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ABSTRACT
We present a quantum algorithm that has rigorous runtime guaran-

tees for several families of binary optimization problems, including

Quadratic Unconstrained Binary Optimization (QUBO), Ising spin

glasses (𝑝-spin model), and 𝑘-local constraint satisfaction problems

(𝑘-CSP). We show that either (a) the algorithm finds the optimal

solution in time 𝑂∗ (2(0.5−𝑐 )𝑛) for an 𝑛-independent constant 𝑐 , a
2
𝑐𝑛

advantage over Grover’s algorithm; or (b) there are sufficiently

many low-cost solutions such that classical random guessing pro-

duces a (1 − [) approximation to the optimal cost value in sub-

exponential time for arbitrarily small choice of [. Additionally, we

show that for a large fraction of random instances from the 𝑘-spin

model and for any fully satisfiable or slightly frustrated 𝑘-CSP for-

mula, statement (a) is the case. The algorithm and its analysis are

largely inspired by Hastings’ short-path algorithm.

CCS CONCEPTS
• Theory of computation → Discrete optimization; Quantum
computation theory.
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1 OVERVIEW
1.1 Motivation and the Search for Super-Grover

Speedups
It is hoped that quantum computers will outperform classical com-

puters at solving combinatorial optimization problems, both in

theory and, eventually, in practice. A primary motivation for this

expectation is the existence of Grover’s quantum algorithm [29]

for unstructured search: since classical algorithms for hard opti-

mization problems often resort to some form of brute-force search,

Grover’s algorithm potentially offers a quadratic speedup without

exploiting any particular structure in the problem.

However, the hope to leverage Grover’s algorithm for a practi-

cal advantage over state-of-the-art classical algorithms faces two

pitfalls. First, it is rare that an exhaustive search through all possible

solutions is the best classical algorithm for a specific combinatorial

optimization problem. For example, themost well-known constraint

satisfaction problem, 3-SAT
1
, admits a 2

0.39𝑛
-time classical algo-

rithm for instances with 𝑛 binary variables [30, 36], a nearly cubic

speedup over a simple exhaustive search. These algorithms are still

exponential time and they typically retain elements of exhaustive

search. However, they exploit structure to reduce the search space

and to search more efficiently.

Second, practical implementation of quantum algorithms with

asymptotic quadratic speedup on actual quantum devices will suf-

fer constant-factor slowdowns when compared to state-of-the-art

classical hardware due to slower clock speeds, error-correction

overheads, and general lack of parallelizability. When these fac-

tors are considered, realistic assessments of resources needed for

quantum advantage using a quadratic speedup are pessimistic, sug-

gesting that the breakeven point where quantum overtakes classical

would occur only after many days, or in some cases, many years of

runtime [11, 18, 50].

The outlook for practical advantage dramatically improves

as the power of the polynomial speedup becomes greater than

1
An instance of the 3-SAT problem is the question of whether a Boolean formula

in conjunctive normal form (CNF)—i.e. where each constraint is the conjunction of

at most three of the 𝑛 binary variables—has a solution that satisfies all constraints.

Elsewhere in the paper, we refer to this problem as 3-CNF-SAT.
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quadratic. Ref. [11] found that an algorithm with quartic speedup

(i.e. the quantum runtime scales as 𝑇 1/4
where 𝑇 is the classical

runtime) would offer a much more viable path to actual quantum

advantage. This motivates the question of whether the quadratic

Grover speedup can be surpassed for combinatorial optimization.

In some cases, a super-quadratic speedup over exhaustive

search can be realized by combining the quantum techniques of am-

plitude amplification [15] or quantumwalk search [12, 41, 56]—both

of which can be understood as generalizing Grover’s algorithm—

with classical techniques for exploiting problem structure such as

backtracking [8, 38, 42, 45], branch-and-bound [46], nested search

[19], dynamic programming [7], and Markov chain Monte Carlo

methods [44, 54, 58]. Establishing that these classical techniques

can be employed while retaining the quadratic quantum speedup

is typically nontrivial; however, these ingredients alone can only

restore the quadratic speedup compared to classical state-of-the-art

methods, not surpass it, since the fundamentally quantum part of

the algorithm generates only a Grover-like speedup.

Progress toward proving a genuine super-Grover speedup for

combinatorial optimization is limited. The quantum adiabatic al-

gorithm (QAA) [5, 27] is one example of an algorithm that could

conceivably generate super-Grover speedups for some problems.

However, its runtime is notoriously hard to study due to dependence

on the minimal spectral gap of certain non-commuting Hamiltoni-

ans. Additionally, some prior work has argued that the QAA can in

some cases exhibit runtime that scales super-exponentially—even

worse than exhaustive search—when applied to combinatorial opti-

mization problems [6, 57], although for random instances it is ex-

pected to scale merely exponentially [35, 39, 60]. Many other works

(see, e.g., Ref. [61]), often with a focus on near-term algorithms, aim

only to solve combinatorial optimization problems approximately
rather than exactly (and typically in only polynomial time, rather

than exponential time); these algorithms have the potential to be

practically useful, but rigorous guarantees of quantum advantage

are difficult to establish.

In this work, we focus on exact binary optimization problems

where the goal is to find the assignment 𝑧∗ that minimizes some effi-

ciently computable, classical cost function𝐻 (𝑧), with 𝑧 ∈ {+1,−1}𝑛 .
We desire not only the best solution 𝑧∗, but also a high degree

of confidence that no better solution exists; thus, we generally

expect that any algorithm that solves this problem, quantum or

classical, requires exponential runtime. For exponential-time al-

gorithms, we follow the convention of writing 𝑂∗ (2𝑎𝑛) to mean

that there is an upper bound on the runtime of the form ℎ(𝑛)2𝑎𝑛
that holds for sufficiently large 𝑛, where ℎ is a polynomial function.

Exhaustive enumeration runs in (classical) time𝑂∗ (2𝑛). Meanwhile,

Grover’s algorithm runs in (quantum) time 𝑂∗ (20.5𝑛). We seek a

“super-Grover speedup,” that is, a quantum algorithm that runs in

time 𝑂∗ (2(0.5−𝑐 )𝑛) for some 𝑛-independent constant 𝑐 , where the

additional advantage over Grover’s algorithm is generated by a

fundamentally quantum mechanism.

Obtaining speedups over Grover’s algorithm was also the goal

of a series of works by Hastings [32–34] on an algorithm called

the short-path algorithm. Whereas Grover’s algorithm begins in

the equal superposition state |+++⟩ ≡ 2
−𝑛/2 ∑

𝑗 | 𝑗⟩ and measures the

classical function 𝐻 (𝑧) whilst performing amplitude amplification

to boost the probability of obtaining an optimal-cost measurement

outcome, the short-path algorithm instead uses quantum phase

estimation to measure 𝐻 +𝑉 , where in this context 𝐻 denotes the

diagonal operator corresponding to the cost function and 𝑉 is an

off-diagonal non-commuting perturbation term. Here again, am-

plitude amplification is used to boost the probability of ending in

the ground state of 𝐻 + 𝑉 . After the ground state is prepared, a

computational basis measurement is performed to find the optimal

solution. It was shown that for certain choice of𝑉 and under certain

assumptions on the spectral density of 𝐻 at low energies (i.e. low

cost values), a super-Grover speedup could be accomplished. How-

ever, no concrete scenario was given where the spectral density

assumption was proved to hold. In follow-up work [33], Hastings

showed that for a specific family of cost functions with 2-local

Ising-like terms, the spectral density assumption could be dropped,

but in this case the super-Grover speedup constant 𝑐 was not 𝑛-

independent, decaying like 1/log(𝑛) or faster (depending on the

amount of frustration in the cost function).

1.2 A Simple Quantum Algorithm for Exact
Combinatorial Optimization

Our main contribution is a simple algorithm inspired by Hastings’

short-path algorithm [32] for which we can prove a super-Grover

speedup for a few specific families of cost functions, including

Ising spin glasses and 𝑘-local constraint satisfaction problems. The

algorithm can be run on other families of cost functions and may

very well have a super-Grover speedup more generally, but we

present rigorous guarantees only for these specific cases.

The algorithm can be understood as an implementation of the

QAA for combinatorial optimization problems with two crucial

modifications, as we now explain. For simplicity, suppose here

that 𝑧∗ is unique, i.e. 𝐻 (𝑧∗) < 𝐻 (𝑧) for all 𝑧 ≠ 𝑧∗, and suppose

that the optimal value 𝐸∗ = 𝐻 (𝑧∗) is known ahead of time (these

assumptions can be dropped, as explained later). By convention, we

assume that 𝐻 is offset such that the average cost of a uniformly

random input is zero, and thus 𝐸∗ < 0. Let 𝑋 =
∑𝑛
𝑖=1 𝑋𝑖 be the

transverse-field operator, where 𝑋𝑖 denotes the Pauli-𝑋 operator

on qubit 𝑖 . Then, the QAA evolves by the Hamiltonian

𝐻𝑏 = −𝑋
𝑛

+ 𝑏 𝐻

|𝐸∗ | (for the QAA) (1)

while the parameter 𝑏 is slowly tuned from 𝑏 = 0, where the ground

state of 𝐻𝑏 is |+++⟩ ≡ |+⟩⊗𝑛 , to 𝑏 = ∞, where the ground state of 𝐻𝑏
is |𝑧∗⟩. The first modification is that

𝐻
|𝐸∗ | is replaced by 𝑔( 𝐻

|𝐸∗ | ) for
a certain piecewise linear function 𝑔 : [−1,∞) → [−1, 0]:

𝐻𝑏 = −𝑋
𝑛

+ 𝑏 𝑔
(
𝐻

|𝐸∗ |

)
(for our algorithm) (2)

This modification allows us to control the spectral properties of the

cost function to enable proof of our claims. The second modification

is, rather than evolve continuously through values of 𝑏 for which

the spectral gap of 𝐻𝑏 is small and unknown, the algorithm simply

jumps, first from 𝑏 = 0 to an 𝑛-independent value of 𝑏 > 0 where

the gap is guaranteed to be large, and then from that value of 𝑏

all the way to the end of the algorithm (𝑏 = ∞). These jumps are

accomplished with quantum phase estimation along with amplitude

amplification to boost the success probability of projecting onto
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the ground state of 𝐻𝑏 . The first jump is small in the sense that

the success probability is nearly one (and little or no amplitude

amplification is required). The second jump is large in the sense that

the success probability is exponentially small. We will be able to

show that (for some specific families of cost functions) the success

probability of the second jump is larger than 2
−(1−2𝑐 )𝑛

, and hence,

after amplitude amplification, the runtime of the algorithm is less

than 𝑂∗ (2(0.5−𝑐 )𝑛), where 𝑐 is a constant independent of 𝑛.
Both modifications described above, as well as the analysis of

the algorithm, are inspired by (and in some cases closely follow)

Hastings’ short-path algorithm [32]. However, the algorithms are

not identical, and in some sense they are dual to each other: where

our algorithm makes a small jump and then a large jump, the short-

path algorithm instead makes a large jump and then a small jump.

Moreover, where our algorithm makes the modification 𝐻/|𝐸∗ | →
𝑔 (𝐻/|𝐸∗ |) for a piecewise linear function𝑔 (see Eqs. (1) and (2)), the
short-path algorithm makes the modification −𝑋/𝑛 → 𝑔 (−𝑋/𝑛)
for the function 𝑔(𝑥) = 𝑥𝐾 , with 𝐾 an odd integer.

By taking our approach, we can prove more concrete results

than was possible to show for the original short-path algorithm.

This is true for subtle technical reasons. Firstly, as in Ref. [32], our

proof utilizes the log-Sobolev inequality, which relates the expecta-

tion value of the𝑋/𝑛 operator for a given state |𝜙⟩ to the entropy of
the distribution over measurement outcomes that arises when |𝜙⟩ is
measured in the computational basis. This step goes through more

cleanly for us because the 𝑋/𝑛 operator appears directly in our

Hamiltonian (see Eq. (2)), whereas (𝑋/𝑛)𝐾 appeared in Hastings’

Hamiltonian, requiring some work to argue that the expectation of

(𝑋/𝑛)𝐾 could be approximated by the 𝐾th power of the expecta-

tion of 𝑋/𝑛. Secondly, by switching from Hastings’ strategy of a

large-then-small jump to our strategy of a small-then-large jump,

(roughly speaking) Hastings’ spectral density assumption switches

from a statement about the number of states at low energy to a

statement about the number of states at high energy, which is much

easier to show using straightforward tail bounds. This switch does

come at a cost: we lose Hastings’ perturbation theory argument

that proves the exponential advantage over Grover, assuming the

spectral density assumption. We are able to replace this part of

the argument in our case with a proof that utilizes an approximate

ground state projector.

1.3 Overview of Provable Statements
Consider the following families of optimization problems over in-

puts in the set {+1,−1}𝑛 .
• MAX-E𝑘-LIN2: 𝐻 (𝑧) = 𝑝 (𝑧1, . . . , 𝑧𝑛), where 𝑝 is a polyno-

mial consisting only of monomials of degree 𝑘 .

• Quadratic Unconstrained Binary Optimization (QUBO):

𝐻 (𝑧) = 𝑝 (𝑧1, . . . , 𝑧𝑛), where 𝑝 is a polynomial consisting

only of monomials of degree-1 or degree-2.

• MAX-𝑘-CSP with limited frustration: 𝐻 (𝑧) =
∑𝑚
𝑗=1 C𝑗

where each C𝑗 is a 𝑘-constraint, defined by the criteria

that (i) it is a function of at most 𝑘 of the 𝑛 bits of the input

𝑧, and (ii) it takes the value −1 on 𝑠 𝑗 (“satisfying”) assign-
ments to those bits and value 𝑠 𝑗/(2𝑘 − 𝑠 𝑗 ) on the other

2
𝑘 −𝑠 𝑗 (“unsatisfying”) assignments, such that the average

across all 2
𝑘
assignments is zero. Let 𝐸∗ be the optimal

value of 𝐻 . The magnitude of the super-Grover speedup

will depend on |𝐸∗ |/𝑚 and is maximal when |𝐸∗ |/𝑚 = 1,

i.e. when the instance is frustration free (all constraints

are simultaneously satisfiable).

We also study a random ensemble of MAX-E𝑘-LIN2 instances

known as the “𝑝-spin” model [24], which here we refer to as the

“𝑘-spin” model so that the symbol 𝑘 consistently represents the

locality of the terms of 𝐻 throughout the paper. An instance of the

𝑘-spin model is given by

𝐻 (𝑧1, . . . , 𝑧𝑛) =
√︂

𝑘!

𝑛𝑘−1

∑︁
1≤𝑖1<...<𝑖𝑘 ≤𝑛

𝐽𝑖1,...,𝑖𝑘𝑧𝑖1𝑧𝑖2 . . . 𝑧𝑖𝑘 , (3)

where the weights 𝐽𝑖1,...,𝑖𝑘 are each chosen independently at random

from a standard Gaussian distribution with mean 0 and variance 1.

The 𝑘-spin model is used in physics to model spin glasses. When

𝑘 = 2 it is identical to the Sherrington-Kirkpatrick (SK) model [53].

Before we state our main results, we define our usage of big-𝑂 ,

big-Ω notation, which appears in various places throughout the

paper. Let ℎ be a function of 𝑛, 𝑘 , and 𝑚
|𝐸∗ | . Then a quantity is said

to be 𝑂 (ℎ(·)) (resp. Ω(ℎ(·))) if it is upper bounded (resp. lower

bounded) by some constant times ℎ(·). We typically think of 𝑘 as

a constant as 𝑛 grows, but we include the 𝑘-dependence in our

expressions (rather than absorbing it into big-𝑂) to communicate

how the size of the speedup depends on 𝑘 .

Our main results are the following:

• MAX-𝑘-CSP admits a super-Grover speedup when |𝐸∗ |/𝑚
is independent of 𝑛. More precisely, there exists a constant

𝑐 = Ω
(

|𝐸∗ |3
𝑘323𝑘𝑚3

)
such that MAX-𝑘-CSP admits a quantum

algorithm with runtime 𝑂∗ (2(0.5−𝑐 )𝑛). The algorithm can

thus solve the question of whether or not a 𝑘-CSP instance

is fully satisfiable in 𝑂∗ (2(0.5−Ω (1/𝑘323𝑘 ) )𝑛) time.

• For each instance ofMAX-E𝑘-LIN2 andQUBO, either there

is a quantum algorithm with super-Grover speedup, or

there is a classical algorithm that can achieve an arbitrarily

good approximation ratio in sub-exponential time. More

precisely, for any [ ∈ [0, 1] and any 𝛾 ∈ [0, 1], either (a)
the quantum algorithm has runtime 2

0.5(1−Ω (𝛾[/𝑘 ) )𝑛
, or

(b) the classical algorithm that repeatedly samples assign-

ments uniformly at random produces a bit string 𝑦 with

cost 𝐻 (𝑦) ≤ (1 − [)𝐸∗ within time 𝑂∗ (2𝛾𝑛) (with high

probability). Thus, if there is no 𝑛-independent choice of

[,𝛾 for which (a) holds, then for arbitrarily small [, the

runtime of the classical algorithm is better than 𝑂∗ (2𝛾𝑛)
for arbitrarily small 𝛾 (i.e. sub-exponential time).

• For the 𝑘-spin model, there is a choice of [ = Ω(1) and
𝛾 = Ω(1/𝑘2) such that case (a) is satisfied in the previous

bullet for all but at most a 𝑒−Ω (𝑛/𝑘 )
fraction of instances.

These results are stated in more formal language later in

Sec. 3.4. Note that for random MAX-𝑘-CNF-SAT, the random en-

semble of MAX-𝑘-CSP instances where each clause is the conjunc-

tion of 𝑘 distinct randomly chosen variables (or their negations),

the amount of frustration increases with the number of clauses. If

𝑚 ≤ 𝛼𝑐𝑛 for some critical value 𝛼𝑐 (which grows like 2
𝑘
), then most

instances are fully satisfiable [2], which means that |𝐸∗ |/𝑚 = 1. If

𝑚 = 𝛼𝑛 for 𝛼 > 𝛼𝑐 , then most instances are not fully satisfiable
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(“frustrated”), but for typical instances the ratio |𝐸∗ |/𝑚 is larger than

some 𝑛-independent number [1]. Thus, the super-Grover speedup

persists despite the frustration, although the constant 𝑐 indicating

the size of the 2
𝑐𝑛

advantage over Grover is reduced compared to

the frustration-free case. If𝑚/𝑛 → ∞ as 𝑛 → ∞, then |𝐸∗ |/𝑚 → 0

for typical instances in that limit (in particular, it is expected to

decay as

√︁
𝑛/𝑚) [20], and our method fails to prove a super-Grover

speedup.

1.4 Comparison to Classical Algorithms and
Significance

In Tab. 1, we present several problems for which we can make

concrete statements about the runtime of our algorithm, and we

compare with the corresponding best known classical runtime.

While our algorithm has a super-Grover speedup for the 3-CNF-

SAT problem (i.e. the question of whether there is a fully satisfying

assignment for a 3-CSP instance where each clause is in conjunc-

tive normal form), it does not have a super-quadratic speedup—in
fact, it has no speedup at all—owing to the fact that there are also

classical algorithms with a significant speedup over exhaustive

enumeration. At large 𝑘 , our algorithm does give a speedup for

𝑘-CNF-SAT, but the speedup is sub-quadratic. However, it is im-

portant to note that these classical algorithms for 𝑘-CNF-SAT are

the product of decades of incremental improvements: for 𝑘 = 3,

Monien and Speckenmeyer found a 𝑂∗ (20.70𝑛)-time algorithm in

1985 [43] and the coefficient was subsequently reduced to 0.57, 0.45,

0.42, and 0.39 in Refs. [48], [47], [52], and [36], respectively, with

further infinitesimal improvements in Refs. [51] and [30]. For the

SK model, our algorithm also fails to deliver a speedup due to the

existence of a classical branch-and-bound algorithm [46] which

gives a significant provable advantage over exhaustive search. It

is worth noting that the classical algorithms for 𝑘-CNF-SAT in

Ref. [30] and for the SK model in Ref. [46] each admit a quadratic

quantum speedup by applying amplitude amplification or quantum

walk search techniques. The resulting quantum algorithm is the

best-known quantum algorithm in both cases.

Table 1: Summary of concrete combinatorial optimization
problemswherewe can prove an upper bound on the runtime
of our algorithm, in comparison to the best known classical
algorithm for the same problem. The number displayed is
the coefficient of 𝑛 in the exponential, i.e. if the algorithm
runs in time𝑂∗ (2𝑎𝑛) then 𝑎 appears in the table. The problem
𝑘-CNF-SAT refers to the question of whether or not a Boolean
formula in conjunctive normal form with 𝑘-local constraints
is fully satisfiable. The 𝑘-spin model refers to the random
ensemble of MAX-E𝑘-LIN2 instances where every 𝑘-local
term appears with a random Gaussian weight, defined in
Eq. (3). The Sherrington-Kirkpatrick (SK) model corresponds
to the 𝑘-spin model with 𝑘 = 2.

Problem Our quantumalgo Best classical algo
3-CNF-SAT 0.5 − (5.2 × 10

−7) 0.39 [30]

𝑘-CNF-SAT 0.5 − Ω(2−3𝑘𝑘−3) 1 − Ω(𝑘−1) [30]

SK model 0.5 − (2.7 × 10
−5) 0.45 [46]

𝑘-spin 0.5 − Ω(𝑘−3) 1

For the 𝑘-spin model with 𝑘 ≥ 3, the branch-and-bound tech-

nique of Ref. [46] does not obviously generalize, and we do not

know of a classical algorithm that has been proved to run in time

𝑂∗ (2(1−𝑐 )𝑛) for an 𝑛-independent value 𝑐 . In contrast, our algo-

rithm runs in time𝑂∗ (2(0.5−Ω (1/𝑘3 ) )𝑛), a potential super-quadratic
speedup. However, we believe that it is plausible that there does

exist a 𝑂∗ (2(1−𝑐 )𝑛)-time classical algorithm for 𝑘-spin: a potential

candidate is classical Metropolis sampling at high temperature. Evi-

dence that this algorithm would be effective comes from prior work

on the spherical 𝑘-spin model, a continuous variable analogue of the

“Ising” 𝑘-spin model we study here. In particular, Ref. [28] showed

that for the spherical 𝑘-spin model, the Langevin dynamics are

rapidly mixing when the temperature is above some 𝑛-independent

threshold, allowing efficient classical sampling from the Gibbs dis-

tribution. Since the 𝑘-spin model is normalized such that typical

instances have an extensive optimal cost value |𝐸∗ | = Ω(𝑛), the
Boltzmann factor 𝑒−𝛽𝐸

∗
for the optimal assignment 𝑧∗ at constant

inverse temperature 𝛽 is exponentially large in 𝑛. This fact sug-

gests that there exists an 𝑛-independent choice of 𝑐 for which only

2
(1−𝑐 )𝑛

Gibbs samples need to be drawn to find 𝑧∗ with high prob-

ability. It would be interesting to extend these results from the

spherical to the Ising 𝑘-spin model and formally verify that it leads

to a speedup over exhaustive enumeration.

In all cases, it is apparent that the provable advantage of our

algorithm over 𝑂∗ (20.5𝑛) is very small. Our goal has been to prove

that there exists some constant improvement over Grover’s algo-

rithm, and we have not dedicated much effort to optimizing the

proofs to maximize the constant. We are certain that the size of the

provable speedup could be improved, and furthermore in Sec. 5,

we give numerical evidence that the speedup over Grover is much

more substantial than the proofs imply.

We emphasize that a key reason this speedup is interesting de-

spite its small numerical size is that the speedup mechanism has no

immediate classical analogue with comparable runtime guarantees

upon which our algorithm simply applies a general technique like

amplitude amplification. We connect the speedup mechanism to an

observation about 1-norm vs. 2-norm localization, a feature shared

by Hastings’ short-path algorithm [33]. Namely, it is possible for a

wavefunction to be localized on a single basis state when using the

2-norm, yet de-localized across many basis states when using the 1-

norm, a situation with no classical analogue. See Sec. 4.1 for a more

detailed discussion. With further innovations, future algorithms

may be able to leverage this phenomenon for more substantial

speedups.

2 ALGORITHM
2.1 Enacting Jumps From One Ground State to

Another
The algorithm we present in this work is conceptually simple; it

consists essentially of just two steps, each of which is a jump from

the ground state of one Hamiltonian to the ground state of another

Hamiltonian. The time it takes to perform each jump is related to

the overlap of the two ground states and the spectral gap of the

two Hamiltonians. This is the same primitive step that was used
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in Hastings’ short-path algorithm [32], as well as various other

quantum algorithms before it (e.g. [13]).

Proposition 1 (jump from 𝐾1 → 𝐾2, simplified). Given two
𝑛-qubit Hamiltonians 𝐾1 and 𝐾2, let |𝜓1⟩ be the (unique) ground
state of 𝐾1 and Π2 be the projector onto the (possibly degenerate)
ground space of 𝐾2. Let Δ1 and Δ2 denote the spectral gap above the
ground space for 𝐾1 and 𝐾2. Then there is a unitary 𝑈 for which
𝑈 |𝜓1⟩ ∝ Π2 |𝜓1⟩ that is enacted up to error 𝛿 by a quantum circuit
consisting of [min(Δ1,Δ2)]−1∥Π2 |𝜓1⟩∥−1 poly(𝑛, log(𝛿−1)) gates,
where ∥·∥ denotes the standard Euclidean norm for a vector.

Additionally, if 𝐾1 or 𝐾2 is a classical Hamiltonian (i.e. diagonal
in either the computational basis or the Hadamard basis, where diag-
onal entries can be efficiently classically computed), then the number
of gates does not depend on the corresponding gap parameter Δ1 or
Δ2, respectively.

To actually construct the unitary, we need to have knowledge

of a lower bound on ∥Π2 |𝜓1⟩∥, upper bounds on the ground state

energy of 𝐾1 and 𝐾2, and lower bounds on the excited energy of 𝐾1
and 𝐾2. A more complete version of the proposition that considers

these factors appears in [23, App. B], along with its proof. There

the unitary𝑈 is constructed through two steps. First, it uses phase

estimation to produce unitary operators 𝑅1 and 𝑅2 that reflect about

the state |𝜓1⟩ and about the ground space of 𝐾2, respectively. The

gate cost of approximating 𝑅 𝑗 to error 𝛿 is𝑂 (Δ−1
𝑗

log(𝛿−1)) calls to
a so-called “block-encoding” of the Hamiltonian𝐾𝑗 , which typically

requires just poly(𝑛) gates. The exception to this statement is the

case where 𝐾𝑗 is a classical Hamiltonian. In this case, the terms

of 𝐾𝑗 commute and the energy can be measured exactly, allowing

the reflection operator to be implemented exactly in poly(𝑛) gates
regardless of how small Δ 𝑗 is. Second, the unitary𝑈 performs fixed-

point amplitude amplification [59] to produce the state
Π2 |𝜓1 ⟩
∥Π2 |𝜓1 ⟩ ∥

using the reflection operators 𝑅1 and 𝑅2 𝑂 (∥Π2 |𝜓1⟩∥−1 log(𝛿−1))
times each.

2.2 Specification of Algorithm
The inputs to the algorithm are as follows:

(a) A classical cost function 𝐻 on 𝑛-bit binary assignments

𝑧 ∈ {+1,−1}𝑛 . This may be specified, for example, by

giving the coefficients of 𝐻 (𝑧) when it is expanded as a

polynomial in 𝑧1, . . . , 𝑧𝑛 , where 𝑧𝑖 ∈ {+1,−1} denotes the
𝑖th bit of 𝑧. By convention we offset 𝐻 so that it has no

constant term, i.e.

∑
𝑧 𝐻 (𝑧) = 0. In any case, we assume

that for any 𝑧,𝐻 (𝑧) can be evaluated classically in poly(𝑛)
time.

(b) The value 𝐸∗ = min𝑧 𝐻 (𝑧).
(c) A value for [ satisfying 0 ≤ [ < 1.

(d) A value for 𝑏 satisfying 0 ≤ 𝑏 < 1.

Note that here we assume the optimal value 𝐸∗ of the cost function
is known ahead of time, which may not always be the case. In [23,

App. C], we discuss how this assumption can be dropped at the

expense of only polynomial overheads.

We define the piecewise-linear function 𝑔[ : [−1,∞) →
[−1, 0]:

𝑔[ (𝑥) = min

(
0,
𝑥 + 1 − [

[

)
(4)

We also define the Hamiltonian 𝐻𝑏 , parameterized by 𝑏 > 0, as

𝐻𝑏 = −𝑋
𝑛

+ 𝑏 𝑔[
(
𝐻

|𝐸∗ |

)
|𝜓𝑏⟩ = ground state of 𝐻𝑏

𝐸𝑏 = ground state energy of 𝐻𝑏 ,

(5)

where here (in a slight abuse of notation) 𝐻 denotes the diagonal

2
𝑛 × 2

𝑛
Hermitian operator for which ⟨𝑧 |𝐻 |𝑧⟩ = 𝐻 (𝑧) and 𝑋

denotes the transverse field

∑𝑛
𝑖=1 𝑋𝑖 , with 𝑋𝑖 the Pauli-𝑋 operator

on qubit 𝑖 . Let |𝜓𝑏⟩ denote the ground state of𝐻𝑏 and 𝐸𝑏 the ground-
state energy. For illustration purposes, the spectrum of 𝐻𝑏 for an

example𝑛 = 20, [ = 0.5 instance is shown in Fig. 1. Note that𝐻𝑏 is a

stoquastic Hamiltonian, that is, when written in the computational

basis, all of the off-diagonal entries of 𝐻𝑏 are non-positive. As a

consequence of being stoquastic, the ground state |𝜓𝑏⟩ can be taken

to have non-negative real entries in the computational basis [17],

and we assume this convention throughout.

Let Π∗
denote the projector onto the (potentially degenerate)

groundspace of 𝐻 (spanned by computational basis states). The

algorithm begins by preparing the initial state |+++⟩ ≡ |+⟩⊗𝑛 , the
ground state of the Hamiltonian −𝑋/𝑛 (which is diagonal in the

Hadamard basis). Next, the algorithm prepares |𝜓𝑏⟩, the (unique)
ground state of 𝐻𝑏 by performing a jump from Hamiltonian −𝑋/𝑛
to Hamiltonian 𝐻𝑏 , using the unitary described in Prop. 1. Finally,

the algorithm prepares
Π∗ |𝜓𝑏 ⟩
∥Π∗ |𝜓𝑏 ⟩ ∥ using a second jump, from Hamil-

tonian 𝐻𝑏 to the (classical) Hamiltonian 𝐻/|𝐸∗ |. The state Π∗ |𝜓𝑏⟩
is a superposition of optimal solutions to the cost function 𝐻 ; one

of these solutions can be retrieved by measurement in the computa-

tional basis. Pseudocode for the algorithm appears in Algorithm 1,

where a “jump” from Hamiltonian 𝐾1 → 𝐾2 refers to the procedure

in Prop. 1.

Algorithm 1: Pseudocode for main algorithm

Input: 𝐻 , 𝐸∗, [, 𝑏, which together define 𝐻𝑏 in Eq. (5)

Output: an optimal assignment 𝑧∗ for 𝐻

1 Prepare |+++⟩ ≡ |+⟩⊗𝑛 ≡ ∑
2
𝑛

𝑖=1 |𝑖⟩, the ground state of −𝑋𝑛
2 Prepare |𝜓𝑏⟩ up to exponentially small error with jump

−𝑋𝑛 → 𝐻𝑏

3 Prepare
Π∗ |𝜓𝑏 ⟩
∥Π∗ |𝜓𝑏 ⟩ ∥ up to exponentially small error with jump

𝐻𝑏 → 𝐻
|𝐸∗ |

4 Measure in the computational basis to produce |𝑧∗⟩

2.3 Condition for Success and Overall Runtime
Note that implementing the jumps in steps 2 and 3 of the algorithm

requires an upper bound on 𝐸𝑏 , a lower bound on the excited energy

of 𝐻𝑏 , and lower bounds on the quantities |⟨+++|𝜓𝑏⟩| and ∥Π∗ |𝜓𝑏⟩∥,
where here |+++⟩ ≡ |+⟩⊗𝑛 (see [23, App. B] for a formal presentation

of jump implementation). The bounds on |⟨+++|𝜓𝑏⟩| and ∥Π∗ |𝜓𝑏⟩∥
can be “guessed” in the sense that one can try one value, see if

the algorithm succeeds (it is easy to check if the output 𝑦 of the

algorithm satisfies 𝐻 (𝑦) = 𝐸∗), and if not, repeat with a guess that

is smaller by a fixed constant factor. This procedure contributes at
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most poly(𝑛) overhead compared to if these quantities were known

ahead of time. On the other hand, bounds on the eigenenergies

of 𝐻𝑏 must be shown separately, and are not guaranteed to hold

for every possible cost function 𝐻 and choice of parameters 𝑏, [.

Accordingly, we define a condition under which success can be

proved (and later we prove that the condition holds in specific

cases).

Condition 1 (large-excited-energy condition). We say
the Hamiltonian 𝐻𝑏 , as defined in Eq. (5), satisfies the large-excited-
energy condition if the ground-state of 𝐻𝑏 is non-degenerate and all
excited states have energy greater than −1 + 1/𝑛.

Observe that when𝑏 = 0, the Hamiltonian𝐻𝑏 is equal to −𝑋/𝑛
and the large-excited-energy condition is satisfied since all excited

states have energy at least −1 + 2/𝑛. In the situations for which

we prove rigorous bounds, the large-excited-energy condition will

continue to hold as 𝑏 is increased, up until some 𝑛-independent

threshold. For example, in Fig. 1, we plot the numerically computed

eigenvalues of 𝐻𝑏 as a function of 𝑏 for an 𝑛 = 20 instance drawn

from the 3-spin ensemble, with [ = 0.5. For this instance, the large-

excited-energy condition persists past 𝑏 = 0.8.

0.0 0.2 0.4 0.6 0.8 1.0
b

−1.10

−1.05

−1.00

−0.95

−0.90

en
er

gy

second-excited energy
first-excited energy
ground-state energy

Figure 1: Plot of the lowest three eigenvalues of 𝐻𝑏 as a func-
tion of 𝑏, for an 𝑛 = 20 instance randomly chosen from the
3-spin ensemble, with [ = 0.5. Eigenvalues were computed nu-
merically using exact diagonalization. The two key features
are that the spectral gap remains large and the ground state
energy barely shifts from −1 until a relatively large value of
𝑏, namely 𝑏 ≈ 0.85.

Theorem 1 (runtime). Fix a cost function 𝐻 and parame-
ters [ and 𝑏, which defines 𝐻𝑏 through Eq. (5). If 𝐻𝑏 has the large
excited-energy condition (Cond. 1), then with probability at least
1 − exp(−Ω(𝑛)), the algorithm outputs an optimal solution 𝑧∗ of 𝐻
and runs in time at most

poly(𝑛)
(
|⟨+++|𝜓𝑏⟩|−1 + ∥Π∗ |𝜓𝑏⟩∥−1

)
, (6)

where |𝜓𝑏⟩ is the ground state of 𝐻𝑏 and Π∗ is the projector onto the
ground space of 𝐻 .

Proof. Note that since 𝑔[ (𝐻/|𝐸∗ |) is a negative semidefinite

operator, we have ⟨+++|𝐻𝑏 |+++⟩ ≤ −1 and thus, by the variational

principle, the ground state energy 𝐸𝑏 of 𝐻𝑏 satisfies 𝐸𝑏 ≤ −1.
The large-excited-energy condition then implies that Δ = 1/𝑛 is a

lower bound on the spectral gap of 𝐻𝑏 . We now refer to the steps

described in the pseudocode of Algorithm 1. The only nontrivial

steps are steps 2 and 3. Step 2 performs the jump −𝑋/𝑛 → 𝐻𝑏 .

Note that −𝑋/𝑛 is a classical Hamiltonian as it is diagonal in

the Hadamard basis with efficiently computable entries. Thus, by

Prop. 1, we may choose 𝛿 = 𝑒−Ω (𝑛)
and assert that step 2 prepares

|𝜓𝑏⟩ up to error 𝛿 (in standard Euclidean vector norm) and runs

in time poly(𝑛)Δ−1 |⟨+++|𝜓𝑏⟩|−1. Similarly, step 3 performs the jump

𝐻𝑏 → 𝐻/|𝐸∗ |. Noting that 𝐻/|𝐸∗ | is also a classical Hamiltonian,

and that Π∗
is its ground-space projector, Prop. 1 implies that it

prepares Π∗ |𝜓𝑏⟩ /∥Π∗ |𝜓𝑏⟩∥ up to error at most 2𝛿 and runs in time

poly(𝑛)Δ−1∥Π∗ |𝜓𝑏⟩∥−1. This is true even if the spectral gap of

𝐻/|𝐸∗ | is exponentially small. A subsequent computational basis

measurement produces an optimal solution 𝑧∗ with probability at

least 1 − 2𝛿 = 1 − exp(−Ω(𝑛)). As Δ−1
is poly(𝑛), the theorem

statement follows. □

Theorem 1 shows that the large-excited-energy condition is

sufficient for algorithmic success and a bound on its runtime. How-

ever, the large-excited-energy condition is not a necessary condi-

tion: a similar statement would follow for a relaxed version of the

condition, where the excited energy is at least −1+1/poly(𝑛). Addi-
tionally, the algorithm could still succeed even if the excited energy

falls beneath−1, as long as there is a sizable gap between the ground
and excited energy and a good approximation to ground/excited

energy. We focus on the large-excited-energy condition because

we will be able to prove that it holds under certain circumstances.

3 PROVING SPEEDUP OVER GROVER
The runtime statement in Theorem 1 implies that a super-Grover

speedup can be shown given sufficient control of the spectrum of

𝐻𝑏 (and in particular the first-excited energy) in combination with

an upper bound on the quantity |⟨+++|𝜓𝑏⟩|−1 + ∥Π∗ |𝜓𝑏⟩∥−1, which
is essentially equivalent to a lower bound on the overlaps ⟨+++|𝜓𝑏⟩
and ∥Π∗ |𝜓𝑏⟩∥. These tasks are accomplished separately, and in

this section, we illustrate all the technical steps involved. Most of

the proofs appear in [23, App. A]. In Sec. 3.1 we define additional

conditions needed to organize our technical results. In Sec. 3.2, we

show how, when these conditions are met, the runtime enjoys a

super-Grover speedup. In Sec. 3.3, we show how a tail bound on the

spectral density of the cost function implies that all of the conditions

are met. We also discuss when such a tail bound is guaranteed to

hold, and what can be said in the case there is no such tail bound.

3.1 Additional Conditions and Properties
In addition to the large-excited-energy condition, we define the

small-ground-energy-shift condition and the 𝛼-subdepolarizing

property, which will be needed to bound the runtime of the algo-

rithm.
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Condition 2 (small-ground-energy-shift condition). We
say that the Hamiltonian 𝐻𝑏 , as defined in Eq. (5), satisfies the small-
ground-energy-shift condition if the ground-state energy 𝐸𝑏 of 𝐻𝑏
satisfies −1 − 1/𝑛3 ≤ 𝐸𝑏 ≤ −1.

To get a qualitative sense of the idea behind Cond. 2, observe

the remarkable flatness of the ground state energy of the 3-spin

instance depicted in Fig. 1: 𝐸𝑏 stays very close to −1 until relatively
large values of 𝑏.

We also define a property of cost functions that we call the

𝛼-subdepolarizing property, which is important for establishing a

lower bound on the overlap that determines the algorithm’s runtime.

To define 𝛼-subdepolarizing, we introduce the notation 𝑦 ∼ 𝑥

to denote that bit string 𝑦 ∈ {+1,−1}𝑛 is generated from 𝑥 by

flipping a single bit chosen uniformly at random. First we define

𝛼-depolarizing before generalizing to 𝛼-subdepolarizing.

Definition 1 (𝛼-depolarizing). We say a cost function 𝐻 is
𝛼-depolarizing if for every bit string 𝑥

E
𝑦∼𝑥

𝐻 (𝑦) = (1 − 𝛼)𝐻 (𝑥) (7)

We call the property 𝛼-depolarizing because it states that flip-

ping a single bit at random brings the energy toward zero by exactly

a fixed factor 1 − 𝛼 , on average. We can immediately note that all

MAX-E𝑘-LIN2 instances are 𝛼-depolarizing, due to the fact that

every term has the same degree.

Proposition 2. Any MAX-E𝑘-LIN2 instance has the 𝛼-
depolarizing property with 𝛼 = 2𝑘/𝑛.

Proof. If one of the 𝑛 bits is flipped at random, then the sign

of any degree-𝑘 monomial will flip with probability 𝑘/𝑛. Thus the
expectation value of the monomial is brought toward zero by a

factor 1 − 2𝑘/𝑛, and the monomial is 2𝑘/𝑛-depolarizing. Moreover,

the sum of cost functions all of which possess the 𝛼-depolarizing

property is also 𝛼-depolarizing, by linearity of Eq. (7). This extends

the property to all MAX-E𝑘-LIN2 instances. □

Although Hastings [32] did not use the same terminology,

it was precisely the 𝛼-depolarizing property that led to an upper

bound on the runtime of the short-path algorithm that suggested

the possibility of super-Grover speedup. We now define the 𝛼-

subdepolarizing property.

Definition 2 (𝛼-subdepolarizing). Consider a pair (𝐻,𝑔),
where 𝐻 is a cost function with optimal value 𝐸∗ < 0 and 𝑔 :

[−1,∞) → [−1, 0] is a monotonic non-decreasing, concave func-
tion that is twice-differentiable at every point where it is nonzero. Let
𝑓 (𝑥) := −𝑔(−𝑥), so that 𝑓 is monotonically non-decreasing and con-
vex. We say that (𝐻,𝑔) is 𝛼-subdepolarizing if for any set of constants
0 < 𝑐1, 𝑐2, . . . , 𝑐𝑇 < 1,

E
𝑦∼𝑥

𝑇∏
𝑡=1

𝑓

(
𝑐𝑡𝐻 (𝑦)
𝐸∗

)
≥

𝑇∏
𝑡=1

𝑓

(
𝑐𝑡 (1 − 𝛼)𝐻 (𝑥)

𝐸∗

)
. (8)

The definition appears complex, but it attempts to capture the

same idea as 𝛼-depolarizing, with minor relaxations that allow for

MAX-𝑘-CSP cost functions to be included. First, note that if 𝐻 is

𝛼-depolarizing, then (𝐻,𝑔) is 𝛼-subdepolarizing for any function 𝑔

satisfying the criteria in Def. 2, which includes 𝑔[ from Eq. (4) for

any [ (see [23, App. A] for a more complete justification). Second,

note that anyMAX-𝑘-CSP instance has the property for the function

𝑔[ for any [, as stated in the following proposition, which is proved

in [23, App. A].

Proposition 3. Suppose 𝐻 is a MAX-𝑘-CSP instance with
𝑚 terms and optimal value 𝐸∗. Then, for any [, (𝐻,𝑔[ ) is
𝛼-subdepolarizing with

𝛼 =
𝑚

|𝐸∗ |
𝑘2𝑘

(1 − [)𝑛 (9)

In particular, if𝐻 is frustration free, i.e. fully satisfiable, then |𝐸∗ | =𝑚
and 𝛼 = 𝑘2𝑘/(1 − [)𝑛.

3.2 Bounding the Runtime With an
Approximate Ground-State Projector

Per Theorem 1, the runtime of the algorithm (assuming the large-

excited-energy condition) depends on the quantity |⟨+++|𝜓𝑏⟩|−1 +
∥Π∗ |𝜓𝑏⟩∥−1. We wish to upper bound this quantity. In particular,

we want to show that it is at most 2
(0.5−𝑐 )𝑛

for some constant 𝑐 ,

implying a super-Grover speedup.

Let 𝑧∗ be any optimal bit string and note that ∥Π∗ |𝜓𝑏⟩∥ ≥
⟨𝑧∗ |𝜓𝑏⟩ (recall we take the convention that all of the entries of |𝜓𝑏⟩
are positive in the computational basis). Then we have

⟨+++|𝜓𝑏⟩−1 + ∥Π∗ |𝜓𝑏⟩∥−1 ≤ ⟨+++|𝜓𝑏⟩−1 +
〈
𝜓𝑏 |𝑧∗

〉−1
≤ 2

(
⟨+++|𝜓𝑏⟩

〈
𝜓𝑏 |𝑧∗

〉)−1
= 2 ⟨+++| Π𝑏

��𝑧∗〉−1 (10)

where Π𝑏 = |𝜓𝑏⟩ ⟨𝜓𝑏 | is the ground-state projector for the Hamil-

tonian 𝐻𝑏 . We will replace Π𝑏 by an approximate ground state
projector, a tool that has been used successfully in the completely

different context of proving area laws for ground states of many-

body Hamiltonians [3, 9, 10]. As in the context of area laws, our

approximate ground state projector will be a degree-ℓ polynomial

in 𝐻𝑏 ; however, where they used Chebyshev polynomials, we need

only examine the simpler polynomial

𝑃ℓ :=

(
𝐻𝑏

𝐸𝑏

)ℓ
. (11)

The operator 𝑃ℓ approximates Π𝑏 since |𝜓𝑏⟩ is an eigenstate with

eigenvalue 1, and, assuming ℓ is sufficiently large, the other eigen-

values of 𝑃ℓ will be close to zero. We show that ℓ = Ω(𝑛2) is
sufficiently large, assuming the large-excited-energy condition.

Lemma 2. If 𝐻𝑏 satisfies the large-excited-energy condition
(Cond. 1), then for any 𝑧 and any 𝐿 ≥ (` + 1.5 ln(2))𝑛2, the following
equation holds either for ℓ = 𝐿 or ℓ = 𝐿 + 1 (or both):

⟨+++|𝜓𝑏⟩ ⟨𝜓𝑏 |𝑧⟩ ≥ ⟨+++| 𝑃ℓ |𝑧⟩ − 2
−𝑛/2𝑒−`𝑛 . (12)

Proof. Consider the operator −𝑋/𝑛, which is the first term

of 𝐻𝑏 , as defined in Eq. (5). Its maximum eigenvalue is 1, associated

with eigenvector |−−−⟩ ≡ 2
−𝑛/2 ( |0⟩ − |1⟩)⊗𝑛 , and its second-largest

eigenvalue is 1−2/𝑛. Meanwhile, the second term 𝑏 𝑔[ (𝐻/|𝐸∗ |) is a
negative semidefinite operator. Denoting the largest eigenvalue of

𝐻𝑏 by 𝐸′
𝑏
, and the associated eigenvector by |𝜓 ′

𝑏
⟩, we can say that

𝐸′
𝑏
≤ 1. Additionally, we can assert that all other eigenvalues of

𝐻𝑏 are smaller than 1 − 2/𝑛. To see this, suppose for contradiction
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that there were two eigenvectors |𝑝⟩ and |𝑞⟩ of 𝐻𝑏 with eigenvalue

greater than 1 − 2/𝑛. Then the state |𝑝⟩ − ⟨−−−|𝑝 ⟩
⟨−−−|𝑞⟩ |𝑞⟩ is orthogonal

to |−−−⟩ and has average energy larger than 1 − 2/𝑛. However, this
is impossible, since the average value of the −𝑋/𝑛 term can be at

most 1 − 2/𝑛 (as the state is orthogonal to |−⟩) and the average

energy of the 𝑏 𝑔[ (𝐻/|𝐸∗ |) term can be at most 0.

The operator 𝑃ℓ has the same eigenvectors as 𝐻𝑏 , and for each

eigenvalue _ of𝐻𝑏 , (_/𝐸𝑏 )ℓ is an eigenvalue of 𝑃ℓ . Thus, in the limit

of ℓ → ∞, 𝑃ℓ approaches the projector |𝜓𝑏⟩ ⟨𝜓𝑏 |. By assumption,

ℓ ≥ 𝐿 ≥ a𝑛2 with a = ` + 1.5 ln(2). Hence, by the large-excited-

energy condition, all 2
𝑛
eigenvalues of 𝑃ℓ have magnitude at most

(1− 1/𝑛)a𝑛2 ≤ 𝑒−a𝑛 ≤ 2
−3𝑛/2𝑒−`𝑛 , except for the eigenvalue asso-

ciated with |𝜓𝑏⟩, which is 1, and (if 𝐸′
𝑏
> 1 − 1/𝑛) the eigenvalue

associated with |𝜓 ′
𝑏
⟩ which is (𝐸′

𝑏
/𝐸𝑏 )ℓ . Denote these 2𝑛 − 2 eigen-

values by _𝑖 and associated eigenvectors by |_𝑖 ⟩ for 𝑖 = 1, . . . , 2𝑛 −2.

Thus, the quantity ⟨+++| 𝑃ℓ |𝑧⟩ is equal to

⟨+++|𝜓𝑏⟩ ⟨𝜓𝑏 |𝑧⟩ +
(
𝐸′
𝑏

𝐸𝑏

)ℓ 〈
+++|𝜓 ′

𝑏

〉 〈
𝜓 ′
𝑏
|𝑧
〉
+
2
𝑛−2∑︁
𝑖=1

_𝑖 ⟨+++|_𝑖 ⟩ ⟨_𝑖 |𝑧⟩

which is upper bounded by

⟨+++|𝜓𝑏⟩ ⟨𝜓𝑏 |𝑧⟩ +
(
𝐸′
𝑏

𝐸𝑏

)ℓ 〈
+++|𝜓 ′

𝑏

〉 〈
𝜓 ′
𝑏
|𝑧
〉
+ (2𝑛 − 2)2−1.5𝑛𝑒−`𝑛 (13)

In the case where 𝐸′
𝑏
> 1 − 1/𝑛 > 0, we have 𝐸′

𝑏
/𝐸𝑏 < 0 (since

𝐸𝑏 < 0) and hence (𝐸′
𝑏
/𝐸𝑏 )ℓ ⟨+++|𝜓 ′

𝑏
⟩⟨𝜓 ′

𝑏
|𝑧⟩ is non-positive for exactly

one of the choices ℓ = 𝐿 or ℓ = 𝐿 + 1. For this choice of ℓ , we have

⟨+++|𝜓𝑏⟩ ⟨𝜓𝑏 |𝑧⟩ ≥ ⟨+++| 𝑃ℓ |𝑧⟩ − 2
−𝑛/2𝑒−`𝑛 . (14)

In the case where 𝐸′
𝑏
≤ 1 − 1/𝑛, the second term of Eq. (13) can

be combined with the third term to arrive at the same result in

Eq. (14). □

Lemma 2, together with Eq. (10), reduces the task of upper

bounding the runtime of the algorithm to lower bounding the quan-

tity ⟨+++| 𝑃ℓ |𝑧∗⟩ for ℓ = Ω(𝑛2). We produce a lower bound by ex-

panding 𝑃ℓ as a sum of 2
ℓ
terms using its definition in Eq. (11)

and the definition of 𝐻𝑏 in Eq. (5). Assuming the small-ground-

energy-shift condition (Cond. 2) and that ℓ < 𝑂 (𝑛3), we can say

that the magnitude of the denominator |𝐸𝑏 |ℓ is at most a constant,

as (1 +𝑂 (1/𝑛3))𝑂 (𝑛3 ) = 𝑂 (1). Each of these 2
ℓ
terms contributes

a positive amount to the sum; we lower bound the sum by lower

bounding each individual term under the assumption that (𝐻,𝑔[ )
has the 𝛼-subdepolarizing property (Def. 2). The result of this cal-

culation is captured in Lemma 3, which is proved in [23, App. A].

Lemma 3. Given positive parameters[ < 1,𝑏 < 1, 𝛼 < (1−𝑏)/2,
and integer ℓ , suppose that (𝐻,𝑔[ ) has the 𝛼-subdepolarizing property
(Def. 2), that 3/𝛼2 ≤ ℓ < 𝑛3, and that 𝐻𝑏 satisfies the small-ground-
energy shift condition (Cond. 2). Define the function 𝐹 : [0, 1] →
[0, 1] as follows.

𝐹 (𝑥) = 1 − 𝑥 + 𝑥 ln (𝑥) . (15)

Let 𝑧 ∈ {+1,−1}𝑛 be any assignment for which E := 𝐻 (𝑧)/|𝐸∗ |
satisfies E ≤ −(1−[). Then (noting that 𝑒−1−2𝑒−2 ≈ 0.0972 = Ω(1)),
we have

⟨+++| 𝑃ℓ |𝑧⟩ ≥ 2
−𝑛/2

exp

(
𝑏

𝛼

|E |
[
𝐹

(
1 − [
|E |

))
(𝑒−1 − 2𝑒−2) . (16)

These lemmas together imply that the following conditions

are sufficient for a super-Grover speedup: (i) the cost function

has the 𝛼-subdepolarizing property for 𝛼 = 𝑂 (1/𝑛), as is the case
for MAX-E𝑘-LIN2 and MAX-𝑘-CSP with limited frustration, and

(ii) 𝑏 and [ are constants independent of 𝑛 chosen such that 𝐻𝑏
satisfies the large-excited-energy and small-ground-energy-shift

conditions. Generally speaking, the larger 𝑏 and [ are, the larger

the speedup that can be shown. This is formally captured in the

following Theorem.

Theorem 4 (Super-Grover speedup). Let 𝐻 be a cost function
on 𝑛 variables with 𝑛 ≥ 4. Fix parameters [, 𝑏 and 𝑎. Suppose that
𝐻 has the 𝛼-subdepolarizing property (Def. 2) with 𝛼 = 𝑎/𝑛 and
1 ≤ 𝑎 < 𝑛(1 − 𝑏)/2. Suppose further that 𝐻𝑏 satisfies the large-
excited-energy condition (Cond. 1) and the small-ground-energy-shift
condition (Cond. 2). Then, Algorithm 1 successfully produces an op-
timal solution with probability 1 − 𝑒−Ω (𝑛) while running in time
bounded above by

poly(𝑛)2(0.5−𝑐 )𝑛 (17)

where

𝑐 =
𝑏𝐹 (1 − [)
𝑎[ ln(2) ≥ 𝑏[

2𝑎 ln(2) . (18)

Proof. Theorem 1, together with Eq. (10) and Lemma 2 imply

that for 𝐿 > (` + 1.5)𝑛2, the runtime is upper bounded by

poly(𝑛) (⟨+++| 𝑃ℓ
��𝑧∗〉 − 2

−𝑛/2𝑒−`𝑛)−1 (19)

for either ℓ = 𝐿 or ℓ = 𝐿+1, where |𝑧∗⟩ is any optimal solution to𝐻 .

We choose 𝐿 = 3.5𝑛2 (i.e. ` = 2) and note that, by the assumptions

of the lemma, 3/𝛼2 ≤ ℓ < 𝑛3 holds for both ℓ = 𝐿 and ℓ = 𝐿 + 1.

Thus all the conditions of Lemma 3 hold. As |E | = 1 in this case,

we have that the runtime is upper bounded by

poly(𝑛)2𝑛/2 (𝑒𝑛
𝑏𝐹 (1−[)

[𝑎 (𝑒−1 − 2𝑒−2) − 𝑒−2𝑛)−1 . (20)

The 𝑒−2𝑛 termwill be smaller than the first term by a constant factor

whenever 𝑛 ≥ 4. We can thus absorb it, as well as the 𝑒−1 − 2𝑒−2

factor, into the poly(𝑛) expression. This proves the theorem. Note

that 𝐹 (1 − [)/[ ≥ [/2 holds for 0 ≤ [ ≤ 1. □

Our results actually say something stronger: every bit string 𝑧

lying in a deep cost valley, that is, those for which𝐻 (𝑧) ≤ (1−[)𝐸∗,
will have overlap with |𝜓𝑏⟩ that is 2𝑐

′𝑛
larger than 2

−𝑛/2
for some

𝑛-independent constant 𝑐′. Thus, if slightly suboptimal solutions

are acceptable, the probability that our algorithm will find one of

these bit strings upon measurement of |𝜓𝑏⟩ is also boosted by an

amount 2
𝑐′𝑛

compared to measurement of |+++⟩.

3.3 Tail Bound on Spectral Density Implies
Conditions are Met

For a family of cost functions with the 𝛼-subdepolarizing property

with 𝛼 = 𝑂 (1/𝑛), Theorem 4 reduces the task of showing super-

Grover speedup to the task of proving that the large-excited-energy

and small-ground-energy-shift conditions are met. In general, we

do not show that the conditions are always satisfied. Rather, we

show that they are satisfied whenever there is a tail bound on the

cumulative number of assignments to 𝐻 beneath a certain cost

(i.e. integral of spectral desnity of 𝐻 ), as follows.
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Lemma 5. Let 𝐻 be a cost function over assignments {+1,−1}𝑛 ,
and let 𝐶 (𝐸) denote the number of assignments to 𝐻 with cost value
beneath 𝐸, i.e.

𝐶 (𝐸) := |{𝑧 : 𝐻 (𝑧) ≤ 𝐸}| . (21)

Suppose that for a certain choice of [ < 1

𝐶
(
(1 − [)𝐸∗

)
≤ 2

(1−𝛾 )𝑛 . (22)

Suppose further that 𝛾 ≥ (1 + 4 log
2
(𝑛))/𝑛 (which holds for any

𝑛-independent 𝛾 and sufficiently large 𝑛). Then the large-excited en-
ergy condition (Cond. 1) and the small-ground-energy-shift condition
(Cond. 2) are met for the Hamiltonian 𝐻𝑏 (as defined in Eq. (5)) when-
ever

𝑏 ≤ ln(2)𝛾
2 + ln(2) ≈ 0.257𝛾 (23)

Lemma 5 is proved in [23, App. A]; the proof utilizes the log-

Sobolev inequality and tools from statistical mechanics.

Proof sketch of Lemma 5. The basic idea is as follows. For

the large-excited-energy condition to be violated, there must exist

a state |𝜙⟩ orthogonal to |+++⟩ for which ⟨𝜙 |𝐻𝑏 |𝜙⟩ ≤ −1+ 1/𝑛. Thus,
referring to the definition of 𝐻𝑏 in Eq. (5), there must be a number

U satisfying −1 ≤ U ≤ 0 such that the following two relations

hold simultaneously:

U = ⟨𝜙 | 𝑔[ (𝐻/|𝐸∗ |) |𝜙⟩ (24)

⟨𝜙 |𝑋/𝑛 |𝜙⟩ ≥ 1 − 1/𝑛 + 𝑏U . (25)

Let 𝑝 (𝑧) = |⟨𝑧 |𝜙⟩|2 denote the probability of obtaining 𝑧 when

measuring |𝜙⟩ in the computational basis. Viewing 𝑝 as a proba-

bility distribution over assignments, Eq. (24) says that the average

cost for the function 𝑔[ (𝐻/|𝐸∗ |) of a sample from 𝑝 is equal toU.

Meanwhile, the log-Sobolev inequality [32, 49] allows us to turn

the lower bound on ⟨𝜙 |𝑋/𝑛 |𝜙⟩ in Eq. (25) into a lower bound on

𝑆 , the (log base-2) entropy of 𝑝 , which reads:

𝑆 ≥ 𝑛
(
1 − ln(2)−1 (−𝑏U + 1/𝑛)

)
. (26)

This turns the question into a statistical mechanics problem: is

there a distribution 𝑝 with entropy greater than 𝑛(1 − 𝑂 ( |U|)),
yet average cost of 𝑔[ (𝐻/|𝐸∗ |) equal to U? Here, the tail bound

constrains what is possible: since 𝑔[ zeroes out the cost of any

assignment 𝑧 for which𝐻 (𝑧) > (1−[)𝐸∗, there are at most 2
(1−𝛾 )𝑛

assignments 𝑧 that have negative cost for 𝑔[ (𝐻/|𝐸∗ |). In order to

have a distribution with average cost U < 0, a large portion of the

probability must be concentrated on this subset of 2
(1−𝛾 )𝑛

assign-

ments, constraining the entropy. Formally, for this step we use an

elementary fact from statistical mechanics: the distribution that

maximizes entropy for a fixed average energy (average cost) is a

Gibbs distribution, where assignments with cost 𝐸 are allocated

probability proportional to 𝑒−𝛽𝐸 for some value of 𝛽 , which physi-

cally corresponds to the inverse temperature. Applying these tools,

we are able to show that whenever 𝑏 ≤ 0.257𝛾 , it is not possible for

Eq. (24) and Eq. (25) to simultaneously be true, implying that the

large-excited-energy condition holds.

Separately, the small-ground-energy-shift condition follows

from a perturbation-theory argument. Viewing 𝑏 𝑔[ (𝐻/|𝐸∗ |) as a
perturbation to −𝑋/𝑛 in the expression for 𝐻𝑏 in Eq. (5), the mag-

nitude of the first-order shift in energy is |⟨+++| 𝑏 𝑔[ (𝐻/|𝐸∗ |) |+++⟩|,

which is smaller than 𝑏2−𝛾𝑛 (an exponentially small number), sim-

ply due to the tail bound, and the fact that only 2
(1−𝛾 )𝑛

entries of

𝑔[ (𝐻/|𝐸∗ |) have nonzero cost. The full proof also bounds higher-

order contributions. □

To get a sense of the interplay between the tail bound and the

magnitude of the super-Grover speedup, suppose 𝐻 (𝑧) comes from

a family of cost functions with a unique optimal solution and for

which exactly half of the eigenvalues are negative, so that𝐶 (𝐸∗) = 1

and 𝐶 (0) = 2
𝑛−1

. Thus, asymptotically speaking, the tail bound is

satisfied with 𝛾 = 1 at [ = 0, and with 𝛾 = 0 at [ = 1. However,

from Theorem 4, we see that the magnitude of the super-Grover

speedup is zero if either [ = 0 or if 𝛾 = 0 (since 𝛾 = 0 implies 𝑏 = 0,

by Lemma 5), so in both of these cases, these observations are not

sufficient to show a super-Grover speedup. To show a super-Grover

speedup, we need a nontrivial tail bound for nonzero [, 𝛾 to be true.

What happens if the tail bound condition is not satisfied for any

choice of [,𝛾? Then, regardless how small we make [, there must be

many assignments for which 𝐻 (𝑧) ≤ (1 − [)𝐸∗. There are so many

assignments that a classical algorithm could produce an assignment

achieving a 1 − [ approximation ratio by simple repetition in sub-

exponential time for any constant value of [. Thus, instances with

the 𝛼-subdepolarizing property can be partitioned into a set where

our quantum algorithm has a super-Grover speedup, and a set that

are unusually classically easy in a precise sense.

When can the tail bound be shown? For spin-glass-like cost

functions consisting of random local terms, we often expect the

spectral density to be roughly Gaussian, with the minimum cost

assignment among all 2
𝑛
assignments lying Ω(

√
𝑛) standard de-

viations beneath 0. In this case, an exponential tail bound can be

shown for any [ > 0. As [ increases, the corresponding bound 𝛾

decreases.

Proposition 4. In each of the following situations, a tail bound
of the form in Eq. (22) holds for any [ and some choice of 𝛾 that
depends on [ but is independent of 𝑛.

(1) If the cost function 𝐻 is a MAX-𝑘-CSP instance where
each variable participates in no more than 2𝑘𝑚/𝑛 of the𝑚
clauses2, then for any [ a tail bound holds with

𝛾 =

(
|𝐸∗ |
𝑚

)
2 (1 − [)2

2 ln(2)22𝑘𝑘2
(27)

(2) If the cost function 𝐻 is randomly chosen from the 𝑘-spin
ensemble of MAX-E𝑘-LIN2 instances, then for any [ a tail
bound holds with probability at least 1− 2

−𝛾𝑛+1 over choice
of instance, with

𝛾 =
(1 − [)2

32𝜋 ln(2)𝑘2
(28)

Proof. Each item is proved separately in [23, App. A]. □

3.4 Formal Statement of Main Results
Theorem 6. Let 𝐻 be an instance of Quadratic Unconstrained

Binary Optimization (QUBO) with 𝑛 ≥ 12 or MAX-E𝑘-LIN2 with
𝑛 ≥ 6𝑘 . Let 𝛾0 = (1+ 4 log

2
(𝑛))/𝑛 (and note that 𝛾0 → 0 as 𝑛 → ∞).

2
In the context of showing super-Grover speedup, this variable-participation restriction

can be assumed for all MAX-𝑘-CSP instances without loss of generality. See the proof

of Theorem 7 for details.
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For every 𝛾 ∈ [𝛾0, 1] and every [ ∈ [0, 1], one of the following must
be true.

(a) There is a quantum algorithm running in time
𝑂∗ (2(0.5−𝑐 )𝑛) that produces an optimal solution to
𝐻 with probability at least 1 − 𝑒−Ω (𝑛) , where

𝑐 =
1

4(2 + ln(2))
𝛾[

𝑘
≈ 0.0928

𝛾[

𝑘
(29)

with 𝑘 = 2 in the case of QUBO.
(b) There is a classical algorithm which repeatedly samples as-

signments uniformly at random that outputs a solution 𝑧 for
which 𝐻 (𝑧) ≤ 𝐸∗ (1 − [) in expected time 𝑂∗ (2𝛾𝑛).

Thus, if (𝑏) is the case for arbitrarily small [ and arbitrarily small
𝛾 , we can say that the classical algorithm can achieve an arbitrarily
good approximation to the optimal cost value in sub-exponential time.

Proof. Rather than analyze QUBO directly, we employ a well-

known reduction from QUBO to MAX-E2-LIN2: given a QUBO

instance𝐻 on 𝑛 variables, construct a MAX-E2-LIN2 instance𝐻 ′
on

𝑛+1 variables by introducing a binary variable 𝑧0 and multiplying it

with all degree-1 terms of𝐻 . Since all terms of𝐻 ′
have even degree,

there is a Z2 symmetry where the value of 𝐻 ′ (𝑧) is unchanged
under a flip of all bits of 𝑧; thus, the spectrum of 𝐻 ′

is the same as

the spectrum of 𝐻 , with each energy appearing twice. The ground

state of 𝐻 can be determined by computing a ground state 𝑧 of 𝐻 ′

and flipping the bits 𝑧1, . . . , 𝑧𝑛 if 𝑧0 = −1. Since 𝐻 and 𝐻 ′
have the

same spectrum, one will obey a tail bound of the form of Eq. (22) if

and only if the other obeys the same tail bound. Thus all subsequent

statements made about MAX-E𝑘-LIN2 will also apply to QUBOwith

the substitution 𝑘 = 2.

Note that by Prop. 2, any MAX-E𝑘-LIN2 instance 𝐻 is 𝛼-

depolarizing (Def. 1) with 𝛼 = 2𝑘/𝑛. In [23, App. A] it is shown that

this implies that for every [ the pair (𝐻,𝑔[ ) is 𝛼-subdepolarizing
(Def. 2) with the same value of 𝛼 . For a certain choice of [ and 𝛾 ,

either 𝐻 satisfies a tail bound of the form in Eq. (22) (case (a)), or it

does not (case (b)).

In case (a), Lemma 5 implies that𝐻𝑏 satisfies the large-excited-

energy and small-ground-energy-shift conditions when we choose

𝑏 = 𝛾 ln(2)/(2 + ln(2)). Note that if 𝛾 < 1 then 𝑏 < 0.3. So long as

𝑛 ≥ 6𝑘 , the condition 1 ≤ (𝛼𝑛) ≤ 𝑛(1−𝑏)/2 will hold, and we may

apply Theorem 4 to prove the theorem statement.

In case (b), the fact that there are more than 2
(1−𝛾 )𝑛

assign-

ments with cost at most (1 − [)𝐸∗ among 2
𝑛
total assignments

implies that the average number of samples the classical algorithm

must make before finding one of these assignments is at most 2
𝛾𝑛

.

Assuming the algorithm terminates as soon as it finds one such

assignment, and noting that each sample can be drawn in poly(𝑛)
time, the statement follows. □

Theorem 7. There is a quantum algorithm which, for any in-
stance of MAX-𝑘-CSP, produces an optimal solution with probability
at least 1 − 𝑒−Ω (𝑛) while running in time 𝑂∗ (2(0.5−𝑐 )𝑛), where

𝑐 = 0.00722

(
|𝐸∗ |
𝑚

)
3

1

2
3𝑘𝑘3

(30)

with𝑚 denoting the number of clauses and 𝐸∗ denoting the optimal
value of the instance. In particular, the question of whether or not
the instance is fully satisfiable can be answered with probability

1 − 𝑒−Ω (𝑛) in time 𝑂∗ (2(0.5−𝑐 )𝑛) setting |𝐸∗ |/𝑚 = 1 in the above
expression for 𝑐 . If additionally 𝑘 = 3, we find that 𝑐 = 5.22 × 10

−7.

Proof. We may assume 𝐸∗ is known. If it is not known, we
may simply loop through all possible values that 𝐸∗ could possibly

take, which incurs only polynomial overhead by the following

argument. Note that, in the general setting, there are at most𝑚 ≤
𝑛𝑘 clauses and for each clause C𝑡 , the value of C𝑡 is −1 when

satisfied and 𝑠𝑡/(2𝑘 − 𝑠𝑡 ) when not satisfied, where 1 ≤ 𝑠𝑡 ≤ 2
𝑘 − 1

denotes the number of satisfying assignments to C𝑡 . Thus, for every
𝑡 and every assignment, the value of C𝑡 is an integral multiple of

[(2𝑘 − 1)!]−1, and the number of distinct values 𝐸∗ can possibly

take is upper bounded by (2𝑘 − 1)!𝑚 = poly(𝑛).
First, assume that each variable of 𝐻 participates in at most

2𝑘𝑚/𝑛 clauses. We fix a value of [ to be specified later. By Prop. 3,

the pair (𝐻,𝑔[ ) has the 𝛼-subdepolarizing property with

𝛼 =
𝑚

|𝐸∗ |
𝑘2𝑘

(1 − [)𝑛 . (31)

Furthermore, by Prop. 4,𝐻 obeys a tail bound of the form of Eq. (22)

with

𝛾 =

(
|𝐸∗ |
𝑚

)
2 (1 − [)2

2 ln(2)22𝑘𝑘2
. (32)

By Lemma 5, this implies that the large-excited-energy and small-

ground-energy-shift conditions are satisfied when we choose 𝑏 =

𝛾 ln(2)/(2 + ln(2)). By Theorem 4, and substituting our choices for

𝑏 and 𝛾 above, the runtime is 𝑂∗ (2(0.5−𝑐 )𝑛) with

𝑐 =

[
1

2 ln(2) (2 + ln(2))
(1 − [)3𝐹 (1 − [)

[

] (
|𝐸∗ |
𝑚

)
3

1

2
3𝑘𝑘3

. (33)

The expression in brackets achieves its maximum of 0.0145 at [ =

0.189.

Now, suppose some non-empty set of variables participates in

more than 2𝑘𝑚/𝑛 clauses. There can be at most 𝑛/2 such variables,

and we can identify them in polynomial time. We may design a

more complex quantum algorithm that enumerates over all 2
𝑛/2

possible settings of these 𝑛/2 variables, and for each one determines

the resulting MAX-𝑘-CSP formula with𝑚 clauses on the remaining

𝑛/2 variables. Each of these formulas will satisfy the constraint of

having each variable participate in at most 2𝑘𝑚/(𝑛/2) clauses. Thus,
conditioned on each particular setting of the first 𝑛/2 variables, the
algorithmwill find an optimal assignment in𝑂∗ (2(0.5−𝑐 ) (𝑛/2) ) time,

or if there is no such optimal assignment consistent with that setting,

it can be made to output a fail flag. By running the exhaustive search

over the 2
𝑛/2

assignments coherently and performing amplitude

amplification on the event that an optimal assignment is found,

the overall runtime is𝑂∗ (20.5(𝑛/2)2(0.5−𝑐 ) (𝑛/2) ) = 𝑂∗ (2(0.5−𝑐/2)𝑛).
This is why the expression for 𝑐 in the theorem statement is a

factor of 2 smaller than what was found by numerical optimization

beneath Eq. (33). □

Theorem 8. There is a quantum algorithm which, for at least
a fraction 1 − 𝑒−Ω (𝑛/𝑘 ) instances drawn from the 𝑘-spin ensemble,
produces an optimal solution with probability at least 1 − 𝑒−Ω (𝑛)

while running in time 𝑂∗ (2(0.5−𝑐 )𝑛), where

𝑐 = (2.24 × 10
−4) 1

𝑘3
(34)
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Proof. By Prop. 2, any MAX-E𝑘-LIN2 instance 𝐻 is

𝛼-depolarizing (Def. 1) with 𝛼 = 2𝑘/𝑛. In [23, App. A], it is

shown that this implies that for every [ the pair (𝐻,𝑔[ ) is

𝛼-subdepolarizing (Def. 2) with the same value of 𝛼 . Furthermore,

by Prop. 4, 𝐻 obeys a tail bound of the form of Eq. (22) with

𝛾 =
(1 − [)2

32𝜋 ln(2)𝑘2
. (35)

By Lemma 5, this implies that the large-excited-energy and small-

ground-energy-shift conditions are satisfied when we choose 𝑏 =

𝛾 ln(2)/(2 + ln(2)). By Theorem 4, and substituting our choices for

𝑏 and 𝛾 above, the runtime is 𝑂∗ (2(0.5−𝑐 )𝑛) with

𝑐 =

[
1

64 ln(2)𝜋 (2 + ln(2))
(1 − [)2𝐹 (1 − [)

[

]
1

𝑘3
. (36)

The expression in brackets achieves its maximum of 2.24 × 10
−4

at

[ = 0.405, proving the theorem. □

4 SPEEDUP MECHANISM
In this section, we describe an inherently quantum feature of our

algorithm that might be regarded as the reason for the super-Grover

speedup. Then we discuss how classical algorithms might try to

replicate the behavior of our algorithm.

4.1 Mechanism for Speedup: Localization in
1-Norm vs. 2-Norm

In quantum mechanics, the Born rule dictates that probabilities of

measurement outcomes are the square of amplitudes of the wave-

function. In other words, if we want to measure the probability that

the wavefunction lies within a certain subset of the 2
𝑛
assignments,

we should use the 2-norm. This contrasts with standard probability

theory, where the 1-norm would be used.

In describing the mechanism for speedup for the short-path

algorithm [33], Hastings pointed to precisely this fact. In the short-

path algorithm, a state |𝜙⟩ was prepared that was simultaneously

localized in the 2-norm and de-localized in the 1-norm, in the fol-

lowing sense. Define

𝑤1 (𝑧) =
|⟨𝑧 |𝜙⟩|∑
𝑧 |⟨𝑧 |𝜙⟩|

𝑤2 (𝑧) =
|⟨𝑧 |𝜙⟩|2∑
𝑧 |⟨𝑧 |𝜙⟩|2

, (37)

both of which are probability distributions over inputs 𝑧. For the

state |𝜙⟩ prepared by the algorithm, the distribution𝑤2 had nearly

all its mass concentrated on the optimal solution 𝑧∗, while the

distribution 𝑤1 had an exponentially small 2
−𝑐𝑛

fraction of its

mass concentrated on 𝑧∗. In fact, if we break the assignments up

into subsets of equal Hamming distance from 𝑧∗, the subset with
the most𝑤1 mass was order-𝑛 bit flips away from 𝑧∗. This 1-norm
delocalization is what gave rise to the super-Grover speedup during

the large jumpmade by the algorithm, while the 2-norm localization

allowed the small jump to succeed with high probability.

Our algorithm exploits a similar effect to produce a super-

Grover speedup, although it does so in the Hadamard basis. That

is, the same comments for |𝜙⟩ above apply to the state |𝜓𝑏⟩ if we
redefine

𝑤1 (𝑢) =
|⟨𝑢 |𝜓𝑏⟩|∑
𝑢 |⟨𝑢 |𝜓𝑏⟩|

𝑤2 (𝑢) =
|⟨𝑢 |𝜓𝑏⟩|2∑
𝑢 |⟨𝑢 |𝜓𝑏⟩|2

, (38)

where the states |𝑢⟩ are the 2𝑛 𝑛-fold tensor products of |+⟩ and
|−⟩. The state |𝜓𝑏⟩ is has high overlap with |+++⟩ (see, e.g., Fig. 2):
thus, it is 2-norm localized in the Hadamard basis. Now, without

loss of generality, we assume the optimal solution is the computa-

tional basis state |0𝑛⟩ = 2
−𝑛/2 ( |+⟩ + |−⟩)⊗𝑛 . Then, the overlap that

determines the runtime of our algorithm is given by〈
0
𝑛 |𝜓𝑏

〉
= 2

−𝑛/2
∑︁

𝑢∈{+,−}𝑛
⟨𝑢 |𝜓𝑏⟩ . (39)

The statement that ⟨0𝑛 |𝜓𝑏⟩ ≥ 2
−(0.5−𝑐 )𝑛

is thus equivalent to the

statement

∑
𝑢 ⟨𝑢 |𝜓𝑏⟩ ≥ 2

𝑐𝑛
. This implies the denominator of the

definition of𝑤1 in Eq. (38) is at least 2
𝑐𝑛
, but meanwhile ⟨+++|𝜓𝑏⟩ ≈ 1,

meaning 𝑤1 (+++) ≤ 2
−𝑐𝑛

. In other words, an exponentially small

amount of 1-norm weight lies on the |+++⟩ basis state.
Crucially, this dichotomy between the distribution of weight in

the 1-norm and the 2-norm is only possible in quantum mechanics;

it is not obvious how one would exploit this phenomenon with a

classical algorithm. As a result, this mechanism has the potential

to deliver super-Grover speedups, and, potentially, super-quadratic

speedups compared to best-known classical algorithms.

4.2 Performance of Analogous Classical Markov
Chain Methods

While a classical algorithm cannot exactly replicate the same 1-

norm vs. 2-norm dichotomy that our quantum algorithm exploits,

it is valuable to scrutinize whether a classical algorithm might

nonetheless emulate our quantum algorithm. We identify two cate-

gories of classical algorithms based on sampling Markov processes

that might, in a certain sense, be regarded as classical analogues of

our algorithm. However, in both cases, they lack rigorous runtime

guarantees similar to those we have shown about our algorithm.

The first candidate analgoue is the classical algorithm men-

tioned in Sec. 1.4 that repeatedly samples the high-temperature

classical Gibbs distribution of the cost function (or some transforma-

tion applied to the cost function), a feat which can be accomplished

via classical Metropolis sampling or simulated annealing. Showing

that this classical algorithm runs in time𝑂∗ (2(1−𝑐 )𝑛) would require
proving that the associated Markov chain remains rapidly mixing

up to some sufficiently large inverse temperature 𝛽 . As rapid-mixing

proofs often leverage the log-Sobolev inequality and its relatives

(e.g., [25, 28, 55]), perhaps it is unsurprising that the log-Sobolev

inequality is also helpful for us in showing lower bounds on the

spectral gap of the Hamiltonian 𝐻𝑏 . However, despite a heuristic

connection between the inverse temperature 𝛽 in the Metropo-

lis sampling algorithm and the inverse transverse-field strength

parameter 𝑏 in our algorithm, there is no direct relationship be-

tween the runtime of the two algorithms. Indeed, a clearer quantum

analogue of simulated annealing is given by applying the “quan-

tum simulated annealing” algorithm proposed in Ref. [54] (see also

Refs. [4, 14, 40, 50, 58]), which, when combined with amplitude

amplification as in Ref. [44], gives a direct quadratic (but no larger)

quantum speedup of the classical algorithm described above.

The second candidate analogue of our quantum algorithm

is formed by applying a Quantum Monte Carlo (QMC) approach

to the Hamiltonian 𝐻𝑏 (see, e.g., [16, 21, 22, 26, 37]). A reason to

think that this might be successful is that our Hamiltonian 𝐻𝑏 is
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stoquastic and thus it does not have the sign problem [17]. Indeed,

the core step of our algorithm is the application of quantum phase

estimation to the stoquastic Hamiltonian 𝐻𝑏 , a situation that was

shown in Ref. [16] to admit a classical QMC simulation whenever

there exists a “guiding state.” In the case of 𝐻𝑏 , there is no obvious

state that satisfies the criteria of Ref. [16]: the state |+++⟩ falls short
since it differs from |𝜓𝑏⟩ by an exponentially large factor on some of

the amplitudes. More generally, showing that the QMC algorithm

can sample (up to inverse exponential precision) the same distri-

bution as computational basis measurements on the ground state

of 𝐻𝑏 requires proving that a certain Markov chain representing

the imaginary time evolution 𝑒−𝛽𝐻𝑏
remains rapidly mixing up to

imaginary time 𝛽 of order-𝑛2 (this is necessary to guarantee that the

second largest eigenvalue of 𝑒−𝛽𝐻𝑏
is exponentially smaller than

the largest eigenvalue). For comparison, Ref. [22] showed rapid

mixing for transverse-field Ising models up to imaginary time of

order (𝐽 (Δ + 2))−1, where 𝐽 is the maximum interaction strength

and Δ is the interaction-degree. This encompasses the SK model

(i.e. Eq. (3) with 𝑘 = 2), where, after normalization by |𝐸∗ | (order-𝑛),
we have 𝐽 −1 = 𝑂 (𝑛

√
𝑛) and Δ−1 = 1/𝑛, so this fails to prove a

relevant statement for our situation. However, it remains an inter-

esting question to examine the performance of QMC as a classical

simulation of our algorithm. Toward that end, it is interesting to

note that previous work (see fourth counterexample of Ref. [31]

and Ref. [37]) has demonstrated examples where the classical QMC

algorithm struggles to simulate its quantum counterpart due in

part to a discrepancy between wavefunction localization in the 1-

norm versus the 2-norm, the exact effect exploited by our quantum

algorithm (albeit in a different basis).

5 NUMERICAL RESULTS
5.1 Example Instance

0.0 0.2 0.4 0.6 0.8 1.0
b

−1.10

−1.05

−1.00

−0.95

−0.90

en
er

gy

second-excited energy
first-excited energy
ground-state energy

Figure 2: Plot of the relevant overlap values for the same
𝑛 = 20, [ = 0.5 3-spin instance from Fig. 1. Overlaps are deter-
mined by exact diagonalization of 𝐻𝑏 . The overlap |⟨+++|𝜓𝑏⟩|
(blue) determines the runtime of step 2 of Algorithm 1, and
the overlap |⟨𝑧∗ |𝜓𝑏⟩| (red) determines the runtime of step 3.

We present an example instance to confirm that the theoretical

picture of the algorithm holds in practice. Recall that in Fig. 1, we

presented the lowest three energy levels of𝐻𝑏 as a function of 𝑏 for

an 𝑛 = 20 instance chosen from the 3-spin ensemble, with [ = 0.5.

In Fig. 2, we show the overlap profile for the same instance, that is

|⟨+++|𝜓𝑏⟩| and |⟨𝑧∗ |𝜓𝑏⟩| as a function of 𝑏.

Our theoretical picture is largely confirmed. The ground state

energy stays remarkably unshifted from −1 and the spectral gap

remains open until 𝑏 is quite large, around 𝑏 = 0.85 for this instance.

Meanwhile, the overlap |⟨𝑧∗ |𝜓𝑏⟩| which determines the runtime

of the algorithm grows exponentially with 𝑏, even as the overlap

|⟨+++|𝜓𝑏⟩| remains close to 1 (the wavefunction remains localized

in the 2-norm even as it becomes increasingly de-localized in the

1-norm, see Sec. 4.1). This confirms that for this instance the first

step of the algorithm will succeed with little need for amplification

even when we take 𝑏 as large as 0.8, and that the second step has

success probability significantly better than Grover’s algorithm.

This instance also illustrates how there might be considerable

room for improvement in the theoretical analysis. Firstly, in Fig. 2,

the quantity |⟨𝑧∗ |𝜓𝑏⟩| appears to grow super-exponentially with 𝑏,

even as |⟨+++|𝜓𝑏⟩| remains close to 1, whereas the theoretical lower

bound from Lemma 2 predicts only exponential growth. Secondly,

the numerics indicate that the algorithm will work well for this

[ = 0.5 instance all the way up to 𝑏 = 0.8, whereas the theoretical

analysis only guarantees success up to a much smaller value of 𝑏.

Looking back at Eq. (35) and the text beneath, for 𝑘 = 3 and [ = 0.5,

the large-excited-energy condition (Cond. 1) is shown to hold only

for 𝑏 ≤ 1.02 × 10
−4

(and only for most random instances in the

ensemble). From the theory perspective, the important conclusion

is that this value is independent of 𝑛, but these numerics suggest

that there is a considerable gap between the theoretical bounds and

the empirical reality.

5.2 Estimation of Actual Size of Super-Grover
Speedup

Our theoretical analysis shows a super-Grover speedup but with

a very small lower bound on the size of the speedup. We illus-

trate numerically that the actual super-Grover speedup might be

much more substantial. By performing exact diagonalization on

30 random [ = 0.5, 𝑏 = 0.7 instances from the 3-spin ensemble

at each value 𝑛 = 17, 18, . . . , 23, we determine the growth of the

advantage with 𝑛. We chose 𝑏 = 0.7 to give some breathing room

between the maximum value at which the large-excited-energy

condition (Cond. 1) failed (roughly 𝑏 = 0.8) for the instance de-

picted in Fig. 1. Indeed, we found that for all of the instances we

diagonalized, 𝑏 = 0.7 fell comfortably below the avoided level cross-

ing between the ground-state and first-excited energies, and that

the large-excited-energy condition was satisfied. Thus, by Theo-

rem 1, the algorithm would succeed with runtime dependent on

|⟨𝑧∗ |𝜓0.7⟩|−1. In Fig. 3, we plot the quantity |⟨𝑧∗ |𝜓0.7⟩|−1 for each
instance, as well as the median among all 30 instances at each value

of 𝑛. Fitting the medians to a line on a log scale, we find that the best

fit is |⟨𝑧∗ |𝜓0.7⟩|−1 ≈ 0.28 × 2
0.427𝑛

; the 95% confidence interval on

the 0.427 value is [0.415, 0.439]. While the quality of the numerical

fit is encouraging, we caution that robust conclusions are difficult

to assert based on an exponential fit to just 7 data points that span

the small range from roughly 40 to roughly 300, less than even one

order of magnitude.
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A scaling of 𝑂∗ (20.43𝑛) would represent a material improve-

ment over Grover, if not a practically transformative one. A larger

speedup, closer to quartic compared with exhaustive enumeration

(corresponding to a quantum algorithm with 2
0.25𝑛

runtime), would

be needed to make the prospect of actual quantum advantage more

likely [11]. However, as we have not made much effort at optimizing

the parameters 𝑏 and [, we are optimistic that future examination

will reveal additional speedup over Grover than what we report

here.

17 18 19 20 21 22 23
number of spins,    

3 × 101

1 × 102

3 × 102

in
ve

rs
e o

ve
rla

p 
(r

un
tim

e)

n

instance
median
fit: 0.28 ⋅ 20.43n

Figure 3: Plot of |⟨𝑧∗ |𝜓𝑏⟩|−1 for several randomly chosen in-
stances from the 3-spin model at 𝑏 = 0.7 and [ = 0.5 at values
of 𝑛 ranging from 𝑛 = 17 to 𝑛 = 23. For each value of 𝑛, the
median value is also plotted. A fit of the medians to an expo-
nential yields the fit |⟨𝑧∗ |𝜓𝑏⟩|−1 = 0.276 · 20.427𝑛 .

6 CONCLUSION
We present a quantum algorithm that has a rigorous proof of a

speedup compared to Grover’s algorithm in certain cases. On the

one hand, as it stands, the algorithm is not likely to lead to a practical

advantage. For one, the size of the speedup in our proof is very small,

although we believe that further optimization of parameters and

extensions of the theory would lead to improvements. Additionally,

while numerical experiments suggest that the actual speedup is

non-negligible, it still appears to fall short of a cubic or quartic

speedup (in comparison to exhaustive enumeration), and thus, after

accounting for other overheads, it is unlikely to lead to practical

benefit without further improvements [11]. Finally, in most cases

where our algorithm has rigorous guarantees, the speedup over

the best classical algorithm is less than quadratic, owing to the

existence of clever classical algorithms that exploit structure to

beat exhaustive enumeration.

On the other hand, themechanism bywhich our algorithm gen-

erates a speedup has no obvious classical analogue. This contrasts

with many other speedups over exhaustive enumeration, which are

essentially a Grover speedup combined with a classical technique.

The inherent quantumness of our speedup positions our algorithm

to at least have a fighting chance at achieving a super-quadratic

speedup, even if it cannot yet do so when compared to mature

classical algorithms that have been improved over the course of

decades. Toward that end, an important open question is whether

our algorithm and the speedup mechanism behind it can be com-

bined with any of the classical techniques for exploiting problem

structure, such as backtracking [45] and branch-and-bound [46].
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