T,D, λ), a coat hanger is a subtree T (a) rooted at
a node a, such that there exists a leaf v (not necessarily contained in T (a)) with the following
properties

• a is not the root and v positively points to the parent of a,

• v does not point to any node from T (a),

• a is a non-leaf node.

v
a

T (a)

We call a coat hanger T (a) maximal, if there exists no coat hanger T (a′) such that a′ is an
ancestor of a in T .

Observation 3. For every quasi-bush B = (T,D, λ) and maximal coat hangers T (a1) and T (a2)
with a1 6= a2, we have that V (T (a1)) ∩ V (T (a1)) = ∅.

We will show below that quasi-bushes without coat hangers have a nice structure. In order to
eliminate coat hangers, we start by showing that sibling contractions do not introduce new coat
hangers.

Lemma 26. Let B = (T,D, λ) be an upwards closed bush, S be a sibling set, and B′ = (T ′, D′, λ′) :=
BJSK. If T ′(a′) is a coat hanger in B′ for some a′ ∈ V (T ′), then also a′ ∈ V (T) and there exists
a ≤T a′ such that T (a) is a coat hanger in B.

Proof. As T ′(a′) is a coat hanger in B′, a′ is a non-leaf in B′ and there exists a leaf v′ with a
positive pointer to the ancestor w′ of a′, and no pointer to any node in T ′(a′). Since both a′ and w′

are non-leaves in T ′, they were not contracted in the sibling contraction and were therefore present
in B already. The node v′ was either already present in B, or was introduced by the contraction.

First, assume that v′ was already present in B. Then the pointer λ′((v′, w′)) = 1 was inherited
from B. Since v′ has no D′-pointer to any node in T ′(a′), we conclude by (3b) that v′ also has no
D-pointer to any node in T (a′). Hence, T (a′) is a coat hanger in B.

Now assume that v′ was introduced by the contraction and the D′-pointer (v′, w′) was newly
introduced. Since λ′((v′, w′)) = 1, we conclude by (3c) that w′ lies on a tunnel, witnessed by a leaf
v ∈ T (S) and a node w ≤T w′ in B such that

(1) v has a positive D-pointer to w, and

(2) there is no D-pointer from v to any node a with w <T a ≤T w′.

Let a ≤T a′ be the non-leaf child of w on the path from w to a′. Let us show that v has no
pointer to any node from T (a) in B.

If w 6= w′, then w <T w′. As a is a child of w, it satisfies w <T a ≤T w′ and then v has no
pointer to a in B by (2). As B is upwards closed, v then also cannot have a pointer to a node
from T (a) in B.

On the other hand, if w = w′, then a = a′ and a D-pointer from v to T (a) = T (a′) would, as B
is upwards closed, imply a D-pointer from v to a′ in B and by (3a) also a D′-pointer from v′ to a′

in B′. A contradiction to v′ not pointing to T ′(a′).
We conclude that in B, v has a positive D-pointer to w, which has a non-leaf child a such that v

points to no element from T (a). By definition, T (a) is a coat hanger in B.

We derive the following simple corollary of Lemma 26.

52

Corollary 1. If an upwards closed quasi-bush contains no coat hangers, then neither does any of
its sibling contractions.

We now prove the central observation of the first contraction phase, which constructs a 1-
contraction that removes all coat hangers without making the quasi-bush too dense.

Lemma 27. For every upwards closed quasi-bush B = (T,D, λ), there exists an upwards closed
coat hanger free quasi-bush B′ = (T ′, D′, λ′) such that G(B′) is a 1-contraction of G(B), B′∗ @ B∗

and T ′ @ T .

Proof. Let T (a1), . . . , T (al) be the maximal coat hangers of B. We set B0 = (T,D, λ) := B and
for every i ∈ [l] we define Bi = (Ti, Di, λi) := Bi−1Jai ← {ai}K. We set B′ := Bl. Lemma 23 gives
us B′∗ = B∗l @ B∗l−1 @ · · · @ B∗0 = B∗. Then, by transitivity of the subgraph relation B′∗ @ B∗, it
similarly follows by Lemma 23 that T ′ @ T . By Lemma 22, B′ remains upwards closed. It remains
to argue that B′ is coat hanger-free and that G(B′) is a 1-contraction of G(B).

To prove that B′ is coat hanger-free, we show by induction on i ∈ [l] that

for every coat hanger T (b) in Bi we have aj ≤Ti b for some i < j ≤ l.

The statement trivially holds for B0 = B. Assume it holds for Bi and let us prove it for
Bi+1 = BiJai+1 ← {ai+1}K. To this end, let T (b′) be a coat hanger in Bi+1. By Lemma 26,
b′ ∈ V (Ti) and there exists b ≤Ti b′ such that T (b) is a coat hanger in B. By induction, aj ≤Ti b
for some i < j ≤ l and thus also aj ≤Ti b′. Since aj , b

′ ∈ V (Ti+1) ∩ V (Ti) and sibling contractions
preserve the tree of preserved nodes, it follows that aj ≤Ti+1 b

′ for some i < j ≤ l. Notice that ai+1

is a leaf in Bi+1, while, since T (b′) is a coat hanger, b is not a leaf in Bi+1. Hence, we know that
ai+1 6≤Ti+1 b

′. Therefore, aj ≤Ti+1 b
′ for some i+ 1 < j ≤ l, which proves the statement.

It remains to show that G(B′) is a 1-contraction of G(B). Let LBi(a) be the leaves below a
in Bi. By repeated application of Lemma 21, we have

G(B′) = G(B)JLB1(a1)K . . . JLBl(al)K.

It is easy to see that LBi(ai) = LB(ai). The sets LB(a1), . . . , LB(al) are by Observation 3
pairwise disjoint. Since T (ai) is a coat hanger in B, each set LB(ai) furthermore induces a subgraph
of radius one in G(B). According to Definition 6, G(B′) = G(B)JLB(a1)K . . . JLB(al)K is a 1-
contraction of G(B).

It is now time to take a step back and to combine Theorem 15, and Lemma 27 into the following
statement that finalizes the coat hanger elimination of phase one.

Lemma 28. Let C be a structurally nowhere dense class of graphs. For every G ∈ C , there exists
a coat hanger free upwards closed quasi-bush BG representing a 1-contraction of G and an ancestor
respecting order ≺G such that {BG : G ∈ C } has bounded depth. Additionally, for every r ∈ N and
ε > 0 there exists c(r, ε) ∈ N such that for all G ∈ C we have

wcolr(B
∗
G,≺G) ≤ c(r, ε) · |G|ε.

Proof. Theorem 15 gives for every G ∈ C an upwards closed quasi-bush BG representing G and an
ancestor respecting order ≺G. For every r ∈ N and ε > 0 there exists c(r, ε) ∈ N such that for all
G ∈ C we have wcolr(B

∗
G,≺G) ≤ c(r, ε) · |G|ε.

By Lemma 27, we can obtain from BG an upwards closed coat hanger free quasi-bush B′G
representing a 1-contraction of G. Since B′∗G @ B∗G, we still have for every r ∈ N and ε > 0 that
wcolr(B

′∗
G ,≺G) ≤ c(r, ε) · |G|ε. Since furthermore T ′ @ T , the order ≺G remains ancestor respecting

in B′G.

53

7.7 Phase Two: Bounding In and Out Sets

One notices that representing a dense graph using a sparse quasi-bush requires “central hubs”
that act as a connection point of many tunnels (see Figure 7). The following definition of In- and
Out-sets measure how central a node w is.

w

Figure 7: A sparse quasi-bush representing a clique. Here the node w acts as central hub through
which many tunnels pass.

Definition 16. For every quasi-bush B = (T,D, λ) and node w ∈ V (T), we define

In(w,B) := {u | w is connection point of some arc (u, v) ∈ E(G(B))},
Out(w,B) := {v | w is connection point of some arc (u, v) ∈ E(G(B))}.

Note that in general, the nodes in In(w,B) all have a positive pointer to w, while the nodes in
Out(w,B) are descendants of w. The main reason why we eliminated coat hangers in the previous
phase is the following observation guaranteeing that also the nodes in Out(w,B) have distance at
most one from w in the bush.

Lemma 29. Let B = (T,D, λ) be an upwards closed quasi-bush containing no coat hangers and let
w ∈ V (T). Every node v ∈ Out(w,B), v 6= w is a child of w.

Proof. Let v ∈ Out(w,B). Then w is the connection point of some edge (u, v) ∈ E(G(B)). Assume
towards a contradiction that w is not equal to v and not the parent of v. By definition of a
connection point, u does not point to another node on the path from w to v in T . Let w′ be the
child of w on this path. As v is neither equal to nor a child of v, we have w <T w′ <T v. The
node u does not point to w′ and as B is upward closed, u does not point to any node from T (w′),
as otherwise w would not be a connection point of (u, v). Since w′ <T v, we conclude that w′ is a
non-leaf and hence T (w′) is a coat hanger. A contradiction.

Intuitively speaking, we will prove in the next subsection that a sparse quasi-bush B can only
represent a dense graph if there are “central hubs” w for which both the set In(w,B) and the set
Out(w,B) are of polynomial size. The following lemma eliminates these hubs, guaranteeing that
B represents a sparse graph.

Lemma 30. Let C be a structurally nowhere dense class of graphs. For every G ∈ C there exists a
coat hanger free upwards closed quasi-bush B′ representing an 8-contraction of G with the following
properties. For every r ∈ N and every ε > 0 there exist c(r, ε) and t(ε) such that for every G ∈ C
and every r ∈ N we have

wcolr(B
′) ≤ c(r, ε) · |G|ε.

Additionally, for every node w in B′ we have

In(w,B′) ≤ t(ε) · |G|ε or Out(w,B′) ≤ t(ε) · |G|ε.

Proof. Let G ∈ C . We first show how to construct the corresponding quasi-bush B′ and then prove
its properties.

54

Construction. We first apply Lemma 28 to obtain a coat hanger free upwards closed quasi-bush
B = (T,D, λ) representing a 1-contraction of G together with an ancestor respecting order ≺
of V (T) such that for all r ∈ N and ε > 0 we have wcolr(B

∗,≺) ≤ c′(r, ε) · |G|ε.
We iteratively process the non-leaf nodes of T in the order given by ≺ and modify the quasi-

bush B in every step as follows. Let Bi = (Ti, Di, λi) be the quasi-bush right before the ith
processing step and let Wi = {w1, . . . , wi−1} be set of nodes processed so far. We start with
B1 = B and W1 = ∅.

In the ith processing step, we choose wi as the smallest (with respect to ≺) non-leaf node of Ti
that is is contained in V (T) and larger (with respect to ≺) than all nodes of Wi. Note that w1

is the root of T . If no such wi exists we finish the processing by setting B′ := Bi and W ′ := Wi.
Otherwise, we set Wi+1 := Wi ∪ {wi} and describe in the following how to derive Bi+1:

Choose the sibling set Si ⊆ V (Ti) to be a maximal (but possibly empty) set of children of wi
in Ti such that there exists some neighborhood of radius 2 in G(B) that contains all leaves LBi(Si)
below Si in Ti. If Si is empty, we simply set Bi+1 := Bi. Otherwise, we perform a sibling contraction
and set Bi+1 := BiJcp(wi) ← SiK and continue with the next processing step. Note that this is a
valid sibling contraction since cp(wi) is not contained in Bi. This completes the description of the
construction of B′.

Claims. Let k be the number of processing steps performed on B such that W ′ = {w1, . . . , wk}.
We control the above construction using the following statements.

Claim 8. For all i ∈ [k] and v ∈ V (Ti) ∩ V (T) with wi � v we have that Ti(v) = T (v). In
particular, v is a leaf in Ti if and only if it is a leaf in T .

Proof. Assume towards a contradiction that wi � v and Ti(v) differs from T (v). Since the sibling
contractions only modify the subtree of the nodes that is currently processed, T (v) must have been
altered during the processing of a node wj ≺ wi � v, which, because ≺ is ancestor respecting,
must be an ancestor of v in T . During the sibling contraction below wj , every child contained
in Sj is deleted together with its subtree, while the subtrees of children not contained in Sj are left
untouched. The existence of v in Ti then proves that the subtree containing v was not modified. A
contradiction. �

Claim 9. For all i ∈ [k] and u, v ∈ V (Ti) ∩ V (T) we have (u, v) ∈ Di if and only if (u, v) ∈ D.
Additionally, we have λi(u, v) = λ(u, v).

Proof. The only pointers that are modified by the sibling contractions point towards and away
from newly inserted nodes, which are not contained in V (T). The pointers between nodes from
V (Ti) ∩ V (T) therefore remain unmodified. �

Claim 10. The sets S1, . . . , Sk are pairwise independent in B. Hence,

B′ = B⦃cp(w1)← S1, . . . , cp(wk)← Sk⦄.

Proof. Each set Si contains children of wi in Bi. By Claim 8 we have Ti(wi) = T (wi). Hence, wi
is not only the parent of Si in Ti, but also in T .

Fix i < j ∈ [k] and let us show that Si and Sj are independent in B. Clearly, Si and Sj have
different parent nodes wi ≺ wj in T . Let ai ∈ Si and aj ∈ Sj . Since the subtree Ti(ai) = T (ai) was
removed during the processing of wi, it has no overlap with Tj(aj) = T (aj), which was processed
later. This implies LB(ai) ∩ LB(aj) = ∅. By Definition 14, Si and Sj are independent in B. �

55

Claim 11. Bi is upwards closed and contains no coat hangers for all i ∈ [k]. In particular,
Out(w,Bi) contains only children of w.

Proof. Bi is obtained from B via a sequence of sibling contractions. As B originates from Lemma 28,
B is upwards closed and contains no coat hangers. For each contraction, Lemma 22 preserves
upwards closure and Corollary 1 preserves coat hanger freeness. �

Claim 12. W ′ is the set of non-leaf nodes of B′. Furthermore, W ′ is contained in the set of
non-leaves of Bi for every i ∈ [k].

Proof. Let wi ∈W ′ be the non-leaf of Bi chosen at the beginning of the ith processing step. During
the ith processing step, either some children of wi were merged into a leaf, or Bi was not changed.
Either way, wi remains a non-leaf in Bi+1. In the following processing steps only nodes that appear
after wi in ≺ are processed. Since ≺ is ancestor respecting, in particular, no ancestor of wi is
processed and wi must have survived as a non-leaf in B′.

Let w be a non-leaf in B′. During the processing steps that transform B into B′, all nodes that
are newly inserted are leaves, and since only sibling sets below non-leaf are contracted, these nodes
stay leaves. Therefore, w exists as a non-leaf in Bi for every i ∈ [k]. In particular, w appears in
B1 = B and is therefore ordered by ≺. If w is the root node of T , then w is trivially contained
in W ′. Hence, assume w is not the root node of T . Then there exists a node wi−1 ∈ W ′ that is
maximal with wi−1 ≺ w. In the ith processing step, we try to pick wi as the smallest (with respect
to ≺) non-leaf node of Ti that is is contained in V (T) and larger (with respect to ≺) than wi−1, or
terminate if no such wi exists. Note that w is a candidate for wi and thus wi exists and wi � w. If
wi ≺ w we get a contradiction to our choice of wi−1. We therefore have w = wi ∈W ′. �

Claim 13. For every w ∈W ′ and i ∈ [k − 1], we have |In(w,Bi)| ≥ |In(w,Bi+1)|.

Proof. By Claim 12, w is a non-leaf in both Bi and Bi+1. We have that Bi+1 = BiJSiK. If
Bi+1 = Bi there is nothing to show. Otherwise, there exists a new leaf cp(wi) below wi in Bi+1.
Let u ∈ In(w,Bi+1). By Definition 16 and since w is a non-leaf, there exists a leaf v 6= w with
v ∈ Out(w,Bi+1). By Claim 11 and Lemma 29, v is a child of w in Bi+1. In summary, u has a
positive pointer to w and no pointer to a leaf-child u of w.

First assume u 6= cp(wi). If u has a pointer to every leaf below w in Bi, then the same must
be true in Bi+1. This is a contradiction to our assumption that u has no pointer to v. Therefore,
also in Bi there exists a leaf below w which v does not point to and we have u ∈ In(w,Bi). Now
assume u = cp(wi). Since u has a positive pointer to w, by definition of the sibling contraction,
there must exist some contracted node u′ ∈ In(w,Bi) that is no longer present in Bi+1 so we have
u′ /∈ In(w,Bi+1). Combining both cases, we get |In(w,Bi)| ≥ |In(w,Bi+1)|. �

We will now use these claims to prove the desired properties of B′. By Claim 11, B′ is upwards
closed and contains no coat hangers. The remaining three properties are shown in the remaining
three paragraphs.

8-Contraction. We argue that G(B′) is an 8-contraction of G. By repeated application of
Lemma 21, we have

G(B′) = G(B)JLB1(S1)K . . . JLBl(Sl)K.

56

We guaranteed during the construction that each set LBi(S) is contained in a radius 2 neigh-
borhood in G(B). By Claim 8, LBi(Si) = LB(Si). The sets S1, . . . , Sl are by Claim 10 independent
sibling sets in B and thus by Definition 14, LB(S1), . . . , LB(Sl) are pairwise disjoint. According to
Definition 6, G(B′) = G(B)JLB(S1)K . . . JLB(Sl)K is a 2-contraction of G(B). Since G(B) itself is a
1-contraction of G, G(B′) is an 8-contraction of G.

Sparsity. We know that for every r ∈ N and ε > 0 that wcolr(B
∗,≺) ≤ c′(r, ε) · |G|ε, where

c′(r, ε) is the function originating from the invocation of Lemma 28 in the paragraph Construction
at the beginning of the proof. We set c(r, ε) = 2c′(r, ε). Then By Lemma 24, we have for the copy
product cp(B∗),

wcolr
(
cp(B∗), cp(≺)

)
≤ c(r, ε) · |G|ε.

As shown in Claim 10, B′ is obtained from B by a sibling contraction of pairwise independent
sibling sets. By Lemma 25, the Gaifman graph of B′ is a subgraph of cp(B∗), and thus wcolr(B

′) ≤
wcolr(cp(B∗)). This yields the desired bound on the weak coloring numbers of B′.

Size of In and Out Sets. In the following, remember that W ′ = {w1, . . . , wk} is the set of
processed nodes, and for i ∈ [k], Bi is the quasi-bush right before processing wi. As shown in
Claim 10, we further have that B′ = B⦃S1, . . . , Sk⦄ is a sibling contraction of pairwise independent
sibling sets S1, . . . , Sk in B. Choose an arbitrary ε > 0. Let p := c(1, ε) ∈ N. As observed above,

wcol1
(
cp(B∗), cp(≺)

)
≤ p · |G|ε. (19)

We want to show that for every node w of B′ either

|In(w,B′)| ≤ 5p · |G|ε or |Out(w,B′)| ≤ 4p · |G|ε + 1.

We can then choose t(ε) such that either In(w,B′) ≤ t(ε) · |G|ε or Out(w,B′) ≤ t(ε) · |G|ε.
If w is a leaf, then |Out(w,B′)| ≤ 1. Hence, assume w is a non-leaf and |In(w,B′)| > 5p · |G|ε, as
otherwise there is nothing to show.

By Claim 11, Lemma 29 and since w is a non-leaf, we get that Out(w,B′) is a subset of the
children of w in B′. In order to bound Out(w,B′), it therefore suffices to show that w has at most
4p · |G|ε + 1 children in B′. Since w is a non-leaf in B′, by Claim 12 we must have w = wi ∈W ′ for
some i ∈ [k]. Remember that Bi is the quasi-bush right before wi was processed, and Bi+1 is the
quasi-bush after wi was processed. It is easy to see that wi has at least as many children in Bi+1

as in B′.

It therefore suffices to show that wi has at most 4p · |G|ε + 1 children in Bi+1.

We now want to partition the nodes in In(wi, Bi), using the order ≺. However, ≺ is only defined
for nodes of B. We obtained Bi = BJcp(w1) ← S1, . . . , cp(wi−1) ← Si−1K from B by performing
sibling contractions. For every j < i, Bi contains a leaf cp(wj), created during the contraction
of Sj , which is not present in B and therefore not ordered by ≺. To circumvent this problem, we
turn to the extended order cp(≺) given by Definition 13. We notice that all the nodes in Bi are also
present in cp(B). Therefore, cp(≺) completely orders the nodes of Bi, such that V (T) ∩ V (Ti) is
ordered as in ≺ and every node cp(wj) ∈ V (T)\V (Ti) is the immediate predecessor of its parent wj .

We know by (19) that, in terms of coloring numbers, cp(≺) is a good ordering for cp(B∗).
Lemma 25 states that B∗i @ cp(B∗) and thus the bounds given by (19) transfer to Bi, that is,

wcol1
(
Bi, cp(≺)

)
≤ p · |G|ε. (20)

57

We can now partition the nodes in In(wi, Bi) into sets In≺(wi, Bi) and In�(wi, Bi) depending
on whether they are smaller or greater than wi with respect to cp(≺). Let us first bound the size
of In≺(wi, Bi). By Definition 16, every node in In≺(wi, Bi) ⊆ In(wi, Bi) has a pointer to w in Bi.
All nodes in In≺(wi, Bi) are smaller than wi, and thus wi weakly 1-reaches all of In≺(wi, Bi). It
follows by (20) that

|In≺(wi, Bi)| ≤ wcol1
(
Bi, cp(≺)

)
≤ p · |G|ε.

We assumed |In(w,B′)| ≥ 5p · |G|ε. By Claim 13, |In(w,Bi)| > |In(w,B′)| and thus

|In�(wi, Bi)| = |In(w,B′)| − |In≺(w,B′)| > 4p · |G|ε. (21)

We finally arrive at the central argument behind this proof. For this, we partition the children
of wi in Ti into a set A containing every child a such that less than half of the nodes in In�(wi, Bi)
have a pointer to a and a remaining set Ā. See also Figure 8.

wi

A Āa b

In�(wi, Bi)

va,b

children of wi with
few pointers from

In�(wi, Bi)

children of wi with
many pointers from

In�(wi, Bi)

dense graph H

︸ ︷︷ ︸
leaves

contained in
2-neighborhood

Figure 8: The central argument behind the proof of Lemma 30. The leaves below A are contained
in a 2-neighborhood and hence can be contracted. Either the remaining children Ā of wi or the set
In�(wi, Bi) must be small, since otherwise a large dense graph H arises.

Let us argue that all the leaves below A are contained in a neighborhood of radius 2 in G(B).
By definition of A, for every pair a, b ∈ A, there must be va,b ∈ In�(wi, Bi), neither pointing to a
nor b. By upwards closure, it follows that va,b points to no node from Ti(a) and Ti(b). Since va,b
has a positive pointer to wi, we know that va,b is connected in G(Bi) to all the leaves LBi(a) and
LBi(b) below a and b.

We argue that this is the case also in G(B). In the order cp(≺), va,b comes after wi. As argued
before, this means va,b ∈ V (T) and wi ≺ va,b. Applying Claim 8 to va,b gives us that va,b is not
only a leaf in Ti but also in T . Claim 8 also states that Ti(wi) = T (wi), and thus in particular,
LBi(a) = LB(a) and LBi(b) = LB(b). By Claim 9, the pointers in B between T (wi) and va,b are the
same as in Bi. It follows that also in G(B), va,b is connected to all of LBi(a) and LBi(b). Since this
holds for every pair a, b ∈ A, the leaves below A (which are the same in Ti as in T) are contained
in a neighborhood of radius 2 in G(B).

Remember that Si ⊆ V (Ti) is chosen as a maximal (but possibly empty) set of children of wi
in Ti such that there exists some neighborhood of radius 2 in G(B) that contains all leaves LBi(Si)
below Si in Ti. We just proved that A is a candidate for Si and thus, when processing wi, we have
contracted a set Si containing at least |A| many of its children into a single new node cp(wi) below
wi. This means the number of children of wi in Bi+1 is at most |Ā|+ 1.

It therefore suffices to show that |Ā| ≤ 4p · |G|ε.

We bound the size of Ā next. Assume towards contradiction |Ā| > 4p · |G|ε. By (21), also
|In�(wi, Bi)| > 4p · |G|ε, Consider the bipartite graph H defined by the pointers between Ā in one
part (called the upper part) and In�(wi, Bi) in the other part (called the lower part). See also

58

Figure 8 for a depiction of H. Remember that by definition, every node in Ā has an incoming
pointer from at least half of the nodes in In�(wi, Bi). Thus, every node from the upper part is
connected to at least half of the nodes of the lower part. We bound the number of edges per vertex
in H by

|Ā| · 1
2 |In�(wi, Bi)|

|Ā|+ |In�(wi, Bi)|
≥

|Ā| · 1
2 |In�(wi, Bi)|

2 max(|In�(wi, Bi)|, |Ā|)
=

1

4
min(|Ā|, |In�(wi, Bi)|) > p · |G|ε.

The graph H therefore has an average degree larger than 2p · |G|ε and by Lemma 19 a sub-
graph H ′ with minimum degree larger than p · |G|ε. This implies wcol1(Bi) ≥ wcol1(H ′) > p · |G|ε,
which is a contradiction to (20).

Thus, we must have |Ā| ≤ 4p · |G|ε and can conclude that wi has at most 4p · |G|ε + 1 many
children in Bi+1, which gives us the desired upper bound on |Out(wi, B

′)|.

7.8 Sparsity of the Contraction

We will now show that the constructed 8-contraction is sparse. We first show that it does not
contain large subdivided cliques. In the following, we will write In(w) and Out(w) instead of
In(w,B) and Out(w,B), when the quasi-bush B will be clear from the context.

Lemma 31. For every r,m ∈ N+ with m ≥ 20r and every upwards closed, coat hanger free quasi-
bush B, if

• wcol9r(B,≺) ≤ m, and

• for every w ∈ V (T) either In(w) ≤ m or Out(w) ≤ m,

then G(B) does not contain an r-shallow topological clique minor of size m7.

Proof. Assume towards a contradiction that G(B) contains an r-shallow topological clique minor

of size m7. It consists of m7 principal vertices and
(
m7

2

)
pairwise vertex disjoint subdivision paths

of length at most (2r + 1) connecting all pairs of principal vertices. We orient each subdivision
path Puv = (u, . . . , v) if u ≺ v.

We assign each principal vertex u a node p(u) ∈ V (T): If the parent w of u has u ∈ Out(w)
and |Out(w)| ≤ m, we set p(u) = w; otherwise, we set p(u) = u. We set Au := {u, p(u)} and say
that two distinct vertices u and v overlap if Au ∩Av 6= ∅. Let us count how many other principal
vertices v may overlap with u. Since u 6= v, we know that the sets Au and Av intersect in a vertex
p(v) = p(u) different from u and v. By definition, v ∈ Out(p(v)) = Out(p(u)) and |Out(p(u))| ≤ m
and thus every vertex u overlaps with at most m other vertices. We greedily pick from the m7

principal vertices a set of pairwise non-overlapping principal vertices S of size m5. This is possible
since m ≥ 10 and thus

m7

m+ 1
≥ m5 = |S|.

For (u, v) ∈ E(G(B)) let q(u, v) be the connection point of (u, v). Since the bush is upwards
closed and coat hanger-free, by Lemma 29, we have that q(u, v) is either equal to v or the parent
of v. As a direct consequence of Definition 16, we obtain the important observation that

u ∈ In(q(u, v)) and v ∈ Out(q(u, v)). (22)

59

We continue to work in the smaller subdivision spanned by the principal vertices from S. For
a subdivision path P = (v1, . . . , vl), we define AP := {v2, q(v2, v3), v3, . . . , q(vl−2, vl−1), vl−1} to be
the vertices on the tunnels connecting the internal nodes of P . Note that AP is empty if and only
if P has length one, that is, directly connects two principal vertices via an edge.

We say a principal vertex u ∈ S and a subdivision path P overlap if Au ∩ AP 6= ∅. Since u
is no internal node of P , if v and P overlap then u 6= p(u) = q(v′, v) for some internal nodes v, v′

of P . By (22) and the definition of p(u), v ∈ Out(q(v′, v)) = Out(p(u)) and |Out(p(u))| ≤ m. Since
v is an internal vertex of P and all subdivision paths are internally vertex disjoint, u overlaps with
at most m subdivision paths. With m ≥ 10, the set P1 of subdivision paths that run between two
vertices from S, but overlap with no vertex from S therefore has size at least

|P1| ≥
(
|S|
2

)
− |S| ·m =

m5 · (m5 − 1)

2
−m5 ·m ≥ m9.

We say two subdivision paths P and P ′ overlap, if AP ∩AP ′ 6= ∅. Let us count how many other
subdivision paths P ′ = (v′1, . . . , v

′
l) may overlap with P . We know that P and P ′ are internally

vertex disjoint, and thus the sets AP and AP ′ intersect at a vertex q = q(v′j−1, v
′
j). We use (22)

and distinguish two cases:

• |Out(q)| ≤ m. Since v′j ∈ Out(q) and all subdivision paths are internally vertex disjoint, there
are at most m possible choices for P ′ such that AP and AP ′ intersect in q.

• |In(q)| ≤ m. Since v′j−1 ∈ In(q) and all subdivision paths are internally vertex disjoint, again,
there are at most m possible choices for P ′ such that AP and AP ′ intersect in q.

Since there are at most 2r possible choices of q, in total, there can be at most 2rm other paths P ′

that overlap with P . It follows with m ≥ 20r that we can greedily pick a maximal subset P2 ⊆ P1

of pairwise non-overlapping paths of size at least

|P2| ≥
|P1|

2rm+ 1
≥ m9

2rm+ 1
≥ m7.

If P is a subdivision path and v ∈ P is a start- or endpoint of P we say that P is incident to v.
Let v′ be the neighbor of v in P . Since v is a start- or endpoint, v′ is uniquely defined. Note that
if P contains no inner vertices, that is, P has length one, then v′ is the other start- or endpoint of
the path. We say P privately connects to v, if q(v′, v) ∈ Av.

Remember that q(v′, v) is either equal to v or the parent w of v. If q(v′, v) 6∈ Av then q(v′, v) = w
and p(v) = v. This means by definition of p(v) that v 6∈ Out(w) or |Out(w)| > m. By (22),
v ∈ Out(q(v′, v)) = Out(w) and thus |Out(w)| > m, which implies |In(w)| ≤ m. Again by (22),
v′ ∈ In(q(v′, v)) = In(w). Note that the subdivision paths that are incident to v all differ in their
neighbor v′ of v. It follows that for every principal vertex v ∈ S, all but at most m of the subdivision
paths incident to v privately connect to it. With m ≥ 10, the subset P3 ⊆ P2 of subdivision paths
that privately connect to both of their endpoints in S therefore has size at least

|P3| ≥ m7 − |S| ·m = m7 −m5 ·m > m6.

Let us now take a look at the auxiliary graph H whose vertex set is S and where two vertices
u ≺ v are connected if Puv ∈ P3. We will argue that H is an (r + 1)-shallow minor (but not
necessarily a topological minor) of the Gaifman graph of B: note that the sets Av and AP are all
pairwise disjoint for all v ∈ S and P ∈ P3. Let P = Puv ∈ P3. By our choice of P3, if AP 6= ∅ there
are pointers from AP to Au and from AP to Av. If APuv = ∅, then there are pointers between Au

60

and Av. Since AP contains at most 2(r − 1) vertices and Au and Av contain at most two vertices,
each vertex in AP has distance at most r+ 1 either to u or to v in the Gaifman graph of B. Thus,
the sets Av and AP for v ∈ S and P ∈ P3 together witness that H is an (r + 1)-shallow minor of
the Gaifman graph of B. The density of H is

|P3|
|S|

>
m6

m5
= m,

and thus ∇r+1(B) > m. By (18) from Proposition 1,

wcol9r(B) ≥ wcol4r+5(B) = wcol4(r+1)+1(B) ≥ ∇r+1(B) > m.

This violates our assumption and finishes the proof of the lemma.

We will use the following tool that lets us build large topological clique minors in sufficiently
dense graphs.

Lemma 32 ([Dvo07, Lemma 3.15]). Let ρ′ ∈ N. There exist n′0 and ρ′′ such that all graphs G on
n ≥ n′0 vertices with minimum degree at least n1/ρ′ contain a ρ′′-shallow topological clique minor of
size at least n1/ρ′′.

We will also need the following transitivity observation about shallow topological minors.

Lemma 33 (See Proposition 4.2 of [NDM12]). If a graph A contains a graph B as b-shallow topo-
logical minor and B itself contains a graph C as a c-shallow topological minor, then A contains C
as 4bc-shallow topological minor.

Using these two lemmas, we lift Lemma 31 towards thresholds that are polynomial in the number
of leaves.

Lemma 34. For every ρ ∈ N there exists µ, n0 ∈ N such that for every n-leaf upwards closed, coat
hanger free quasi-bush B with n ≥ n0, if

• wcolµ(B) ≤ n1/µ, and

• for every w ∈ V (T) either In(w) ≤ n1/µ or Out(w) ≤ n1/µ,

then wcolρ(G(B)) ≤ n1/ρ.

Proof. We fix ρ ∈ N. We will start with n0 = 1 and increase it over the course of this proof as
needed. The constant µ ∈ N will be chosen later on. Let us pick a quasi-bush B with n ≥ n0 leaves
satisfying the prerequisites of the lemma. Let G = G(B) be the represented graph, which has n
vertices. Assume towards a contradiction that wcolρ(G) > n1/ρ. Combining the inequalities (15)
and (16) of Proposition 1, yields

n1/ρ < wcolρ(G) ≤ 1 + ρ(6ρ)ρ
2(d∇̃ρ(G)e

)3ρ2

.

We can therefore choose ρ′ and n0 (as a function of ρ) such that with n ≥ n0, ∇̃ρ(G) ≥ n1/ρ′ .
In other words, G contains a ρ-shallow topological minor with at least n1/ρ′ edges per vertex, and
thus with average degree at least 2n1/ρ′ . By Lemma 19, there exists a subgraph H of this ρ-shallow
topological minor with minimum degree at least n1/ρ′ . We next want to apply Lemma 32 to H.

Choose ρ′′ and n′0 as a function of ρ′ according to this lemma. We update n0 such that n
1/ρ′

0 ≥ n′0.

Since H has at least n
1/ρ′

0 ≥ n′0 vertices, the prerequisites of Lemma 32 are met. Thus, H contains

61

a ρ′′-shallow topological clique minor of size at least n1/ρ′′ . Since H itself is a ρ-shallow topological
minor G and by transitivity of the shallow topological minor relation (Lemma 33), G contains an
4ρρ′′-shallow topological clique minor of size n1/ρ′′ .

We choose r := 4ρρ′′, µ := 9r and m := bn1/µc. Thus, G contains a r-shallow topological
clique minor of size at least n1/ρ′′ ≥ n1/r > n7/9r = n7/µ ≥ m7. By our assumptions, for every
w ∈ V (T) either In(w) = bIn(w)c ≤ bn1/µc = m or Out(w) = bOut(w)c ≤ bn1/µc = m. We

increment n0 such that m = bn1/9rc ≥ bn1/9r
0 c ≥ 20r. Since all the prerequisites of Lemma 31

are met, wcol9r(B) > m = bn1/µc. Since wcol9r(B) is an integer, also wcol9r(B) > n1/µ. This
contradiction to our assumption finishes the proof of the lemma.

7.9 Wrapping Up

We are ready to prove Theorem 12, which we restate for convenience.

Theorem 12. Let C be a structurally nowhere dense class of graphs. For every G ∈ C there exists
an 8-contraction contract(G) of G, which is sparse in the following sense: for every ε > 0 and
r ∈ N there exists c(r, ε) such that for every G ∈ C

wcolr(contract(G)) ≤ c(r, ε) · |G|ε.

Proof. We first show that for every ρ ∈ N there exists n0(ρ) such that for all G ∈ C with |G| ≥
n0(ρ) we have wcolρ(G(B)) ≤ |G|1/ρ, where B is the upwards closed, coat hanger-free quasi-bush
representing an 8-contraction of G that we obtain via Lemma 30. Fix ρ ∈ N. Let µ and n0 (as a
function of ρ) be the corresponding constants from Lemma 34. As we obtained B via Lemma 30,

• wcolµ(B) ≤ c(µ, 1/2µ) · |G|1/2µ,

• for every node w of B either In(w) ≤ t(1/2µ) · |G|1/2µ or Out(w) ≤ t(1/2µ) · |G|1/2µ.

We can increase n0 (as a function of c(µ, 1/2µ) and t(1/2µ)) such that for |G| ≥ n0

• wcolµ(B) ≤ n1/µ,

• for every node w of B either In(w) ≤ n1/µ or Out(w) ≤ n1/µ.

Since B is upwards closed and contains no coat hangers, we have by Lemma 34 for |G| ≥ n0,

wcolρ(G(B)) ≤ |G|1/ρ.

Now for r ∈ N and ε > 0 let ρ = max{r, ε−1} and c(r, ε) = n0(ρ). Then for all graphs G ∈ C
with |G| ≥ n0(ρ),

wcolr(G(B)) ≤ wcolρ(G(B)) ≤ |G|1/ρ ≤ |G|ε ≤ c(r, ε) · |G|1/ε.

For all graphs G ∈ C with |G| < n0(ρ), we trivially obtain the same bound

wcolr(G(B)) ≤ |G(B)| ≤ |G| < n0(ρ) = c(r, ε) ≤ c(r, ε) · |G|1/ε.

Lemma 17 states that graphs with small coloring numbers admit neighborhood covers with low
degree. Combining Theorem 12 and Lemma 17 therefore directly gives us the following.

Lemma 35. Let C be a structurally nowhere dense class of graphs. For every r ∈ N and ε > 0
there exists c(r, ε) such that for every G ∈ C , there exists an 8-contraction G′ of G that admits an
r-neighborhood cover with degree at most c(r, ε) · |G|ε and spread at most 2r.

62

We now immediately obtain our main result with the help of Lemma 18. Flip-closed sparse
neighborhood covers (with σ(r) universally set to 34r) follow by observing that each flipped class
C` is again structurally nowhere dense, and we may therefore apply the first part of Theorem 11
to it.

Theorem 11. Let C be a structurally nowhere dense class of graphs. For every r ∈ N and ε > 0
there exists c(r, ε) such that for every G ∈ C there exists a weak r-neighborhood cover with degree
at most c(r, ε) · |G|ε and spread at most 34r. In particular, C admits flip-closed sparse weak
neighborhood covers.

References

[AA14] Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical
notion of model theory. European Journal of Combinatorics, 36:322–330, 2014.

[AT] Anonymous Authors and Szymon Toruńczyk. Nowhere dense model checking revis-
ited. forthcoming.

[BDG+22] Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas
Mählmann, Pierre Simon, and Szymon Torunczyk. Model checking on interpre-
tations of classes of bounded local cliquewidth. In Christel Baier and Dana Fisman,
editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, Haifa, Israel, August 2 - 5, 2022, pages 54:1–54:13. ACM, 2022.

[BGOdM+22] Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan
Thomassé, and Szymon Toruńczyk. Twin-width IV: ordered graphs and matrices. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing,
pages 924–937, 2022.

[BKTW21] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-
width I: tractable FO model checking. ACM Journal of the ACM (JACM), 69(1):1–
46, 2021.

[BL22] Samuel Braunfeld and Michael C Laskowski. Existential characterizations of monadic
NIP. arXiv preprint arXiv:2209.05120, 2022.

[BS85] John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity
of theories. Notre Dame Journal of Formal Logic, 26(3):229–303, 1985.

[CLS21] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the
current matrix multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

[CMR00] Bruno Courcelle, Johann A Makowsky, and Udi Rotics. Linear time solvable opti-
mization problems on graphs of bounded clique-width. Theory of Computing Sys-
tems, 33(2):125–150, 2000.

[Cou90] Bruno Courcelle. The monadic second-order logic of graphs I. recognizable sets of
finite graphs. Information and computation, 85(1):12–75, 1990.

[DGK07] Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In
22nd Annual IEEE Symposium on Logic in Computer Science (LICS 2007), pages
270–279. IEEE, 2007.

63

[DGK+22a] Jan Dreier, Jakub Gajarský, Sandra Kiefer, Micha l Pilipczuk, and Szymon
Toruńczyk. Treelike decompositions for transductions of sparse graphs. In Pro-
ceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS ’22, New York, NY, USA, 2022. Association for Computing Machinery.

[DGK+22b] Jan Dreier, Jakub Gajarský, Sandra Kiefer, Micha l Pilipczuk, and Szymon
Toruńczyk. Treelike decompositions for transductions of sparse graphs, 2022.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics. Springer, 2012.

[DKT10] Zdeněk Dvořák, Daniel Král, and Robin Thomas. Deciding first-order properties for
sparse graphs. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 133–142. IEEE, 2010.

[DMST22] Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indis-
cernibles and wideness in monadically stable and monadically NIP classes. arXiv
preprint arXiv:2206.13765, 2022.

[Dre21] Jan Dreier. Lacon- and shrub-decompositions: A new characterization of first-order
transductions of bounded expansion classes. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, pages 1–13. IEEE, 2021.

[Dvo07] Zdeněk Dvořák. Asymptotical structure of combinatorial objects, 2007.

[Dvo22] Zdeněk Dvořák. Representation of short distances in structurally sparse graphs,
2022.

[EF99] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory. Springer Science &
Business Media, 1999.

[EK17] Kord Eickmeyer and Ken-ichi Kawarabayashi. Fo model checking on map graphs. In
International Symposium on Fundamentals of Computation Theory, pages 204–216.
Springer, 2017.

[Fef57] Solomon Feferman. Some recent work of Ehrenfeucht and Fräıssé. Proc. of the
Summer Institute of Symbolic Logic, Ithaca, pages 201–209, 1957.

[FG01a] Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-
checking. SIAM Journal on Computing, 31(1):113–145, 2001.

[FG01b] Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-
decomposable structures. Journal of the ACM (JACM), 48(6):1184–1206, 2001.

[FG04] Markus Frick and Martin Grohe. The complexity of first-order and monadic second-
order logic revisited. Annals of pure and applied logic, 130(1-3):3–31, 2004.

[Gai82] Haim Gaifman. On local and non-local properties. In Studies in Logic and the
Foundations of Mathematics, volume 107, pages 105–135. Elsevier, 1982.

[GGK20] Jakub Gajarskỳ, Maximilian Gorsky, and Stephan Kreutzer. Differential games,
locality and model checking for FO logic of graphs. arXiv preprint arXiv:2007.11345,
2020.

64

[GHK+13] Robert Ganian, Petr Hliněnỳ, Daniel Král, Jan Obdržálek, Jarett Schwartz, and
Jakub Teska. FO model checking of interval graphs. In International Colloquium on
Automata, Languages, and Programming, pages 250–262. Springer, 2013.

[GHL+14] Robert Ganian, Petr Hliněnỳ, Alexander Langer, Jan Obdržálek, Peter Rossmanith,
and Somnath Sikdar. Lower bounds on the complexity of mso1 model-checking.
Journal of Computer and System Sciences, 80(1):180–194, 2014.

[GHO+20] Jakub Gajarskỳ, Petr Hliněnỳ, Jan Obdržálek, Daniel Lokshtanov, and MS Ra-
manujan. A new perspective on FO model checking of dense graph classes. ACM
Transactions on Computational Logic (TOCL), 21(4):1–23, 2020.

[GK11] Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. Model
Theoretic Methods in Finite Combinatorics, 558:181–206, 2011.

[GKN+20] Jakub Gajarskỳ, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona De Mendez,
Micha l Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpre-
tations of bounded expansion classes. ACM Transactions on Computational Logic
(TOCL), 21(4):1–41, 2020.

[GKR+18] Martin Grohe, Stephan Kreutzer, Roman Rabinovich, Sebastian Siebertz, and Kon-
stantinos Stavropoulos. Coloring and covering nowhere dense graphs. SIAM Journal
on Discrete Mathematics, 32(4):2467–2481, 2018.

[GKS17] Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order prop-
erties of nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017.

[GMM+23] Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Micha l
Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz, Marek Soko lowski, and Szy-
mon Toruńczyk. Flipper games for monadically stable graph classes. arXiv preprint
arXiv:2301.13735, 2023.

[GPPT22] Jakub Gajarský, Micha l Pilipczuk, Wojciech Przybyszewski, and Szymon
Toruńczyk. Twin-Width and Types. In 49th International Colloquium on Automata,
Languages, and Programming, pages 123:1–123:21, 2022.

[GPT22] Jakub Gajarskỳ, Micha l Pilipczuk, and Szymon Toruńczyk. Stable graphs of
bounded twin-width. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 1–12, 2022.

[Gro08] Martin Grohe. Logic, graphs, and algorithms. Logic and automata, 2:357–422, 2008.

[Hod97] Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.

[HPR17] Petr Hlinený, Filip Pokrývka, and Bodhayan Roy. FO model checking of geometric
graphs. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th International
Symposium on Parameterized and Exact Computation, IPEC 2017, September 6-8,
2017, Vienna, Austria, volume 89 of LIPIcs, pages 19:1–19:12. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017.

[IP01] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal
of Computer and System Sciences, 62(2):367–375, 2001.

65

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have
strongly exponential complexity? Journal of Computer and System Sciences,
63(4):512–530, 2001.

[Kre11] Stephan Kreutzer. Algorithmic meta-theorems. Finite and algorithmic model theory,
379:177–270, 2011.

[KT10] Stephan Kreutzer and Siamak Tazari. Lower bounds for the complexity of monadic
second-order logic. In 2010 25th Annual IEEE Symposium on Logic in Computer
Science, pages 189–198. IEEE, 2010.

[KvRW+05] Fabian Kuhn, Pascal von Rickenbach, Roger Wattenhofer, Emo Welzl, and Aaron
Zollinger. Interference in cellular networks: The minimum membership set cover
problem. In Lusheng Wang, editor, Computing and Combinatorics, pages 188–198,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[KY03] Hal A Kierstead and Daqing Yang. Orderings on graphs and game coloring number.
Order, 20(3):255–264, 2003.

[Lib04] Leonid Libkin. Elements of finite model theory, volume 41. Springer, 2004.

[Mak04] Johann A Makowsky. Algorithmic uses of the Feferman–Vaught theorem. Annals
of Pure and Applied Logic, 126(1-3):159–213, 2004.

[NDM12] Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures, and
algorithms, volume 28. Springer Science & Business Media, 2012.

[NdM16] Jaroslav Nešetřil and P Ossona de Mendez. Structural sparsity. Russian Mathemat-
ical Surveys, 71(1):79, 2016.

[Pel00] David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

[PPS20] Marcin Pilipczuk, Micha l Pilipczuk, and Sebastian Siebertz. Lecture notes for the
course “Sparsity” given at Faculty of Mathematics, Informatics, and Mechanics of
the University of Warsaw, Winter semesters 2017/18 and 2019/20. Available https:
//www.mimuw.edu.pl/~mp248287/sparsity2.

[PZ78] Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fundamenta Mathemati-
cae, 100(2):101–107, 1978.

[RT87] Prabhakar Raghavan and Clark D Tompson. Randomized rounding: a technique
for provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374,
1987.

[See96] Detlef Seese. Linear time computable problems and first-order descriptions. Mathe-
matical Structures in Computer Science, 6(6):505–526, 1996.

[She90] Saharon Shelah. Classification theory: and the number of non-isomorphic models.
Elsevier, 1990.

[Tor22] Szymon Toruńczyk. Lectures on finite model theory. 2022.

[TZ05] Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM
(JACM), 52(1):1–24, 2005.

66

https://www.mimuw.edu.pl/~mp248287/sparsity2
https://www.mimuw.edu.pl/~mp248287/sparsity2

[Vai89] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication.
In 30th annual symposium on foundations of computer science, pages 332–337. IEEE
Computer Society, 1989.

[Vaz10] Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company, 2010.

[war16] Algorithms, Logic and Structure Workshop in Warwick – Open Problem
Session. https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/

alglogstr/openproblems.pdf, 2016. [Online; accessed 07-Feb-2023].

67

https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf

	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 Graphs
	3.2 Logic
	3.3 Stability
	3.4 Flipper Game
	3.5 Weak Neighborhood Covers

	4 Guarded Formulas and Local Types
	4.1 Guarded Formulas
	4.2 Games
	4.3 Local Games
	4.4 Local Games Determine Global Games
	4.5 Local Games and Local Types
	4.6 Games and Types with Guards

	5 Model Checking
	5.1 Setup
	5.2 Computing Guarded Formulas
	5.3 Reducing the Evaluation Radius
	5.4 Main Result
	5.5 A Note on the Computability of f(||)

	6 Approximating Weak Neighborhood Covers
	6.1 Linear Programming
	6.2 ILP Formulation
	6.3 Fractional Weak Neighborhood Covers
	6.4 Randomized Sampling
	6.5 Minimum Membership Set Cover Reduction

	7 Weak Neighborhood Covers in Structurally Sparse Classes
	7.1 Local Contractions and Weak Neighborhood Covers
	7.2 Background on Structurally Sparse Graphs
	7.3 Quasi-Bush Decompositions of Structurally Nowhere Dense Classes
	7.4 Sibling Contractions in Quasi-Bushes
	7.5 Outline of the Contraction Procedure
	7.6 Phase One: Eliminating Coat Hangers
	7.7 Phase Two: Bounding In and Out Sets
	7.8 Sparsity of the Contraction
	7.9 Wrapping Up

