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Abstract

We study the fixed-parameter tractability of the following fundamental problem: given
two directed graphs ~H and ~G, count the number of copies of ~H in ~G. The standard setting,
where the tractability is well understood, uses only | ~H| as a parameter. In this paper we take

a step forward, and adopt as a parameter | ~H|+d(~G), where d(~G) is the maximum outdegree of

|~G|. Under this parameterization, we completely characterize the fixed-parameter tractability
of the problem in both its non-induced and induced versions through two novel structural
parameters, the fractional cover number ρ∗ and the source number αs. On the one hand we

give algorithms with running time f(| ~H|, d(~G))·|~G|ρ∗( ~H)+O(1) and f(| ~H|, d(~G))·|~G|αs( ~H)+O(1)

for counting respectively the copies and induced copies of ~H in ~G; on the other hand we
show that, unless the Exponential Time Hypothesis fails, for any class ~C of directed graphs
the (induced) counting problem is fixed-parameter tractable if and only if ρ∗(~C) (αs(~C))
is bounded. These results explain how the orientation of the pattern can make counting
easy or hard, and prove that a classic algorithm by Chiba and Nishizeki and its extensions
(Chiba, Nishizeki SICOMP 85; Bressan Algorithmica 21) are optimal unless ETH fails.

Our proofs consist of several layers of parameterized reductions that preserve the out-
degree of the host graph. To start with, we establish a tight connection between counting
homomorphisms from ~H to ~G to #CSP, the problem of counting solutions of constraint
satisfactions problems, for special classes of patterns that we call canonical DAGs. To lift
these results from canonical DAGs to arbitrary directed graphs, we exploit a combination of
several ingredients: existing results for #CSPs (Marx JACM 13; Grohe, Marx TALG 14), an
extension of graph motif parameters (Curticapean, Dell, Marx STOC 17) to our setting, the
introduction of what we call monotone reversible minors, and careful analysis of quotients
of directed graphs in order to relate their adaptive width and fractional hypertree width
as a function to our novel parameters. Along the route we establish a novel bound of the
integrality gap for the fractional independence number of hypergraphs based on adaptive
width, which might be of independent interest.

∗This research was funded in whole, or in part, by the Royal Society project ”RAISON DATA” (Project
reference: RP\R1\201074) and by the Google Focused Award “Algorithms and Learning for AI” (ALL4AI). For
the purpose of Open Access, the authors have applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission. All data is provided in full in the results section of this paper.
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1 Introduction

We study the complexity of the following fundamental counting problem: given two directed
graphs, ~H (the “pattern”) and ~G (the “host”), count the number of occurrences or induced
occurrences of ~H in ~G. This problem, known as subgraph counting, motif counting, or pattern
counting, has gained great popularity because of its apparent ubiquity in a diverse selection
of fields, from social network analysis [52] to network science [44, 43], and from database
theory [27, 15, 26, 4, 30] and data mining [1, 51] to bioinformatics [3, 48], phylogeny [36], and
genetics [49, 50]. For this reason, subgraph counting in general has received significant attention
from the theoretical community in the last two decades, with a flurry of novel techniques and
exciting results [6, 28, 21, 24, 35, 42, 23, 11, 37, 13, 7, 31].

Since subgraph counting in general is hard (think of counting cliques), it is common to
parameterise the problem so as to allow for a “bad” dependence on some quantity that is believed
to be small in practice [28, 23]. The standard parameterisation is by the size of ~H, that is,
| ~H| = |V ( ~H)|+ |E( ~H)|. In that case, one says the problem is fixed-parameter tractable, or in
the class FPT, if for some (computable) function f it admits an algorithm that runs in time
f(| ~H|) · |~G|O(1) for all ~H and ~G. This means one considers as efficient an algorithm with running

time, say, 2|
~H| · |~G|, but not one with running time |~G|| ~H|. The rationale is that in practice

~H is often very small compared to ~G, thus a running time of 2|
~H| · |~G| is better than one of

|~G|| ~H|. Under this parameterisation, the tractability of the problem is well understood: for the
undirected version, both the induced and non-induced versions are in FPT if and only if certain
invariants of H are bounded [18, 24, 23], and it is not hard to show that the same holds for the
directed case as well (see Section 2).

While the parameterisation by | ~H| is standard, it is also quite restrictive. Consider for
instance the problem of counting the induced copies of ~H in ~G: when parameterised by | ~H|, it is
well-known that the problem is in FPT if and only if the pattern size | ~H| is bounded (see [18] and
Appendix B). Thus, under this parameterization, one can efficiently count the induced copies of
just a finite number of patterns. Suppose instead the parameter is | ~H|+ d(~G), where d(~G) is
the maximum outdegree of ~G; the problem is then considered tractable if for some (computable)
function f it admits an algorithm that runs in time f(| ~H|, d(~G)) · |~G|O(1) for all ~H and ~G. It is
not hard to see that, under this parameterization, the problem becomes FPT even for infinite
families of patterns. Let indeed ~H be the acyclic orientation of a k-clique: since ~H has only one
source s (a vertex of indegree 0), one can first guess the image of s in ~G and then iterate over
all (k− 1)-vertex subsets in the out-neighbourhood of s, which yields an algorithm with running

time O(d(~G)|
~H| · |~G|). This idea was in fact extended to counting subgraphs in degenerate host

graphs, which have orientations with bounded outdegree [8, 10, 9, 13, 32, 7] (see Section 3.4 for
a detailed discussion). Thus, adopting | ~H|+ d(~G) as a parameter can open the door to a richer
landscape of tractability.

The goal of the present work is to understand precisely what that landscape is; that is, to
understand when the aforementioned problems, parameterised by | ~H| + d(~G), are in FPT as
a function of the pattern ~H. In addition to the aforementioned example of pattern counting
in degenerate graphs, there is another reason to consider d(~G) as part of the parameter when
counting directed subgraphs: several “real-world” directed graphs that are natural “hosts” have
small or constant outdegree. This is true for many web graphs or online social network graphs,
where the maximum outdegree is much smaller than the average degree or the maximum indegree;
and it is true by construction in graphs produced by generative models such as preferential
attachment [2]. As is customary, to express the dependence on the structure of ~H, we formulate
the problems as a function of a class ~C of patterns — for instance, one may let ~C be the
class of all directed complete graphs, or of all directed trees. Let then ~C denote an arbitrary
family of directed graphs, and for any ~H and ~G let #Sub( ~H→ ~G) and #IndSub( ~H→ ~G) denote
respectively the number of copies and induced copies of ~H in ~G.
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Our parameterised counting problems are formally defined as follows:

#DirSubd(~C)

Input: a pair of digraphs ( ~H, ~G) with ~H ∈ ~C

Output: #Sub( ~H→ ~G)

Parameter: | ~H|+ d(~G)

#DirIndSubd(~C)

Input: a pair of digraphs ( ~H, ~G) with ~H ∈ ~C

Output: #IndSub( ~H→ ~G)

Parameter: | ~H|+ d(~G)

The goal of the present work is to understand which structural properties of the elements of ~C
determine whether #DirSubd(~C) and #DirIndSubd(~C) are in FPT.

The rest of this manuscript is organised as follows. Section 2 gives a concise overview of our
results and their significance. Section 3 gives a detailed overview of our proofs and their key
technical insights. The complete proofs of all our claims can be found in the remaining sections.

2 Results

We give complete complexity classifications for #DirSubd(~C) and #DirIndSubd(~C), into FPT
versus non-FPT cases, as a function of ~C. These complexity classifications, which are formally
stated below, have the succinct form “The problem is in FPT if and only if p(~C) is bounded”,
where p is some parameter measuring the structural complexity of the graphs in ~C. The definition
of those parameters is not elementary and requires the introduction of some ancillary notation
and definitions, which we are going to do next. In order to understand why those parameters
are the right ones, instead, one should take the technical tour of Section 3.

Let us then introduce our structural parameters. First, we need to define reachability
hypergraphs and contours. Let ~H be a directed graph, and let S be the set of its strongly
connected components. Denote by ∼ the equivalence relation over V ( ~H) given by S, and let
~H/∼ be the quotient of ~H w.r.t. ∼; with a little abuse of notation we let S be the vertex set of
~H/∼. A strongly connected component S ∈ V ( ~H/∼) is a source if it has indegree 0 in ~H/∼.
Let S1, . . . , Sk be the set of all such sources. For any S ∈ V ( ~H/∼) let R(S) be the set of vertices
reachable from S in ~H.

Definition 1. The reachability hypergraph of ~H, denoted by R( ~H), is the hypergraph with
vertex set V ( ~H) and edge set {R(Si) : i ∈ [k]}.

Intuitively, R( ~H) measures the complexity of ~H in terms of “reachability relationships”. However,
to state our classifications correctly, we need to consider a slight modification of R( ~H).

Definition 2. The contour of ~H, denoted by Γ( ~H), is the hypergraph R( ~H) \ ∪i∈[k]Si.

For instance, if ~Hn is obtained by orienting the edges of the 1-subdivision of the complete graph
Kn towards the original vertices, then Γ( ~Hn) = Kn.

Finally, we introduce our directed graph invariants, the fractional cover number and the
source number. Let H be a hypergraph. A function γ : E(H)→ [0,∞) is a fractional edge cover
of H if for every v ∈ V (H)∑

e∈E(H):v∈e

γ(e) ≥ 1 . (1)

The weight of γ is
∑

e∈E(H) γ(e). The fractional edge cover number of H, denoted by ρ∗(H), is
the smallest weight of any fractional edge cover of H. Then:
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Figure 1: (Top:) A directed graph ~H, the sources of which are highlighted in dashed boxes, its reachability

hypergraph R( ~H), and its contour Γ( ~H). (Bottom:) The same constructions for the DAG ~H/∼ obtained

from ~H by identifying all strongly connected components. Clearly, the source number is invariant under
taking the quotient w.r.t. ∼, that is, αs( ~H) = αs( ~H/∼). We will see that the same is true for the

fractional cover number, that is, ρ∗( ~H) = ρ∗( ~H/∼). Consequently, it always suffices to consider the DAG
~H/∼ for determining the complexity of counting copies and induced copies of ~H.

Definition 3. The fractional cover number of ~H is ρ∗( ~H) = ρ∗(Γ( ~H)). The source number
of ~H is the number of sources in S, denoted by αs( ~H); in other words, the number of strongly
connected components of ~H that are not reachable from any other connected component.

Intuitively, both ρ∗ and αs measure the complexity of covering ~H through its sources. Our main
result, the following dichotomy theorem, says that such a “covering complexity” determines
precisely the fixed-parameter tractability of our problems. For any class ~C of directed graphs let
ρ∗(~C) = sup ~H∈ ~C ρ

∗(H) and αs(~C) = sup ~H∈ ~C αs(H).

Theorem 4. If the Exponential Time Hypothesis holds, then:

1. #DirSubd(~C) ∈ FPT if and only if ρ∗(~C) <∞
2. #DirIndSubd(~C) ∈ FPT if and only if αs(~C) <∞

Note that ETH is used only by the “only if” direction. While the statement of Theorem 4
is simple, its proof is nontrivial — virtually all of this manuscript is devoted to it. To put
the theorem into perspective, Table 1 compares it to dichotomies for the other variants of
the problem. We also observe that Theorem 4 can be slightly strengthened: we can show the
hardness direction even for acyclic host graphs.

As a consequence of Theorem 4, we can claim the optimality (in an FPT sense) of the well-
known approach to counting the induced copies of a DAG ~H in a host ~G of bounded outdegree,
used in several recent works on counting in hosts of bounded degeneracy [8, 10, 9, 13, 32, 7].
This approach consists in guessing the images of the sources of ~H in ~G, and has running time

3



#Sub(C) #DirSub(~C) #DirSubd(~C)

FPT criterion
vc(C) <∞

Curticapean, Marx [24]
vc(~C) <∞
Appendix B

ρ∗(~C) <∞
Theorem 4

#IndSub(C) #DirIndSub(~C) #DirIndSubd(~C)

FPT criterion
|C| <∞

Chen, Thurley, Weyer [18]
|~C| <∞

Appendix B
αs(~C) <∞
Theorem 4

Table 1: Our results for #DirSubd(~C) and #DirIndSubd(~C) compared against #IndSub(~C) and

#DirIndSub(~C), which are their counterparts parameterised by | ~H|, and against #Sub(C) and
#IndSub(C), which are their undirected counterparts parameterised by |H|. Here vc denotes the
vertex cover number; for directed graphs this is is just the vertex cover number of the underlying
undirected graph. The results for #IndSub(~C) and #DirIndSub(~C) are folklore in the community.

f(| ~H|, d(~G)) · |~G|αs( ~H)+O(1). By Theorem 4, unless ETH fails the dependence on αs( ~H) at the
exponent cannot be avoided, hence that approach is optimal in an FPT sense.

It shall be noted that, for #DirIndSubd(~C), the non-FPTcase in Theorem 4 also yields
#W[1]-hardness (see Section 4 for a definition of #W[1]). For #DirSubd(~C) instead we do not
prove #W[1]-hardness; the reason is that our proof uses a reduction from certain families of
#CSP instances which by [40] we know to be not in FPT if ETH holds, but we do not know if
they are #W[1]-hard too.

When the problems in Theorem 4 are in FPT, we can show simple algorithms that solve

them in time f(| ~H|, d(~G)) · |~G|p( ~H)+O(1) where p ∈ {ρ∗, αs}. Formally, we prove:

Theorem 5. For some computable function f there is an algorithm solving #DirSubd(~C) in

time f(| ~H|, d(~G)) · |~G|ρ∗( ~H)+O(1). The same holds for #DirIndSubd(~C) with αs in place of ρ∗.

We point out that theorems 4 and 5 remain true in the (edge or vertex) weighted setting, too.
A simple example shows Theorem 4 and Theorem 5 in action. Let ∆1 and ∆2 be respectively

the cyclic and acyclic orientations of K3, and for each k ∈ N let ∆k
1 and ∆k

2 consist of k disjoint
copies of respectively ∆1 and ∆2. Finally, let ~C1 = {∆k

1 : k ∈ N} and ~C2 = {∆k
2 : k ∈ N}.

Although the patterns are rather elementary, establishing the tractability of #DirSubd(~C1) and
#DirSubd(~C2) “by hand” can be laborious. Theorem 4 and Theorem 5 answer immediately:
ρ∗(∆k

1) = 0, since in ∆k
1 every vertex belongs to some source, hence #DirSubd(~C1) is fixed-

parameter tractable and solvable in time f(| ~H|, d(~G)) · |~G|O(1); but ρ∗(∆k
2) = k, since Γ(∆k

2)
has k disjoint hyperedges, hence #DirSubd(~C2) is not fixed-parameter tractable unless ETH
fails. One can also see that αs(∆

k
1) = αs(∆

k
2) = k; therefore, by Theorem 4, under ETH both

#DirIndSubd(~C1) and #DirIndSubd(~C2) are not fixed-parameter tractable.
Another example helps appreciating the different between our parameterization and the

standard one, as well as the necessity of ρ∗ being fractional. Let Hk be the graph defined as
follows. The vertices of Hk are Uk ∪Dk where Uk = {1, . . . , 2k} and Dk = {A ⊆ Uk | |A| = k};
and for each i ∈ Uk, there is an edge between i and D ∈ Dk if and only if i ∈ D. Let C be the
class of all Hk. It is not hard to show that Hk contains the subdivision of the k-clique as induced
subgraph. Thus the vertex-cover number of C is unbounded and, assuming ETH, Table 1 yields
that #Sub(C) and #DirSub(~C) are not fixed-parameter tractable for any class ~C obtained by
orienting the graphs in C. However, if we parameterise also by the outdegree of the host, then
the situation becomes much more subtle. Let ~C be the class of digraphs obtained by orienting the
edges in the Hk from Uk to Dk; an argument similar to [33, Example 4.2] shows that ρ∗( ~Hk) ≤ 2
for each ~Hk ∈ ~C, thus #DirSubd(~C) is fixed-parameter tractable by Theorem 5. Moreover, [33,
Example 4.2] show that any non-fractional cover of ~Hk has super-constant weight; this proves
that considering the fractional cover number ρ∗ is crucial; its integral counterpart cannot work.
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We conclude this section with a result of independent interest developed in our proofs. Let H
be a hypergraph. The independence number α(H) of H is the size of the largest subset of V (H)
such that no two of its elements are contained in a common edge. The natural relaxation of this
definition yields the fractional independence number α∗(H). Our result is that the ratio between
α∗(H) and α(H), i.e. the integrality gap of α, is bounded by the adaptive width1 of H [39].

Theorem 6. Every hypergraph H satisfies α(H) ≥ 1
2 + α∗(H)

4 aw(H) .

3 Technical Overview

This section gives an overview of the tools and techniques behind the results of Section 2. The
overview focuses on #DirSubd(~C), but similar arguments apply to #DirIndSubd(~C). Before
digging into the most technical part, let us give the high-level idea of our proof strategy.

At the root of all our results is a standard connection between copies and homomorphisms,
explained in Section 3.1. It is well known indeed that #Sub( ~H→ ~G) can be expressed as a linear
combination of homomorphism counts,

∑
~F a ~H(~F ) ·#Hom(~F→ ~G), where a ~H(~F ) > 0 and ~F

ranges over a certain set of quotients of ~H. Here, a quotient of ~H is a directed graph obtained
from ~H by contracting (not necessarily connected) vertex subsets into single vertices (see Section 4
for the formal definition). It is also known that the complexity of computing #Sub( ~H→ ~G)
equals, up to f(| ~H|) factors, that of computing the hardest #Hom(~F→ ~G) term. Therefore we
can reduce #DirSubd(~C) to and from its homomorphism counting version #DirHomd( ~Q),
where ~Q consists of certain quotients of ~C. Armed with these results, we proceed as follows.

First, in Section 3.2 we prove that ρ∗(~C) <∞ implies #DirSubd(~C) ∈ FPT. To this end we
prove that if ~F is a quotient of ~H then the fractional hypertreewidth of the contour of ~F satisfies
fhtw(Γ(~F )) ≤ ρ∗( ~H). Therefore, fhtw(Γ( ~Q)) ≤ ρ∗(~C) < ∞. We then show that computing
#Hom(~F→ ~G) can be reduced in FPT time to counting the homomorphisms from Γ(~F ) to a
hypergraph G obtained from ~F and ~G. As hypergraph homomorphism counting is in FPT when
the pattern has bounded fractional hypertreewdith, this proves the claim.

Next, in Section 3.3 we prove that ρ∗(~C) =∞ implies #DirSubd(~C) /∈ FPT, or ETH fails.
To start with, we suppose ~C contains only canonical DAGs, directed graphs of a particularly
simple type. We can prove that the aforementioned problem of counting homomorphisms between
hypergraphs can be reduced to #DirHomd(~C) if the considered hypergraph patterns belong to
the contours of ~C. By existing results this implies that, unless ETH fails, #DirHomd(~C) /∈ FPT
whenever the contours of ~C have unbounded adaptive width [41]. It remains to lift these results
from canonical DAGs to abitrary DAGs and, ultimately, to arbitrary directed graphs. To this
end, we introduce what we call monotone reversible minors (MRMs). Intuitively, ~H ′ is an MRM
of ~H if there exists an FPT reduction from counting copies ~H ′ to counting copies of ~H, and if
~H ′ preserves some parameters of interest (like ρ∗). We show that every directed graph ~H has an
MRM ~H ′ that is a canonical DAG, so counting ~H is at least as hard as counting ~H ′. Next, we
show that counting copies of ~H ′ is hard. To this end we show that, if ρ∗( ~H ′) is large, then its
reduct Γ( ~H ′) has large adaptive width or large independence number. By employing arguments
from the homomorphism connection above and from [13], this implies that counting the copies
of ~H ′ is hard unless ETH fails, which concludes our proof.

In what follows we use standard terminology as much as possible; in any case, all concepts
and terms are defined formally in Section 4.

3.1 The Directed Homomorphism Basis

The first ingredient of our work is the so-called homomorphism basis introduced by Curticapean,
Dell, and Marx [23], which establishes a common connection between (undirected) parameterised

1Note that adaptive width is equivalent to submodular width [40].
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pattern counting problems. Although the original framework is for undirected graphs, it can be
equally well be formulated for the directed case, as we are going to do. Let ~H be a digraph. There
is a function sub ~H of finite support from digraphs to rationals such that for each digraph ~G:

#Sub( ~H→ ~G) =
∑
~F

sub ~H(~F ) ·#Hom(~F→ ~G) (2)

This identity follows by well-known transformations based on inclusion-exclusion and Möbius
inversion (see e.g. Chapter 5.2.3. in Lovász [38]). It is also well known that sub ~H(~F ) 6= 0 if and

only if ~F is a quotient of ~H.
These facts allow us to construct a reduction from the parameterized problem of computing

#Sub( ~H→ ~G) to the parameterized problem of computing #Hom( ~H→ ~G) and vice versa. More
precisely, one can show that computing #Sub( ~H→ ~G) is precisely as hard (in FPT-equivalence
terms) as computing the hardest term #Hom(~F→ ~G) in the summation of (2). One direction
is obvious — the time to compute #Sub( ~H→ ~G) is the sum of the times to compute all terms
#Sub(~F→ ~G), whose number is a function of ~H. The other direction is nontrivial, and was
established for multiple variants of subgraph counting over the past years [15, 23, 26, 46, 7].
Rather than extending those results to yet another variant (directed graphs), we observe that
the constructive version of Dedekind’s Theorem on the linear independence of characters yields
a general interpolation method that subsumes all those results, including the one for directed
graphs. We prove what follows (see Theorem 36 for a more complex but complete version):

Theorem 7 (Simplified Version). Let (G, ∗) be a semigroup. Let furthermore (ϕi)i∈[k] with
ϕi : G→Q be pairwise distinct and non-zero semigroup homomorphisms of (G, ∗) into (Q, ·),
that is, ϕi(g1 ∗ g2) = ϕi(g1) · ϕi(g2) for all i ∈ [k] and g1, g2 ∈ G. Let φ : G→Q be a function

φ : g 7→
k∑
i=1

ai · ϕi(g) , (3)

where the ai are rational numbers. Then there is an efficient algorithm Â which is equipped with
oracle access to φ and which computes the coefficients a1, . . . , ak.

In our setting, Theorem 7 yields what follows. First, let G be the set of all digraphs and ∗ be the
directed tensor product; one can check that (G, ∗) is indeed a semigroup. Second, for any fixed
~H consider the function ~G 7→ #Hom( ~H→ ~G); one can check this is a semigroup homomorphism
into Q. Using Theorem 7, we can prove:

Lemma 8. There exists a deterministic algorithm A with the following specifications:

• The input of A is a pair (~G′, ι) where ~G′ is a digraph and ι : G→Q.

• A is equipped with oracle access to the function

~G 7→
∑
~F

ι(~F ) ·#Hom(~F→ ~G) ,

where the sum is over all (isomorphism classes of) digraphs.

• The output of A is the list with elements (~F ,#Hom(~F→ ~G′)) for each ~F with ι(~F ) 6= 0.

• For some computable function f the running time of A is bounded by f(|ι|) · |~G′|O(1)

• The outdegree of every digraph ~G on which A invokes the oracle is at most f(|ι|) · d(~G′)
where d(~G′) is the maximum outdegree of ~G′.

To understand the meaning of Lemma 8, let ι(~F ) = sub ~H(~F ) for all ~F ∈ G, see (2). Then

Lemma 8 says that, if A has oracle access to #Sub( ~H→·), then A can compute #Hom( ~H→ ~G′)

6



efficiently and by computing #Sub( ~H→ ~G) only for ~G of outdegree not larger than that of ~G′.
This yields a parameterised reduction from #DirSubd(~C) to #DirHomd(~C ′), where ~C ′ is the
set of all digraphs ~F such that sub ~H(~F ) 6= 0 for some ~H ∈ ~C. As stated above, sub ~H(~F ) 6= 0

if and only if ~F is a quotient of ~H. We conclude that computing #Sub( ~H→ ~G) is at least as
hard as computing #Hom(~F→ ~G) for each ~F that is a quotient of ~H. In other words we have
a parameterised reduction from #DirSubd(~C) to #DirHomd(~C ′) where ~C ′ is the set of all
quotients of ~C. Together with the converse reduction (see above) this tells us that #DirSubd(~C)
is precisely as hard as #DirHomd(~C ′) where ~C ′ is the set of all quotients of ~C. Thus, classifying
the complexity of #DirSubd(~C) boils down to understanding the complexity of #DirHomd(~C ′)
where C ′ is again the set of all quotients of ~C. Answering this question turns out to be the most
challenging task in this work.

3.2 Upper bounds: a reduction to #CSP

To understand the complexity of #DirHomd(~C ′) where ~C is the set of all quotients of ~C, we
take two steps. First, we show that the problem can be reduced to #CSP, the problem of
counting the solutions to a constraint satisfaction problem. Second, we show that the fractional
cover number of ~C bounds the fractional hypertree width of the #CPS instances obtained from
~C ′, which makes the problem fixed-parameter tractable by existing results.

3.2.1 A reduction to #CSP

Let ~H and ~G be digraphs and let d be the maximum outdegree of ~G. Let furthermore k = | ~H|
and n = |~G|. Recall that a source S of ~H is a strongly connected component of ~H such that S
cannot be reached from any other strongly connected component. Let S1, . . . , S` be the sources
of ~H, and let si ∈ Si for each i ∈ [`]. Finally, let Ri be the set of all vertices of ~H that can be
reached from si via a directed path — note that Si is fully contained in Ri. Clearly each arc of
~H is fully contained in at least one of the Ri. Writing ~H[Ri] for the subgraph of ~H induced by
Ri, one can see that every map ϕ : V ( ~H)→V (~G) satisfies:

ϕ ∈ Hom( ~H→ ~G) ⇔ ∀i ∈ [`] : ϕ|Ri ∈ Hom( ~H[Ri]→ ~G) , (4)

where ϕ|Ri is the restriction of ϕ on Ri. In other words, ϕ is a homomorphism if and only if it
induces a partial homomorphism from ~H[Ri] for each i ∈ [`].

The observation above allows us to reduce the computation of Hom( ~H→ ~G) to counting the
solutions of a certain constraint satisfaction problem. Start by fixing an arbitrary order over
V ( ~H), so that every Ri appears as an ordered tuple. Now, for each i ∈ [`], we enumerate all
partial homomorphisms ϕ|Ri ∈ Hom( ~H[Ri]→ ~G). It is well known that this can be done in time
f(k, d) · nO(1): simply guess the image v of si in V (~G), and perform a brute force search over
the dO(k) vertices of ~G reachable from v in k steps [20, 12, 7]. Now for every i ∈ [`] consider
the set of all (the images of) the maps in Hom( ~H[Ri]→ ~G). This is a set of ordered tuples of
vertices of ~G, i.e., a relation over V (~G). We denote this relation by Ri. It is not hard to see that
the homomorphisms from ~H to ~G are precisely those maps from V ( ~H) to V (~G) that for every
i ∈ [`] send Ri to an element of Ri, and that counting those maps is an instance of a counting
constraint satisfaction problem (#CSP).

3.2.2 Bounding the cost of solving #CSP over quotients

Recall the reachability hypergraph R( ~H) of ~H: the hypergraph whose vertex set is V ( ~H) and
whose edge set is {Ri : i ∈ [`]}. A well-known result due to Grohe and Marx [33] states that
counting the solutions to the CSP instance above is fixed-parameter tractable whenever R( ~H)
has bounded fractional hypertreewidth, where the parameter is | ~H|; in fact, [33] shows that
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there is an algorithm that solves the problem in time f(k, d) · |V (~G)|fhtw(R)+O(1). Now recall
from Section 2 the fractional cover number ρ∗( ~H) of ~H. We prove:

Lemma 9. Let ~H be a digraph, let ~F be a quotient graph of ~H, and let R(~F ) be the reachability
hypergraph of ~F . Then fhtw(R(~F )) ≤ ρ∗( ~H).

The intuition behind the proof of Lemma 9 is that (i) taking the quotient of a digraph cannot
increase its fractional cover number, and (ii) the fractional hypertreewidth of a hypergraph is
bounded by its fractional edge cover number (which is the fractional cover number of ~H).

Together with the observations above, this implies that we can compute #Sub( ~H→ ~G) in time

f(| ~H|, d(~g)) · |~G|ρ∗( ~H), thus proving Theorem 5 and the tractability part of Theorem Theorem 4
for #DirSubd. It remains to prove the intractability part of Theorem 4, which we do in the
next sections.

Let us again consider ~H = ∆k
1 as a toy example, that is, ~H is the disjoint union of k triangles,

each of which is cyclically oriented. We can use the principle of inclusion and exclusion to
reduce the computation of #Sub( ~H→ ~G) to the computation of terms #Hom(~F→ ~G) where
~F is a quotient of ~H. Now, it can easily be observed that each quotient of ~H is a disjoint
union of strongly connected components S1, . . . , S`. Unfolding our general reduction to #CSP,
for each of the strongly connected components S, we only have to guess the image v of one
vertex s ∈ S in ~G. Then the image of each additional vertex in S must be reachable from v
by a directed path of length at most k. Since the outdegree of ~G is at most d, there are thus
at most dO(k) possibilities for the images of the remaining vertices. Thus, for each strongly
connected components S, we can compute #Hom(~F [S]→ ~G) in time dO(k) · |~G|. Finally, we have
#Hom(~F→ ~G) =

∏`
i=1 #Hom(~F [Si]→ ~G).

3.3 Lower bounds

The goal of this section is to prove that, roughly speaking, if ρ∗( ~H) is large then ~H has a quotient
~F such that computing #Hom(~F→ ~G) is hard when parameterized by |~F |+ d(~G). To this end
we seek a reduction from #CSP to #DirHomd, i.e., in the opposite direction of Section 3.2.
However, while that direction was relatively easy, since every digraph can be easily encoded as a
set of relations, the direction we seek here is significantly harder. Indeed, it is not clear at all
how an instance of #CSP can be “encoded” as a pair of directed graphs ( ~H, ~G) if we can choose
~H only from the class ~C for which we want to prove hardness.

3.3.1 Encoding #CSP instances via canonical DAGs

To bypass the obstacle above, we start by considering classes of canonical DAGs. A digraph ~H
is a canonical DAG if it is acyclic and every vertex is either a source (i.e., it has indegree 0) or a
sink (i.e., it has outdegree 0). Note that this implies that ~H is bipartite, with (say) all sources
on the left and all sinks on the right. If ~C is a class of canonical DAGs, then it is easy to reduce
#CSP to #DirHomd(~C) while preserving all parameters. To see why, let (H,G) be a pair of
hypergraphs (the instance of #CSP). Define ~H by letting V ( ~H) = V (H)∪ {xe : e ∈ E(H)}, and
adding (xe, u) to E( ~H) for every e ∈ E( ~H) and every u ∈ e. Define ~G similarly as a function of
G. One can then show, using the color-prescribed version of homomorphism counting (defined in
Section 4), that #Hom(H→G) can be computed in FPT time with |H| as a parameter if we can
compute #Hom( ~H→ ~G) in FPT time with | ~H|+ d(~G) as a parameter.

Recall then the contour R( ~H) of ~H from Section 2. It is immediate to see that, if ~H is a
canonical DAG obtained from H as described above, then R( ~H) = H. This is precisely the
intuitive role of the contour — to encode the structure of the reachability sets of ~H (ignoring
sources). Indeed, using contours we can then state our main reduction. Let ~C be a class of
canonical DAGs, and let #CSP(Γ(~C)) be the restriction of #CSP to instances whose left-hand
hypergraph (i.e., H) is isomorphic to a contour of Γ(~C). Using as a starting point a reduction
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due to Chen et al. [19], we prove that #CSP(Γ(~C)) reduces to #DirHomd(~C) via parameterised
Turing reductions. Now, under ETH, #CSP(Γ(~C)) /∈ FPT when the adaptive width of Γ(~C) is
unbounded [40], unless ETH fails. By the reduction above, then, we obtain:

Lemma 10. #DirHomd(~C) /∈ FPT for every class ~C of canonical DAGs whose contours have
unbounded adaptive width, unless ETH fails.

We now seek to lift this result from canonical DAGs to arbitrary directed graphs.

3.3.2 Lifting hardness to arbitrary digraphs via Monotone Reversible Minors

Starting from Lemma 10, we prove a hardness result for #DirHomd(~C) for general classes of
digraphs ~C. To this end we need to reduce from #DirHomd(~C) to #DirHomd(~C ′) where ~C ′

is a class of canonical DAGs, so that we can apply Lemma 10; clearly, the reduction must imply
that #DirHomd(~C ′) has unbounded adaptive width.

Towards this end we introduce a kind of graph minors for digraphs, which we call monotone
reversible (MR) minors. A digraph ~H ′ is a MR minor of ~H if it is obtained from ~H by a sequence
of the following operations:

• deleting a sink, i.e., a strongly connected component from which no other vertices can be
reached

• deleting a loop

• contracting an arc

Note that, unlike standard minors, deletion of arbitrary vertices and arbitrary arcs are not
allowed. This allows us to prove:

Lemma 11. Let ~C be a class of digraphs and let ~D be a class of MR minors of ~C. Then there
exists a parameterised Turing reduction from #DirHomd( ~D) to #DirHomd(~C).

Lemma 11 explains the “reversible” part of MR minors—we can efficiently “revert” the operations
that yielded a MR of a digraph; for the “monotone” see the next section. The heart of the proof
of Lemma 11 proves the claim for the color-prescribed version of the problems; this implies the
reduction for the original problems via standard interreducibility arguments arguments. As a
consequence of Lemma 11 we obtain:

Lemma 12. Let ~C be a recursively enumerable class of digraphs and let ~C ′ be a class of
canonical DAGs that are MR minors of digraphs in ~C. If Γ(~C ′) has unbounded adaptive width
then #DirHomd(~C) /∈ FPT, unless ETH fails.

3.3.3 Lifting hardness from homomorphisms to subgraphs

Recall the arguments of Section 3.1: to prove that #DirSub(~C) is hard when ρ∗(~C) =∞, we
essentially have to prove that every digraph ~H with high fractional cover number ρ∗( ~H) has a
quotient ~F that is hard. By the arguments of the previous section, to show that such a quotient
~F is hard it is enough to show that ~F has an MR minor ~F ′ which is a canonical DAG whose
contour Γ(~F ′) has high adaptive width. We indeed prove that such a quotient exists. To this
end, we consider two cases. Recall that α(H) and α∗(H) denote respectively the independence
number and the fractional independence number of a hypergraph H.

(a) α(Γ( ~H)) is large. In this case we can show that ~H contains a large matching whose edges
are “isolated enough” for us to construct a quotient ~F that admits, as MR minor, the
1-subdivision ~F ′ of a large complete graph, where the arcs of ~F ′ are directed away from
the subdivision vertices. It is easy to see that ~F ′ is a canonical DAG, and that Γ(~F ′) is
the complete graph itself, which has large adaptive width.
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(b) α(Γ( ~H)) is small. We then choose as quotient ~F the graph ~H itself. Recall that, by
definition, ρ∗( ~H) = ρ∗(R( ~H)). By LP duality the fractional cover number equals the
fractional independence number, that is, ρ∗(R( ~H)) = α∗(R( ~H)). Using Theorem 6, we
deduce that the adaptive width of R( ~H) is within constant factors of α∗(R( ~H)), and thus
of ρ∗( ~H). By carefully exploiting this fact, we can explicitly construct an MR minor ~F ′ of
~H that is both a canonical DAG and has high adaptive width.

Thus, in both cases we can show that if ρ∗( ~H) is large then ~H admits an MR minor that is a
canonical DAG of large treewidth. Formally, we obtain:

Lemma 13. Let ~C be a class of digraphs such that ρ∗(~C) = ∞. Then the class ~C ′ of all
canonical DAGs that are MR minors of quotients of ~C has unbounded adaptive width.

As a consequence, this implies that #DirSubd(~C) /∈ FPT whenever ρ∗(~C) =∞, unless ETH
fails. This concludes the overview of the proof of the lower bounds for #DirSubd(~C).

Before proceeding with the next section, we wish to point out that, in the course of our
proofs, we will also see that for computing the fractional cover number and the source count of
a directed graph ~H, it is always sufficient to consider the DAG ~H/∼ (see Figure 1). In other
words, the complexity of #DirSubd(~C) and #DirIndSubd(~C) solely depends on the structure
of the DAGs obtained by contracting the strongly connected components of the patterns in ~C.

3.4 Related Work and Outlook

Our results are closely related to the recent surge of works on pattern counting in degenerate
graphs [8, 10, 9, 13, 32, 7]: An undirected graph G has degeneracy d if there is an acyclic
orientation ~G of G with outdegree at most d. In the context of pattern counting in degenerate
graphs, one is given undirected graphs H and G, and the goal is to compute the number of
copies (resp. induced copies) of H in G, parameterised by the size of the pattern H and the
degeneracy d of G. These problems have been completely classified with respect to linear time
tractability [7] and with respect to fixed-parameter tractability [13].

The crucial difference to the results in this work is that, in our setting, the orientations of H
and G are already fixed. Notably, this increases the set of tractable instances when compared to
the degenerate setting: For example, counting copies of an undirected graph H in an undirected
graph G, parameterised by |H| and the degeneracy d of G, is FPT if and only if the induced
matching number of H is small [13]. Now fix acyclic orientations ~H and ~G of H and G such
that the outdegree of ~G is at most d. One might think that the directed problem also is FPT if
and only if H (i.e., the underlying undirected graph of ~H) has small induced matching number.
However, this is not true: We have shown in this work that we can count copies of a digraph
~H in a digraph ~G in FPT time (parameterised by | ~H| and d(~G)) if and only if the fractional
cover number of ~H is small — we will see that this holds even if the host ~G is a DAG. While H
having small induced matching number certainly implies that the fractional cover number of ~H
is small, the other direction does not hold: For example, if ~H contains a source that is adjacent
to all non-sources, then the fractional cover number is 1, although the induced matching number
can be arbitrarily large.

This work also sheds some new light on the problem of counting homomorphisms into
degenerate graphs: Bressan [12] has shown that we can count homomorphisms from H to G in
FPT time (parameterised by |H| and the degeneracy of G) if the so-called dag treewidth of H is
small; it is currently open whether the other direction holds as well [13, 7]. The dag treewidth
of H is just the maximum (non-fractional) hypertreewidth of the reachability hypergraph of any
acyclic orientation of ~H. Our reduction to #CSP implies that it is sufficient for the reachability
hypergraphs to have small fractional hypertreewidth, which yields a fractional version of dag
treewidth. However, it is not clear whether unbounded dag treewidth and unbounded fractional
dag treewidth are equivalent, the reason for which is the fact that all acyclic orientations have
to be considered. We leave this as an open problem for future work.
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4 Preliminaries

Given a set S, we set S2 = S × S, and we write S(2) for the set of all unordered pairs of distinct
elements of S. Let f : A×B→C be a function and let a ∈ A. We write f(a, ∗) : B→C for the
function that maps b ∈ B to f(a, b).

4.1 Graphs and Directed Graphs

We denote graphs by F,G,H, and directed graphs by ~F , ~G, ~H. Graphs and digraphs are encoded
via adjacency lists, and we write |G| (resp. |~G|) for the length of the encoding. In the remainder
of the paper we will call directed graphs just “digraphs”. We use {u, v} for undirected edges, and
(u, v) for directed edges, which we also call arcs. Furthermore, we will use C to denote classes of
graphs, and ~C to denote classes of digraphs. Our graphs do not contain multi-edges; however, we
allow forward-backward arcs (u, v) and (v, u) in digraphs. Additionally, our undirected graphs
do not contain loops (edges from a vertex to itself) unless stated otherwise. For technical reasons,
we will allow loops in digraphs.2

A directed acyclic graph (DAG) is a digraph without directed cycles. A source of a DAG is
a vertex with in-degree 0, and a sink of a DAG is a vertex with outdegree 0 (and an isolated
vertex is simultaneously a source and and a sink). Given a directed (not necessarily acyclic)
graph ~H and a vertex v ∈ V ( ~H), we write R(v) for the set of vertices reachable from v by a
directed path; this includes v itself. Given a set of vertices S ⊆ V ( ~H), we set

R(S) :=
⋃
v∈S

R(v) .

Let H be a graph and σ a partition of V (H). The quotient graph of H w.r.t. σ, denoted by
H/σ, is defined as follows: V (H/σ) consists of the blocks of σ, and {B1, B2} ∈ E(H/σ) if and
only if {v1, v2} ∈ E(H) for some v1 ∈ B1 and v2 ∈ B2. If H/σ does not contain loops then it is
called a spasm [23]. These definitions can be adapted in the obvious way for digraphs.

Definition 14 (The DAG ~H/∼). Let ~H be a digraph and let x, y ∈ V ( ~H). We denote by ∼ the
equivalence relation over V ( ~H) whose classes are the strongly connected components of ~H. We
denote by ~H/∼ the DAG obtained by deleting loops from the quotient of ~H with respect to the
partition of V ( ~H) given by ∼.

Next we introduce some notions that will be used in our classifications.

Definition 15 (Directed split). The directed split ~H2 of a graph H is the digraph obtained
from the 1-subdivision of H by orienting all edges towards V (H).

Homomorphisms and Colourings A homomorphism from H to G is a map ϕ : V (H)→
V (G) such that {ϕ(u), ϕ(v)} ∈ E(G) whenever {u, v} ∈ E(H). The set of all homomorphisms
from H to G is denoted by Hom(H→G). An H-colouring of G is a homomorphism c ∈
Hom(G→H). An H-coloured graph is a pair (G, c) where G is a graph and c an H-colouring of G.
A homomorphism ϕ ∈ Hom(H→G) is color-prescribed (by c) if c(ϕ(v)) = v for all v ∈ V (H). We
write Hom(H→(G, c)) for the set of all homomorphisms from H to G color-prescribed by c. These
definitions can be adapted for digraphs in the obvious way; we emphasise that a homomorphism
ϕ between digraphs must preserve the direction of the arcs, i.e., (ϕ(u), ϕ(v)) ∈ E(~G) whenever
(u, v) ∈ E( ~H).

2We will see and state explicitly, that all of our hardness results will also entail corresponding hardness in the
restricted case of digraphs without loops.
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Subgraphs and Induced Subgraphs A subgraph of a graph G = (V,E) is a graph with
vertices V̂ ⊆ V and edges Ê ⊆ V̂ (2) ∩ E. We write Sub(H→G) for the set of all subgraphs of
G that are isomorphic to H. Similarly, a subgraph of a digraph ~G = (V,E) is a digraph with
vertices V̂ ⊆ V and arcs Ê ⊆ V̂ 2 ∩ E, and we denote by Sub( ~H→ ~G) the set of all subgraphs of
~G that are isomorphic to ~H.

Given a subset of vertices S of a graph H, we write H[S] for the graph induced by S, that
is V (H[S]) := S and E(H[S]) := E(H) ∩ S(2). The subgraph ~H[S] of a digraph induced by a
vertex set S is defined correspondingly: V ( ~H[S]) := S and E( ~H[S]) := E( ~H) ∩ S2. We write
IndSub(H→G) := {S ⊆ V (G) | G[S] ∼= H} for the set of all induced subgraphs of G that are
isomorphic to H. Again, the notion IndSub( ~H→ ~G) is defined similarly for digraphs.

4.2 Hypergraphs

A hypergraph is a pair H = (V,E) where V is a finite set and E ⊆ 2V \ {∅}. The elements of
E are called hyperedges or simply edges. Given X ⊆ V , the subhypergraph of H induced by
X is the hypergraph H[X] with vertex set X and edge set {e ∩ X : e ∈ E} \ {∅}. The arity
of a hypergraph G, denoted by a(G) is the maximum cardinality of a hyperedge. We denote
hypergraphs with the symbols H,G, . . ..

Definition 16 (Reachability Hypergraph). Let ~H be a digraph, let S1, . . . , Sk ⊆ V ( ~H) be the
sources of ~H/∼, and for each i ∈ [k] let si ∈ Si. The reachability hypergraph R( ~H) of ~H has
vertex set V ( ~H) and edge set {ei = R(si) : i ∈ [k]}.

Note that R( ~H) is well defined, since Si is a strongly connected component of ~H and so the
choice of si ∈ Si is irrelevant. If ~H is a DAG, then R( ~H) is the reachability hypergraph in the
usual sense.

The following special case of DAGs, defined via reachability hypergraphs, will turn out to be
crucial for our lower bounds.

Definition 17 (Canonical DAGs). Let R be a reachability hypergraph. For every e ∈ E(R) fix
some se ∈ V (R) such that se is contained only in e. The canonical DAG ~H of R is defined by
V ( ~H) = V (R) and E( ~H) = {(se, v) : e ∈ E(R), v ∈ e \ {se}}.

Note that if ~H is a canonical DAG of R then R is the reachability hypergraph of ~H. If
a DAG ~H is the canonical DAG of its own reachability hypergraph, then we just say ~H is a
canonical DAG. Equivalently, a DAG ~H is a canonical DAG if every vertex is either a source or
a sink.

Definition 18 (Contour). Let ~H be a digraph, let S1, . . . , Sk ⊆ V ( ~H) be the sources of ~H/∼,
and for each i ∈ [k] let si ∈ Si. The contour Γ( ~H) of ~H is the hypergraph obtained from R( ~H)
by deleting Si from ei for each i ∈ [k].

Invariants and Width Measures In what follows, we are using the notation of [33] and [40],
and we recall the most important definitions.

Definition 19 (Tree decompositions). Let H be a hypergraph. A tree decomposition of H is
a pair of a tree T and a set of subsets of V (H), called bags, B = {Bt}t∈V (T ) such that the
following conditions are satisfied:

1.
⋃
t∈V (T )Bt = V (H).

2. For every hyperedge e ∈ E(H) there is a bag Bt such that e ⊆ Bt.
3. For every vertex v ∈ V (H), the subgraph T [{t | v ∈ Bt}] of T is connected.
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Definition 20 (f -width). Let H be a hypergraph, let f : 2V (H) → R+, and let (T ,B) be a tree
decomposition of H. The f -width of (T ,B) is defined as follows:

f -width(T ,B) := max
t∈V (T )

f(Bt) .

The f -width of H is the minimum f -width of any tree decomposition of H.

For example, the treewidth of a (hyper-)graph is just its f -width for the function f(B) := |B|− 1.
Given a hypergraph H and a vertex-subset X of H, the edge cover number ρH(X) of X is

the minimum number of hyperedges of H required to cover each vertex in X. The edge cover
number of H, denoted by ρ(H), is defined as ρH(V (H)).

A fractional version of the edge cover number of defined similarly: Given H and X as
above, a function γ : E(H)→ [0,∞] is a fractional edge cover of X if for each v ∈ X we have∑

e:v∈e γ(e) ≥ 1. The fractional edge cover number ρ∗H(X) of X is defined to be the minimum of∑
e∈E(H) γ(e) among all fractional edge covers γ of X. The fractional edge cover number of H,

denoted by ρ∗(H), is defined as ρ∗H(V (H)).

Definition 21 (Generalised and Fractional Hyper-Treewidth). The generalised hyper-treewidth
of H, denoted by htw(H), is the ρH-width of H. The fractional hyper-treewidth of H, denoted by
fhtw(H), is the ρ∗H-width of H.

An independent set of a hypergraph H is a set I of vertices such that, for each u, v ∈ I
with u 6= v, there is no hyperedge containing u and v. The independence number of H, denoted
by α(H), is the size of a maximum independent set of H. A fractional independent set of a
hypergraph H is a mapping α∗ : V (H)→ [0, 1] such that for each e ∈ E(H) we have∑

v∈e
α∗(v) ≤ 1 .

The fractional independence number of H, denoted by α∗(H) is the maximum of
∑

v∈e α
∗(v)

among all fractional independent sets α∗. For a subset X of vertices in V (H), we set α∗(X) =∑
v∈X α

∗(v). We remark that, by LP duality, the fractional independence number and the
fractional edge cover number are equal (see, [47]):

Fact 22. Let H be a hypergraph. We have α∗(H) = ρ∗(H).

We continue with the notion of adaptive width, which is equivalent3 to submodular width as
shown by Marx [40].

Definition 23 (Adaptive width). Let H be a hypergraph. The adaptive width of H is

aw(H) := sup {α∗-width(H) | α∗ is a fractional independent set of H} .

Lemma 24 ([40]). Let C be a class of hypergraphs. Then

C has unbounded adaptive width

⇒ C has unbounded fractional hyper-treewidth

⇒ C has unbounded generalised hyper-treewidth .

Furthermore, all of the above implications are strict, that is, there are classes C1 and C2 such
that C1 has bounded adaptive width but unbounded fractional hyper-treewidth, and C2 has bounded
fractional hyper-treewidth but unbounded generalised hyper-treewidth.

3Here, “equivalent” means that a class of hypergraphs has bounded adaptive width if and only if it has bounded
submodular width.
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Throughout this paper, we will be interested in the independence number α, the fractional
independence number α∗, and the adaptive width aw of the contours of digraphs ~H. The
following lemma shows that it is equivalent to consider the contour of ~H/∼ for those invariants.

Lemma 25. Let ~H be a digraph. We have

1. α(Γ( ~H)) = α(Γ( ~H/∼)).

2. α∗(Γ( ~H)) = α∗(Γ( ~H/∼)) and ρ∗(Γ( ~H)) = ρ∗(Γ( ~H/∼)).

3. aw(Γ( ~H)) = aw(Γ( ~H/∼)).

Proof. Recall that ~H/∼ is obtained from ~H by contracting each strongly connected component
into a single vertex. In the reachability hypergraph, and thus in the contour, this corresponds
to identifying blocks of vertices B = {v1, . . . , v`} satisfying that all vertices in B are contained
in the same (non-empty) set of hyperedges, that is, there is a non-empty set of hyperedges EB
such that for each i ∈ [`], the set of hyperedges containing vi is EB.

Hence it is sufficient to show that identifying the vertices in B — we call the resulting vertex
vB — does not change any of the invariants α, α∗, and aw. For what follows, let us write H for
the contour Γ( ~H) of ~H, and let us write H′ for the hypergraph obtained from H obtained by
contracting B to vB. Furthermore, let E′B be the set of hyperedges that contain vB and observe
that E′B can be obtained from EB by contracting B to vB for each edge e ∈ EB.

1. Goal: α(H) = α(H′). Let S ⊆ V (H) be a maximum independent set of H. Note that
at most one vertex in B can be contained in S. If no vertex of S is contained in B,
then S is an independent set of H′. Otherwise, assume vi ∈ S for some i ∈ [`]. Then
S′ := (S \ {vi}) ∪ {vB} is an independent set of H′. This shows that α(H) ≤ α(H′).
For the other direction, let S′ be a maximum independent set of H′. If vB ∈ S′, then we
set S := (S′ \ {vB}) ∪ {v1}. Otherwise, we set S := S′. Clearly, S is an independent set of
H and thus α(H) ≥ α(H′).

2. Goal: α∗(H) = α∗(H′) (Note that this is equivalent to ρ∗(H) = ρ∗(H′) by Fact 22). Let µ
be a fractional independent set of H of maximum weight. Define

µ′(v) :=

{∑`
i=1 µ(vi) v = vB

µ(v) v 6= vB
.

We claim that µ′ is a fractional independent set of H′. Let e′ ∈ E(H′) and let e be the
corresponding edge in H, that is, e = e′ if e′ /∈ E′B, and e′ is obtained from e by contracting
B into vB otherwise. Depending on whether e ∈ EB we have that either B ⊆ e or B∩e = ∅.
In both cases, by definition of µ′, we have that

∑
v′∈e′ µ

′(v′) =
∑

v∈e µ(v) ≤ 1. Thus µ′ is
a fractional independent set of H′. Since, clearly, µ′ has the same total weight as µ, we
have that α∗(H) ≤ α∗(H′).
For the other direction, let µ′ be a fractional independent set of H′ of maximum weight.
Define

µ(v) :=


µ′(vB) v = v1

0 v ∈ B \ {v1}
µ′(v) v /∈ B

.

We claim that µ is a fractional independent set of H. Similarly as in the first direction,
let e ∈ E(H) and let e′ be the corresponding edge in H′. Again, depending on whether
e ∈ EB, we have that either B ⊆ e or B ∩ e = ∅, and in both cases, by definition of µ, we
have

∑
v∈e µ(v) =

∑
v′∈e′ µ

′(v′) ≤ 1. Thus µ is a fractional independent set of H. Since,
clearly, µ has the same total weight as µ′, we have that α∗(H) ≥ α∗(H′).
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3. Goal: aw(H) = aw(H′). Any tree decomposition (T ,B) of H can be transformed to a
tree decomposition (T ′,B′) of H′ as follows: In each bag that contains a vertex in B,
we delete all vertices in B and add vB. Clearly, the union over all bags in B′ is the set
of all vertices of H′, and each hyperedge of H′ is fully contained in some bag. For the
last condition necessary for (T ′,B′) being a tree decomposition of H′, we have to show
that for each v′ ∈ V (H′), the subgraph T ′v of T consisting of the bags containing v′ is
connected. If v′ 6= vB then this property immediately follows from (T ,B) being a tree
decomposition. For v = vB we use that Tvi is connected for each i ∈ [`] since (T ,B) is a
tree decomposition of H. Now T ′vB corresponds, by definition of (T ′,B′), to the union of
all the Tvi . However, since EB 6= ∅, there is a hyperedge e of H fully containing B. Since
e must be fully contained in a bag of (T ,B), all of the Tvi overlap in at least one vertex,
and thus T ′vB is connected, proving that (T ′,B′) is indeed a tree decomposition of H′. For
what follows, let τ denote the function that maps a tree decomposition (T ,B) of H to a
tree decomposition (T ′,B′) of H′ as defined above.

In the other direction, each tree decomposition (T ′,B′) of H′ can be made a tree decompo-
sition of H by substituting vB with the vertices in B. In this direction, it is clear that this
yields a tree decomposition (T ,B) of H. For what follows, let τ ′ denote the function that
maps a tree decomposition (T ′,B′) of H′ to a tree decomposition (T ,B) of H as defined
above.

Now let aw(H) = a. We prove that aw(H′) ≤ a. Let µ′ be a fractional independent set ofH′.
We have to show that there is a tree decomposition (T ′,B′) of H′ with µ′-width(T ′,B′) ≤ a.
To this end, let µ be the fractional independent of H obtained from µ as in 2. Since
aw(H) = a, there exists a tree decomposition (T ,B) of H with µ-width(T ,B) ≤ a. Let
(T ′,B′) := τ(T ,B). By definition of τ and µ, the µ′-width of (T ′,B′) is at most the µ-width
of (T ,B), which is at most a, concluding the first direction.

For the second direction, let aw(H′) = a′. We prove that aw(H) ≤ a′ similarly as in the first
direction: Starting with a fractional independent set µ of H, we consider µ′ as constructed
in 2, and we obtain a tree decomposition (T ′,B′) of H′ with µ′-width(T ′,B′) ≤ a′. We set
(T ,B) := τ ′(T ′,B′) and observe that by definition of τ ′ and µ′, the µ-width of (T ,B) is
at most the µ′-width of (T ′,B′), which is at most a′, concluding the second direction and
thus the proof.

4.3 Relational Structures

A signature τ is a (finite) tuple of relation symbols (Ri)i∈[`] with arities (ai)i∈[`]. The arity of τ ,
denoted by a(τ) is the maximum of the ai. A relational structure A of signature τ is a tuple
(V,RA1 , . . . , R

A
` ) where V is a finite set of elements, called the universe of A, and RAi is a relation

on V of arity ai for each i ∈ [`]. We emphasize that RAi is not necessarily symmetric, and that
tuples might contain repeated elements. We will mainly use the symbols A and B to denote
relational structures. Further, we assume that a structure A is encoded in the standard way, i.e.,
the universe and the relations are encoded as lists. We denote by |A| the length of the encoding
of A.

Given two relational structures A and B over the same signature τ with universes U and V ,
a homomorphism from A to B is a mapping ϕ : U → V such that, for each i ∈ [a(τ)] and for
each tuple t ∈ Uai we have

t ∈ RAi ⇒ ϕ(t) ∈ RBi .

We write Hom(A→B) for the set of homomorphisms from A to B.
The hypergraph H(A) of A has as vertices the universe V of A, and for each tuple t =

(v1, . . . , va) of elements of V , we add an hyperedge et = {v1, . . . , va} if and only if t is an element
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of a relation of A. To avoid notational clutter, we will define the treewidth, the hypertreewidth,
the fractional hypertreewidth and the submodular width of a structure as the respective width
measure of its hypergraph. Similarly, a tree decomposition of a structure refers to a tree
decomposition of its hypergraph.

4.4 Parameterised and Fine-Grained Complexity Theory

A parameterised counting problem is a pair (P, κ) of a counting problem P : {0, 1}∗→N and
a computable function κ : {0, 1}∗→N, called the parameterisation. Consider for example the
parameterised clique counting problem:

#Clique
Input: a pair of a graph G and a positive integer k
Output: the number of k-cliques in G
Parameter: k, that is, κ(G, k) := k

An algorithm for a parameterised (counting) problem is called a fixed-parameter tractable
(FPT) algorithm if there is a computable function f such that, on input x, its running time can
be bounded by f(κ(x)) · |x|O(1). A parameterised (counting) problem is called fixed-parameter
tractable if it can be solved by an FPT algorithm.

A parameterised Turing-reduction from (P, κ) to (P ′, κ′) is an FPT algorithm for (P, κ)
with oracle access to P ′, additionally satisfying that there is a computable function g such
that, on input x, the parameter κ′(y) of any oracle query is bounded by g(κ(x)). We write

(P, κ) ≤fpt
T (P ′, κ′) if a parameterised Turing-reduction exists.

We say that (P, κ) is #W[1]-hard if #Clique ≤fpt
T (P, κ). The class #W[1] can be considered

a parameterised counting equivalent of NP, and we refer the interested reader to Chapter 14 in
the standard textbook of Flum and Grohe [29] for a comprehensive introduction. It is known
that #W[1]-hard problems are not fixed-parameter tractable unless standard assumptions, such
as ETH, fail:

Definition 26 (The Exponential Time Hypothesis (ETH) [34]). The Exponential Time Hypoth-
esis (ETH) asserts that 3-SAT cannot be solved in time exp(o(n)), where n is the number of
variables.

Theorem 27 (Chen et al. [16, 17]). Assume that ETH holds. Then there is no function f such
that #Clique can be solved in time f(k) · |G|o(k).

Note that the previous theorem rules out an FPT algorithm for #Clique (and thus all
#W[1]-hard problems), unless ETH fails.

4.4.1 Parameterised Counting Problems

The following parameterized problems are central to the present work. In what follows ~C denotes
a class of directed graphs, and C denotes a class of hypergraphs.

#DirHomd(~C)

Input: a pair of digraphs ( ~H, ~G) with ~H ∈ ~C

Output: #Hom( ~H→ ~G)

Parameter: | ~H|+ d where d is the maximum outdegree of ~G

#DirSubd(~C)

Input: a pair of digraphs ( ~H, ~G) with ~H ∈ ~C

Output: #Sub( ~H→ ~G)

Parameter: | ~H|+ d where d is the maximum outdegree of ~G
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#DirIndSubd(~C)

Input: a pair of digraphs ( ~H, ~G) with ~H ∈ ~C

Output: #IndSub( ~H→ ~G)

Parameter: | ~H|+ d where d is the maximum outdegree of ~G

#cp-DirHomd(~C)

Input: a digraph ~H ∈ ~C and an ~H-coloured digraph (~G, c)

Output: #Hom( ~H→(~G, c))

Parameter: | ~H|+ d where d is the maximum outdegree of ~G

#CSP(C)
Input: a pair of relational structures (A,B) over the same signature with H(A) ∈ C
Output: #Hom(A→B)
Parameter: |A|

It was shown by Grohe and Marx [33] that the decision version of #CSP(C) can be solved in
polynomial time if the fractional hypertreewidth of C is bounded. More precisely, they discovered
an algorithm that solves the decision problem in time

(|A|+ |B|)r+O(1) ,

assuming that a tree decomposition of A of ρ∗-width at most r is given (see Theorem 3.5 and
Lemma 4.9 in [33]); recall that the ρ∗-width of a tree decomposition is the maximum fractional
edge cover number of a bag. In particular, they show that the partial solutions of each bag can
be enumerated in time (|A|+ |B|)r+O(1). Thus the dynamic programming algorithm that solves
the decision version immediately extends to counting. Finally, since computing such an optimal
tree decomposition can be done in time only depending on A, we obtain the following overall
running time for the counting problem:

Theorem 28. Let A and B be relational structures over the same signature and let r be the
fractional hypertreewidth of A. There is a computable function f such that we can compute
#Hom(A→B) in time

f(|A|) · |B|r+O(1) .

In particular, #CSP(C) is fixed-parameter tractable if C has bounded fractional hypertreewidth.

5 The Directed Homomorphism Basis and Dedekind’s Theorem

In this section, we will revisit the interpolation technique for evaluating linear combinations
of homomorphism counts due to Curticapean, Dell and Marx [23], and we will extend their
framework from undirected graphs to digraphs. We wish to point out that most of the results
presented in this section are easy consequences and generalisations of methods known in the
literature [38, 15, 23, 26]; and we only provide the details for reasons of self-containment. For the
purpose of this section, we assume that finitely supported functions ι from digraphs to rationals
are encoded as a list of elements (~F , ι(~F )) for all ~F with ι(~F ) 6= 0. We write |ι| for the encoding
length of ι.

To begin with, given a digraph ~H, recall that #Sub( ~H→?) and #IndSub( ~H→?) denote the
functions that map a digraph ~G to #Sub( ~H→ ~G) and #IndSub( ~H→ ~G), respectively.

For our reductions, we express both functions #Sub( ~H→?) and #IndSub( ~H→?) as linear
combinations of homomorphism counts from digraphs. We start with #Sub( ~H→?) and point
out that, similarly to the argument in [23], the existence of the following transformation follows
from Möbius Inversion over the partition lattice as shown by Lovász (see Chapter 5.2.3 in [38]).4

4In fact, Lemma 29 and Lemma 32 are special cases of more general transformations for counting answers to
conjunctive queries with disequalities and negations [26].
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Lemma 29. Let ~H be a digraph. There exists a (unique and computable) function sub ~H from
digraphs to rationals such that

#Sub( ~H→?) =
∑
~F

sub ~H(~F ) ·#Hom(~F→?) ,

where the sum is over all (isomorphism classes of) digraphs ~F . Moreover, the function sub ~H has

finite support, and satisfies sub ~H(~F ) 6= 0 if and only if ~F is a quotient graph of ~H.

A similar transformation is known for #IndSub( ~H→?) which relies on arc supergraphs.

Definition 30 (Arc supergraphs). Let ~H1 = (V1, E2) and ~H2 = (V2, E2) be digraphs without
loops. We say that ~H2 is an arc supergraph of ~H1 if V1 = V2 and E1 ⊆ E2.

In the first step, using the inclusion-exclusion principle, #IndSub( ~H→?) can be cast as a
linear combination of subgraph counts (the proof is analogous to the undirected setting; see [23]
and [38, Chapter 5.2.3]):

Lemma 31. Let ~H be a digraph. There exists a (unique and computable) function indsub∗~H from
digraphs to rationals such that

#IndSub( ~H→?) =
∑
~F ′

indsub∗~H(~F ′) ·#Sub(~F ′→?) ,

where the sum is over all (isomorphism classes of) digraphs ~F ′. Moreover, the function indsub∗~H
has finite support and satisfies indsub∗~H(~F ′) 6= 0 if and only if ~F ′ is an arc supergraph of ~H.

In combination, the previous two lemmas allow us to cast #IndSub( ~H→?) as a linear
combination of homomorphism counts.

Lemma 32. Let ~H be a digraph. There exists a (unique and computable) function indsub ~H from
digraphs to rationals such that

#IndSub( ~H→?) =
∑
~F

indsub ~H(~F ) ·#Hom(~F→?) ,

where the sum is over all (isomorphism classes of) digraphs ~F . Moreover, indsub ~H satisfies the
following conditions:

1. indsub ~H has finite support.

2. If indsub ~H(~F ) 6= 0 then ~F is a quotient of an arc supergraph of ~H.

3. If ~F is an arc supergraph of ~H, then indsub ~H(~F ) 6= 0.

Proof. We first apply the transformation from induced subgraphs to subgraphs as in Lemma 31,
second, we apply the transformation from subgraphs to homomorphisms as in Lemma 29. We
obtain

#IndSub( ~H→?) =
∑
~F ′

indsub∗~H(~F ′) ·
∑
~F

sub~F ′(
~F ) ·#Hom(~F→?) . (5)

The coefficients indsub ~H are then obtained by collecting for isomorphic terms, that is

indsub ~H(~F ) =
∑
~F ′

indsub∗~H(~F ′) · sub~F ′(~F ) . (6)
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Note that 1 and 2 follow immediately from the properties of sub and indsub∗. It remains to
show 3: To this end, let ~F be an arc supergraph of ~H. Then, for each arc supergraph ~F ′ of ~H,
the only quotient graph of ~F ′ that can be isomorphic to ~F is ~F ′ itself, since all other quotients
have fewer vertices. By Lemma 29 we hence have that arc supergraphs ~F and ~F ′ of ~H satisfy
that sub~F ′(

~F ) 6= 0 implies ~F ∼= ~F ′. Finally, Lemma 31 asserts that indsub∗~H(~F ′) 6= 0 if and only

if ~F ′ is an arc supergraph of ~H. Thus, using that ~F is an arc supergraph of ~H, we have that (6)
simplifies to indsub ~H(~F ) = indsub∗~H(~F ), which is non-zero by Lemma 31. This concludes the
proof.

A Remark on loops: Readers familiar with [23] might notice that the quotient graphs in
Lemma 29 and the arc supergraphs in Lemma 32 may have loops although loops are forbidden
in [23]. The reason for this is the fact that we allow digraphs to contain loops, whereas undirected
graphs in [23] are not allowed to contain loops. However, we emphasize that our hardness results
will also apply to the restricted case of digraphs without loops. This will be made explicit in the
respective sections.

Next we show that the interpolation method in [23] for evaluating linear combinations of
homomorphism counts transfers to the directed setting as well. The algorithm will be the same
as in [23]; however, our correctness proof will be both more concise and more general at the
same time by relying on a classical result of Dedekind.

Lemma 33. There exists a deterministic algorithm A with the following specification:

• The input of A is a pair of a digraph ~G′ with outdegree d and a function ι from digraphs
to rationals of finite support.

• A is equipped with oracle access to the function

~G 7→
∑
~F

ι(~F ) ·#Hom(~F→ ~G) ,

where the sum is over all (isomorphism classes of) digraphs.

• The output of A is the list with elements (~F ,#Hom(~F→ ~G′)) for each ~F with ι(~F ) 6= 0.

Additionally, for some computable function f : N→ N the running time of A is bounded by
f(|ι|) · |~G′|O(1) and the outdegree of every oracle query ~G is at most f(|ι|) · d.

Similar algorithms exist for the restricted cases of digraphs without loops and DAGs.

The proof of the previous lemma requires some additional set-up. For what follows, we let
~U◦ be the class of all digraphs, and we let ~U be the class of all digraphs without loops, and we
let ~D be the class of all DAGs. Next, consider the following operation on digraphs:

Definition 34 (Tensor product). The tensor product ~G ⊗ ~F of two digraphs ~G and ~F is the
digraph with V (~G ⊗ ~F ) = V (~G) × V (~F ) and with ((a, b), (c, d)) ∈ E(~G ⊗ ~F ) iff (a, c) ∈ E(~G)
and (b, d) ∈ E(~F ).

A semigroup is a pair of a set G and an associative operation ∗ on G. Now observe that the
tensor product of digraphs is clearly associative, that is, ~G ⊗ (~F ⊗ ~H) ∼= (~G ⊗ ~F ) ⊗ ~H given
by the isomorphism (u, (v, w)) 7→ ((u, v), w). Observe further that the tensor product of two
digraphs without loops does not contain loops, and that the tensor product of two DAGs is
again a DAG. Consequently, we obtain three semigroups:

Observation 35. (~U◦,⊗), (~U ,⊗), and ( ~D,⊗) are semigroups.

The fact that the tensor product induces a semigroup will allow us to invoke constructive version
of Dedekind’s Theorem on the linear independence of characters from Artin [5, Theorem 12].5

5Note that Artin states Dedekind’s Theorem for the case of (G, ∗) being a group, rather than a semigroup.
However, the proof only needs associativity of the operation ∗ and thus applies for the more general case of
semigroups as well.
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Since Artin does not state the constructive version explicitly - it only follows from their proof -
we provide a self-contained argument in Appendix A for the reader’s convenience.

Theorem 36. Let (G, ∗) be a semigroup. Let (ϕi)i∈[k] with ϕi : G→Q be pairwise distinct
semigroup homomorphisms of (G, ∗) into (Q, ·), that is, ϕi(g1 ∗ g2) = ϕi(g1) ·ϕi(g2) for all i ∈ [k]
and g1, g2 ∈ G. Let φ : G→Q be a function

φ : g 7→
k∑
i=1

ai · ϕi(g) , (7)

where the ai are rational numbers. Suppose furthermore that the following functions are com-
putable:

1. The operation ∗.
2. The mapping (i, g) 7→ ϕi(g).

3. A mapping i 7→ gi such that ϕi(gi) 6= 0.

4. A mapping (i, j) 7→ gi,j such that ϕi(gi,j) 6= ϕj(gi,j) whenever i 6= j.

Then there is a constant B only depending on the ϕi (and not on the ai), and an algorithm Â
such that the following conditions are satisfied:

• Â is equipped with oracle access to φ.

• Â computes a1, . . . , ak.

• Each oracle query ĝ only depends on the ϕi (and not on the ai).

• The running time of Â is bounded by O
(
B ·
∑k

i=1 log ai

)
We aim to apply Theorem 36 to prove Lemma 33. However, this requires us to establish the

following properties:

Lemma 37. The following conditions are satisfied:

1. For every ~H ∈ ~U◦ the function #Hom( ~H→?) is a homomorphism from (~U◦,⊗) into (Q, ·),
that is, #Hom( ~H→ ~G⊗ ~F ) = #Hom( ~H→ ~G) ·#Hom( ~H→ ~F ) for all ~G, ~F ∈ ~U◦.

2. #Hom( ~H1→?) 6= #Hom( ~H2→?) whenever ~H1 ∈ ~U◦ and ~H2 ∈ ~U◦ are non-isomorphic.

The same holds true in the restricted cases of digraphs without loops and DAGs, that is, the
same holds true if ~U◦ is substituted by ~U or ~D.

Proof. The first claim is immediate since, by definition of ⊗, each ϕ ∈ Hom( ~H→ ~G⊗ ~F )
decomposes (via projection) to ϕ1 ∈ Hom( ~H→ ~G) and ϕ2 ∈ Hom( ~H→ ~F ), which induces a
bijection.

For the second claim we follow a classical argument by Lovász (see Chapter 5.4 in [38]). For
any two ~F , ~G ∈ ~U◦ define:

#Sur(~F→ ~G) := {ϕ ∈ #Hom(~F→ ~G) | ϕ is vertex-surjective} (8)

For any S ⊆ V (~G) let ~G[S] be the subgraph of ~G induced by S. By inclusion and exclusion:

#Sur(~F→ ~G) =
∑

S⊆V ( ~G)

(−1)|V ( ~G)\S| ·#Hom(~F→ ~G[S]) (9)

Now assume for contradiction that #Hom( ~H1→?) = #Hom( ~H2→?) for two non-isomorphic
~H1, ~H2 ∈ ~U◦. Then for ~G = H1 (9) yields #Sur( ~H2 → ~H1) = #Sur( ~H1 → ~H1) > 0, and
for ~G = ~H2 it yields #Sur( ~H1 → ~H2) = #Sur( ~H2 → ~H2) > 0. Hence there are surjective
homomorphisms of ~H1 into ~H2 and of ~H2 into ~H1. But then ~H1 and ~H2 are isomorphic, which
yields the desired contradiction.
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We are now able to proof Lemma 33.

Proof of Lemma 33. Let ~G′ and ι be the input. We apply Dedekind’s Theorem (Theorem 36)
to the semigroup (~U◦,⊗) and mappings ϕ~F := #Hom(~F→?) for the digraphs ~F in the support

supp(ι) of ι, that is, k = |supp(ι)|. Concretely, assume that ~F1, . . . , ~Fk are elements of the
support of ι (the ~Fi are pairwise non-isomorphic) and observe that we can use our oracle to
compute the following function

~H 7→
k∑
i=1

ι(~Fi) ·#Hom(~Fi→ ~G⊗ ~H) .

Using the properties of the tensor product, this rewrites to

~H 7→
k∑
i=1

(ι(~Fi) ·#Hom(~Fi→ ~G)) ·#Hom(~Fi→ ~H) .

Now we set ai := ι(~Fi) ·#Hom(~Fi→ ~G) and ϕi := #Hom(~Fi→?). Note that Lemma 37 makes
sure that the ϕi are indeed pairwise distinct semigroup homomorphisms. Next, clearly, all
functions in 1. to 4. in Theorem 36 are computable in our setting. Hence we can use Algorithm
Â from Theorem 36 to obtain a1, . . . , ak. The number of steps required by Â is bounded by
O(B ·

∑k
i=1 log ai), where B does not depend on the ai. Thus we can bound B by a function in

|ι|. Furthermore, we can generously bound log ai ≤ log(ι(~Fi) · |~G′||ι|) ≤ f ′(|ι|) · log |~G′| for some
computable function f ′.

Next, when simulating an oracle query ~H posed by Â, we have to use our own oracle to
query ~G′ ⊗ ~H. Fortunately, Theorem 36 guarantees that ~H only depends on the ϕi, that is, on
the ~Fi, and thus only on ι. Thus, constructing ~G′ ⊗ ~H can be done in time |~G′|O(1) · f ′′(|ι|) for
some computable function f ′′. Additionally, the outdegree of ~G′ ⊗ ~H is, by definition of the
tensor product, bounded by the outdegree of ~G′, i.e., d, times the outdegree of ~H, which only
depends on ι. Finally, having obtained the ai, we obtain the terms #Hom(~Fi→ ~G′) by dividing
by ι(~Fi), which is well-defined, since all ι(~Fi) are non-zero.

Hence, there is a computable function f such that the following two desired properties are
true:

• The total running time of our algorithm is bounded by f(|ι|) · |~G′|O(1), and

• the outdegree of every oracle query is bounded by d · f(|ι|).
Noting that the same arguments apply in the restricted cases of digraphs without loops and
DAGs, we can conclude the proof.

6 Counting Homomorphisms

Recall the problem #DirHomd(~C) from Section 4.4.1. Section 6.1 shows that, when the reacha-
bility hypergraphs of the graphs in ~C have bounded fractional hypertreewidth, #DirHomd(~C)
is fixed-parameter tractable. Section 6.2 instead gives parameterized reductions under what we
call monotone reversible minors, a new and restricted version of digraph minors. In the next
sections we will leverage these results for #DirSubd(~C) and #DirIndSubd(~C).

6.1 Upper Bounds

Let ~C be a class of of digraphs, and let R(~C) = {R( ~H) : ~H ∈ ~C}. This section proves that,
if R(~C) has bounded fractional hypertreewidth, fhtw(R(~C)) < ∞, then #DirHomd(~C) is
fixed-parameter tractable. To this end we give a parameterized reduction from #DirHomd(~C)
to #CSP(R(~C)) that preserves reachability hypergraphs, and then invoke Theorem 28.
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Definition 38. Let ~H be a digraph, let S1, . . . , S` be the sources of ~H/∼, and fix any si ∈ Si
for each i ∈ [`]. Fix any ordering ≺ of the vertices of ~H, and, for each i ∈ [`], let ti be the
tuple formed by sorting R(si) according to ≺. Furthermore, let ~G be a digraph. The relational
structures A[ ~H] and B[ ~H, ~G] are defined as follows:

• A[ ~H] = (V ( ~H), RA1 , . . . , R
A
` ), where RAi = {ti} for all i ∈ [`].

• B[ ~H, ~G] = (V (~G), RB1 , . . . , R
B
` ), where

RBi = {φ(ti) : φ ∈ Hom( ~H[R(si)]→ ~G)}

for all i ∈ [`].

Lemma 39. Hom( ~H→ ~G) = Hom(A[ ~H]→B[ ~H, ~G]).

Proof. To avoid notational clutter, we set ei := R(si). Let ϕ ∈ Hom( ~H→ ~G) and fix any
i ∈ [`]. Clearly, the restriction of ϕ to ~H[ei] is in Hom( ~H[ei]→ ~G). Therefore by Defini-
tion 38 we have ϕ(ti) ∈ RBi . Hence ϕ is a homomorphism from A[ ~H] to B[ ~H, ~G], that is,

ϕ ∈ Hom(A[ ~H]→B[ ~H, ~G]).
Now let ϕ ∈ Hom(A[ ~H]→B[ ~H, ~G]) and fix any i ∈ [`]. By definition, ϕ(ti) ∈ RBi . By

Definition 38 this implies ϕ(ti) = φ(ti) for some φ ∈ Hom( ~H[ei]→ ~G), thus (ϕ(u), ϕ(v)) ∈ E(~G)
for all (u, v) ∈ E( ~H[ei]). Since this holds for all i ∈ [`] and since E( ~H) = ∪i∈[`]E( ~H[ei]), we

have (ϕ(u), ϕ(v)) ∈ E(~G) for all (u, v) ∈ E( ~H). Thus ϕ ∈ Hom( ~H→ ~G).

Further, we note the following immediate consequence of the definition of A[ ~H].

Observation 40. H[A[ ~H]] = R( ~H).

Next we show that A[ ~H] and B[ ~H, ~G] can be constructed efficiently.

Lemma 41. There exists a computable function f such that, given any two DAGs ~H and ~G, the
relational structures A[ ~H] and B[ ~H, ~G] can be computed in time f(k, d) ·nO(1) where k = |V ( ~H)|,
n = |V (~G)|, and d is the maximum outdegree of ~G. Moreover, |B[ ~H, ~G]| ≤ f(k, d) ·O(|~G|).

Proof. It is straightforward that A[ ~H] can be constructed in time only depending on k. For
what follows, we again set ei := R(si). Furthermore, set ai := |ei|. To construct B[ ~H, ~G], and
more precisely every relation RBi , we use the following standard technique. For every v ∈ V (~G)
let Nk−1(v) be the set of vertices reachable from v by a directed path of length at most k − 1.
Note that for any φ ∈ Hom( ~H[ei]→ ~G) we have that ~H[ei] is connected and contains at most k
vertices. Furthermore, each vertex in ~H[ei] is reachable by a directed path from si. Thus φ(ti)
contains only vertices of Nk−1(v) where v = φ(si).

Therefore to list all φ(ti) with φ ∈ Hom( ~H[ei]→ ~G) we take every v ∈ V (~G) in turn, we
compute Nk−1(v), and for every ai-tuple zi ∈ (Nk−1(v))ai−1 whose first element is v, we add
zi if and only if the map φ defined by φ(ti) = zi preserves all edges of ~H[ei], which holds
if and only if φ ∈ Hom( ~H[ei]→ ~G). Finally, recalling that d is the outdegree of ~G, we have
|Nk−1(v)| ≤

∑k−1
j=0 d

j , which only depends on k and d. It is thus immediate to see that we

can compute all RBi in time f(k, d) · nO(1), and that the overall size of B[ ~H, ~G] is bounded by

f(k, d) ·O(|~G|), for some computable function f .

Theorem 42. For some computable function f there is an algorithm that, given any pair of
digraphs ( ~H, ~G), computes #Hom( ~H→ ~G) in time f(| ~H|, d) · |~G|r+O(1), where d is the maximum
outdegree of ~G and r = fhtw(R( ~H)). Therefore #DirHomd(~C) ∈ FPT if fhtw(R(~C)) <∞.

Proof. Given an instance ( ~H, ~G), let n = |V (~G)| and k = |V ( ~H)|. We compute A[ ~H] and B[ ~H, ~G]
as in Lemma 41. In particular, we obtain |B[ ~H, ~G]| ≤ g(k, d) · O(|~G|) for some computable
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function g. Finally, by Lemma 39, we have Hom( ~H→ ~G) = Hom(A[ ~H]→B[ ~H, ~G]), the latter of
which can be computed, by Theorem 28, in time

f ′(|A[ ~H]|) · |B[ ~H, ~G]|r+O(1) ≤ f ′(|A[ ~H]|) · g(k, d)r+O(1) · |~G|r+O(1)

for some computable function f ′. Since |A[ ~H]| depends only on k and not on n, the proof is
concluded.

6.2 Coloured Homomorphisms and Reductions via MR Minors

We start by introducing monotone reversible (MR) minors of a digraph ~H.

Definition 43 (Monotone Reversible Minors). Let ~H be a digraph and consider the following
operations:

Sink deletion: delete all vertices in T for some sink T of ~H/∼. The resulting graph is
denoted by ~H \ T .

Contraction: identify u and v for some uv ∈ E( ~H). We emphasise that a contraction does
not yield a loop. The resulting graph is denoted by ~H/(u, v).

Loop deletion: delete a loop (u, u). The resulting graph is denoted by ~H \ (u, u).

A monotone reversible minor (“MR minor”) of ~H is a digraph that can be obtained from ~H by a
sequence of sink deletions, contractions and loop deletions.

Observation 44. Let ~H be a digraph.

(M1) If ~H does not have loops, then no MR minor of ~H does.

(M2) ~H/∼ is an MR minor of ~H.

We show that the parameterized complexity of #DirHomd is monotone (i.e., nonincreasing)
under taking MR minors. The following three lemmas establish the fact separately for sink
deletions, for contractions, and for loop deletion. For technical reasons, we will prove this
property for the colour-prescribed variant; we will be able to remove the colours in our hardness
reductions later.

Lemma 45. There exists an algorithm A1 that satisfies the following constraints:

1. A1 expects as input a digraph ~H, a sink T of ~H/∼, and a surjectively ~H \ T -coloured
digraph (~G′, c′) of outdegree d′.

2. The running time of A1 is bounded by poly(| ~H|, |~G′|).
3. A1 outputs a surjectively ~H-coloured digraph (~G, c) of size at most O(|H| · |~G′|) such that

the outdegree of ~G is bounded by d′ + | ~H|, and

#Hom( ~H \ T→(~G′, c′)) = #Hom( ~H→(~G, c)) .

Proof. Let T = {t1, . . . , tk}. For every i ∈ [k] let Vi be the set of vertices v ∈ V ( ~H) \T such that
(v, ti) ∈ E( ~H). Note that, since T is a sink in ~H/∼, there are no arcs from T to V ( ~H) \ T in ~H.

We construct (~G, c) from (~G′, c′) as follows: First, we add to ~G′ the set T and all arcs in
T 2∩E( ~H). Second, for every i ∈ [k], we add to ~G all arcs from c′−1(Vi) to ti — note that c′−1(Vi)
is the set of vertices of ~G′ that are coloured by c′ with a vertex in Vi. Finally, we let c agree with
c′ on all vertices of ~G′, and we set c(ti) = ti for all i ∈ [k]. Clearly, this construction can be done
in time poly(| ~H|, |~G′|), and the resulting (~G, c) is of size at most O(|H| · |~G′|). Furthermore, the
outdegree of ~G is bounded by d′+ | ~H|. By construction, and the fact that c′ is a vertex-surjective
homomorphism from ~G′ to ~H \T , it is also immediate that c is a vertex-surjective homomorphism
from ~G to ~H. Finally, consider the function b that maps a colour-prescribed homomorphism
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ϕ ∈ Hom( ~H \ T→(~G′, c′)) to the function ψ that agrees with ϕ on V ( ~H \ T ) and that maps
ti to ti for each i ∈ [k]. By construction, it is easy to see that b must be a bijection from
Hom( ~H \ T→(~G′, c′)) to Hom( ~H→(~G, c)). This concludes the proof.

Lemma 46. There exists an algorithm A2 that satisfies the following constraints:

1. A2 expects as input a digraph ~H, an arc (u, v) of ~H, and a surjectively ~H/(u, v)-coloured
digraph (~G′, c′) of outdegree d′.

2. The running time of A2 is bounded by poly(| ~H|, |~G′|).
3. A2 outputs a surjectively ~H-coloured digraph (~G, c) of size at most O(|H| · |~G′|) such that

the outdegree of ~G is bounded by 2d′ + 1, and

#Hom( ~H/(u, v)→(~G′, c′)) = #Hom( ~H→(~G, c)) .

Proof. We write uv for the vertex in ~H/(u, v) that corresponds to the contraction of u and
v. Recall that ~G′ is surjectively ~H/(u, v)-coloured by c′, and set Vuv := c′−1(uv). Let us now
provide the construction of (~G, c):

(a) We start with ~G′ and delete the set Vuv (including all incident arcs).

(b) We add two copies of Vuv; one is denoted by Vu, and the other one is denoted by Vv. For
each vertex w ∈ Vuv, we denote the copy of w in Vu by wu, and the copy of w in Vv by wv.

(c) For each w ∈ Vuv, we add an arc (wu, wv).

(d) For each x ∈ V ( ~H) \ {u, v} we proceed as follows

• If (x, u) ∈ E( ~H), then, for every y ∈ c′−1(x) and w ∈ Vuv, we add an arc from y to
wu ∈ Vu if and only if (y, w) ∈ E(~G′).

• If (u, x) ∈ E( ~H), then, for every y ∈ c′−1(x) and w ∈ Vuv, we add an arc from
wu ∈ Vu to y if and only if (w, y) ∈ E(~G′).

• If (x, v) ∈ E( ~H), then, for every y ∈ c′−1(x) and w ∈ Vuv,we add an arc from y to
wv ∈ Vv if and only if (y, w) ∈ E(~G′).

• If (v, x) ∈ E( ~H), then, for every y ∈ c′−1(x) and w ∈ Vuv, we add an arc from wv ∈ Vv
to y if and only if (w, y) ∈ E(~G′).

(e) Finally, c agrees with c′ on V ( ~H) \ {u, v}, and c maps every vertex in Vu to u and it maps
every vertex in Vv to v.

It is immediate that c is a surjective ~H-colouring of ~G. Furthermore, it is clear that the running
time is bounded by poly(| ~H|, |~G′|), and that the size of (~G, c) is at most O(|H| · |~G′|). Let us
consider the outdegree: For x ∈ V ( ~H) \ {u, v} = V ( ~H/(u, v)) \ {uv}, the outdegree of every
vertex v ∈ c−1(x) = c′−1(x) in ~G is bounded by twice the outdegree of v in ~G′ (see (d) above).
Furthermore, the outdegree of every vertex wu ∈ c−1(u) in ~G is bounded by the outdegree of
w in ~G′ plus 1 (see (d) above and note that the arcs added in (c) above can increase it by 1).
Finally, the outdegree of every vertex wv ∈ c−1(v) in ~G is bounded by the outdegree of w in ~G′

(see (d) above). Consequently, we can bound the outdegree of ~G by 2d′ + 1.
Finally, note that (c) above makes sure that any homomorphism ψ in Hom( ~H→(~G, c)) must

map u and v to the same copy of a vertex w ∈ Vuv. Furthermore, (d) makes sure that the
mapping ϕ that agrees with ψ on V ( ~H) \ {u, v} and that maps uv to w (where wu and wv are
the images of u and v under ψ), is a homomorphism in Hom( ~H/(u, v)→(~G′, c′)). On the other
hand every homomorphism ϕ ∈ Hom( ~H/(u, v)→(~G′, c′)) corresponds to the homomorphism
ψ ∈ Hom( ~H→(~G, c)) that agrees with ϕ on V ( ~H)\{u, v}, and that maps u and v to wu and wv,
where w = ϕ(uv). Concretely, we obtain the desired bijection between Hom( ~H/(u, v)→(~G′, c′))
and Hom( ~H→(~G, c)), concluding the proof.
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Lemma 47. There exists an algorithm A3 that satisfies the following constraints:

1. A3 expects as input a digraph ~H, a loop (u, u) of ~H, and a surjectively ~H \ (u, u)-coloured
digraph (~G′, c′) of outdegree d′.

2. The running time of A3 is bounded by poly(| ~H|, |~G′|).
3. A3 outputs a surjectively ~H-coloured digraph (~G, c) of size at most O(|~G′|) such that the

outdegree of ~G is bounded by d′ + 1, and

#Hom( ~H \ (u, u)→(~G′, c′)) = #Hom( ~H→(~G, c)) .

Proof. This is a very easy case: Obtain ~G from ~G′ by adding a loop to each vertex of ~G′

coloured by c′ with u. Furthermore, we set c := c′. Clearly, c is a surjective ~H-colouring
of ~G, and the outdegree of ~G can increase by at most 1. Furthermore, the construction
immediately yields that Hom( ~H \ (u, u)→(~G′, c′)) = Hom( ~H→(~G, c)), that is, a mapping
ϕ : V ( ~H)(= V ( ~H ′))→V (~G)(= V (~G′)) is a homomorphism from ~H \ (u, u) to (~G′, c′) if and only
if it is a homomorphism from ~H to (~G, c)

In combination, the three lemmas above yield the following:

Lemma 48. Let ~C be a recursively enumerable class of digraphs and let ~C ′ be a class of MR
minors of graphs in ~C. Then

#cp-DirHomd(~C ′) ≤fpt
T #cp-DirHomd(~C) .

Proof. Let ~H ′ and (~G′, c′) be an input instance of #cp-DirHomd(~C ′). We start by searching
a graph ~H ∈ ~C such that ~H ′ is an MR minor of ~H. Note that this can be done in time only
depending on ~H ′. Since ~H ′ can be obtained from ~H by a sequence of ` sink-deletions, contractions,
and loop deletions, we can use algorithms A1, A2 and A3 from the previous three lemmas for
a total of ` times. Note that the crucial property of the Ai is that the oracle queries always
have size bounded by f(| ~H|) ·O(|~G′|). Hence, even after ` applications of the constructions, the
total size will still be bounded by f(| ~H|) ·O(|~G′|). Since furthermore each individual application
takes only polynomial time, we obtain, as desired a parameterised Turing-reduction.

The final part of this subsection is the following lemma for removing the colours. Note that
its proof is a simple application of the inclusion-exclusion principle and transfers verbatim from
e.g. [45, Lemma 2.49] (see also [22, Lemma 1.34]). We emphasise that the reduction only requires
oracle queries for subgraphs of the input host-graph which cannot increase the outdegree; thus
the reduction applies to our setting.

Lemma 49. Let ~C be a class of digraphs. We have

#cp-DirHomd(~C) ≤fpt
T #DirHomd(~C) .

6.3 Lower Bounds

We start by extending the notion of adaptive width from hypergraphs to digraphs.

Definition 50 (Adaptive width of digraphs). The adaptive width of a digraph ~H, denoted by
aw( ~H), is defined as the adaptive width of its contour. That is aw( ~H) := aw(Γ( ~H)).

We proceed by proving intractability of #cp-DirHomd(~C) for classes ~C of canonical DAGs
of unbounded adaptive width.

Lemma 51. Let ~C be a recursively enumerable class of canonical DAGs. If the adaptive width
of ~C is unbounded then #cp-DirHomd(~C) is not fixed-parameter tractable, unless ETH fails.

The proof of Lemma 51 uses a careful reduction from a version of the parameterised constraint
satisfaction problem and is encapsulated in the following subsection.
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6.3.1 Reduction from a Constraint Satisfaction problem

The starting point of our reduction is the following decision problem and the corresponding
hardness result proven by Chen et al. [14] (building upon Marx [40]); below, S denotes a class
of relational structures.

Hom(S)
Input: a pair of relational structures (A,B) with A ∈ S
Output: true iff there exists a homomorphism from A to B
Parameter: |A|

Let us emphasise the subtle difference between the input restrictions of Hom(S) and #CSP(C):
In the former, we enforce that A is contained in S. In the latter, we only restrict the hypergraphs
of the relational structure A by requiring that the hypergraph H(A) is contained in C.

For what follows, we call a relational structure A minimal under homomorphic equivalence if
there is no homomorphism from A to a proper substructure of A.

Theorem 52 ([14]). Let S be a recursively enumerable class of relational structures that are
minimal under homomorphic equivalence, and assume that ETH holds. If S has unbounded
adaptive width then Hom(S) is not fixed-parameter tractable.

To obtain hardness of #DirHomd(~C) from Theorem 52, we show a chain of parameterized
Turing reductions using two intermediate problems; one of them is #cp-DirHomd(~C), and for
the second one we extend the notion of colour-prescribed homomorphisms to hypergraphs: Let
H be a hypergraph. An H-colouring of a hypergraph G is a homomorphism c ∈ Hom(G→H).
An H-coloured hypergraph is a pair (G, c) where G is a hypergraph and c is an H-colouring of
G. Given a H-coloured hypergraph (G, c), a map ψ : V (H)→ V (G) is c-colour-prescribed if
c(ψ(v)) = v for every v ∈ V (H). The set of all c-colour-prescribed homomorphisms from H to G
is denoted by Hom(H→(G, c)).

We can now introduce the problem #cp-Homa(C); here C is a class of hypergraphs:

#cp-Homa(C)
Input: a hypergraph H ∈ C and an H-coloured hypergraph (G, c)
Output: #Hom(H→(G, c))
Parameter: |H|+ a(G) (recall that a(G) is arity of G)

In the rest of this subsection we prove:

Hom(S) ≤fpt
T #cp-Homa(C) ≤fpt

T #cp-DirHomd(~C) (10)

where S and C are carefully constructed from ~C so to preserve the (un)boundedness of adaptive
width. The next two paragraphs prove the reductions of (10) in order.

Hom(S) ≤fpt
T #cp-Homa(C) We reduce Hom(S) to #cp-Homa(C) for a certain class S = S(C)

described below. To this end we convert every hypergraph into a structure; this structure is the
same of Definition 38 – only for hypergraphs. Without loss of generality, in what follows we
assume V (H) = {1, . . . , k} where k = |V (H)|.

Definition 53. Let H be any hypergraph. The structure A[H] has universe V (H) and, for every
e ∈ E(H), contains a relation RAe whose only tuple is the set e sorted in nondecreasing order.

Since we use individual relation symbols for each e ∈ E(H), the following is straightforward
to prove:

Claim 54. Let H be any hypergraph. Then A[H] is minimal under homomorphic equivalence,
and the hypergraph of A[H] is H.
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For any class C of hypergraphs let S[C] = {A[H] | H ∈ C}. We prove:

Lemma 55. For every recursively enumerable class C of hypergraphs without isolated vertices,
Hom(S[C]) ≤fpt

T #cp-Homa(C).

Proof. Let (A,B) be an instance of Hom(S[C]), and let U(A) and U(B), respectively, be the
universes of A and B. If A and B have different signatures then clearly the solution is NO.
Otherwise, since A ∈ S[C] and C is recursively enumerable, in time f(|A|) for some computable
f we find H ∈ C such that A = A[H]. Then we construct the hypergraph G defined by:

• V (G) = U(B)× V (H)

• E(G) = {(x1, i1), . . . , (x`, i`)} : e = {i1, . . . , i`} ∈ E(H), i1 < . . . < i`, (x1, . . . , x`) ∈ RBe
Let c : V (G) → V (H) be defined by c((x, i)) = i for all (x, i) ∈ V (G). Note that c is an
H-colouring of G. Consider the instance (H, (G, c)) of #cp-Homa(C). We claim:

Hom(A→B) 6= ∅ ⇔ Hom(H→(G, c)) 6= ∅ (11)

To prove that Hom(A→B) 6= ∅ ⇒ Hom(H→(G, c)) 6= ∅, suppose ϕ ∈ Hom(A→B). Define
ψ : V (H)→V (G) by ψ(i) = (ϕ(i), i) for all i ∈ V (H). We claim that ψ ∈ Hom(H→(G, c)). Let
e = {i1, . . . , i`} ∈ E(H) with i1 < · · · < i`. By definition of A[H] we have (i1, . . . , i`) ∈ RAe ;
and since ϕ is a homomorphism, (ϕ(i1), . . . , ϕ(i`)) ∈ RBe . By definition of G this implies
that {(ϕ(i1), i1), . . . , (ϕ(i`), i`)} ∈ E(G). Hence, ψ ∈ Hom(H→G). To see that ψ is c-colour-
prescribed, note that c(ψ(i)) = c((ϕ(i), i)) = i for all i ∈ V (H).

To prove that Hom(H→(G, c)) 6= ∅ ⇒ Hom(A→B) 6= ∅, suppose ψ ∈ Hom(H→(G, c)).
Since ψ is c-colour-prescribed, for each i ∈ V (H) we have ψ(i) = (xi, i) for some xi ∈ U(B).
Define ϕ : U(A)→U(B) by letting ϕ(i) = xi for all i ∈ U(A). We claim that ϕ ∈ Hom(A→B).
Let indeed (i1, . . . , i`) ∈ RAe . By definition of A this implies e = {i1, . . . , i`} ∈ E(H) and
i1 < · · · < i`. Since ψ is c-color-prescribed, then ψ(ij) = (xj , ij) for all j = 1, . . . , `; and
since ψ ∈ Hom(H→G), then {(x1, i1), . . . , (x`, i`)} ∈ E(G). By definition of G this implies
(x1, . . . , x`) ∈ RBe , and since ϕ(i1, . . . , i`) = (x1, . . . , x`), then ϕ(i1, . . . , i`) ∈ RBe .

Finally, note that |H| = f(|A|) and a(G) ≤ a(H) ≤ |H|. Therefore |H|+ a(G) is a function
of |A|, hence the reduction preserves the parameter.

#cp-Homa(C) ≤
fpt
T #cp-DirHomd(~C) Recall that the contour of a digraph ~H, denoted by

Γ( ~H), is obtained by deleting from the reachability hypergraph R( ~H) the vertices corresponding
to sources in ~H/∼ (see Definition 18). For our reduction we need to prove that the adaptive
width of a contour is at least that of the original hypergraph.

Lemma 56. Let ~H be a canonical DAG and let R be its reachability hypergraph. Then aw( ~H) ≥
aw(R).

Proof. Recall that, by definition, aw( ~H) = aw(Γ( ~H)). Set F := Γ( ~H) and let s1, . . . , s` be the
sources of ~H and e1, . . . , e` the corresponding hyperedges in R. Let F0 = R, and for i = 1, . . . , `
let Fi be the hypergraph obtained from Fi−1 by first deleting si and then removing a copy of ei
if more than one exist. Note that F` = F . We prove that aw(Fi) ≥ aw(Fi−1) for all i = 1, . . . , `,
which implies aw(F`) ≥ aw(F0), that is, aw(F) ≥ aw(R). Since removing a copy of a multi-edge
leaves adaptive with unchanged, we can assume Fi is obtained from Fi−1 by just deleting si.

We rephrase and prove the claim aw(Fi) ≥ aw(Fi−1) as follows. Let H be a hypergraph,
let e ∈ E(H), and let H′ be the hypergraph obtained from H by adding a new vertex v′ and
replacing e with e ∪ {v′}. We claim aw(H) ≥ aw(H′). To this end, we show that for every
fractional independent set µ′ of H′ there exists a tree decomposition (T ′,B′) of H′ such that
µ′-width(T ′,B′) ≤ aw(H). Let then µ′ be a fractional independent set of H′, and let µ be
the restriction of µ′ to V (H) = V (H′) \ {v′}. Note that µ is a fractional independent set of
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H; thus, by definition of adaptive width, there is a tree decomposition (T ,B) of H such that
µ-width(T ,B) ≤ aw(H). By definition of tree decomposition, there exists Be ∈ B such that
e ⊆ Be. Let (T ′,B′) be obtained from (T ,B) by appending appending the bag Be′ = e′ to Be.

We claim that (T ′,B′) is a tree decomposition of H′ and that µ′-width(T ′,B′) ≤ aw(H). To
see that (T ′,B′) is a tree decomposition of H′ note that:

• every edge of H′ is a subset of some bag of B′. Indeed, e′ ⊆ Be′ , while every other edge is
in E(H), and is thus a subset of some bag of B since (T ,B) is a tree decomposition of H

• for every u ∈ V (H′) the subgraph T ′u of T ′ induced by the bags containing u is connected.
Indeed, if u = v′ then T ′u has only one vertex. Else, T ′u equals Tu if u /∈ e and Tu with an
appended vertex otherwise.

To prove µ′-width(T ′,B′) ≤ aw(H) consider any B′ ∈ B′. If B′ = e′ then µ′(B′) ≤ 1 since µ′ is a
fractional independent set of H′; and since aw ≥ 1, then µ′(B′) ≤ aw(H′). If B′ 6= e′ then B′ ∈ B
and v′ /∈ B′, so µ′(B′) = µ(B′). But µ(B′) ≤ µ-width(T ,B) ≤ aw(H), thus µ′(B′) ≤ aw(H).

We are ready for our parameterised Turing-reduction.

Lemma 57. Let ~C be a recursively enumerable class of canonical DAGs and define Ĉ = {Γ( ~H) |
~H ∈ ~C}. Then #cp-Homa(Ĉ) ≤fpt

T #cp-DirHomd(~C).

Proof. Let (H, (G, c)) be the input to #cp-Homa(Ĉ). AsH ∈ {Γ( ~H)| ~H ∈ ~C} and ~C is recursively
enumerable, for some computable f in time f(|H|) we find ~H ∈ ~C such that H = Γ( ~H). Let
s1, . . . , s` be the sources of ~H, and for every s ∈ {s1, . . . , s`} let es be the set of non-source
vertices reachable from s. Note that ei ∈ E(H).

We construct an ~H-coloured DAG (~G, c′) such that d(~G) ≤ a(G) and

|Hom(Γ→(G, c))| = |Hom( ~H→(~G, c′))| .

First, since c ∈ Hom(G→H), then c(e) ∈ E(H) for every e ∈ E(G). Let Sc(e) contain every

s ∈ {s1, . . . , s`} such that {s}∪c(e) is the reachable set of s in ~H. This implies that (s, v) ∈ E( ~H)
for all s ∈ Sc(e) and v ∈ c(e). Then define:

V (~G) = V (G) ∪ {xe,s : e ∈ E(G), s ∈ Sc(e)} (12)

E(~G) = {(xe,s, v) : e ∈ E(G), s ∈ Sc(e), v ∈ e} (13)

and:

c′(v) = c(v) : v ∈ V (G) (14)

c′(xe,s) = s : e ∈ E(G), s ∈ Sc(e) (15)

Observe that d(~G) ≤ a(G) and that ~G and c′ can be constructed in FPT time.
Let us show that c′ ∈ Hom(~G→ ~H). Let (u, v) ∈ E(~G). By construction u = xe,s for e ∈ E(G),

s ∈ Sc(e), v ∈ e. By definition c′(xe,s) = s and c′(v) = c(v). Thus (c′(xe,s), c
′(v)) = (s, c(v)), and

as observed above (s, c(v)) ∈ E( ~H). Thus (c(u), c(v)) ∈ E( ~H) as desired.
Now we give a bijection between Hom(H→(G, c)) and Hom( ~H→(~G, c′)), proving that

|Hom(H→(G, c))| = |Hom( ~H→(~G, c′))|. First, let ϕ ∈ Hom(H→(G, c)), and define the fol-
lowing extension ψ : V ( ~H)→V (~G) of ϕ:

ψ(v) = ϕ(v) : v ∈ V (H) (16)

ψ(s) = xϕ(es),s : s ∈ {s1, . . . , s`} (17)

We claim that ψ ∈ Hom( ~H→(~G, c′)). First, let us show that ψ ∈ Hom( ~H→ ~G). Let (s, v) ∈
E( ~H). Then (ψ(s), ψ(v)) = (xϕ(es),s, ϕ(v)). Since es ∈ E(H) and ϕ ∈ Hom(H→G), then
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ϕ(es) = e for some e ∈ E(G); let us then write (ψ(s), ψ(v)) = (xe,s, ϕ(v)). Now, since

(s, v) ∈ E( ~H), then v ∈ es, which implies ϕ(v) ∈ ϕ(es) = e. By construction of ~G this implies
(xe,s, ϕ(v)) ∈ E(~G). Therefore ψ ∈ Hom( ~H→ ~G). To show that ψ ∈ Hom( ~H→(~G, c′)), note
that for all v ∈ V (H) we have c′(ψ(v)) = c(ϕ(v)) = v by definition of c′ and c; while for all
s ∈ {s1, . . . , s`} we have c′(ψ(s)) = c′(xϕ(es),s) = s. Hence ψ ∈ Hom( ~H→(~G, c′)).

Next, let ψ ∈ Hom( ~H→(~G, c′)), and define ϕ as the restriction of ψ to V (H). Note that
this is the inverse of the extension defined above, and as a consequence it is also c-prescibed.
Therefore to establish our bijection we need only to prove that ϕ ∈ Hom(H→(G, c)). Consider
any edge ε ∈ E(H). By construction, ε = es for some s ∈ {s1, . . . , s`}. Since ψ ∈ Hom( ~H→ ~G),
then (ψ(s), ψ(v)) ∈ E(~G) for all v ∈ es. By construction of ~G and since ψ is c′-prescribed, this
implies that ψ(s) = xe,s and ψ(es) ⊆ e for some e ∈ E(G). The injectivity of c and thus c′ on e,
however, implies that |e| ≤ |ψ(es)|. Therefore, ψ(es) = e and thus ϕ(es) = ψ(es) ∈ E(G).

We are now able to prove Lemma 51; recall that we are required to show that #cp-DirHomd(~C)
is (fixed-parameter) intractable whenever ~C is a class of canonical DAGs of unbounded adaptive
width.

Proof of Lemma 51. Let Ĉ := {Γ( ~H) | ~H ∈ ~C} and note that Ĉ does not have isolated vertices
(a vertex contained in a hyperedge of cardinality 1 is not isolated). Recall further that S[Ĉ] =
{A[H] | H ∈ Ĉ}. By Lemma 55 and Lemma 57, we have

Hom(S[Ĉ]) ≤fpt
T #cp-Homa(Ĉ) ≤fpt

T #cp-DirHomd(~C) (18)

Since ~C has unbounded adaptive width, we obtain by Lemma 56 that Ĉ and thus S[Ĉ]
has unbounded adaptive width as well. By Claim 54, each structure in S[Ĉ] is furthermore
minimal under homomorphic equivalence. By Theorem 52, the problem Hom(S[Ĉ]) is thus not
fixed-parameter tractable, unless ETH fails. The proof can thus be concluded by applying the
chain of reductions (18).

6.4 The Intractability Result

In combination with our MR minor operations and the removal of colours, we obtain the following
result, which will be the basis of every intractability result in the forthcoming sections.

Lemma 58. Let ~C be a recursively enumerable class of digraphs and let ~C ′ be a class of
canonical DAGs that are MR minors of digraphs in ~C. If ~C ′ has unbounded adaptive width, then
#DirHomd(~C) is not fixed-parameter tractable, unless ETH fails.

Proof. By Lemma 51, the problem #cp-DirHomd(~C ′) is fixed-parameter intractable, unless
ETH fails. By Lemma 48 and Lemma 49, we have that

#cp-DirHomd(~C ′) ≤fpt
T #cp-DirHomd(~C) ≤fpt

T #DirHomd(~C) ,

which concludes the proof.

7 Counting Subgraphs

The following invariant will turn out to precisely capture the complexity for counting directed
subgraphs in bounded outdegree graphs.
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Definition 59 (Fractional Cover Number). A fractional cover of a DAG ~H with sources S is a
function ψ : S→ [0,∞] such that for every vertex v ∈ V ( ~H) \ S we have∑

s∈S
v∈R(s)

ψ(s) ≥ 1 .

The weight of a fractional cover is
∑

s∈S ψ(s), and we also require that the weight is at least 1.6

The fractional cover number of ~H, denoted by ρ∗( ~H), is the minimum weight of a fractional cover
of ~H. The fractional cover number of a digraph ~H (not necessarily acyclic) is ρ∗( ~H) = ρ∗( ~H/∼).

In the previous definition we overloaded the symbol ρ∗, which also denotes the fractional edge
cover number of hypergraphs. The motivation for reusing the symbol stems from the following
observation:

Observation 60. Let ~H be a digraph. We have ρ∗( ~H) = ρ∗(Γ( ~H/∼)), that is, the fractional
cover number of ~H is equal to the fractional edge cover number of the contour of the DAG ~H/∼.

7.1 Upper Bounds

To avoid notational clutter, given a fractional cover ψ of ~H/∼, we will call ψ also a fractional
cover of ~H.

Lemma 61. Let ~H be a digraph and let ~H ′ be a quotient of ~H. Then ρ∗( ~H ′) ≤ ρ∗( ~H).

Proof. It suffices to show the following: Let u and v be (not necessarily adjacent) vertices of
~H and let ~H ′ be the graph obtained by identifying u and v, that is, ~H ′ = ~H/σ, where σ is the
partition of V ( ~H) containing a block {u, v} and singleton blocks {w} for each w /∈ {u, v}. Then
ρ∗( ~H ′) ≤ ρ∗( ~H).

To prove the previous claim, let S1, . . . , Sk be the sources of ~H/∼ and let W1, . . . ,W` be the
non-sources of ~H/∼, that is V ( ~H/∼) = {S1, . . . , Sk,W1, . . . ,W`}. Thus V ( ~H) = S∪̇W where
S := S1 ∪ · · · ∪ Sk and W := W1 ∪ · · · ∪Wk. In particular, the Si and the Wi are the strongly
connected components of ~H.

Now let ψ be a fractional cover of ~H/∼ of weight ρ∗( ~H).
We will proceed with a case-distinction on whether u and v (or both) are contained in the

set of sources S := S1 ∪ · · · ∪ Sk. In each case, we will define a fractional cover ψ′ of ~H ′/∼
of total weight at most ρ∗( ~H). Note that we will always assume that u and v are in distinct
strongly connected components, since otherwise, ~H/∼ = ~H ′/∼ and thus the fractional cover
number does not change.

To avoid confusion, we denote S = {S1, . . . , Sk} as the set of sources of ~H/∼ and we denote S′

as the set of sources of ~H ′/∼. Similarly, we denote W = {W1, . . . ,Wk} as the set of non-sources
of ~H/∼ and we denote W′ as the set of non-sources of ~H ′/∼. Furthermore, given S ∈ S we
write R(S) for the set of vertices reachable from S in ~H/∼, and, given S′ ∈ S′ we write R′(S′)
for the set of vertices reachable from S′ in ~H ′/∼.

(u ∈ S, v ∈ S) Assume w.l.o.g. that u ∈ S1 and v ∈ S2. By identifying u and v we merge the strongly
connected components S1 and S2; let us denote the resulting component by Ŝ. Thus,
~H ′/∼ is obtained from ~H/∼ by identifying S1 and S2, and calling the resulting vertex Ŝ.
Hence S′ = {Ŝ, S3, . . . , Sk} and W = W′. Now, for S′ ∈ S′, we define

ψ′(S′) :=

{
ψ(S′) S′ ∈ {S3, . . . , Sk}
ψ(S1) + ψ(S2) S′ = Ŝ

6The technical reason for this is the corner case of V ( ~H) \ S being empty.
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Clearly, we have

∑
S′∈S′

ψ′(S′) = ψ′(Ŝ) +

k∑
i=3

ψ′(Si) = ψ(S1) + ψ(S2) +

k∑
i=3

ψ′(Si) =
∑
S∈S

ψ(S) = ρ∗( ~H) .

It remains to show that ψ′ is a fractional cover of ~H ′/∼. To this end, let W be a non-source
of ~H ′/∼. Note that W ∈ R(Si) if and only if W ∈ R′(Si) for all i ∈ {3, . . . , k}. If W is
not reachable from Ŝ, then W is not reachable from either of S1 or S2 in ~H/∼. Thus∑

S′∈S′
W∈R′(S′)

ψ′(S′) =
∑
S∈S

W∈R(S)

ψ′(S) =
∑
S∈S

W∈R(S)

ψ(S) ≥ 1 .

Otherwise, we have∑
S′∈S′

W∈R′(S′)

ψ′(S′) = ψ(S1) + ψ(S2) +
∑
S∈S

W∈R(S)\{S1,S2}

ψ′(S) ≥
∑
S∈S

W∈R(S)

ψ(S) ≥ 1 ,

(u ∈ S, v /∈ S) Assume w.l.o.g. that u ∈ S1 and let V be the strongly connected component containing v.
We have to consider the following two subcases:

Case 1: The only source in ~H/∼ from which V can be reached is S1. This means that ~H ′/∼ is
obtained from ~H/∼ by contracting to S1 each W that is reachable from S1 and from
which V can be reached; this includes of course S1 and V . The resulting vertex Ŝ is
a source of ~H ′/∼ and, clearly, any fractional cover ψ of ~H/∼ becomes a fractional
cover ψ′ of ~H ′/∼ by setting ψ′(Ŝ) = ψ(S1) and ψ′(Si) = ψ(Si) for i ≥ 2. Thus
ρ∗( ~H ′) ≤ ρ∗( ~H).

Case 2: There is are sources S2, . . . , St in ~H/∼ different from S1 from which V can be
reached; specifically, assume that S2, . . . , St are all sources with this property. The
identification of u and v in ~H then corresponds to the following operation in ~H ′/∼:

(a) Similarly as in Case 1, we obtain a new vertex, called Ŵ , by contracting all
vertices in ~H ′/∼ that are reachable from S1 and from which V can be reached.

(b) In contrast to Case 1, Ŵ is not a source, since there will be arcs from S2, . . . , St
to Ŵ . However, Ŵ is not reachable from any source Si with t < i ≤ k.

Observe that the following holds for all vertices W ∈ W of ~H/∼ that were not
contracted to Ŵ in (a): If W is reachable from S1 in ~H/∼, then W is reachable from
all sources S2, . . . , St in ~H ′/∼.

Noting that S′ = S \ {S1} = {S2, . . . , St, . . . , Sk}, we define ψ′ as follows:

ψ′(S′) :=

{
ψ(S′) S′ ∈ {St+1, . . . , Sk}
ψ(S′) + ψ(S1)/(t− 1) S′ ∈ {S2, . . . , St}

First we observe that, clearly,∑
S′∈S′

ψ′(S′) =
∑
S∈S

ψ(S) = ρ∗( ~H) .

Hence it remains to show that ψ′ is a fractional cover. To this end, let W ∈ W′.
Assume first that W = Ŵ and note that Ŵ is reachable from S2, . . . , St in ~H ′/∼: If
it would be reachable from Si with i > t, then V would have been reachable in ~H/∼
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from Si, contradicting our choice of the S2, . . . , St. Note further that V is reachable
from (precisely) S1, . . . , St in ~H. Since ψ is a fractional cover of ~H/∼, we have

t∑
i=1

ψ(Si) ≥ 1 .

Hence, we have that

∑
S′∈S′

Ŵ∈R′(S′)

ψ′(S′) =
t∑
i=2

ψ′(Si) =
t∑
i=1

ψ(Si) ≥ 1 .

Next, assume that W 6= Ŵ . For each i ≥ 2, if W is reachable from Si in ~H ′/∼ then
W is also reachable from Si in ~H/∼. Thus, if W is not reachable from S1 in ~H/∼,
then ∑

S′∈S′
W∈R′(S′)

ψ′(S′) =
∑
S∈S

W∈R(S)

ψ′(S) ≥ 1 .

Finally, if W is reachable from S1 in ~H/∼, we recall that W must be reachable from
all S2, . . . , St in ~H ′/∼. Since our definition of ψ′ adds to the value of those sources
ψ(S1)/(t− 1), we have∑

S′∈S′
W∈R′(S′)

ψ′(S′) = (t− 1) · ψ(S1)/(t− 1) +
∑

S∈S\{S1}
W∈R(S)

ψ(S) =
∑
S∈S

W∈R(S)

ψ(S) ≥ 1 .

This concludes Case 2.

(u /∈ S, v ∈ S) Symmetric to the previous case.

(u /∈ S, v /∈ S) Let U and V be the strongly connected components of ~H containing u and v, respectively.
Then ~H ′/∼ is obtained from ~H/∼ by contracting U and V , and all vertices between them,
to a single vertex; here, a vertex X is “between” U and V if there is a directed path from U
to V (or vice versa) that contains X. Let us call the resulting vertex Ŵ . Note that S = S′,
that is, ~H/∼ and ~H ′/∼ have the same sources. Note further that, for every i ∈ {1, . . . , k}
and non-source W 6= Ŵ , if W is reachable from Si in ~H/∼, then it is also reachable from
Si in ~H ′/∼. Furthermore, Ŵ is reachable from a source Si in ~H ′/∼ if one of the vertices
that was contracted to Ŵ was reachable from Si in ~H/∼. Thus, every fractional cover of
~H/∼ must also be a fractional cover of ~H ′/∼, concluding this case.

With all cases resolved, the proof is complete.

Lemma 62. Let ~H be a digraph. Then fhtw(R( ~H)) ≤ ρ∗( ~H).

Proof. Let S1, . . . , Sk be the sources of ~H/∼, and let R1, . . . , Rk be the hyperedges of R( ~H),
that is, for each i ∈ [k] the hyperedge Ri includes all vertices in ~H that can be reached from Si.

Consider the following tree decomposition (T ,B) of R( ~H):

• We add one center bag B := V ( ~H) \
(⋃k

i=1 Si

)
, that is, B contains all vertices of ~H not

included in strongly connected components that become sources is ~H/∼.

• For each i ∈ [k] we add a bag Bi := Ri, which is made adjacent to the center bag B.

Note first that this yields indeed a tree decomposition. Clearly, each vertex in V (R( ~H)) = V ( ~H)
is contained in a bag, including isolated vertices of ~H (since those will become isolated sources
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in ~H/∼). By definition, each hyperedge Ri is fully contained in at least one bag. Finally, for
every vertex v ∈ V (R( ~H)), the subtree Tv = T [B ∈ B | v ∈ B] is connected: If v is contained in
Si for some i ∈ [k], then Tv only consists of Bi = Ri. Otherwise, v is contained in the center bag
B. Hence Tv cannot be disconnected.

Now let us prove that each bag has a fractional edge cover of weight at most ρ∗( ~H): For
the center bag B, any fractional cover of ~H yields, by definition, a fractional edge cover of B
with the same weight (recall that the sources of ~H/∼ correspond to the hyperedges of R( ~H)).
Hence, the fractional edge cover number of B is bounded by ρ∗( ~H). Finally, each bag Bi = Ri
can clearly be covered by one hyperedge. Thus the fractional edge cover number of Bi is 1.

Theorem 63. There is a computable function f such that the following is true. Let ~H and ~G
be digraphs, let d be the maximum outdegree of ~G, and let r be the fractional cover number of ~H.
We can compute #Sub( ~H→ ~G) in time

f(| ~H|, d) · |~G|r+O(1) .

Moreover, let ~C be a class of digraphs. Then #DirSubd(~C) is fixed-parameter tractable if ~C
has bounded fractional cover number.

Proof. Given an instance ( ~H, ~G) we first cast the problem as a linear combination of homomor-
phism counts. Concretely, using Lemma 29, we have

#Sub( ~H→ ~G) =
∑
~F

sub ~H(~F ) ·#Hom(~F→ ~G) , (19)

where the sum is over all (isomorphism classes of) digraphs ~F and the coefficients sub ~H(~F )

only depend on ~H and are non-zero if and only if ~F is a quotient graph of ~H. Thus, we can
proceed by computing all sub ~H(~F ) in time only depending on ~H, and all terms #Hom(~F→ ~G)
with a non-zero coefficient using our algorithm for counting homomorphisms (Theorem 42): By
Lemmas 61 and 62, we have that, for each quotient ~F of ~H,

fhtw(R(~F )) ≤ ρ∗(~F ) ≤ ρ∗( ~H) = r .

Additionally, |~F | ≤ | ~H|. Thus, the computation of #Hom(~F→ ~G) takes time g(| ~H|, d) · |~G|r+O(1),
for some computable function g, by the running time bound given in Theorem 42, concluding
the proof.

7.2 Lower Bounds

Recall that α and α∗ denote respectively the independence number and the fractional inde-
pendence number. Let ~C be a class of digraphs, and let Γ(~C) the class of all contours of
digraphs in ~C. We show that #DirSubd(~C) is intractable when α∗(Γ(~C)) =∞. Together with
the upper bounds of Section 7.1, this yields a complete characterization of the tractability of
#DirSubd(~C).

To prove that #DirSubd(~C) is hard when α∗(Γ(~C)) = ∞, we first look at the integral
independence number α(Γ(~C)). We show that, if α(Γ(~C)) = ∞, then #DirSubd(~C) is hard
because ~C contains “hard” quotients. If instead α(Γ(~C)) <∞ then we can show a reduction
from #DirHomd(~C ′) where ~C ′ is a class of canonical DAGs with aw(~C ′) =∞, which implies
hardness by Lemma 58.

First, using our interpolation result based on Dedekind’s Theorem (Lemma 33), we establish
a hardness result in two steps.

Lemma 64. Let ~C be a recursively enumerable class of digraphs and let ~Q be a class of quotient
graphs of ~C. Then

#DirHomd( ~Q) ≤fpt
T #DirSubd(~C) .
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Proof. Let ~H ′ and ~G′ be an input instance of #DirHomd( ~Q), and let d be the outdegree of
~G′. Search for a graph ~H ∈ ~C such that ~H ′ is a quotient of ~H - note that this takes time only
depending on ~H ′. By Lemma 29, we have that

#Sub( ~H→?) =
∑
~F

sub ~H(~F ) ·#Hom(~F→?) .

Moreover, we have that sub ~H( ~H ′) 6= 0 since ~H ′ is a quotient of ~H. Let us set ι = sub ~H . This
allows us to invoke Lemma 33 since we can then simulate the oracle required by Lemma 33
using our own oracle for #DirSubd(~C). The algorithm A in Lemma 33 then returns all pairs
(~F ,#Hom(~F→ ~G′)) with sub~F 6= 0; this includes ( ~H ′,#Hom( ~H ′→ ~G′)). All oracle queries posed
by A have outdegree bounded by f(|ι|) · d, which guarantees that the parameter of each oracle
call we forward to #DirSubd(~C) only depends on ~H ′ (recall that the parameter is | ~H ′|+ d).
Moreover, the total running time is fixed-parameter tractable, concluding the proof.

Lemma 65. Let ~C be a recursively enumerable class of digraphs and let ~Q be the class of all
quotient graphs of ~C. If the class of canonical DAGs that are MR minors of digraphs in ~Q has
unbounded adaptive width, then #DirSubd(~C) is not fixed-parameter tractable unless ETH fails.

Proof. Assume ETH holds. By Lemma 58, the problem #DirHomd( ~Q) is not fixed-parameter
tractable. The claim thus follows by invoking Lemma 64.

7.2.1 The case of unbounded independence number

Let us introduce:

Definition 66 (Induced Matching Gadget). Let ~H be a DAG. An induced matching gadget
of size k of ~H is a set of arcs (s1, w1), . . . , (sk, wk) ∈ E( ~H) such that no two distinct wi, wj are

reachable from a single source of ~H.

We denote by img( ~H) the maximum size of an induced matching gadget in ~H. Given a
directed (not necessarily acyclic) graph ~H, we set img( ~H) := img( ~H/∼).

Lemma 67. Every digraph ~H satisfies α(Γ( ~H/∼)) = img( ~H).

Proof. First, we prove that img( ~H) ≥ α(Γ( ~H/∼)). Let {v1, . . . , vk} be an independent set of
Γ( ~H/∼), and let s1, . . . , sk be sources of ~H/∼ such that vi is reachable from si for each i ∈ [k].
Note that those sources must exist: if vi is not reachable by any source, then vi is a source itself
and thus not in V (Γ( ~H/∼)). Furthermore, those sources must be distinct: if si = sj for some
i 6= j, then vi and vj can both be reached from si = sj and thus they are contained in a common

edge of Γ( ~H/∼), contradicting the fact that {v1, . . . , vk} is independent.
For each i ∈ [k] let Pi be a shortest directed path from si to vi, and let wi be the successor

of si in Pi (if (si, vi) ∈ E( ~H/∼), then wi = vi). Note that w1, . . . , wk are pairwise distinct and
form an independent set in Γ( ~H/∼). Indeed, if wi = wj for some i 6= j, then vi and vj can

both be reached from si and sj and are thus contained in a common hyperedge in Γ( ~H/∼),

a contradiction; if instead {w1, . . . , wk} is not an independent set in Γ( ~H/∼), then there is a
source s of ~H/∼ from which both wi and wj , and thus both vi and vj , can be reached, which

implies vi and vj are contained in a common edge of Γ( ~H/∼), yielding again a contradiction.
Finally, observe that (s1, w1), . . . , (sk, wk) is an induced matching gadget since {w1, . . . , wk} is
an independent set in Γ( ~H/∼).

Now we prove that α(Γ( ~H/∼)) ≥ img( ~H). Let (s1, w1), . . . , (sk, wk) be an induced matching
gadget of ~H, and for each i ∈ [k] let Si and Wi be the classes of ∼ containing respectively si
and wi. Note that Si = {si} since si is a source, so Wi 6= Si; and (Si,Wi) ∈ E( ~H/∼) since
(si, wi) ∈ E( ~H), hence Wi is not a source of ~H/∼. The definition of V (Γ( ~H)) then implies
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Wi ⊆ V (Γ( ~H)) for all i ∈ [k], and so {w1, . . . , wk} ⊆ V (Γ( ~H)). Now observe that {w1, . . . , wk}
is an independent set in Γ( ~H/∼); if this was not the case, then wi would be reachable in ~H
from wj , and thus from sj , for some j 6= i, contradicting the definition of induced matching
gadget.

Next we show that large induced matching gadgets yield as quotients the directed splits of
arbitrary graphs.

Lemma 68. Let F be an undirected graph with ` edges, and let ~H be a digraph with an induced
matching gadget of size 2`. Then ~F 2 is an MR minor of a quotient graph of ~H.

Proof. First we claim that we can assume w.l.o.g. that ~H is a DAG: In the very first step, we
take the quotient of ~H corresponding to ∼. Note that the resulting graph is equal to ~H/∼
except for possibly having loops. Note also that this operation does not change the size of
a maximum induced matching gadget. Since all loops can in the end be deleted by the loop
deletion operation of MR minors, to avoid notational clutter, we can assume that there are none.

Now, for each edge e = {u, v} of F , we choose two arcs of the induced matching gadget that
will correspond to e in the construction of our quotient. We will denote those arcs by (sue , w

u
e )

and (sve , w
v
e). Let us now define the partition σ of V ( ~H) which will yield our quotient graph.

1. For each vertex v ∈ V (F ), we add a block Bv = {wve | e ∈ E(F )}.
2. For each edge e = {u, v} ∈ E(F ), we add a block Be = {sue , sve}.
3. Each vertex of ~H not contained in any of the Bv or Be becomes a singleton block.

Let ~H ′ = ~H/σ, that is, ~H ′ is the quotient graph obtained from ~H by contracting each Bv
and each Be to a single vertex — it will be convenient to also call those vertices Bv and Be.
Observe that the subgraph of ~H ′ induced by the vertices Bv for v ∈ V (F ) and Be for e ∈ E(F )
is isomorphic to ~F 2: By construction of σ, it is clear that ~F 2 is a subgraph of the subgraph of
~H ′ induced by the Bv and Bw. For isomorphism, we have to argue that there are no additional
arcs: First, there cannot be any arc between Be and Be′ for e 6= e′ since the sue and sve have been
sources. Furthermore, there cannot be an arc between B{u,v} and Bx for a vertex x /∈ {u, v} since
this would only be possible if either sue or sve has an arc to some wxe′ for some e 6= {u, v}. However,
in that case wxe′ and one of wue or wve would be reachable from the same source, contradicting
the definition of an induced matching gadget. A similar argument shows that there cannot be
an arc between Bv and Bu for two distinct vertices u, v ∈ V (F ). Also, we observe that the Be
must be sources of ~H ′

Now perform the following operations on ~H ′ until none of them can be applied anymore:

• Delete a sink that is not one of the Bv.

• Let s be a source of ~H ′ not among the Be, and let y be a descendant of s (y might be one
of the Bv). Contract the arc (s, y).

This procedure stops if the only vertices remaining are the Be and the Bv. Crucially, the
contraction of arcs from sources (not among the Be) can never create additional arcs between
the Be and the Bv since, by definition of induced matching gadgets, no distinct pair of the wue is
reachable from a common source.

We are now able to establish hardness for the case of unbounded independence number of
the contours.

Lemma 69. Let ~C be a recursively enumerable class of digraphs, and let Γ(~C) be the contours of
~C. If the independence number of Γ(~C) is unbounded, then #DirSubd(~C) is not fixed-parameter
tractable, unless ETH fails.

Proof. By Lemma 25 and Lemma 67, the class ~C contains induced matching gadgets of unbounded
size. Let K be the family of all complete (undirected) graphs; clearly, the treewidth of K is
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unbounded. Let furthermore ~K2 := {~F 2 | F ∈ K} be the set of all directed splits of complete
graphs. Observe that ~K2 is a class of canonical DAGs, and observe further that Γ( ~K2) = K:
Given ~F 2 ∈ ~K2, each source s of ~F 2 corresponds to an edge {u, v} of F , and the only two vertices
reachable from s in ~F 2 are precisely u and v. Hence, the reachability hypergraph is 3-uniform
and contains the hyperedges {s, u, v}. In the contour, we delete the former sources from each
hyperedge, which then yields F again (thinking of a graph as a 2-uniform hypergraph).

Now, it is well-known that adaptive width and tree-width are equivalent for graphs. Hence
the adaptive width of ~K2 must be unbounded (recall that the adaptive width of a digraph is
defined to be the adaptive width of its contour).

Finally, by Lemma 68, and using that ~C has induced matching gadgets of unbounded size,
we obtain that the set of quotient graphs of digraphs in ~C admits as MR minors the canonical
DAGs in ~K2. Since the adaptive width of the latter is unbounded, we can conclude the proof by
applying Lemma 65.

7.2.2 The case of bounded independence number

Let H be a nonempty hypergraph. Without loss of generality we may assume V (H) = ∪E(H).
Let (T,B) be a tree decomposition of H. For every {r, u} ∈ E(T ) let T ru be the connected
component of T \ e containing u but not r, and define:

V r
u = (∪x∈V (T r

u)
Bx) \ (Br ∩Bu) (20)

Note that V (H) = V r
u ∪̇ V u

r ∪̇ (Br ∩Bu).
The next result bounds the integrality gap of α∗(H) through aw(H).

Lemma 70. α(H) ≥ 1
2 + α∗(H)

4 aw(H) .

Proof. We use induction on |E(H)|. If |E(H)| = 1 then one can see that α(H) = α∗(H) = aw(H),
so the claim holds. Now suppose |E(H)| > 1, and assume the claim holds for every hypergraph
with less than |E(H)| edges. Let µ : V (H) → R≥0 be a fractional independent set for H
with µ(V (H)) = α∗(H), and let (T,B) be a tree decomposition for H of smallest order (i.e.,
that minimizes |V (T )|) such that µ-width(T,B) ≤ aw(H). Choose any {r, u} ∈ E(T ) and let
S = Br∩Bu. Finally, let C(S) be the set of connected components ofH\S. Note that no e ∈ E(H)
intersects two distinct elements of C(S): indeed, by the properties of tree decompositions S
separates V r

u and V u
r , and any such e would intersect both V r

u and V u
r , a contradiction.

We can now deduce the following facts. First, α(H) ≥
∑

C∈C(S) α(H[C]), since no e ∈ E(H)
intersects more than one element of C(S). Second, |C(S)| ≥ 2; indeed, if |C(S)| ≤ 1, then
Br ⊆ Bu (or vice versa) and thus we could replace {Br, Bu} with Bu (or with Br) without
increasing µ-width(T,B), contradicting the minimality of |V (T )|. Third, |E(H[C])| < |E(H)|
for all C ∈ C(S); indeed, every C ∈ C(S) is intersected by some e ∈ E(H), and as noted above
|C(S)| ≥ 2 and no e ∈ E(H) intersects more than one element of C(S). Using these facts and
the inductive hypothesis on each H[C], we obtain:

α(H) ≥
∑

C∈C(S)

α(H[C]) (21)

≥
∑

C∈C(S)

(
1

2
+

α∗(H[C])

4 aw(H[C])

)
(22)

(23)

≥
∑

C∈C(S)

(
1

2
+
α∗(H[C])

4 aw(H)

)
(24)

≥ 1 +
1

4 aw(H)

∑
C∈C(S)

α∗(H[C]) (25)
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Note that α∗(H[C]) ≥ µ(C) since the restriction of µ to C is a fractional independent set for
H[C]. Moreover

∑
C∈C(S) µ(C) = µ(V (H))− µ(S), and µ(S) ≤ aw(H) by the choice of (T,B).

Therefore:

α(H) ≥ 1 +
1

4 aw(H)

∑
C∈C(S)

µ(C) (26)

= 1 +
1

4 aw(H)
(µ(V (H))− µ(S)) (27)

≥ 1 +
α∗(H)− aw(H)

4 aw(H)
(28)

>
1

2
+

α∗(H)

4 aw(H)
(29)

which concludes the proof.

A construction of Canonical DAGs that preserves α∗ In what follows, recall that the
vertices of the DAG ~H/∼ are the strongly connected components of ~H; we use capital letters to
denote the vertices of ~H/∼.

Lemma 71. Let ~H be a digraph and (U, V ) ∈ E( ~H/∼) where U is not a source of ~H/∼. Then
there is a fractional independent set µ̂ for Γ( ~H) of maximum weight such that µ̂(v) = 0 for every
v ∈ V .

Proof. Let µ̂∗ : V (Γ( ~H))→R≥0 be any fractional independent set for Γ( ~H) of maximum weight.
By Lemma 25, there exists a maximum fractional independent set µ∗ : V (Γ( ~H/∼))→R≥0, the
weight of which equal to the weight of µ̂∗.

We define a fractional independent set µ of Γ( ~H/∼) as follows:

µ(X) =


µ∗(X) X /∈ {U, V }
µ∗(U) + µ∗(V ) X = U
0 X = V

(30)

Clearly µ and µ∗ have the same weight. Now let e ∈ E(Γ( ~H/∼)). If U /∈ e then µ(e) ≤ µ∗(e).
Otherwise {U, V } ⊆ e, and since µ(U) + µ(V ) = µ∗(U) + µ∗(V ), then again µ(e) ≤ µ∗(e).
Therefore µ is a fractional independent set for Γ( ~H/∼). Note that µ must also be of maximum
weight since otherwise, µ∗ would not have been of maximum weight.

Now define µ̂ : V (Γ( ~H))→ R≥0 as follows: For any strongly connected component X =
x1, . . . , xk of ~H we set µ̂(x1) = µ(X) and µ̂(xi) = 0 for all i ∈ {2, . . . , k}. Clearly, µ̂ has the
same total weight as µ. Furthermore, note that the hyperedges of Γ( ~H/∼) are obtained from
the hyperedges of Γ( ~H) by contracting each vertex set X corresponding to a strongly connected
component in ~H into a single vertex. For each such set X and hyperedge e ∈ E(Γ( ~H)) we have
that either X ⊆ e or e ∩X = ∅ — this follows from the definition of reachability hypergraphs
and of the contour. Thus µ̂ is a fractional independent set of Γ( ~H). Furthermore, since µ̂ has
the same weight as µ and since µ is a fractional independent set of Γ( ~H/∼) of maximum weight,
we have by Lemma 25 that µ̂ is of maximum weight as well. Finally, µ̂(v) = 0 for each v ∈ V
since µ(V ) = 0, concluding the proof.

Lemma 72. For every digraph ~H there is a digraph ~F such that the following conditions are
satisfied:

1. ~F can be obtained from ~H via a sequence of sink deletions,

2. α∗(Γ(~F )) ≥ α∗(Γ( ~H)), and

3. ~F/∼ is a canonical DAG.
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Proof. If ~H/∼ is a canonical DAG then we set ~F = ~H.
If ~H/∼ is not a canonical DAG, then there is an arc (U, V ) ∈ E( ~H/∼) such that both U

and V are not sources. Moreover we can assume V is a sink (otherwise replace U with V , and
V with one of its children). By Lemma 71, there is a fractional independent set µ̂ for Γ( ~H) of
maximum weight such that µ̂(v) = 0 for every v ∈ V . Since V is a sink of ~H/∼, we can set
~H ′ = ~H \ V , that is, we perform a sink deletion. Let µ̂′ be the restriction of µ̂ to V (Γ( ~H ′)).
Note that V (Γ( ~H ′)) = V (Γ( ~H ′)) \ V ; since µ̂(v) = 0 for all v ∈ V , this implies that µ̂′ has the
same weight as µ̂.

Moreover µ̂′ is clearly a fractional independent set for Γ( ~H ′), since for every e′ ∈ E(Γ( ~H ′))
there is e ∈ E(Γ( ~H)) such that e′ ⊆ e, and µ̂(e) = µ̂′(e′). We conclude that α∗(Γ( ~H ′)) ≥
α∗(Γ( ~H)). If ~H ′/∼ is a canonical DAG, then setting ~F = ~H ′ concludes the proof; otherwise just
repeat the argument on ~H ′.

We are now able to prove the intractability part of our classification.

Lemma 73. Let ~C be a recursively enumerable class of digraphs of unbounded fractional cover
number. Then #DirSubd(~C) is not fixed-parameter tractable, unless ETH fails.

Proof. Let Γ(~C) be the class of contours of digraphs in ~C. By Observation 60 and Lemma 25
Γ(~C) has unbounded fractional edge cover number and thus, by Fact 22, Γ(~C) has unbounded
fractional independence number. The proof now considers two cases.
Case 1: The independence number of Γ(~C) is unbounded. Then the claim follows from the
construction based on induced matching gadgets (Lemma 69).
Case 2: The independence number of Γ(~C) is bounded. We show that #DirHomd(~C) is not
fixed-parameter tractable, unless ETH fails. The claim then follows since, by Lemma 64 and the
trivial fact that each digraph is a quotient graph of itself, we have

#DirHomd(~C) ≤fpt
T #DirSubd(~C) .

Let ~C ′ be the class of all digraphs ~H ′ such that

1. ~H ′ can be obtained by a sequence of sink deletions from a graph ~H ∈ ~C, disallowing
deletions of sinks that are also sources, and

2. ~H ′/∼ is a canonical DAG.

Now note that a sink deletion in a digraph ~H corresponds to vertex-deletions in the contour.
More precisely, let ~H ′ be obtained from ~H by deleting the sink T of ~H/∼. Then Γ( ~H ′) =
Γ( ~H)[V ( ~H) \ T ]. Thus, clearly, the independence number of Γ( ~H ′) is upper bounded by the
independence number of Γ( ~H). Thus, the independence number of the class Γ(~C ′) of the
contours of digraphs in ~C ′ is bounded (since the independence number of Γ(~C) is bounded by
the assumption of this case.). Next, by Lemma 72, we have that the fractional independence
number of Γ(~C ′) is still unbounded. In combination with Lemma 70, this is only possible if the
adaptive width of Γ(~C ′) is unbounded.

Next, let ~C ′/∼ be the class of all DAGs ~H ′/∼ with ~H ′ ∈ ~C ′. By definition of ~C ′, each
element of ~C ′/∼ must be a canonical DAG. Now note that the contours of the canonical DAGs
in ~C ′/∼ can be obtained from the contours of digraphs in ~C ′ by a sequence of contractions
of vertices u and v such that u and v are contained in precisely the same hyperedges (since
we contract strongly connected components into single vertices). Those contractions cannot
decrease the adaptive width as shown in Lemma 25.

As a consequence, we have established the following three facts:

(A) The elements in ~C ′/∼ are MR minors of the digraphs in ~C: ~C ′ is obtained by sink-deletions,
and ~C ′/∼ is obtained by arc contractions — each strongly connected component can be
contracted into a single vertex using only arc contractions.

(B) The adaptive width of ~C ′/∼ is unbounded.
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(C) Each element of ~C ′/∼ is a canonical DAG.

In combination, (A), (B), and (C) allow for the application of Lemma 58 which yields intractability
as desired, concluding the proof.

7.3 Proof of the Classification

We are now able to combine our upper and lower bounds and prove a complete and explicit
classification:

Theorem 74. Let ~C be a recursively enumerable class of digraphs and assume that ETH holds.
Then the problem #DirSubd(~C) is fixed-parameter tractable if and only if the fractional cover
number of ~C is bounded.

Proof. The “if” direction is Theorem 63, and the “only if” direction is Lemma 73.

Furthermore, we note that all of our hardness results apply also in case of digraphs without
loops, and even for DAGs; the reason for this is two-fold: First the intractability boils down to
counting homomorphisms from canonical DAGs to DAGs of small outdegree via our reduction
from #CSP (see Lemma 57 and Lemma 51). Second, each intermediate step in our reduction,
including the interpolation method based on Dedekind’s Theorem (Lemma 33), does not create
any additional cycles (including loops) in the host, provided our pattern is without loops and
cycles. Concretely, we obtain the following variations of Theorem 74.

Theorem 75. Let ~C be a recursively enumerable class of digraphs without loops and assume
that ETH holds. Then the problem #DirSubd(~C), restricted on host graphs without loops, is
fixed-parameter tractable if and only if the fractional cover number of ~C is bounded.

Theorem 76. Let ~C be a recursively enumerable class of DAGs and assume that ETH holds.
Then the problem #DirSubd(~C), restricted on acyclic host graphs, is fixed-parameter tractable
if and only if the fractional cover number of ~C is bounded.

8 Counting Induced Subgraphs

We will establish boundedness of the following invariant as sufficient and necessary condition for
the fixed-parameter tractability of #DirSubd.

Definition 77 (αs( ~H)). Given a digraph ~H, we denote by αs( ~H) the number of sources of the
DAG ~H/∼.

8.1 Implications of Upper and Lower Bounds on αs( ~H)

Lemma 78 (Lower Bound). Let F be an undirected graph with k vertices and ` edges, and let
~H be a digraph with αs( ~H) ≥ k + `. Then there exists an arc supergraph ~H ′ of ~H satisfying that
~F 2 is an MR minor of ~H ′.

Proof. We will first construct ~H ′. To this end, observe that ~F 2 has precisely k + ` vertices, and
we assume w.l.o.g. that the vertex set of ~F 2 is [k + `]. Since αs( ~H) ≥ k + ` there exists set
of sources S1, . . . , Sk+` of ~H/∼. We emphasize that a set of sources must always also be an
independent set, since there cannot be arcs between the sources. Recall that, by definition of
~H/∼, the Si are strongly connected components of ~H. Now pick si ∈ Si arbitrarily for each
i ∈ [k + `]. We obtain the graph ~H ′ from ~H as follows: Whenever (i, j) is an arc of ~F 2, we add
an arc (si, sj) to ~H. Observe that we do not create loops in this construction since ~F 2 does not

contain loops. For this proof, it will also be convenient to consider the digraph ~G obtained from
~H/∼ by adding an arc (Si, Sj) whenever (i, j) is an arc of ~F 2. We will see that ~G = ~H ′/∼.

39



Observe that ~G is still acyclic: Assuming otherwise, there must be a (not necessarily simple)
directed cycle in ~G. Since ~H/∼ is acyclic, we have that at least on arc of the cycle must be one
of the freshly added arcs (Si, Sj). Additionally, there must be a directed path P from Sj to Si in
~G. Consider two cases: If P contains any vertex V which is not a source of ~H/∼, then we obtain
a contradiction immediately, since it is not possible to reach any source from V by a directed
path — recall that we only added arcs between sources in the construction of ~G. Otherwise,
all vertices of P are sources. However, in this case we created a cycle in ~G only consisting of
sources, and thus, this cycle must correspond to a cycle in ~F 2 by construction of ~G. Since ~F 2 is
acyclic by definition, we obtain the contradiction.

Next we claim that the compositions into strongly connected components of ~H and ~H ′ are
the same, that is, the relation ∼ has the same equivalence classes in both V ( ~H) and V ( ~H ′).
Assume for contradiction that this is not the case. Since adding arcs can only merge strongly
connected components, there must be vertices x and y which are not in the same strongly
connected component of ~H, but they are in the same strongly connected component in ~H ′, that
is, there is a (not necessarily simple) directed cycle in ~H ′ containing both x and y. Let X 6= Y
be the connected components of ~H containing x and y, respectively. Now identify all vertices in
this cycle that are in the same connected component of ~H and observe that this creates a cycle
in ~G (note that we needed the assumption that X 6= Y to make sure that the entire cycle does
not collapse to a single vertex in ~G). Since ~G is acyclic, we obtain the contradiction.

As a consequence, we infer that ~G is indeed the graph ~H ′/∼. Using this fact, we are able to
show that ~F 2 is an MR minor of ~H ′: First, contract each strongly connected component of ~H ′

into a single vertex. By definition this yields precisely ~H ′ /∼ = ~G. Next we iteratively delete
sinks until only the vertices S1, . . . , Sk+` remain and claim that the resulting graph is ~F 2 as
desired. To see this, observe that there is no vertex in V (~G) \ {S1, . . . , Sk+`} from which one
can reach any of the S1, . . . , Sk; this is true since the Si have been sources in ~H/∼. Therefore,
in combination with the fact that ~G is acyclic, we have that there must always be a sink outside
of the S1, . . . , Sk+` as long as there are still vertices outside of the S1, . . . , Sk+` remaining. Note
that the latter property is invariant under the deletion of sinks outside of S1, . . . , Sk+` — for
clarification we note that even former sources of ~H/∼ not included in {S1, . . . , Sk+`} will be
deleted at some point, since they become sinks if all of their descendants have been deleted in
previous iterations. Hence, we can conclude that at the end of the process of iteratively deleting
sinks, we obtain the (induced) subgraph of ~G only consisting of the S1, . . . , Sk+` which is equal
to ~F 2 (recall that we added an arc between Si and Sj if and only if there is an arc (i, j) in
~F 2, and since the S1, . . . , Sk+` have been sources in ~H/∼ there are no further arcs between
them.)

Next we invoke our reduction based on Dedekind’s Theorem to the case of counting induced
subgraphs:

Lemma 79. Let ~C be a recursively enumerable class of digraphs and let ~A be a class of arc
supergraphs of digraphs in ~C. Then

#DirHomd( ~A) ≤fpt
T #DirIndSubd(~C) .

Proof. Let ~H ′ and ~G′ be an input instance of #DirHomd( ~A), and let d be the outdegree of ~G′.
Search for a graph ~H ∈ ~C such that ~H ′ is an arc supergraph of ~H - note that this takes time
only depending on ~H ′. By Lemma 32, we have that

#IndSub( ~H→?) =
∑
~F

indsub ~H(~F ) ·#Hom(~F→?) .

Moreover, we have that indsub ~H( ~H ′) 6= 0 since ~H ′ is an arc supergraph of ~H (see condition
3. in Lemma 32). Let us set ι = indsub ~H . This allows us to invoke Lemma 33 since we can
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then simulate the oracle required by Lemma 33 using our own oracle for #DirIndSubd(~C).
The algorithm A in Lemma 33 then returns all pairs (~F ,#Hom(~F→ ~G′)) with indsub~F 6= 0;

this includes ( ~H ′,#Hom( ~H ′→ ~G′)). All oracle queries posed by A have outdegree bounded by
f(|ι|) ·d, which guarantees that the parameter of each oracle call we forward to #DirIndSubd(~C)
only depends on ~H ′ (recall that the parameter is | ~H ′|+ d). Moreover, the total running time is
fixed-parameter tractable, concluding the proof.

Now, relying on our reduction chain based on Dedekind’s Theorem and on our hardness
result for #DirHomd, we can prove the following intractability result.

Lemma 80. Let ~C be a recursively enumerable class of digraphs and assume that ETH holds.
If αs(~C) is unbounded then #DirIndSubd(~C) is not fixed-parameter tractable.

Proof. The setup is similar to the proof of Lemma 69: Let K be the family of all complete
(undirected) graphs. The treewidth of K is unbounded. Let furthermore ~K2 := {~F 2 | F ∈ K}
be the set of all directed splits of complete graphs. Observe that ~K2 is a class of canonical
DAGs, and observe further that Γ( ~K2) = K. Since adaptive width and treewidth are equivalent
for graphs, the adaptive width of ~K2 must be unbounded (recall that the adaptive width of a
digraph is defined to be the adaptive width of its contour).

Finally, by Lemma 78, and using that αs(~C) is unbounded, we obtain that the set of arc
supergraphs of digraphs in ~C admits as MR minors the canonical DAGs in ~K2. Since the
adaptive width of the latter is unbounded, we can conclude the proof by applying Lemma 79
and Lemma 58.

Lemma 81 (Upper Bound). Let ~H be a digraph with αs( ~H) ≤ c, and let ~H ′ be a quotient of an
arc supergraph of ~H. Then |E(R( ~H ′))| ≤ c.

Proof. Observe that neither of the operations of adding arcs to or identifying vertices of a
digraph ~F can increase the number of sources of ~F/∼. Thus αs( ~H

′) ≤ c as well. By definition
of reachability hypergraphs, we can immediately conclude that |E(R( ~H ′))| ≤ c since we create
one hyperedge for each source of ~H ′/∼.

We obtain the following algorithm.

Theorem 82. There is a computable function f such that the following is true. Let ~H and
~G be digraphs, let d be the maximum outdegree of ~G, and let r = αs( ~H). We can compute
#IndSub( ~H→ ~G) in time

f(| ~H|, d) · |~G|r+O(1) .

Moreover, let ~C be a class of digraphs. Then #DirIndSubd(~C) is fixed-parameter tractable if
αs(~C) is bounded.

Proof. By Lemma 32, we have

#IndSub( ~H→ ~G) =
∑
~F

indsub ~H(~F ) ·#Hom(~F→ ~G) , (31)

such that the following conditions are satifsied:

1. indsub ~H has finite support and only depends on ~H.

2. If indsub ~H(~F ) 6= 0 then ~F is a quotient of an arc supergraph of ~H.
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By Lemma 81, the second condition implies that the only terms #Hom(~F→ ~G) surviving with a
non-zero coefficient satisfy |E(R(~F ))| ≤ r. Clearly, this also implies that fhtw(R(~F )) ≤ r. Note
further that the size of any quotient of any arc supergraph of ~H is bounded by | ~H|2. Hence,
using the algorithm for counting homomorphisms in Theorem 42 for each term #Hom(~F→ ~G)
with a non-zero coefficient we can evaluate the linear combination in time

f(| ~H|, d) · |~G|r+O(1)

for some computable function f . This concludes the proof.

8.2 Proof of the Classification

We are now able to combine our upper and lower bounds and prove a complete and explicit
classification:

Theorem 83. Let ~C be a recursively enumerable class of digraphs and assume that ETH holds.
Then the problem #DirIndSubd(~C) is fixed-parameter tractable if and only if αs(~C) is bounded.

Proof. The “if” direction is Theorem 82, and the “only if” direction is Lemma 80.

Finally, similarly to the case of counting subgraphs, our proofs readily classify also the cases
of digraphs without loops and DAGs:

Theorem 84. Let ~C be a recursively enumerable class of digraphs without loops and assume
that ETH holds. Then the problem #DirIndSubd(~C), restricted on host graphs without loops,
is fixed-parameter tractable if and only if αs(~C) is bounded.

Theorem 85. Let ~C be a recursively enumerable class of DAGs and assume that ETH holds.
Then the problem #DirIndSubd(~C), restricted on acyclic host graphs, is fixed-parameter tractable
if and only if αs(~C) is bounded.
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PODS ’22: International Conference on Management of Data, Philadelphia, PA, USA,
June 12 - 17, 2022, pages 315–324. ACM, 2022. doi:10.1145/3517804.3526231.

[31] J. Focke and M. Roth. Counting small induced subgraphs with hereditary properties. In
S. Leonardi and A. Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1543–1551. ACM, 2022.
doi:10.1145/3519935.3520008.

[32] L. Gishboliner, Y. Levanzov, A. Shapira, and R. Yuster. Counting homomorphic cy-
cles in degenerate graphs. In J. S. Naor and N. Buchbinder, editors, Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Con-
ference / Alexandria, VA, USA, January 9 - 12, 2022, pages 417–430. SIAM, 2022.
doi:10.1137/1.9781611977073.21.

[33] M. Grohe and D. Marx. Constraint solving via fractional edge covers. ACM Trans.
Algorithms, 11(1):4:1–4:20, 2014. doi:10.1145/2636918.

[34] R. Impagliazzo and R. Paturi. On the Complexity of k-SAT. J. Comput. Syst. Sci.,
62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

[35] M. Jerrum and K. Meeks. The parameterised complexity of counting connected subgraphs
and graph motifs. J. Comput. Syst. Sci., 81(4):702–716, 2015. doi:10.1016/j.jcss.2014.11.015.
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A Proof of Dedekind’s Theorem

Theorem 86 (Theorem 36, restated). Let (G, ∗) be a semigroup. Let (ϕi)i∈[k] with ϕi : G→Q
be pairwise distinct semigroup homomorphisms of (G, ∗) into (Q, ·), that is, ϕi(g1 ∗ g2) =
ϕi(g1) · ϕi(g2) for all i ∈ [k] and g1, g2 ∈ G. Let φ : G→Q be a function

φ : g 7→
k∑
i=1

ai · ϕi(g) , (32)

where the ai are rational numbers. Suppose furthermore that the following functions are com-
putable:

1. The operation ∗.
2. The mapping (i, g) 7→ ϕi(g).

3. A mapping i 7→ gi such that ϕi(gi) 6= 0.

4. A mapping (i, j) 7→ gi,j such that ϕi(gi,j) 6= ϕj(gi,j) whenever i 6= j.

Then there is a constant B only depending on the ϕi (and not on the ai), and an algorithm Â
such that the following conditions are satisfied:

• Â is equipped with oracle access to φ.

• Â computes a1, . . . , ak.

• Each oracle query ĝ only depends on the ϕi (and not on the ai).

• The running time of Â is bounded by O
(
B ·
∑k

i=1 log ai

)
Proof. Let gi and gi,j be as in 3. and 4. in the statement of the theorem. The algorithm Â will
perform recursion over k: If k = 1, then we just output

ϕ1(g1)
−1 · φ(g1) = a1 .

If k > 1, we consider the element g1,k and observe that for all g ∈ G we have

k∑
i=1

ai · ϕi(g1,k ∗ g)− ϕk(g1,k) ·
k∑
i=1

ai · ϕi(g) =

k−1∑
i=1

ai · (ϕi(g1,k)− ϕk(g1,k)) · ϕi(g) . (33)

Now set âi := ai · (ϕi(g1,k)− ϕk(g1,k)) for all 0 < i < k, and observe that (33) enables us to use
our oracle to simulate an oracle for

g 7→
k−1∑
i=1

âi · ϕi(g) .

By recursion, we can thus obtain the value â1. Since ϕ1(g1,k) 6= ϕk(g1,k), we are able to compute
a1 = â1 · (ϕ1(g1,k)− ϕk(g1,k))−1. Knowing a1, we can use our oracle to simulate an oracle for

g 7→
k∑
i=1

ai · ϕi(g)− a1 · ϕ1(g) =
k∑
i=2

ai · ϕi(g) .

Thus we can go into recursion again and compute a2, . . . , ak.
Note that all oracle queries only depend on the ϕi, and the same holds true for the recursion

depth, and thus the number of arithmetic operations. This yields the desired running time; we
emphasize that we need the factor of

∑k
i=1 log ai in the running time to perform the arithmetic

operations.
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B Classifications for Unbounded Outdegrees

In this final section we quickly describe how the classifications for counting homomorphisms,
subgraphs and induced subgraphs are easy consequences of the works of Dalmau and Jonsson [25],
and of Curticapean, Dell and Marx [23], using our interpolation method via Dedekind’s Theorem.

Recall that, given a class of digraphs ~C, the problems #DirHom(~C), #DirSubd(~C),
and #DirIndSub(~C) ask, respectively, given as input a pair ~H ∈ ~C and ~G, to compute
#Hom( ~H→ ~C), #Sub( ~H→ ~C), and #IndSub( ~H→ ~C). The crucial difference to the problems
considered so far is that the parameter is just | ~H|, rather than | ~H|+ d(~G), that is, we do not
assume anymore that the host digraph has small outdegree.

Dalmau and Jonsson [25] proved their classification for counting homomorphisms not only
for graphs, but in the more general setting of bounded arity relational structures. Since digraphs
are precisely the relational structures over the signature containing one binary relation symbol,
we can apply their main result and obtain:

Theorem 87. Let ~C be a recursively enumerable class of digraphs and assume ETH holds. Then
#DirHom(~C) is fixed-parameter tractable if and only if ~C has bounded treewidth.

Using Theorem 87 as the starting point, and relying on the transformation of subgraph and
induced subgraph counts as a linear combination of homomorphism counts (see Lemma 29 and
Lemma 32), we can mimic the proof of the classification theorems in the undirected setting due
to Curticapean, Dell and Marx [23] almost verbatim. The only difference is the application of
Dedekind’s Theorem (Theorem 36) as an interpolation method for reducing the computation of
a linear combination of directed homomorphism counts from the computation of its individual
terms (Lemma 33). This yields the following results; for the first one, we define the vertex-cover
number of a digraph as the vertex-cover number of its underlying undirected graph.

Theorem 88. Let ~C be a recursively enumerable class of digraphs and assume ETH holds. Then
#DirSub(~C) is fixed-parameter tractable if and only if ~C has bounded vertex-cover number.

Theorem 89. Let ~C be a recursively enumerable class of digraphs and assume ETH holds. Then
#DirIndSub(~C) is fixed-parameter tractable if and only if ~C is finite.
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