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ABSTRACT

The complexity of free games with two or more classical players
was essentially settled by Aaronson, Impagliazzo, and Moshkovitz
(CCC’14). In the quantum world, there are two complexity classes
that can be considered quantum analogues of classical free games:
(1) AM∗, the multiprover interactive proof class corresponding to
free games with entangled players, and, somewhat less obviously,
(2) BellQMA(2), the class of quantum Merlin-Arthur proof systems
with two unentangled Merlins, whose proof states are separately
measured by Arthur. In this work, we make signi�cant progress
towards a tight characterization of both of these classes. (1) We
show a BellQMA(2) protocol for 3SAT on = variables, where the
total amount of communication is $̃ (√=). This answers an open
question of Chen and Drucker (2010) and also shows, conditional on
ETH, that the algorithm of Brandão, Christandl and Yard (STOC’11)
for optimizing over separable states is tight up to logarithmic fac-
tors. (2) We show that AM∗ with =provers = 2, question length
$ (1), and answer-length poly log(=) is equal to RE, i.e. that free
entangled games with constant-sized questions are as powerful as
general entangled games. (In contrast, Aaronson, Impagliazzo and
Moshkovitz show that classical free games are much weaker than
general classical games.) We show this using a question “hyper-
compression" theorem that iteratively applies the introspection
technique of Ji et al. (2020). Our result is a signi�cant improve-
ment over the headline result of Ji et al., whoseMIP∗ protocol for
the halting problem has poly(=)-sized questions and answers. (3)
By the same techniques, we obtain a zero-gap AM∗ protocol for
a Π2 complete language with constant-size questions and almost
logarithmically ($ (log= · log∗ =)) large answers, improving on the
headline result of Mousavi, Nezhadi and Yuen (STOC’22). (4) Using
a connection to the nonuniform complexity of the halting problem
we show that any MIP∗ protocol for RE requires Ω(log=) bits of
communication. It follows that our results in item 3 are optimal up
to an $ (log∗ =) factor, and that the gapless compression theorems
of Mousavi, Nezhadi and Yuen are asymptotically optimal. We con-
jecture that these bounds can be saturated in the gapped case as
well.
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1 INTRODUCTION

The 1991 work of Babai, Fortnow and Lund which showed that
MIP = NEXP [5] remains one of the most important achievements
of complexity theory to date. The techniques used in the proof pro-
vided a springboard toward several other important results, includ-
ing the proof that PCP = NP [3, 4] and, more recently,MIP∗ = RE

[22]. In short, history shows that the study of multiplayer games, in
which an honest, polynomial-time veri�er referees a game involv-
ing two or more potentially dishonest and unbounded provers, has
yielded some of the most fruitful avenues of research in the �eld of
complexity theory.

In a multiplayer game, the veri�er, since it is computationally
bounded, is inherently at a disadvantage, and must �nd clever ways
to force the unbounded provers with which it interacts to do com-
putations on its behalf, even though it cannot necessarily replicate
those computations to check if they were done accurately. One
of the most useful powers at its disposal is the ability to ask the
provers correlated questions. For example, a common paradigm in
multiprover proof design is the consistency test, in which the veri�er
asks one prover (‘Alice’) to provide an answer to some small sub-
problem of the overall problem which it is trying to decide, and asks
another prover (‘Bob’) to provide part of the answer to the same
subproblem. An example of this paradigm is the clause-variable

game, in which the veri�er—who is attempting to decide whether
some instance of a constraint satisfaction problem (CSP), such as
3SAT or graph colouring, is satis�able—asks Alice to provide a satis-
fying assignment to a single constraint in that CSP, and asks Bob to
provide an assignment to just one of the variables participating in
that constraint. For example, if the veri�er is trying to decide an in-
stance of 3SAT, then it may ask Alice for a satisfying assignment to
a single clause in the 3SAT formula, and ask Bob for an assignment
to one of the variables in that clause. The veri�er then checks that
the assignment which Alice provided is indeed a satisfying assign-
ment, and moreover that Bob’s answer was consistent with Alice’s
assignment. Note that a single clause in a 3SAT formula always has
a satisfying assignment, even if the entire formula does not. The
key element that prevents Alice and Bob from exploiting this to
convince the veri�er that an unsatis�able formula is satis�able is
the fact that they cannot communicate. Therefore, the only way
Alice can be consistent with Bob is if they have agreed beforehand
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to answer consistently with a global satisfying assignment to the
3SAT formula. Otherwise, if Alice reports assignments that depend
on the clause which she was given by the veri�er, she will not be
consistent with Bob, because Bob does not know which clause she
was given.

The crucial advantage which the consistency test paradigm en-
joys over single-prover NP-style veri�cation, in which the veri�er
simply asks for an assignment which satis�es all the clauses in an
instance of 3SAT and checks that this is the case, is that a consis-
tency test allows the veri�er to e�ciently check the satis�ability of
CSPs which have far more clauses than the veri�er could e�ciently
read, if it were to read all of them. Speci�cally, in only polynomial
time, the consistency test paradigm allows a polynomially-bounded
veri�er to check whether an exponentially long CSP is satis�able
or far from satis�able, since the veri�er only needs to send polyno-
mially long questions to Alice and Bob in order to specify which
constraint and which variable it wants to know about in an ex-
ponentially long CSP. This is the basic but necessary veri�cation
framework at the heart of results such asMIP = NEXP.

We may then ask: what if we take away this power of the veri-
�er, essential to the design of many multiprover interactive proof
systems, which allows it to ask the provers correlated questions
(and therefore perform tests like the consistency test)? How is the
computational power of the multiplayer game model altered if we
demand that the veri�er’s questions to the provers be independently
sampled? The model in which a computationally e�cient veri�er
referees a game involving two or more potentially dishonest and
unbounded provers, and the veri�er’s questions to the provers must
consist of independently sampled and uniformly random bits, is
known as the free game model. In this paper we will be primarily
concerned with the free game model.

The power of classical free games was considered in 2014 by
Aaronson, Impagliazzo and Moshkovitz [2]. They de�ned the com-
plexity class AM(:), which is exactly the class of problems that
can be decided by a computationally e�cient veri�er interacting
with : potentially dishonest and unbounded provers, under the
restriction that the veri�er’s questions to the provers must consist
of independently sampled and uniformly random bits. Aaronson,
Impagliazzo and Moshkovitz also showed that, for any : = poly(=),
where = is the length of the veri�er’s input, AM(:) = AM.

This tells us that, relative to the full power of classical multiplayer
games, classical free games are very weak. Babai, Fortnow and Lund
[5] showed thatMIP(2) containsNEXP, whereMIP(2) corresponds
to the ‘unrestrained’ multiplayer two-player game model; on the
other hand, Aaronson, Impagliazzo and Moshkovitz showed that,
when we force the veri�er to ask independently sampled questions,
it can only decide problems in AM—a class which is equal to NP

under plausible complexity-theoretic assumptions [23]. That is, in
the classical world, placing the free-game restriction on the veri�er
seems to result in an exponential decrease in its deciding power!

Intuitively, we can understand this relationship as follows. The
best paradigm known for converting MIP(2) protocols into AM(2)
protocols is what we will call birthday repetition. Suppose that
there is a one-roundMIP(2) protocol % with constant completeness-
soundness gap which allows the veri�er to decide some language !
of interest, and in which the veri�er samples correlated questions
(G,~) for the two provers from a set X × Y. For simplicity, let

us suppose that the veri�er samples (G,~) uniformly at random
from a set S ⊆ X × Y. (This is true, for instance, in the clause-
variable example we considered earlier.) We produce a free version
of this protocol, %5 A44 , by simply having the free veri�er sample :
questions (G1, . . . , G: ) from X, and ℓ questions (~1, . . . , ~ℓ ) from Y,
independently at random. The veri�er then checks whether there
exists (G8 , ~ 9 ) for 8 ∈ [:], 9 ∈ [ℓ] such that (G8 , ~ 9 ) ∈ S. If there
exists such a pair (G8 , ~ 9 ), then the free veri�er acts as the MIP

veri�er would; otherwise, it automatically accepts.
We can represent the set X × Y as a bipartite graph G, with

a vertex corresponding to every G ∈ X on the left, and a vertex
corresponding to every ~ ∈ Y on the right. We can also imagine
that there is an edge between G and ~ if and only if (G,~) ∈ S. If
we assume that every vertex in G participates in at least one edge
(i.e. that every Alice question G ∈ X has a nonzero chance of being
asked, and similarly for every Bob question), the probability that
(G,~) ∈ S for G chosen uniformly at random from X and ~ chosen

independently and uniformly fromY is at least Ω
( |X |+ |Y |

|X | |Y |
)
. In the

case where |X| ≈ |Y| := # , this probability is Ω(1/# ). Therefore,
using the birthday paradox, we expect to set : ≈ ℓ ≈ $ (

√
# ) in

order to ensure that %5 A44 , our free version of the MIP protocol
% , still has constant soundness. (We call this procedure to turn a
non-free game into a free game birthday repetition because of the
link to the birthday paradox.)

For theMIP protocols which are su�ciently powerful to capture
all of NEXP, as we mentioned earlier, it is typically the case that
|X| and |Y| are both exponentially large in the input length. In
other words, in order to convert an MIP(2)-complete protocol into
an AM(2) protocol using birthday repetition, we would need the
veri�er to send the provers questions of length 22= , where 2 is some
constant and = is the length of the input. This is clearly compu-
tationally infeasible. Birthday repetition is only computationally
feasible when the question setsX andY are polynomially large—or,
in other words, when the CSP the veri�er wants to decide is only
polynomially long. This brings us back into the NP setting.

However, building on a line of previous work [1, 7], Aaronson,
Impagliazzo and Moshkovitz also identify something which a free
veri�er interacting with two noncommunicating provers can do
that no polynomially-bounded veri�er interacting with a single
prover can: the former veri�er can decide 3SAT using only $ (

√
# ·

poly log# ) bits of communication with its provers, where # is the
number of clauses in the 3SAT instance. Assuming the Exponential
Time Hypothesis (ETH), i.e. that 3SAT cannot be solved in 2> (# )

time1, a polynomially bounded veri�er interacting with a single
prover cannot verify 3SAT so e�ciently: any such veri�er who
could would lead to a subexponential-time algorithm for 3SAT. As
such, though it may well be the case that AM(2) = NP, a veri�er
who referees a two-player free game may still have capabilities that
a polynomially bounded veri�er interacting with a single prover
does not.

1Actually 2> (=) whee = is the number of variables in the 3SAT instance, but this is
linearly related to # for hard instances.
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1.1 BellQMA(2)
1.1.1 Background and Previous Work. Aaronson, Impagliazzo and
Moshkovitz’s original motivation [2, Section 4] in studying clas-
sical free games was this latter application of deciding 3SAT in
sublinear communication, the central ideas in which arose �rst
not from the classical literature but from the study of a quantum
class known as QMA(2). Informally, if NP is the class of problems
which can be e�ciently decided by a deterministic classical veri�er
who is provided with a classical witness, and QMA is the class of
problems which can be e�ciently decided by a quantum veri�er
given a quantum witness, then QMA(2) is the class of problems
which can be decided by a quantum veri�er given two quantum
witnesses. In the NP world, drawing a distinction between one and
two witnesses is clearly absurd: any two classical witnesses can be
concatenated into one witness, and any one classical witness can
be split arbitrarily into two. In the QMA(2) world, however, the
distinction between one and two witnesses is given meaning by
requiring that any ‘two’ witness states are unentangled (or, equiva-
lently, that they come from two noncommunicating provers who
cannot share entanglement). If unentanglement were a property
that an e�cient quantum veri�er could check for itself, then any
QMA(2) protocol could be converted into a QMA protocol; how-
ever, this is not known to be the case, and it remains unknown if
QMA(2) = QMA. We can, of course, also de�ne QMA(:) for : ≥ 2,
in which the quantum veri�er receives : unentangled witnesses
from : separate provers.

Our most compelling example of an application for the QMA(2)
setup (which cannot be instantiated in the QMA setup, conditioned
on the Exponential Time Hypothesis) is deciding NP problems in
sublinear communication. That is, we know of a QMA(2) protocol
in which each of the two provers sends only $ (

√
# · log# ) qubits

to the quantum veri�er, where # is the number of clauses in a
3SAT formula q , and that veri�er can subsequently decide q with
constant probability of error. (Note that, in the QMA(2) model, the
quantum veri�er does not send any challenges to the two provers,
unlike in the AM(:) model—all the communication in a QMA(2)
protocol happens in a single quantum message from provers to
veri�er.) A protocol with sublinear communication to decide 3SAT
was �rstly proposed for the QMA(

√
# poly log# ) setup [1], in

which a quantum veri�er interacts with
√
# poly log# separate

provers, and it was subsequently shown [19] that there is aQMA(2)
(two-prover) protocol achieving the same purpose with similar
overall communication length.

The pervasive
√
# , which also appeared in the communication

complexity of the [2] AM(2) protocol for the same purpose, is
not a coincidence—in fact, the [2] AM(2) protocol for deciding
3SAT in sublinear communication draws close inspiration from
protocols originally designed for QMA(2). The

√
# factor does

have some motivation: it originates from a clever application of
the birthday paradox [1]. So far, nobody has thought of any other
technique thatmight do better. It is natural, then, towonderwhether√
# qubits of communication is unavoidable. Is it the case that

any QMA(2) protocol for 3SAT must use at least $ (
√
# ) qubits of

communication?
Unfortunately, our provable communication lower bounds in this

case fail to match the upper bounds exactly. The best known lower

bound on the communication complexity of a QMA(2) protocol
to decide 3SAT originates from [8], which shows that, if there is
any QMA(2) protocol of a certain restricted form that can decide
3SAT with constant probability of error, then that protocol must
involve at least$ (

√
# ) qubits of communication. [8] shows that any

such protocol with smaller communication complexity implies a
subexponential-time algorithm for 3SAT, and therefore contradicts
the Exponential Time Hypothesis.

The restricted model which [8] consider in their lower bound
is one in which the quantum QMA(2) veri�er acts as if it con-
sisted of two separate parties—call them Arthur and Lancelot—who
each receive one of the two unentangled witnesses provided by
the all-powerful provers. Arthur and Lancelot can then perform
separate measurements on their respective witness states and com-
municate classically. After they communicate their measurement
outcomes to each other classically, they are allowed to perform
more measurements, and then communicate classically again, ad
in�nitum; however, they cannot perform any entangling measure-
ments which straddle the two witness states. At the end of many
rounds of separate measurements and classical communication,
Arthur and Lancelot output a joint decision. This model is called
the local operations and classical communication (LOCC) model, and
the version of QMA(2) in which the veri�er is restricted to behav-
ing in this way is known as LOCC-QMA(2). [8] shows that any
LOCC-QMA(2) protocol for 3SAT must use at least $ (

√
# ) qubits

of communication between provers and veri�er.
What do we know about upper bounds on the communication

necessary to solve 3SAT in the LOCC-QMA(2) model? Can we
at least get a tight characterisation of that class, if not of general
QMA(2) protocols for NP? The LOCC-QMA model of course en-
compasses a model in which Arthur and Lancelot measure their
separate witnesses exactly once, and then perform joint classical
computations on the measurement results in order to determine
their decision. This latter model is known as the BellQMA model.
In 2010, building on work by Blier and Tapp [7], Chen and Drucker
[10] exhibited a remarkably clean BellQMA version of the original
[1] QMA(

√
# poly log# ) protocol for 3SAT. In the Chen-Drucker

protocol, every separate quantum witness is measured separately,
and the classical measurement results from these measurements are
post-processed classically by the veri�er in order to determine the
�nal decision. The total communication complexity of the Chen-
Drucker protocol is$ (

√
# · log# ) qubits. The Chen-Drucker proto-

col would therefore appear to answer our desire for an LOCC-QMA

protocol for NP whose communication complexity matches (up to
log# factors) the lower bound on the communication complexity of
LOCC-QMA protocols which was proven by Brandão, Christandl
and Yard. Unfortunately, the Chen-Drucker protocol requires

√
#

unentangled provers, not only two, so it cannot show us that the
communication lower bound from the [8] algorithm is optimal.2

Nonetheless, the Chen-Drucker protocol for NP illuminates the
close connection that exists between BellQMA(:) and AM(:), a
connection which may not be obvious at �rst glance. The key

2We remark that the original [1] protocol also required Ω (
√
# ) unentangled provers,

and it was ‘compiled down’ to a two-prover protocol by [19]; however, the ‘compilation’
technique required entangling measurements across witness states. We also remark
that in the multipartite setting, the Chen-Drucker protocol was proven optimal by
Brandão and Harrow [9].
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ingredient in the Chen-Drucker protocol is a quantum test called
the uniformity test, which, broadly speaking, involves measuring
certain registers of the witness states provided by the provers in
the Fourier basis, and requiring the measurement outcomes to be
zeroes. The zero Fourier state is the uniform superposition in the
standard basis. As such, the uniformity test can (morally speaking)
act as a substitute for the uniformly random challenges generated
by the veri�er in the AM(:) model, because the uniformity test in
a sense forces the provers to generate their own uniformly sampled
challenges. More speci�cally, if the prover provides us (the veri�er)
with a state of the form

|k ⟩ =
∑
@∈Q

U@ |@⟩& |0(@)⟩� (1)

where Q is a set of questions and 0(@) represents an answer to a
given question @, and we can somehow certify that the U@s are all
equal to each other (i.e. if we can certify that the question register
& is in a uniform superposition after we—somehow!—‘disentangle’
it from the answer register �), then measuring this state |k ⟩ in
the standard basis is just as good as sampling a uniformly random
question @ ∈ Q, sending it to the prover, and receiving the prover’s
answer 0(@). Therefore, using the uniformity test to replace uni-
formly generated challenges, we can—sweeping all the inevitable
caveats under the rug—simulate AM(:) protocols in BellQMA(:).

Reality, of course, is not quite as clean: this approach to simulat-
ing AM(:) in BellQMA(:) is not as general as our vague exposition
just now made it out to be. In particular, for the uniformity test
technique to work (for an honest strategy to exist that passes the
uniformity test), it is vital that the answers 0(@) are short—constant
sized, or at most logarithmically sized. The reason is that, in order to
truly get the question register & into the zero Fourier state, which
we de�ne as |0⟩F =

∑
@∈Q

1√
|Q |

|@⟩, we need to ‘disentangle’ it

from the answer register �rst, and this operation involves perform-
ing a measurement on the answer register and post-selecting on a
measurement outcome which occurs with negligible probability if
the answers are long.

In the case where the questions @ represent constraints in a CSP,
however, and the answers 0(@) represent assignments to the vari-
ables involved in those constraints, the skies are clear. In essentially
all well-studied CSPs, such as 3SAT and graph colouring, any single
constraint and any assignment to a single variable in a constraint
can be described in constantly many bits! As such, an AM(:) pro-
tocol for 3SAT in the clause-variable paradigm can indeed, at least
morally, be ‘compiled down’ into BellQMA(:) in this way—which
is the starting point for the Chen-Drucker protocol.

1.1.2 Our Results About BellQMA(2). In this work, we resolve
the question of whether or not the lower bound proven by [8] is
tight for LOCC-QMA(2) by exhibiting a BellQMA(2) (two-prover)
protocol which has communication complexity $ (

√
# · log# ) and

decides 3SAT instances with constant probability of error. This
question was raised by Chen and Drucker in 2010 [10] after they
published their protocol, and raised or mentioned several times
since then by others [11, Question 1] [9] [2], but despite this has
remained open for more than 10 years. In resolving this question,
we present an (arguably) simpler analysis of the Chen-Drucker

uniformity test, as well as a more modular analysis of a QMA(2)
protocol for 3SAT with sublinear communication than any other
one we know of, which we hope may be conceptually useful.

As a consequence, we show that the runtime of the [8] algo-
rithm (for approximating the value of a LOCC-QMA(2) protocol
up to constant additive error) is optimal up to logarithmic factors,
assuming the Exponential Time Hypothesis. This is because any
improvement to their algorithm would, in combination with our
protocol, result in a subexponential-time algorithm for 3SAT, which
would contradict the ETH.

Our protocol is very similar to the Chen-Drucker protocol. The
key changes we make are in the analysis, and these changes hinge
on the observation that unentanglement is actually not necessary
to the soundness of the uniformity test. Chen and Drucker assume
that the : = $ (

√
# ) honest provers in their protocol provide the

veri�er with : = $ (
√
# ) unentangled copies of a state of the form

in Equation (1), and they de�ne a :-state uniformity test (imple-
mentable, of course, using separate measurements on the separate
states) with the following properties:

(1) Completeness: honest provers providing : copies of a state of
the form in Equation (1), with U@ = U∗ for some constant U∗

for all @, will pass the :-state uniformity test with probability
1 − 2−Ω (:) .

(2) Soundness: any : unentangled states passing the :-state
uniformity test with high probability will be such that suf-
�ciently many states among the : states have the form in
Equation (1) with U@ ≈ U∗ for some constant U∗ for all @.

Our essential observation is as follows: it is not necessary for
the input state to the :-state uniformity test to lie in : unentangled
registers for a certain form of soundness, which we shall shortly
de�ne, to hold. Informally, the soundness guarantee we prove is as
follows:

Lemma 1 (informal version of Lemma 11). Let |k ⟩ be any

state passing the Chen-Drucker :-state uniformity test with high

probability. |k ⟩ is divided, without loss of generality, into : ‘question

registers’ and : ‘answer registers’, à la Equation (1), which may be

entangled. |k ⟩ is such that measuring all the question registers in the

standard basis (approximately) yields a uniformly random string on

su�ciently many registers and junk elsewhere.

Lemma 1 is the main technical lemma in this part of our work.
We will now explain why Lemma 1 yields a two-prover BellQMA

protocol for 3SAT with $ (
√
# · log# ) communication.

[2] exhibits an AM(2) (classical two-prover free game) protocol
with$ (

√
# ·log# ) communication complexity which decides 3SAT

instances with constant probability of error. This protocol (since it
is inspired by the Chen-Drucker protocol) happens to be a clause-
variable game which can be ‘simulated’ by a BellQMA protocol, in
the way that we described at the end of Section 1.1.1. In particular,
the veri�er Arthur’s challenge to the �rst prover Alice consists of
: constraints in a CSP, and for each constraint Arthur expects an
answer consisting of a constant-sized assignment to the variables
involved in that constraint; while Arthur’s challenge to the second
prover Bob consists of : variables from the same CSP, and for each
variable he sends to Bob, Arthur expects to receive a constant-sized
assignment to that variable. Leveraging the intuition which we
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described at the end of Section 1.1.1, therefore, we can ‘compile’
the [2] AM(2) protocol into a BellQMA(2) protocol: the honest
strategy for either prover consists of providing : copies of a state
of the form in Equation (1), with U@ = U∗ for some constant U∗ for
all @. We can then use the Chen-Drucker :-state uniformity test to
enforce uniformly sampled questions. Completeness holds because
the answer to any given question is constantly sized, and the form
of soundness which we prove in Lemma 1 is su�cient to induce
the soundness guarantees from [2].

The main technical observation which leads to the proof of
Lemma 1 is as follows. The Chen-Drucker :-state uniformity test
has, informally speaking, the following structure:

(1) Given an input state |k ⟩ on : question and : corresponding
answer registers: measure all the answer registers in the
Fourier basis. If some ‘large number’ of the resulting mea-
surement outcomes were zeroes, we continue; otherwise, we
reject. (We will not be precise about what ‘large number’
means here. For details, see Figure 2.)

(2) For every 8 ∈ [:]: if the 8th answer register measured to zero
in step 1, measure the 8th question register in the Fourier
basis as well. If the answer is not zero for any such 8 , reject;
otherwise, if the answer is zero for all 8 such that the 8th
answer register measured to zero in step 1, accept.

Intuitively, this test is trying to leverage the intuition we explained
at the end of Section 1.1.1 to guarantee that as many question regis-
ters as possible are in a uniform superposition. Step 1 is necessary
because we must ‘disentangle’ the answer registers from the ques-
tion registers �rst. We will not explain the completeness property
of this test in detail, since it is analysed in [10, Section 3.1]. Instead,
we will sketch how we prove Lemma 1.

Assume that we have some state |k ⟩ which passes this test with
probability 1. Then the measurement in step 1 will yield a ‘large’ set
of indices S ⊆ [:] such that, for all 8 ∈ S, the 8th answer register
measured to zero in the Fourier basis. Denote the post-measurement
state after the measurement in step 1 has been performed by d1.
Because |k ⟩ passes the :-state uniformity test with probability 1,
we know that d1 must be such that a ‘large number’ of its ques-
tion registers are in the zero Fourier state (i.e., all the question
registers of d1 indexed by 8 ∈ S must be in the zero Fourier state—
otherwise, step 2 would reject). Therefore, if we hypothetically
measured the question registers of d1 in the standard basis, we
would get uniformly random outcomes on a ‘large number’ of the
question registers, and junk elsewhere.

The key observation is that this latter hypothetical standard
basis measurement on the question registers and the Fourier basis
measurement which we performed in step 1 on the answer registers
commute—because they are performed on di�erent registers. As
such, even if we do not �rstly measure the answer registers of |k ⟩
as the test prescribes, and instead directly measure the question
registers of |k ⟩ in the standard basis, we will get uniformly random
outcomes on a ‘large number’ of the question registers, and junk
elsewhere, just as if we had measured the question registers of d1.
Lemma 1 follows.

1.2 AM∗(2)
1.2.1 Background and Previous Work. The close connection be-
tween BellQMA(2) and AM(2) which we explained at the end of
Section 1.1.1 suggests that BellQMA(2) should be considered a
‘quantum analogue’ of AM(2). However, there is another quantum
class which has equally strong claims upon the title. This is the class
of problemswhich can be decided by a classical veri�er who referees
a free game with two unbounded provers who are allowed to share
entanglement. Following [2], we denote this class by AM∗ (2). As far
as we know, Aaronson, Impagliazzo and Moshkovitz were the �rst
ones to de�ne this class [2, Section 8], and they left characterising
its power relative to AM(2) as an open problem.

Studying the power of ‘entangled versions’ of classical multi-
prover classes has a long and fruitful history [12, 17, 20, 21, 29],
and has recently led to some surprising and deep results [22] with
connections to pure mathematics. It is not a priori clear whether
allowing entanglement between the two provers increases or de-
creases the deciding power of the veri�er. On the one hand, the
entanglement might allow the provers to help the veri�er more
e�ectively, but on the other hand, it might also allow them to
cheat more e�ectively. This is a familiar story: we have seen the
same question of whether entanglement helps or hurts arise and
be resolved several times already in the history of MIP∗ (2) (the
entangled version of MIP) and variants of that class. Ji, Natarajan,
Vidick, Wright, and Yuen recently showed that MIP∗ (2) = RE [22],
which clearly indicates that, in the plain multiplayer game model,
allowing entanglement increases the deciding power of the veri�er
(fromNEXP to RE!). On the other hand, it is far from a foregone con-
clusion that allowing entanglement makes any given multiprover
proof system more powerful. For example, it is known that the
entangled version of ⊕MIP, a version ofMIP in which the veri�er’s
decision is simply the XOR of two one-bit answers from the two
provers, is inside EXP, even though ⊕MIP itself is equal to NEXP

[31]. We can conclude from these examples only that it is not clear
a priori how AM∗ (2) ought to relate to AM(2).

1.2.2 Our Results About AM∗ (2). In this work, we resolve the
open question about the power of AM∗ (2) which was posed by
Aaronson, Impagliazzo and Moshkovitz, by showing that, in fact,
AM∗ (2) = MIP∗ (2) = RE. In other words, quantum free games
are just as powerful as general quantum multiplayer games, even
though in the classical world the free-game restriction results in a
signi�cant decrease in the veri�er’s deciding power!

We note that the best lower bound on AM∗ (:) prior to our
work, due to Brandão and Harrow [9, Corollary 4], was NP ⊆
AM∗ (

√
# ). In particular, Brandão and Harrow showed that there

is an AM∗ (
√
# ) protocol (analogous to the [2] AM(2) protocol)

with
√
# provers and $ (

√
# · log# ) total communication that de-

cides # -clause 3SAT with constant probability of error. Our result
subsumes this result: explicitly, we show that there is anMIP∗ (2)
protocol with constant-sized questions, and answer sizes growing
as poly log(=), that is capable of deciding all of RE with constant
probability of error, where = is the size of the problem instance
being decided. Since free games with constant-sized questions are
equivalent to general games with constant-sized questions, we ob-
tain a very communication-e�cient AM∗ (2) protocol for RE. We
prove this result by using the powerful machinery developed by
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Ji, Natarajan, Vidick, Wright and Yuen which was not available in
2013 to Brandão and Harrow.

The key di�erence between quantum and classical free games,
which allows AM∗ (2) = MIP∗ (2) even though AM(2) and MIP

are signi�cantly di�erent in power, is that allowing the provers to
share entanglement opens up access to the tools provided by the
self-testing literature, which allows us to get around the ‘birthday
repetition barrier’ we identi�ed in the �rst section of this intro-
duction. In particular, self-testing allows us to use relatively little
communication to force the two provers to introspect, namely to
generate their own (long) questions, when they play an entangled
game, and thus allows us to avoid having to send very large ques-
tions in order to achieve a constant probability of free collisions.
The machinery of introspection was introduced in [27] in order
to prove MIP∗ ⊇ NEEXP, and is at the heart of the compression

theorems which led toMIP∗ = RE. Compression theorems are trans-
formations that take as input some multiplayer game with long
questions and answers and large veri�er complexity, and output a
new multiplayer game with (usually exponentially) smaller ques-
tions and answers and veri�er complexity, that has about the same

value as the original game: in particular, the fact of whether the
value of the original game was = 1 or ≤ 1/2 should be preserved.
That compression theorems can exist at all for entangled games is
testament to the marvellous power of self-testing theorems. In par-
ticular, the proof thatMIP∗ = RE follows by (in a sense) recursively
applying a compression theorem.

In this work we take the compression theorems that were used to
prove MIP∗ = RE and ‘bootstrap’ them to prove that MIP∗ is equal
to MIP∗ with constantly sized questions. Speci�cally, we prove
what we term a hypercompression theorem, which is also the result
of recursively applying compression theorems, but in a slightly
di�erent way from the way that appears in the proof ofMIP∗ = RE.
Our hypercompression theorem starts with anyMIP∗ protocol with
polynomially long questions and answers, and applies a general
compression theorem once in order to turn it into a protocol with
polylogarithmically long questions and answers, before recursively
applying a question reduction theorem to bring the question size
down to constant while more or less preserving the answer size.
(The e�cacy of this recursive application procedure is dependent
on the structure of the question reduction theorem—in particular,
we cannot reduce the answer size in quite the same way, for reasons
related to the fact that the e�cacy of answer reduction depends on
the running time of the veri�er in the original game while question
reduction does not.) The question reduction procedure that we use is
similar to the one in [22], althoughwe believe that, by incorporating
recent improvements to the analysis of question reduction made
by de la Salle [15], one would be able to prove a better question
reduction theorem that might be a stepping stone towards anMIP∗

protocol for RE with constantly sized questions and (truly, or up to
a factor of $ (log∗ =)) logarithmically sized answers. Due to time
constraints, we leave this improvement for a future version of the
paper. We discuss this possibility in more detail in Section 1.5.

Two remarks about this result are in order for the bene�t of the
interested reader.

• We also prove the gapless version of this result—namely, that
zero-gap MIP∗ is equal to zero-gap MIP∗ with constantly

sized questions and $ (log= · log∗ =) sized answers. Zero-
gap MIP∗ is the same as normal MIP∗ except that, for no-
instances, the veri�er’s acceptance probability is only re-
quired to be strictly less than 1 instead of ≤ 1

2 . In order to
get gapless analogues of the question reduction and answer
reduction theorems of [22], we look to [24], which proves
that zero-gapMIP∗ is equal to Π2.

• A natural corollary of our gapless hypercompression theo-
rem is that there is a (non-robust) two-prover test for = EPR
pairs that uses only constantly sized questions (and $ (=)
sized answers). This result arises from applying the gapless
hypercompression theorem to the ‘question sampling game’
of [24], which self-tests for = EPR pairs, because hypercom-
pression also preserves entanglement bounds. (We believe
that it may be possible to improve the$ (=)-sized answers to
poly log(=) by applying a round of gapless answer reduction
to the question sampling game before we apply hypercom-
pression.) As far as we know, this is the �rst nonlocal game3

in the literature which achieves a self-test for a growing
number of EPR pairs using constantly sized questions (see
[30, Table 1]). We leave obtaining an analogous result in the
gapped case, which would result in a robust two-prover test
for = EPR pairs with constant sized questions, as an open
problem; see Section 1.5 for more discussion.

1.3 Lower Bounds onMIP∗ Protocols from
Kolmogorov Complexity

Our previous result shows that MIP∗ with constant question com-
plexity and polylogarithmic answer complexity is equal to general
MIP∗ (with polynomial question, answer and decision complexity).
(We also prove that zero-gapMIP∗ with constant question complex-
ity and almost-logarithmic answer complexity is equal to general
zero-gap MIP∗.) It is natural to ask how far we can push in this
direction. For example, isMIP∗ with constantly sized questions and
(truly) $ (log=) sized answers equal to generalMIP∗? What about
MIP∗ with constantly sized questions and, say, $ (log log=) sized
answers?

Our �nal set of results shows that the parameters we can achieve
by using hypercompression (see the previous section of this intro-
duction) are in fact almost tight. Speci�cally, we prove that any
MIP∗ protocol deciding all of RE—in fact, any MIP∗ protocol de-
ciding all of EEXP—must have @(=) + 0(=) ≥ 1

2 log=, where = is
the instance size and @(=) and 0(=) are the question and answer
sizes (for a single prover) in the protocol respectively. An identi-
cal lower bound holds on question and answer sizes for gapless
MIP∗ protocols deciding all of EEXP. In particular, the latter shows
that we have essentially already achieved a tight characterisation
of zero-gap MIP∗ as far as question and answer complexity are
concerned: [24] exhibited a zero-gap MIP∗ protocol for Π2 with
$ (log=) question complexity and $ (1) answer complexity, and
we exhibit a zero-gap MIP∗ protocol for Π2 with $ (1) question
complexity and $ (log= · log∗ =) answer complexity, the former of

3There are nonlocal correlations with constant-sized questions [13], and indeed
constant-sized questions and answers [18] that self-test maximally entangled states of
arbitrarily high dimension. However, this is a di�erent notion of self-testing, where
one requires not just the winning probability to be close to optimal, but the entire
distribution of answers given questions to be close to a target distribution.
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which matches the lower bound up to constant factors, and the
latter of which matches the lower bound up to a factor of$ (log∗ =).
In the gapped case, some degree of leeway remains between the
upper and the lower bound—in particular, the lower bound has
@(=) + 0(=) ≥ 1

2 log=, but the best upper bound that we believe
current techniques could prove only has @(=) + 0(=) = poly log(=).
We think that the upper bound is the one that can be tightened,
and we leave closing the gap as an interesting open problem whose
resolution may have other signi�cant implications. (See our open
problems section, Section 1.5, for more discussion of this.)

We prove this lower bound by observing a connection between
the sizes of questions and answers in an MIP∗ protocol deciding
a computational problem and the size of the advice that a deter-
ministic Turing machine must take to solve the same problem (or,
equivalently, the size of the description of a Turing machine that
solves the same problem). More speci�cally, we show a way to
convert any MIP∗ protocol with questions of size @(=), answers of
size 0(=), and veri�er time complexity C (=) deciding a language !
into a deterministic Turing machine running in time roughly 2C (=)

and taking advice of length roughly 22
2(@ (=)+0 (=) )

which also decides
!. We then observe that one can use techniques from time-bounded
Kolmogorov complexity theory to show that EEXP cannot be de-
cided by any Turing machine running in time 2poly(=) and taking
Y22= advice for any Y+2 < 1.4 Combining the two statements shows
our claimed lower bound, since an MIP∗ protocol for RE with very
small questions and answers would result in a Turing machine
to decide RE that takes comparatively little advice, which would
contradict the lower bound on EEXP.

1.4 Related Work

We have already addressed most of the related literature above;
for further discussion of some relationships between our work and
[11] and [9], see the arXiv version of this paper.

4One may ask why we had to prove this, i.e. why we did not use known circuit lower
bounds for large time classes. The answer is that, because the advice complexity of
the Turing machine which we obtain from ‘converting’ the MIP∗ protocol is more
sensitive to@ (=) +0 (=) than the running time of the same Turing machine, we wanted
a lower bound which treated running time and advice separately. In particular, C (=)
(the veri�er’s time complexity in theMIP∗ protocol) could be any arbitrary polynomial
in =, e.g. =100 , and may not depend explicitly on @ (=) + 0 (=) (which here could be
sub-logarithmic). Because any language is decidable by circuits of size 2= , and the
running time of the Turing machine" which comes out of our ‘conversion’ process is

2C (=) , we would not be able to prove any substantial conclusions about@ (=) +0 (=) by
comparing the circuit version of" with known circuit lower bounds if C (=) happened
to be =100 , since then the complexity of the circuit version of " would already be

large enough to decide any language even if we only counted the 2C (=) ≈ 2=
100

gates
that came from encoding the tableau of" ’s execution. On the other hand, since the
advice complexity of the Turing machine" depends sharply on @ (=) + 0 (=) , a lower
bound on RE (or EEXP ⊆ RE) that has a precise dependence on advice and a looser
dependence on time complexity serves our purposes well.

We remark that another lower bound for RE with a precise dependence on advice
and a looser dependence on time complexity is the bound which states that no �nite-
time Turing machine can solve the halting problem with fewer than ≈ = bits of advice.
However, this bound is ‘too much in the other direction’, i.e. the lower bound on the
advice is very weak because the running time is allowed to be any �nite time, and

therefore potentially much larger than 2poly(=) . We wanted a bound which captured a
trade-o� between running time and advice that would allow us to derive a logarithmic
lower bound on @ (=) + 0 (=) , and so we proved the bound stated in the main text.

1.5 Open Questions

(1) PuttingMA or AM in QMA(:) with small communica-

tion complexity. There is now a long line of works about
QMA(2) protocols for NP with sublinear communication.
It is natural then to ask: is there a QMA(:) protocol (or
an AM(:) protocol) with sublinear communication for AM
(or MA)? The main obstacle here is that we do not have a
‘PCP theorem’ forMA or AM (in the sense that we have one
for NP), unless MA = NP (resp. AM = NP), but the birth-
day paradox trick which puts NP in QMA(2) with sublinear
communication complexity relies centrally on having a very
short (short in terms of proof length) PCP for NP. Alterna-
tively, could we prove that, if MA (or AM) is in QMA(:)
with sublinear communication complexity, thenMA = NP

(or AM = NP)?
(2) A tight gappedMIP∗ protocol for RE. As we mentioned in

Section 1.3, there is some leeway between our lower bound
on the communication complexity of any MIP∗ protocol for
EEXP and the upper bound which we believe we can achieve
by applying hypercompression to the [22] MIP∗ protocol
for RE. One way to prove a tight upper bound would be
to show that there are entanglement-sound PCPPs for NP—
that is, to prove the result which [26] claimed to prove, but
whose proof subsequently turned out to have a bug. Such a
result would yield a gapped answer reduction theorem that
has similar question and answer size parameters to those of
the gapless answer reduction theorem which we make use
of in our gapless results.

(3) A rigid self-test for = EPR pairs with constant-sized

questions. The techniques in this work can only yield a
bound on the dimension of the Hilbert space shared by any
pair of provers who pass in our so-called ‘self-test for = EPR
pairs’ with constantly sized questions. Is there a self-test for=
EPR pairs with constantly sized questions (and, say, poly(=)
sized answers) which guarantees that any two provers who
pass in the self-test must be using a particular strategy, up to
local isometries? This is a very powerful and useful property
of most self-tests for EPR pairs in the literature which is
known as rigidity.

(4) A robust test for Schmidt rank = with constant-sized

questions. In this work, the only entanglement bounds we
can obtain are in the gapless case (i.e. for perfect strategies).
Can we show a game with constant-sized questions where
any strategy achieving value ≥ 1/2 must have Schmidt rank

at least =? (The Schmidt rank is the number of nonzero
Schmidt coe�cients, and is a relatively loose characteriza-
tion of entanglement.) Such a bound was obtained by [22]
for their compression theorems, but we cannot use it for an
interesting technical reason: in our work, in order to per-
form parallel repetition for games with large answer sizes,
we must use the analysis of [16], rather than that of [6]. How-
ever, this analysis does not preserve entanglement bounds,
since the reduction from the parallel repeated strategy to
a single-round strategy requires adding a large amount of
entanglement. We refer the reader to the discussion in [22,
Section 11] for more details on this point.
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(5) A communication lower bound for a self-test for =

EPR pairs. We get a lower bound on the communication
complexity of MIP∗ protocols for RE which almost matches
the upper bound we achieve by using hypercompression.
As we mention in Section 1.2.2, another consequence of
(gapless) hypercompression is a non-robust self-test for =
EPR pairs with $ (1) sized questions and (probably, using
answer reduction) poly log(n) sized answers. Is there a way
to lower bound the communication complexity of a self-test
for = EPR pairs using computational arguments, as we did
the communication complexity of MIP∗ protocols for RE? It
is not at once obvious how to do this, since such a self-test
does not directly solve any well-understood computational
problem.

(6) In�nite randomness expansion with two provers. Hy-
percompression yields a self-test for = EPR pairs with con-

stantly sized questions. It is tempting then to ask: can we
do in�nite randomness expansion [14] using only 2 provers
by using this self-test? The naïve approach does not work
because, in the ‘question sampling game’ of [25] and the
‘introspection game’ of [22], the probability that the provers
are asked the ‘introspect’ questions which cause them to gen-
erate randomness (as opposed to being asked questions that
test their consistency with each other) decreases by a con-
stant factor every time one applies question reduction, and
we need to apply question reduction approximately log∗ (=)
times in order to make the questions constant sized. Can this
obstacle be gotten around?

1.6 Omitted Material from This Proceedings

Version

Due to space constraints we have omitted the technical statements
and proofs of all results on AM∗ in this proceedings version, and
we refer readers to the arXiv version of this paper.

2 PRELIMINARIES

2.1 Probability Basics

We can represent a probability distribution ` : Ω → [0, 1] over a
�nite sample space Ω as a vector ®̀ of length |Ω | such that the 8th
entry of the vector ®̀ is exactly ` (8). For two probability distributions
`, a over sample spaces Ω and Ω

′, we then denote by ` ⊗ a the
probability distribution over Ω × Ω

′ whose vector representation
is the vector ®̀ ⊗ ®a .

2.2 Quantum Information Basics

Definition 2. For  ∈ N, the quantum Fourier transform F is

the unitary map over C de�ned by

F |B⟩ =
1√
 

 −1∑
C=0

lB ·C |C⟩, (2)

where l = exp(2c8/ ). This map de�nes the Fourier basis consist-
ing of the states |B̄⟩ = F |B⟩ for B ∈ {0, . . . ,  − 1}. In particular,

|0̄⟩ = 1√
 

∑
C

|C⟩. (3)

Definition 3. A Bell measurement is a two-outcome measure-

ment {", 1 −"} on a bipartite Hilbert spaceH�� = H� ⊗ H� that

can be implemented by separately measuring the � and � registers

with a POVM measurement, and then applying a classical Boolean

function to the measurement outcomes. In other words, there exist

POVMs {�0} acting onH� and {�1 } acting onH� , and a Boolean

function 5 such that

" =

∑
0,1:5 (0,1)=1

�0 ⊗ �1 .

2.3 QMA(2) and related classes

For a fuller treatment of this class, we refer the reader to [19].

Definition 4. QMA(2) is the class of quantum Merlin-Arthur

proof systems where Arthur is a polynomial-time quantum machine

and receives a witness |k ⟩ = |k1⟩⊗|k2⟩ fromMerlin that is guaranteed

to be in tensor product across a �xed cut. AQMA(2) protocol decides a
language ! if for any input G ∈ !, there is a witness state |k1⟩ ⊗ |k2⟩
that Arthur accepts with probability at least 2 (the completeness
probability), and for any input G ∉ !, no witness state in tensor

product form makes Arthur accept with probability greater than B

(the soundness probability); when not otherwise speci�ed, we assume

2 = 2/3 and B = 1/3.

Definition 5. BellQMA(2) is the class ofQMA(2) proof systems

where the POVM element corresponding to the accepting measurement

outcome of veri�er is a Bell measurement (see De�nition 3).

3 A BellQMA(2) PROTOCOL FOR 3SAT

3.1 The Protocol

Definition 6 (Generalised  -colouring). Let  ∈ N, let G =

(+ , �) be a graph, and let ' : � × [ ] × [ ] → {0, 1} be a function.
We say that G is generalised  -colourable with respect to ' if there

exists an assignment function 2 : + → [ ] such that, for all edges

4 = (E1, E2) ∈ �, '(4, 2 (E1), 2 (E2)) = 1.

Definition 7 (X-GAP- COL). X-GAP- COL is a promise prob-

lem. An instance of X-GAP- COL consists of a graph G = (+ , �), a
number  ∈ N, and a function ' : � × [ ] × [ ] → {0, 1}.

• (G,  , ') is a YES-instance of X-GAP- COL if G is generalised

 -colourable with respect to '.

• (G,  , ') is a NO-instance of X-GAP- COL if, for all possible

assignments 2 : + → [ ], there exist at least X |� | edges 4 ∈ �
such that '(4, 2 (E1), 2 (E2)) = 0.

Theorem 8. There is a reduction 5 : {0, 1}∗ → {0, 1}∗ from

3SAT to X-GAP- COL with constant X > 0 and constant  > 0

such that, if G is an # -clause 3SAT instance, 5 (G) is an instance

(G,  , ') of X-GAP- COL such that |+ | = $ (# · poly log# ) and
|� | = $ (# · poly log# ).

Proof. See Theorem 2 of [10]. □

We now present a BellQMA(2) protocol for X-GAP- COL. The
protocol relies on two sub-tests: the uniformity test (Figure 2) and
the consistency test (Figure 3). We call the veri�er in this protocol
Arthur, and the two provers Alice and Bob.
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Fix an instance (G = (+ , �),  , ') of X-GAP- COL.
Input: Let = = |+ |,< = |� |. All parties in the protocol receive the

instance (G = (+ , �),  , ') as input, along with an integer
: = $ (√=), and a constant 0 < [ < 1 to use in the uniformity test
(Figure 2). Honest provers also receive as input a generalised

 -colouring of G, described as a function 2 : + → [ ].
The protocol is as follows:

(1) Alice and Bob both send Arthur a state; Alice’s state is
: (log< + 2 log ) qubits long, and Bob’s state is : (log= +
log ) qubits long. Let the states that they send be |k1⟩ and
|k2⟩. Honest provers send the states

|k1⟩ = ©«
1√
<

∑
4=(E1,E2) ∈�

|4⟩|2 (E1), 2 (E2)⟩ª®¬
⊗:

|k2⟩ =
(
1√
=

∑
E∈+

|E⟩|2 (E)⟩
)⊗:

.

(2) Arthur �ips a single coin. If it lands heads, he performs the
uniformity test (Figure 2) on both |k1⟩ and |k2⟩, setting [ to
be the choice of [ that was provided to him as input. The
uniformity test also takes two natural number parameters,
 ′ and & . For the uniformity test on |k1⟩, he sets

 ′
=  2, & =<,

and for the uniformity test on |k2⟩, he sets
 ′

=  ,& = =.

If it lands tails, Arthur performs the consistency test (Figure
3) on |k1⟩ ⊗ |k2⟩, setting G,  , ' to be the choices which were
provided to him as input.

Figure 1: The BellQMA(2) protocol for X-GAP- COL.

Lemma 9 (Completeness). If G is generalised  -colourable with

respect to ', then the honest strategy outlined in Figure 1 is accepted

with probability 1 − exp(−Ω(√=)).

Proof. The consistency test accepts with probability 1 when
G is generalised  -colourable and the two provers are honest. Ac-
cording to the analysis in [10, Section 3.1], the uniformity test on
|k1⟩ and the uniformity test on |k2⟩ each pass with probability
1 − exp(−Ω(√=)) when the provers are honest. A union bound
gives the desired conclusion. □

In the following sections, we analyse the soundness of the pro-
tocol.

3.2 Soundness of Uniformity Test

For illustrative purposes, we begin with a zero-error analysis of the
uniformity test. In the proof of Lemma 11, we will show how the
argument presented below generalises to the case of nonzero error.

Lemma 10. Suppose |k ⟩ passes the uniformity test with certainty.

Then there exists a collection S of subsets of [:] such that,

(1) for all ) ∈ S, it holds that |) | ≥ :
 ′ (1 − [), and

(2) the distribution `& which results from measuring the question

registers of |k ⟩ in the standard basis can be decomposed as a

Input: Two numbers  ′, & ∈ N, another number 0 < [ < 1, and a
state |k ⟩Q1A1 ...Q:A:

on registers Q1A1 . . .Q:A: . The registers Q8
are called the question registers and the registers A8 are called the

answer registers.

(1) Perform a Fourier transform F ′ on each answer register
and then measure it in the standard basis.

(2) Let / = {8 : the answer register A8 measured to 0}. If |/ |
:

<

(1 − [) 1
 ′ , reject; otherwise, continue.1

(3) For each answer register A8 that measured to 0 in step 1,
perform a Fourier transform F& on the 8th question register
Q8 , and measure it in the standard basis. If any non-zero
measurement outcome is obtained at this step, reject. Other-
wise, accept.

1 [ is necessary because even honest Merlins will not always pass in the uniformity

test; instead, they will only be able to achieve an average of |/ | = :
 ′ , so [ is

necessary to be able to perform a Cherno� bound and achieve 1 − exp(−:)
completeness. See [10, Section 3.1] for more details.

Figure 2: The uniformity test.

Input:

• A state |k ⟩Q1A1 ...Q:A:
⊗ |k ′⟩Q′

1A
′
1 ...Q

′
ℓA

′
ℓ

on registers

Q1A1 . . .Q:A:Q
′
1A

′
1 . . .Q

′
ℓA

′
ℓ . The registers Q8 and Q ′

9 , 8 ∈
[:], 9 ∈ [ℓ], are called the question registers, and the regis-
ters A8 and A′

9 are called the answer registers.

• A graph G = (+ , �).
• A number  ∈ N.
• A relation ' : [ ] × [ ] → {0, 1}.

(1) Measure all the registers in the standard basis. Interpret
each measurement outcome in a register Q8 , 8 ∈ [:], as a
question for Alice, and interpret the measurement outcome
coming from the associated answer register A8 as her answer
to that question. (Therefore, Alice receives : questions and
answers each one.) Interpret each measurement outcome in
a registerQ ′

9 , 9 ∈ [ℓ], as a question for Bob, and interpret the

measurement outcome coming from the associated answer
register A′

9 as his answer to that question.

(2) Interpret each Alice question as an edge 4 ∈ �, and interpret
the corresponding Alice answer as a pair of colours in [ ] for
the vertices that form the endpoints of 4 . Interpret each Bob
question as a vertex E ∈ + , and interpret the corresponding
Bob answer as a colour in [ ] for E . Let � ⊆ � be the set of
all edges obtained as Alice questions and � ⊆ + be the set
of all vertices obtained as Bob questions.

(3) For every edge 4 ∈ � and vertex E ∈ � such that E ∈ 4 ,
check that Alice’s and Bob’s colorings agree and that the two
endpoints of 4 are assigned colours that satisfy the function
'(4, ·, ·).

Figure 3: The consistency test.

mixture

`& =

∑
) ∈S

? () )`D=8 5
)

⊗ ` 9D=:
)

,
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where ? : S → [0, 1] is a distribution over S, `D=8 5
)

is the

uniform distribution over [&] |) | on the indices in) , and ` 9D=:
)

is an arbitrary distribution on the indices in [:] −) .

Proof. Suppose we perform the �rst step of the uniformity test
(Figure 2) on |k ⟩, i.e., we measure all the answer registers of |k ⟩ in
the Fourier basis. Let d®A denote the post-measurement state after
this measurement conditioned on getting outcome ®A . Assuming
that |k ⟩ passes the uniformity test with certainty, ®A = A1, . . . , A:
must be such that A8 = 0 ∀8 ∈ ) for some subset ) ⊂ [:] with
|) | ≥ :

 ′ (1 − [). Moreover, the probability that d®A now passes step
3 of the uniformity test is still 1. Therefore,

d®A = ( |0̄⟩⟨0̄|)⊗) ⊗ d
)
,

where the notation ( |0̄⟩⟨0̄|)⊗) means that the registers with indices
in ) are in the all-zero state in the Fourier basis and in tensor
product with the other registers.

Thus, measuring d®A in the standard basis will yield uniformly
random iid outcomes on the registers in ) and some arbitrary
distribution on the other registers.

Finally, to get the lemma, observe that (letting d denote the post-
measurement state after the Fourier measurement of step 1 with
no conditioning)

d =

∑
®A
@®A d®A ,

for some distribution @®A . Thus, the conclusion follows. □

We now proceed to the main technical lemma in this section,
which is a version of Lemma 10 that tolerates constant error.

Lemma 11. Suppose |k ⟩ passes the uniformity test with probability

1 − Y > 0. Then there exists a collection S of subsets of [:] such that,

(1) for all ) ∈ S, it holds that |) | ≥ :
 ′ (1 − [), and

(2) the distribution `& which results from measuring the question

registers of |k ⟩ in the standard basis can be decomposed as a

mixture

`& ≃X (Y)
∑
) ∈S

? () )`D=8 5
)

⊗ ` 9D=:
)

,

where

(a) ? : S → [0, 1] is a distribution over S,
(b) `

D=8 5
)

is the uniform distribution over [&] |) | on the indices

in ) ,

(c) `
9D=:

)
is an arbitrary distribution on the indices in [:] −) ,

(d) the notation ≃X indicates that the two sides are a distance

of X apart in total variational distance, and

(e) X (Y) = $ (Y1/4).

Proof. Suppose we perform the �rst step of the uniformity test
(Figure 2) on |k ⟩, i.e., we measure all the answer registers of |k ⟩
in the Fourier basis. Let d®A denote the post-measurement state
after this measurement conditioned on getting outcome ®A , and let d
denote the overall post-measurement state after this measurement
without conditioning on any particular outcome. Let @®A denote the
probability of obtaining any given outcome ®A .

Let ?BD224BB,®A be a function mapping density matrices to [0, 1]
such that ?BD224BB,®A (f) gives the probability that a given mixed
state f passes when it is subjected to step 3 of the uniformity test

and ®A was the outcome obtained in step 1 of the uniformity test.
Let 1®A be an indicator function which indicates whether or not a
given vector ®A passes step 2 of the uniformity test (i.e. whether or

not ®A is such that there exists ) ⊆ [:], with |) | ≥ :
 ′ (1 − [), for

which A8 = 0 ∀8 ∈ ) ). Using this notation, the probability that |k ⟩
passes in the uniformity test can then be expressed as∑

®A
@®A · 1®A · ?BD224BB,®A (d®A ) ≥ 1 − Y.

Rewrite as ∑
®A
@®A (1 − 1®A · ?BD224BB,®A (d®A )) ≤ Y.

Therefore (using a Markov bound), with probability at least 1 − 1
U ,

®A obtained in step 1 is such that

(1 − 1®A · ?BD224BB (d®A )) ≤ UY. (4)

Let us set U =
1√
Y
, and de�ne any such ®A to be good. With this

de�nition of U , ®A is good with probability at least 1 − √
Y. Note that,

for any good ®A , step 2 of the uniformity test passes with certainty
(or else 1®A = 0 and Equation (4) would become 1 ≤ √

Y), and step 3
of the uniformity test applied to d®A passes with probability at least
1 − √

Y.
Let d@D4BC8>= |®A be d®A restricted to its question registers. For any

�xed good ®A (for which step 3 of the uniformity test applied to d®A
passes with probability at least 1 − √

Y), we have

tr[(( |0̄⟩⟨0̄|)⊗) ⊗ �
)
)d@D4BC8>= |®A ] ≥ 1 −

√
Y,

where the notation ( |0̄⟩⟨0̄|)⊗) means that the registers with indices
in) are in the zero Fourier state and in tensor product with the other
registers. Thus, by the Gentle Measurement Lemma [32, Lemma
9.4.1], it holds that

∥d@D4BC8>= |®A − (|0̄⟩⟨0̄|)⊗) ⊗ f (®A )
)︸                   ︷︷                   ︸

f (®A )

∥1 ≤ 2Y1/4 . (5)

By construction, measuring f (®A ) in the standard basis will yield

a distribution `®A that is uniformly random iid outcomes on the
registers in) and some arbitrary distribution on the other registers.

Thus, measuring d@D4BC8>= |®A in the standard basis (for any good ®A )
will yield a distribution that is$ (Y1/4)-close to `®A in total variational
distance, by the relation between variational distance and trace
distance [28, Theorem 9.1].

Let d@D4BC8>= denote the state d (de�ned in the �rst paragraph
of this proof) restricted to its question registers. To argue about
the distribution we obtain by measuring d@D4BC8>= without the
conditioning on a �xed good ®A , observe that

d@D4BC8>= =

∑
®A
@®A d@D4BC8>= |®A

=

∑
®A ∈���

@®A d@D4BC8>= |®A +
∑

®A ∈�$$�
@®A d@D4BC8>= |®A , (6)

and recall that ®A is good with probability at least 1 −√
Y. Given this,

there exists a state with no weight on d@D4BC8>= |®A s with ®A in ���
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which is at most $ (√Y) from d@D4BC8>= in trace distance. Formally,
if we de�ne a new state

d ′@D4BC8>= =

∑
®A ∈�$$�

@®A d@D4BC8>= |®A +
( ∑
®A ∈���

@®A

)
d@D4BC8>= |®A ∗ ,

where ®A∗ is an arbitrary (for concreteness, the lexicographically
�rst) ®A in �$$� , we have that

∥d ′@D4BC8>= − d@D4BC8>= ∥1 = $ (Y1/2). (7)

Meanwhile, note that d ′@D4BC8>= can be expressed as a sum

d ′@D4BC8>= =

∑
®A ∈�$$�

@′®A d@D4BC8>= |®A , (8)

where @′®A is some distribution over ®A . For any good ®A , let) (®A ) denote
a set such that) ⊆ [:], |) | ≥ :

 ′ (1−[), A8 = 0∀8 ∈ ) . By the strong
convexity of the trace distance [28, Theorem 9.3] and Equation (5),
we have thatd ′@D4BC8>= −

∑
®A ∈�$$�

@′®A
(
( |0̄⟩⟨0̄|)⊗) (®A ) ⊗ f (®A )

) (®A )

) 
1

≤
∑

®A ∈�$$�
@′®A · 2Y

1/4 . (9)

Therefore,d ′@D4BC8>= −
∑

®A ∈�$$�
@′®A

(
( |0̄⟩⟨0̄|)⊗) (®A ) ⊗ f (®A )

) (®A )

) 
1

≤ 2Y1/4 . (10)

By the triangle inequality, then,d@D4BC8>= −
∑

®A ∈�$$�
@′®A

(
( |0̄⟩⟨0̄|)⊗) (®A ) ⊗ f (®A )

) (®A )

) 
1

= $ (Y1/4) +$ (Y1/2) = $ (Y1/4) . (11)

Finally, by the contractivity of the trace distance under completely
positive trace-preserving maps [28, Theorem 9.2], measuring both

d@D4BC8>= and
∑

®A ∈�$$� @
′
®A

(
( |0̄⟩⟨0̄|)⊗) (®A ) ⊗ f (®A )

) (®A )

)
in the stan-

dard basis will not increase the trace distance between them. Mea-
suring the latter in the standard basis manifestly results in a distri-
bution of the form ∑

) ∈S
? () )`D=8 5

)
⊗ ` 9D=:

)

for S the set {) : ∃®A ∈ �$$� s.t. ) = ) (®A )}. Thus, the conclusion
follows.

□

3.3 Soundness of Consistency Test and

Soundness of Main Protocol

We begin by making a few de�nitions.

Definition 12 (Consistency game). For any given graph G =

(+ , �), natural number  , and relation ' : [ ] × [ ] → {0, 1}, we
de�ne the (:, ℓ) consistency game, denoted �:,ℓ (G,  , ') or simply

�:,ℓ when the parameters are clear from context, to be the following

classical two player free game. (Note that this game is identical to the

:, ℓ birthday repetition game from [2].)

• Alice receives a uniformly random size-: subset � of the set of

edges �, and Bob receives a uniformly random size-ℓ subset �

of the set of vertices + .

• Alice responds with a colouring of all the vertices that are at

the endpoints of edges in � (i.e. Alice gives a number in [ ]
for every vertex that is at the end of some edge in �), and Bob

responds with a colouring of all the vertices in �.

• For every edge 4 ∈ � and vertex E ∈ � such that E ∈ 4 , Arthur
checks that Alice and Bob’s colorings agree and that the colours

assigned to the two endpoints of 4 satisfy the relation '(4, ·, ·).

Definition 13 (Free game with special qestion distribu-

tion). Let � be a two-player free game where question pairs are

uniformly sampled from a question set - × . , and let D be a distri-

bution over - ×. . Then� |D denotes the game� where the question

pairs are sampled according to D.

We would like to prove the soundness of the protocol from
section 3.1 by reducing its soundness to that of the consistency game
from De�nition 12, which was already analysed as the ‘birthday
game’ in [2]. This means that, given a strategy for our QMA(2)
protocol (i.e. a pair of witness states) from section 3.1, we would
like to construct a strategy for the consistency game. The statement
we want to prove is formalised in the following lemma.

Lemma 14. Let (G,  , ') be an instance of X-GAP- COL. Sup-

pose the two states |k1⟩, |k2⟩ are accepted in the protocol of Fig-

ure 1 with probability at least 1 − Y. Then there exists a strategy

for �:
′,:′ (G,  , '), : ′ = :

 ′ (1 − [), with value 1 −$ (Y1/4).

We delay the proof of Lemma 14 until we have proven Lemmas
16, 17, and 18. It is clear, however, that Lemma 14 taken together
with the following lemma, Lemma 15, yields the desired constant
soundness for the protocol of section 3.1.

Lemma 15. Suppose G = (+ , �) is a graph with = vertices and

Θ(=) edges,  ∈ N is a constant, and ' : � × [ ] × [ ] → {0, 1}
is a function. Suppose that any generalised  -coloring of G with

respect to ' violates at least X-fraction of the edges for some constant

X > 0. Then the classical value of the consistency game �:,ℓ (G) for
: = ℓ = Ω(√=) is at most 1 − 2 for a constant 2 > 0.

Proof. This follows from Theorem 26 of [2]. □

From now on in this section, we will �x an instance (G,  , ')
of X-GAP- COL, and omit the parameters in our notation for the
consistency game �:,ℓ (G,  , ').

Lemma 16. For any pair of states |k1⟩, |k2⟩ that are accepted by
the QMA(2) veri�er Arthur in the consistency test from Figure 3 with

probability 1 − a , there exists a product distribution D(k1,k2) =

D� ⊗ D� over question pairs in �:,ℓ and a randomized classical

strategy achieving value 1 − a on �:,ℓ |D(k1,k2) .

Proof. To obtain D and the classical strategy, perform a stan-
dard basis measurement of |k1⟩ and |k2⟩. □

The following is a restatement of Lemma 11.

Lemma 17. For |k1⟩, |k2⟩ each passing the uniformity test (Figure

2) with probability 1 − a , the distribution D(k1,k2) obtained by
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measuring the question registers of |k1⟩ and |k2⟩ in the standard

basis is of the form

D(k1,k2) = D� ⊗ D�,

where, for, ∈ {�, �}, D, has a decomposition of the form

D,
=

∑
) :) ⊆[: ], |) | ≥ :

 ′ (1−[)
?, () )DD=8 5

)
⊗ D 9D=:,,

)
+ D4AA>A,, ,

where ?, is a distribution mapping subsets ) ⊆ [:] to [0, 1], and
∥D4AA>A,, ∥1 ≤ X (a) = $ (a1/4).

Intuitively, Lemma 17 says that, if Alice and Bob provide states
|k1⟩, |k2⟩ which pass the uniformity test (Figure 2) with high proba-
bility, then the distribution over questions for�:,ℓ which is obtained
by measuring the question registers of |k1⟩ and |k2⟩ in the standard
basis can be expressed (on each of Alice’s and Bob’s sides) as a
convex mixture of distributions, such that most of the distributions
making up this convex mixture are uniform on some signi�cant
fraction of their indices, and the rest of the distributions (theD4AA>A

ones) are arbitrary.
We now prove a lemma which will allow us to reduce the sound-

ness of the consistency game with questions sampled in such a way
to the soundness of a smaller instance of the consistency game with
uniformly random questions.

Lemma 18. Let D = D� ⊗ D� , where D� is of the form∑
) :) ⊆[: ], |) |=:′

?� () )DD=8 5
)

⊗ D 9D=:,�

)

and D� is of the form∑
) :) ⊆[ℓ ], |) |=ℓ′

?� () )DD=8 5
)

⊗ D 9D=:,�

)

with : ′ ≤ :, ℓ ′ ≤ ℓ . Then

l (�:,ℓ |D ) ≤ l (�:′,ℓ′) .

Proof. Fix ( , a strategy for the game�:,ℓ |D . Any strategy ( for
�:,ℓ |D automatically induces a strategy ( ′ for �:

′,ℓ′ . Concretely,
this induced strategy works as follows: given an Alice question G ′

from�:
′,ℓ′ , Alice samples a set) according to the distribution ? () ),

samples an G ′′ from D 9D=:

)
, and sets G = G ′∥G ′′. She then samples

an answer 0 for the question G using her strategy for�:,ℓ |D . 0 will
necessarily assign colours to all the endpoints of edges in the set
of edges represented by G ′; Alice responds with these colours only,
which we will denote by 0′. Bob does likewise, receiving question
~′, sampling question ~′′ to form ~ = ~′∥~′′, obtaining answer 1 to
question ~, and returning 1 ′, the restriction of 1 to that part which
is relevant to ~′.

We can analyse the success probability of ( ′ relative to that of (
through a series of hybrids.

(1) In the �rst hybrid, the strategy ( is played in�:,ℓ |D . Suppose
that ( has a success probability of ? in �:,ℓ |D .

(2) In the second hybrid, we de�ne a new strategy ' for�:,ℓ |D .
The new strategy works as follows: Alice samples a question
G ′ from the question distribution of�:

′,ℓ′ , samples a set) ac-

cording to the distribution ? () ), samples an G ′′ fromD 9D=:

)
,

and sets G = G ′∥G ′′. She then plays strategy ( on question G .
Bob does likewise, sampling question ~′, sampling question
~′′ to form ~ = ~′∥~′′, and playing strategy ( on ~. The form
of D, for, ∈ {�, �} means that the questions G and ~
in this hybrid are distributed exactly as they would be in
�:,ℓ |D . Therefore, the success probability of ' is still ? .

(3) In the third hybrid, Alice and Bob play the ‘induced strategy’
( ′ outlined in the �rst paragraph of this proof in the game
�:

′,ℓ′ . Note that, for all possible questions (G ′, ~′) in �:′,ℓ′
and all possible embeddings of (G ′, ~′) into questions (G,~)
in �:,ℓ |D , the checks that the rules of �:

′,ℓ′ require Arthur
to perform on 0′ ⊆ 0, 1 ′ ⊆ 1 form a subset of the checks that
the rules of �:,ℓ |D require Arthur to perform on 0, 1. The
latter means that, for any valid question (G ′, ~′) in�:′,ℓ′ and
any (G,~) induced by (G ′, ~′) according to the procedure
in the �rst paragraph of this proof, a winning answer to
question pair (G,~) induces a winning answer to (G ′, ~′).
Therefore, the success probability can only increase between
the last hybrid and this one.

We conclude that, if there is a strategy ( for �:,ℓ |D which wins
with probability ? , then the strategy ( ′ for �:

′,ℓ′ induced by ( also
wins with probability at least ? . □

Now we are ready to prove Lemma 14. For convenience, we
restate Lemma 14 below as Lemma 19.

Lemma 19. Let (G,  , ') be an instance of X-GAP- COL. Sup-

pose the two states |k1⟩, |k2⟩ are accepted in the protocol of Fig-

ure 1 with probability at least 1 − Y. Then there exists a strategy

for �:
′,:′ (G,  , '), : ′ = :

 ′ (1 − [), with value 1 −$ (Y1/4).

Proof. Let D = D� ⊗ D� and S be, respectively, the product
distribution over questions in �:,: and the randomised classical
strategy succeeding with probability 1 − 2Y in �:,: |D which arise
from applying Lemma 16 to |k1⟩, |k2⟩.

Now, applying Lemma 17 to D, for, ∈ {�, �}, we obtain
decompositions

D,
=

∑
) :) ⊆:, |) | ≥ :

 ′ (1−[)
?, () )DD=8 5

)
⊗ D 9D=:,,

)
+ D4AA>A,, ,

where the error terms have bounded 1-norm at most X (Y) = $ (Y1/4).
We can, without loss of generality, rewrite such a decomposition

as

D,
=

∑
) :) ⊆:, |) |= :

 ′ (1−[)
?, () )DD=8 5

)
⊗ D 9D=:,,

)
+ D4AA>A,, .

Since the error terms in D, have probability mass at most X (Y),
the probability mass of the subgames in �:,: |D where either the
Alice or the Bob questions are drawn from D4AA>A,, is at most
2 · X (Y). We may thus discard these terms from D, at the cost of
changing the value of the game�:,: |D by$ (X (Y)), obtaining a new
game�:,: |D′ where the question distributionD ′

= (D�)′⊗(D�)′
is such that (D�)′ and (D�)′ are mixtures over only the “good"
terms, and which has value at least 1 − 2Y −$ (X (Y)).
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To proceed, let us apply Lemma 18 to �:,: |D′ . This tells us that

l (�:,: |D′) ≤ l (�:′,:′), with : ′ = :
 ′ (1 − [). Therefore,

1 − 2Y −$ (X (Y)) ≤ l (�:′,:′).

This concludes the proof of the lemma. □

Moreover, by Lemma 15, l (�:′,:′) is at most 1 − 2 when : ′ =
Ω(√=). Putting this together with Lemma 14, we obtain that the
success probability of a cheating Merlin in the protocol of section
3.1 is at most 1 − 2 ′ for some constant 2 ′ > 0: the soundness of the
consistency game l (�:′,:′), as expressed in Lemma 15, requires
that

1 −$ (Y1/4) ≤ 1 − 2,
and therefore

Y ≥ Ω(24) .

3.4 Lower Bounds for ℎSep Conditional on ETH

Definition 20 (ℎSep). LetH�� := H� ⊗H� , whereH� andH�

are �nite dimensional Hilbert spaces. Let S�� be the set of separable

states on H�� , i.e. the set of density matrices d�� such that d�� can

be written as

d�� =

∑
:

?: d�,: ⊗ d�,:

where, for all : , d�,: is a density matrix on H� , d�,: is a density

matrix on H� , and ?: is a probability. Given a Hermitian matrix "

onH�� , ℎSep (Y, ",H��) is the problem of estimating

max
d∈S��

tr("d)

up to additive error Y.

Theorem 21. Let |H | denote the dimension of a Hilbert space H .

Suppose A is an algorithm to solve ℎSep (Y, ",H��) for constant Y
and" such that {", 1 −"} is a Bell measurement (see De�nition 3).

If A has time complexity at most

exp($ (log1−a |H� | log1−` |H� |))

for a + ` > 0, then 3SAT with # clauses has an algorithm taking time

2#
1−(a+`)/2 ·poly log# .

Proof. Suppose G = (+ , �) is a graph with = vertices and <
edges, and let (G,  , ') be an instance of X-GAP- COL (De�ni-
tion 7). We show a BellQMA(2) protocol in Section 3.1 to decide any
such instance of X-GAP- COL, which has a constant completeness-
soundness gap if X and  are both constants, and where the witness
is on two unentangled registers of size$ (√= log<) and$ (√= log=).
By Theorem 8, we can reduce any # -clause instance of 3SAT to an
instance of X-GAP- COL where X and  are constants and<,= =

# poly log# . As such, we can set |H� | = |H� | = 2
√
# ·poly log# .

Applying the hypothetical algorithmA to the measurement {", 1−
"} induced by our protocol, we get that A can solve 3SAT in time

exp
(
$ (log1−a |H� | log1−` |H� |))

≤ exp(# 1−(a+`)/2 · poly log# ) .

□

Assuming the Exponential Time Hypothesis (that # -clause 3SAT
does not have any algorithm taking time 2> (# ) ), Theorem 21 shows
that there does not exist an algorithm forℎSep on Bell measurements
taking time at most

exp($ (log1−a |H� | log1−` |H� |))

for any constant a + ` > 0. Therefore, Theorem 21 shows that
the algorithm given by [8] for ℎSep on LOCC measurements, a
superclass of Bell measurements, is optimal (possibly up to factors
doubly logarithmic in |H� | and |H� |).
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