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ABSTRACT

In STOC 1989, Rabin and Ben-Or (RB) established an important

milestone in the �elds of cryptography and distributed comput-

ing by showing that every functionality can be computed with

statistical (information-theoretic) security in the presence of an

active (aka Byzantine) rushing adversary that controls up to half

of the parties. We study the round complexity of general secure

multiparty computation and several related tasks in the RB model.

Our main result shows that every functionality can be realized

in only four rounds of interaction which is known to be optimal.

This completely settles the round complexity of statistical actively-

secure optimally-resilient MPC, resolving a long line of research.

Along the way, we construct the �rst round-optimal statistically-

secure veri�able secret sharing protocol (Chor, Goldwasser, Micali,

and Awerbuch; STOC 1985), show that every single-input func-

tionality (e.g., multi-veri�er zero-knowledge) can be realized in 3

rounds, and prove that the latter bound is optimal. The complexity

of all our protocols is exponential in the number of parties, and

the question of deriving polynomially-e�cient protocols is left for

future research.

Our main technical contribution is a construction of a new type

of statistically-secure signature scheme whose existence was open

even for smaller resiliency thresholds. We also describe a new sta-

tistical compiler that lifts up passively-secure protocols to actively-

secure protocols in a round-e�cient way via the aid of protocols

for single-input functionalities. This compiler can be viewed as a

statistical variant of the GMW compiler (Goldreich, Micali, Wigder-

son; STOC, 1987) that originally employed zero-knowledge proofs

and public-key encryption.
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1 INTRODUCTION

The round complexity of interactive protocols is one of their most

important e�ciency measures. Consequently, a huge amount of

research has been devoted towards characterizing the round com-

plexity of various distributed tasks (e.g., Byzantine agreement [29,

31, 46], coin �ipping [26, 47], zero-knowledge proofs [21, 38], veri-

�able secret sharing [36, 45] and general secure multiparty compu-

tation [15, 17, 35, 53]) under di�erent security models.

In this work, we focus on the round complexity of protocols

that achieve full information-theoretic security, including guaran-

teed output delivery in the presence of an active (aka Byzantine or

malicious), static, computationally-unbounded, rushing adversary.

We assume that there are = parties that communicate over secure

point-to-point channels, and also that they have an access to a broad-

cast channel. Feasibility results in this model were �rst proved in

the classic works of Ben-Or, Goldwasser, and Wigderson [16] and

Chaum, Crépeau and Damgård [23]. Speci�cally, it is known that

perfect security is achievable if and only if the adversary corrupts

less than a third of the parties, i.e., the best-achievable resiliency

threshold is C = ⌊(= − 1)/3⌋. Quite remarkably, Rabin and Ben-

Or [51] later showed that, by compromising on statistical security,

the resiliency can be improved to C = ⌊(= − 1)/2⌋. Put di�erently, a

standard “honest majority” is su�cient if one is willing to tolerate

a negligible statistical error in privacy and correctness. This is the

best that one can hope for since an honest majority is known to

be necessary even for weaker notions like passive statistical secu-

rity [25] or active computational security with guaranteed output

delivery [26].

Our goal in this paper is to determine the round complexity of

general multiparty computation (MPC) in the statistical setting

(aka the Rabin-Ben-Or setting). Indeed, following recent results

that settled the round complexity of MPC for the perfect (aka BGW)

setting [2, 4, 5, 7, 33] and for di�erent variants of the computational

setting [1, 3, 10, 12, 13, 17, 18, 34, 35, 40, 41, 52], the statistical setting

is arguably the last main challenge in this domain. We therefore

ask:

What is the optimal round complexity of general MPC

with full statistical security, including guaranteed out-

put delivery, and optimal resiliency?

Indeed, the round complexity of statistically-secure protocols

has remained wide open for any resiliency C larger than =/3, let

alone for the central case of optimal resiliency of C = ⌊(= − 1)/2⌋. In

fact, in this setting, we do not even know what is the exact round

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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complexity of much more basic primitives, such as statistically-

secure veri�able secret sharing.

In this work, we settle the round complexity of general MPC,

veri�able secret sharing, and several related primitives. Details

follow.

1.1 Veri�able Secret Sharing

Veri�able secret sharing (VSS) [24] is arguably the most basic prim-

itive in information-theoretic multiparty computation, and it is

known to be necessary for the construction of general MPC proto-

cols both in the perfect setting (see [7]), and in the statistical setting

(see [6]).1 At a high level, a VSS scheme consists of two phases:

a sharing phase, which allows a dealer to share a secret B among

the parties, and a reconstruction phase, which allows the parties

to recover the secret B . For an honest dealer, VSS has the same

guarantees as robust secret sharing, that is, the adversary learns no

information about B in the sharing phase (privacy), and the secret B

will always be reconstructed properly in the reconstruction phase

despite the misbehavior of the adversary (correctness). In addition,

for a corrupt dealer, we require commitment, which means that at

the end of the sharing phase there is some value B′ that will always

be reconstructed in the reconstruction phase.

While the round complexity of perfect VSS is well-understood

(see [32, 36, 44]), this problem is still open in the statistical settings.

The best-known scheme [45] achieves 3 rounds of sharing and 2

rounds of reconstruction. It is known that 3 rounds are necessary

for the sharing phase [6, 49], but it is unclear whether 2 rounds

of reconstruction are necessary. In fact, as shown by [28], one can

derive a VSS in which the reconstruction phase consists of a single

round by �rst constructing such a protocol under the assumption

that the dealer is honest (aka robust secret sharing) [51], and then

using statistical MPC to emulate the honest dealer. This approach

su�ers, however, from a large number of rounds in the sharing

phase, which is inherently sub-optimal since it employs a VSS with

multiple rounds of reconstruction as a building block (as part of the

MPC protocol). Apart from the MPC-based approach, it is unknown

how to achieve a single round of reconstruction even when more

than 3 rounds of sharing are being employed [27, 45, 51]. Let us note

that single-round reconstruction has a qualitative advantage due

to its non-interactive nature (parties can just “speak” once without

waiting for others).

Overall, the existence of a statistical VSS that simultaneously

achieves 3 rounds of sharing and a single round of reconstruction

is open. In fact, the question is not fully resolved even if one adds

another round of reconstruction (as in [45]) since the known con-

struction [45] lacks some important properties that are typically

employed as part of MPC protocols. Most notably, it is not linearly

homomorphic, i.e., parties cannot locally combine shares of di�erent

secrets into a new share of a linear combination of the underlying

secrets.

In this work, we provide the �rst construction of a round-

optimal VSS scheme, that requires three rounds of sharing, and

1Unless stated otherwise, whenever we refer to the perfect setting and statistical
setting, we assume that the resiliency threshold is taken to be optimal, i.e., Cperfect =

⌊ (= − 1)/3⌋ and Cstat = ⌊ (= − 1)/2⌋, respectively.

only one round of reconstruction. Our construction is also linearly-

homomorphic (and has other “MPC-friendly” features, see the full

version [9] for more details).

Theorem 1.1. For a security parameter ^, number of parties =,

and number of corrupt parties C < =/2, there exists a protocol for

veri�able secret sharing with three rounds of sharing and one round

of reconstruction, that provides statistical security against an active,

static, rushing unbounded adversary that corrupts up to C parties,

with error 2−^ . The running time of the protocol is poly(^, 2=).

Remark 1.2 (On the exponential dependency on =). Our

VSS protocol, as well as the rest of our protocols, have exponential

dependency on the number of parties =, so they are only e�cient

when = = $ (log^). We emphasize that in the settings of statistical

security, even ine�cient protocols are meaningful, since the protocols

are secure even against a computationally-unbounded adversary. We

also mention that the question of an e�cient VSS scheme with three

rounds of sharing is open even if we allow more than one round of

reconstruction. Indeed, the construction of [45] also has exponential

dependency on the number of parties, even though it allows two rounds

of reconstruction.

1.2 Single Input Functionalities

Before moving to the case of MPC for general functionalities, it is

useful to consider the special case of single input functionalities [37],

whose output depends on the input of a single party, called the

dealer. Single input functionalities capture a large class of non-

trivial tasks, including secure multicast and multi-veri�er zero-

knowledge. In the perfect setting, the sharing phase of VSS can

be also captured by SIF. However, in the statistical setting, where

there is merely an honest majority, it can be shown that SIF cannot

capture VSS. (See the full version [9] for more details.)

Augmented SIF. We present a stronger notion of SIF, called aug-

mented SIF, that captures VSS as well as other related tasks (that

will be useful later as building blocks for general MPC). Intuitively,

it allows the computation of a single input functionality together

with some veri�cation information that will allow every party to

publicly open its output, and convince the rest of the parties of

its validity. Formally, for a single input functionality F , the cor-

responding augmented single input functionality is a two-phase

functionality F ′. The �rst phase, the computation phase, consists

merely of the computation of F . That is, the dealer inputs x to

the functionality F ′, and the 8-th party receives the value ~8 as

an output, where F (x) = (~1, . . . , ~=). In the second phase, the

opening phase, every %8 can input a command “open” to F ′, and

the functionality will return ~8 to the rest of the parties. It is not

hard to verify that an augmented SIF of any (C + 1)-out-of-= secret

sharing scheme is indeed a VSS scheme.

The round complexity of SIF. Not much is known about the round

complexity of SIF and augmented SIF. The three-round lower bound

for the sharing phase of VSS [6, 49] implies that the computation

phase of an augmented SIF requires at least three rounds. First, we

extend this lower bound to hold for standard SIF as well.

1528



The Round Complexity of Statistical MPC with Optimal Resiliency STOC ’23, June 20–23, 2023, Orlando, FL, USA

Theorem 1.3 (Lower Bound for SIF). Let = ≥ 3 and C ≥ =/3 be

positive integers. Then there exists an =-party single input functional-

ity that cannot be computed in two rounds with resiliency C and error

1/12.

The exact round complexity of both, SIF and augmented SIF, is

open, and the best upper bound is some large constant [37, 42, 43].2

We fully resolve this question and provide tight upper bounds. We

show that every augmented SIF can be realized in three rounds for

the computation phase, and one round for the opening phase. This

implies that every SIF can be realized in three rounds (ignoring the

opening phase).

Theorem 1.4 (Upper Bound for augmented SIF and SIF). For a

security parameter ^ , number of parties =, and number of corrupt par-

ties C < =/2, for every single input functionality F , the augmented

single input functionality F ′ can be realized in three rounds for the

computation phase, and one round for the opening phase, with statis-

tical security against an active, static, rushing unbounded adversary

that corrupts up to C parties, with error 2−^ . The running time of

the protocol is poly(^, 2=, B), where B is the size of the boolean circuit

computing F . Consequently, the single-input functionality F can be

realized in three rounds with similar complexity in the same setting.

Previously, the best 3-round SIF protocol with active information-

theoretic security achieved a threshold of C ≤ ⌊(= − 1)/4⌋ [5]. We

also mention that if one is willing to relax the security to compu-

tational then the protocols of [8] provide a 2-round SIF based on

cryptographic assumptions (essentially non-interactive commit-

ments).

Application: Multi-veri�er zero-knowledge. In multi-veri�er zero-

knowledge [19] for an NP relation ', there is a single prover and

: veri�ers, all holding the same statement G . The prover wants to

prove that she is holding a secret witness F so that '(G,F) = 1,

without revealing any information aboutF . Observe that this task

is captured by a single input functionality, that takes (G,F) from the

prover, and returns (G, “true”) to all the parties if '(G,F) = 1, and

(G, “false”) otherwise. Therefore, when there is an honest majority

among the : + 1 parties, we can use our SIF protocol to derive the

�rst multi-veri�er zero-knowledge proof system that runs in three

rounds and achieves statistical security. We highlight the special

case of a single prover and two veri�ers (i.e., : = 2), allowing a

single corruption. That is, by adding just a single veri�er to the

standard zero-knowledge settings, we obtain, for the �rst time,

an e�cient zero-knowledge proof with statistical security under

no cryptographic assumptions. As a bonus, we even provide UC-

security [20], which implies straight-line black-box simulation, as

well as knowledge extraction. In comparison, in the standard settings

of (single-veri�er) zero-knowledge proofs three rounds protocols

require non-black box simulation [38].

2The obvious approach is to use some MPC-friendly VSS, e.g., the VSS of [45] whose
sharing takes 4 rounds and reconstruction takes 2 rounds. Then we can use the protocol
of [27] to compute a degree-2 SIF (which is complete for general SIF [37]). Computing
one multiplication takes more than 10 rounds in [27], and so the protocol requires more
than 14 rounds. By using standard tricks (sharing random multiplication triples [14])
this can probably be improved to 7 rounds (4 rounds for sharing, 1 round for generating
random challenges that are needed for the generation of random multiplication triples,
and 2 rounds for opening).

1.3 General Multiparty Computation

The round complexity of statistical-MPC for general functionalities

is a long-standing open problem. For a long time, it is known that

constant-round protocols exist [42, 43], where the exact number

of rounds is some large constant. More recently, [6] proved that

at least four rounds are required for general statistical MPC. In

this work, we close the gap and prove that four rounds are also

su�cient.

Theorem 1.5 (General MPC in four rounds). For a security

parameter ^, number of parties =, and number of corrupt parties

C < =/2, every functionality F can be realized in four rounds with

statistical security against an active, static, rushing unbounded adver-

sary that corrupts up to C parties, with error 2−^ . The running time

of the protocol is poly(^, 2=, B, 23 ), where B is the size of the boolean

circuit computing F , and 3 is the depth of the circuit.

As in all known constructions of constant-round information-

theoretic MPC, there is an exponential dependency on the depth of

the circuit. Getting rid of this dependency, even in weaker adver-

sarial models (e.g., passive adversary and resiliency of C = 1), is a

famous open problem that goes back to [15]. A potentially more

accessible goal is to get-rid of the exponential dependency in the

number of parties = (see Remark 1.2). Based on current techniques,

poly(=)-time protocols seem to require at least 7 rounds, and so

the gap between e�cient and ine�cient solutions is quite large in

this case.

Overall, our protocol is only e�cient for = = $ (log^) and for

NC1 functionalities.3 Nevertheless, even for general functions, for

which our construction is ine�cient, the result remains meaning-

ful since the protocol resists computationally unbounded adver-

saries. More generally, ignoring e�ciency aspects, one can view

our theorems as computability results that characterize the minimal

computational model (in terms of rounds of interactions) in which

universal computation can be carried out with statistical security

and optimal resiliency.

2 TECHNICAL OVERVIEW

In this section, we provide a detailed technical overview of our

construction. We denote the parties by %1, . . . , %= , and we assume

that at most C < =/2 of the parties are corrupt. We denote the

security parameter by ^, and throughout, we think of F as a �nite

�eld of size exp(=, ^), and of 1, . . . , = as = distinct non-zero �eld

elements.

At a high level, our construction consists of two main parts: the

construction of a round-optimal VSS scheme, and a transformation

from VSS to general MPC. In Section 2.1 we provide a detailed

overview of our VSS scheme, that constitutes our main technical

contribution. In Section 2.2 we provide a short overview of the

transformation from VSS to general MPC via augmented SIF.

2.1 Veri�able Secret Sharing

Background. We begin with some background on the qualitative

di�erence between VSS in the perfect setting and VSS in the sta-

tistical setting. It will be instructive to start with the simpler task

3As in similar cases, this can be pushed up to log-space functionalities since they

securely reduce to NC1 functionalities via non-interactive reductions [43].
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of robust secret sharing where an honest dealer D shares a secret

B among = players. We require C-privacy, i.e., C shares reveal no

information about B , and also perfect C-robustness, which means

that if all the parties send their shares to a receiver R, then R can

recover B even if C shares are maliciously chosen and might depend

on the honest shares. When = = 3C + 1, it is known that Shamir’s

secret sharing satis�es those requirements since Reed-Solomon

codes allow to recover the secret from C errors. On the other hand,

when = = 2C + 1, it is not hard to see that this task is impossible.

Indeed, if (B1, . . . , B=) are shares of 0, and (B
′
1, . . . , B

′
=) are shares of

1, then the Hamming distance between the two vectors has to be

at least 2C + 1 = =, or otherwise C-robustness is violated. But this

means that we can distinguish a secret sharing of 0 from a secret

sharing of 1 based on a single share, so C-privacy is violated. In fact,

this argument shows that perfect robustness is possible only when

= ≥ 3C + 1. We will see that this qualitative di�erence propagates

up to the more challenging task of VSS.

In the perfect setting, when = ≥ 3C + 1, the canonical ap-

proach [7, 11, 16, 32, 36, 44] is to design an MPC protocol for the sin-

gle input functionality that takes an input B and randomness A from

the dealer, generates the shares B1, . . . , B= according to Shamir’s

scheme, and delivers B8 to %8 . Privacy follows from the privacy of

the secret sharing scheme, while commitment (and correctness)

follows from the perfect robustness property: Even if the dealer is

dishonest, and therefore knows all the shares of the honest parties

and has full control of the shares of C corrupt parties, perfect ro-

bustness guarantees that there exists exactly one valid opening in

the reconstruction phase. Indeed, this approach leads to VSS proto-

cols with an optimal round complexity [7, 32, 36, 44] (3 rounds of

sharing and a single round of reconstruction) and so the problem

in the perfect setting is well understood.

The situation in the statistical setting is more subtle. As already

observed, we cannot hope for perfect robustness whenever C ≥ =/3,

and so the commitment property cannot be based on the nonex-

istence of ambiguous openings. Instead, one has to argue that it

is infeasible to �nd such ambiguous openings given the adver-

sary’s view. That is, we have to inject some private randomness

into the shares of the honest parties.4 Indeed, following [51], the

canonical approach here is to augment each share B8 with a private

“proof-of-validity”, that allows %8 to convince the rest of the parties

in the validity of its share B8 . If %8 tries to open an invalid share

B′8 ≠ B8 , then with high probability %8 will fail to generate a proof-

of-validity for B′8 , and the rest of the parties will set the share of

%8 to an erasure. Since C erasures can be handled when = ≥ 2C + 1,

such proofs-of-validity su�ces. Of course, some of the randomness

used to generate the proofs-of-validity has to come from the honest

parties and should remain hidden from the adversary. Furthermore,

the use of interactive reconstruction (which allows for interactive

veri�cation of validity) seems to be of signi�cant help. (See, e.g., the

discussions in [22, 28, 30] in the context of robust secret sharing.)

In contrast, in the perfect setting, it can be shown that interaction

is useless in the reconstruction phase [37].)

4Consequently, in the honest majority statistical setting, VSS cannot be realized by a
single input functionality. This is true even if multiple rounds of reconstruction are
allowed (see the full version [9] for full details).

Interactive signatures. The main tool for constructing the proofs-

of-validity is some form of information-theoretic interactive signa-

tures (aka information-checking protocols [51]). This is essentially

a weak version of VSS in which the opening is conducted by some

designated party I. Following the de�nition of [48, 50], an inter-

active signature is a protocol involving = parties, where two of

them are distinguished: the dealer D and the intermediary I. (Say

that %1 is D and that %2 is I.) The protocol consists of 3 phases as

follows:

(1) Distribution phase: D sends to I a secret B together with

some authentication information, and some veri�cation in-

formation to the rest of the parties.

(2) Veri�cation phase: The parties verify that the information

that D sent is “valid” and “consistent” with the secret B that

I holds, and terminate the phase with a public decision on

success or failure that is taken based on public information

(i.e., broadcasts).

(3) Selective opening phase: Assuming that the veri�cation phase

succeeds, I can publicly open the value B to all the parties.

The parties decide whether to accept or reject this opening.

Crucially, the decision of whether to open the value is in the

hands of I and may depend on external reasons. (Hence the

term “selective”.)

Correctness and privacy are de�ned in a natural way: When D

and I are honest, the veri�cation succeeds, the opening of I is ac-

cepted by all honest parties (correctness), and the adversary learns

no information about B in the distribution phase and veri�cation

phase (privacy). The commitment property from the VSS is replaced

with the following three �ne-grained requirements that are all con-

ditioned on the success of the veri�cation phase: (a) unforgeability:

If D is honest and I is corrupt, the honest parties will reject an

opening of B′ ≠ B by I; (b) nonrepudiation: If D is corrupt and I is

honest, then the honest parties will accept the opening of B by I;

and (c) agreement: All honest parties agree on whether to accept

or reject the opening of I, even if both I and D are corrupt. If

veri�cation fails, unforgeability, nonrepudiation, and agreement

are vacuously satis�ed.

VSS from signatures. The work of [45] implicitly shows a VSS

scheme with three rounds of sharing and one round of reconstruc-

tion (which is also MPC friendly) can be based on any signature

scheme with one round of distribution, two rounds of veri�cation,

and a single round of selective opening that can be executed in

parallel to the second round of the veri�cation phase. We call such

a signature scheme a (1, 2, 1)-signature. Unfortunately, all known

constructions of interactive signatures [27, 45, 50, 51], regardless of

the round-complexity of the distribution phase and the veri�cation

phase, require an interactive (two-round) sub-protocol for selective

opening. To bypass this barrier, let us �rst take a fresh look at ex-

isting constructions [48, 50] which originally rely on polynomials,

and abstract them by using general linear secret-sharing schemes.

Abstraction of previous constructions. Consider a linear secret-

sharing scheme over F for # secret-sharing players &1, . . . , &# .

Linearity means that in order to share a secret B ∈ F, we sample a

random vector 1B whose �rst entry is B , and set the 8-th share to

!8 (1B ) where !8 is some public non-degenerate linear operator that
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is associated with the 8-th player &8 . The scheme is parameterized

by a threshold ) > = and we assume that any coalition of size =

learns nothing about the secret and coalitions of size ) can recover

the secret and the randomness vector 1B . The latter property implies

that the mapping ! : 1B ↦→ (!8 (1B ))8∈[# ] forms a linear code of

distance Δ = # −) + 1. Jumping ahead, we will have exponentially

many “virtual” secret-sharing players, i.e., # = exp(=, ^), but the

threshold ) is polynomial in = and ^. We will employ only = (ran-

domly chosen) sharing players, so the overall complexity can be,

in principle, poly(=, ^).5 An interactive signature (with 2 rounds of

selective opening) can be constructed as follows.

(1) Single-round Distribution phase: Given a secret B ∈ F, the

dealer samples a random mask A ∈ F, and random vectors

1B and 1A whose �rst entry is B and A , respectively. All these

random values are sent to I. In addition, for every %8 , the

dealer picks a random index U8 ∈ [# ] that represents some

(virtual) secret-sharing player, and sends to party %8 the index

U8 together with the corresponding shares B8 := !U8 (1B ) and

A8 := !U8 (1A ), which will be used as “authenticators”. This

step reveals no information about B and A since the adversary

can see at most = shares.

(2) 2-round Veri�cation phase: I broadcasts a random linear

combination of the randomizers 1B and 1A , i.e., I samples a

non-zero scalar 2 ∈ F and broadcasts (2, 1 := 1B + 2 · 1A ).

This equation is being checked by the dealer who broadcasts

a public complaint if 1B + 2 · 1A ≠ 1. If such a complaint

is issued veri�cation fails, otherwise veri�cation succeeds.

These messages do not violate privacy since 1A masks the

value of 1B .

(3) 2-round Selective opening phase: In order to open the secret I

broadcasts 1B . We say that %8 votes for the opening if either

(a) !U8 (1B ) = B8 or (b) !U8 (1) ≠ B8 + 2 · A8 and D did not

broadcast a complaint.6 In the second round, every party

broadcasts its vote, and the parties accept if a majority of the

parties vote for the opening. (If the veri�cation phase failed,

then the parties simply ignore the selective opening phase.)

Analysis (sketch). Correctness, privacy, and agreement are

straightforward. For unforgeability, we assume that D is honest,

I is corrupt, veri�cation passes and I opens 1′B ≠ 1B . Since the

code ! has distance Δ, the probability that !U8 (1B ) ≠ !U8 (1
′
B ), for a

random U8 ∈ [# ], is at least Δ/# > 1 −) /# , and so every honest

party is likely to vote against the opening. Here we crucially relied

on the fact that the adversary does not know U8 . For nonrepudi-

ation, assume that D is corrupt, I is honest, veri�cation passes

but I is rejected, i.e., at least one honest party %8 voted against the

opening. Thus, !U8 (1B ) ≠ B8 but !U8 (1) = B8 +2 ·A8 . By linearity, this

happens i� 2 · (A8 − !U8 (1A )) = (!U8 (1B ) − B8 ), and since the RHS

is non-zero, this happens with a probability of at most 1/(|F| − 1)

over the choice of the random non-zero scalar 2 .

5To achieve such a complexity, the secret sharing should be strongly explicit, i.e., the
8th share should be computable in time poly(), log(# ) ) = poly(=,^ ) . For example,
one can use Shamir’s (= + 1)-out-of-# secret sharing scheme with a �eld of size
|F | = # + 1 and) = = + 1.
6In the latter case, %8 thinks that D is corrupt and so he shouldn’t worry about
unforgeability and there is no harm in accepting the opening.

Reducing a round? We can try to reduce one round of the selective

opening by letting each party decide locally based on his own

vote. However, in this case, an adversary that corrupts both D

and I can violate the agreement property by generating vectors

1B , 1, (U8 , B8 , A8 ) and (U 9 , B 9 , A 9 ), so that an honest %8 accepts the

opening while an honest % 9 rejects the opening. One could also

try to let every %8 broadcast the authentication values (U8 , B8 , A8 )

in the �rst round of the selective opening phase, so the rest of

the parties will be able to compute the vote of %8 based on 1B
and (U8 , B8 , A8 ). However, given this information, a corrupt rushing

I can e�ciently �nd an invalid opening that will be accepted

by the honest parties, violating the unforgeability requirement.

This problem can be �xed by increasing the distance of the code

and setting the privacy threshold below =. But in this case, the

authenticators (U8 , B8 , A8 ) prematurely reveal the secret before we

even know whether the intermediate wishes to open the secret,

thus violating privacy. Overall, the challenge is to reveal enough

information that allows the parties to reach an agreement (in case

the secret is opened), while keeping enough uncertainty about the

secret and its “authenticators” (for privacy and unforgeability).7

At a high level, we solve the problem by letting each party spread

some partial, randomized, pieces of information about his local

authenticators. In particular, each party %8 will receive many secret

shares from the dealer and will spread random linear combinations

of these shares to the other parties. Crucially, %8 will use a local

private source of randomness. (This deviates from all previous

approaches in which only D and I were randomized). The actual

implementation of this approach requires some care. We will start

with a simpli�ed model that includes additional (virtual) veri�ers

(Section 2.1.1), and then explain how to emulate the veri�ers in a

round-preserving way (Section 2.1.2), in order to obtain a (1, 2, 1)-

signature in the standard model.

2.1.1 Step I: Signature Scheme with Virtual Verifiers.

A simpli�ed model. In previous constructions, every %8 had a

dual role: %8 acted both as a veri�er, that had to vote for/against

the opening of I, and also as a receiver, that had to accept/reject

the opening of I. We consider a simpli�ed model where this role

is divided between two entities: a veri�er V8 and a receiver %8 .

Formally, the model consists of< veri�ers V1, . . . ,V< , and = re-

ceivers %1, . . . , %= and we assume that the dealer D is %1 and the

intermediary I is %2. The adversary can corrupt any number of

the receivers, and can weakly corrupt any subset of the veri�ers

with one limitation: WhenD is honest and I is corrupt there must

be at least one honest veri�er. The notion of weak corruption is

non-standard: A weakly corrupted veri�er passes all her incoming

messages to the adversary but keeps her internal state (i.e., her

random tape) and the messages that she sends to the other hon-

est parties hidden. In addition, the adversary is allowed to abort a

weakly corrupted veri�er at any time. If a veri�er is not aborted, it

plays its role honestly.

7In contrast, in the reconstruction phase in VSS we do not care about the privacy of
the secret, since the opening is not selective and all the parties know that the secret
should be revealed. In this sense, signatures (with a single round of opening) are more
challenging than VSS. Indeed, to the best of our knowledge, the question is open even
when the resiliency threshold C is smaller than =/3 and perfect-VSS is available.
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Hadamard-based secret sharing. Recall that we employ a linear

secret-sharing scheme over F that is de�ned by # distinct linear

mappings {!8 }8∈[# ] , one for each virtual party. We will need the

(highly non-standard) property that this set of functions forms a

linear space L. For this, we will take L to be the space of all linear

functions from FE to F and think of each function as a vector in

F
E (so # = |F|E ). This is not a valid threshold secret sharing since

some small coalitions (that span the vector e1 = (1, 0, . . . , 0)) can

recover the secret, and some huge coalitions (that do not span e1)

may not be able to recover the secret. However, for a randomly

chosen coalition of size≫ E (resp.,≪ E) correctness (resp., privacy)

holds with high probability. These relaxed properties su�ce (since

privacy and correctness will only be needed when the dealer is

honest and in this case the virtual parties will be selected at random).

From a coding perspective, this secret sharing corresponds to the

Hadamard code over a large �eld. LetD be polynomially larger than

^ ·< · = and let E be polynomially larger than D<. We modify the

previous construction as follows:

(1) Single-round distribution phase: As before, the dealer samples

the randomizers 1B and 1A and sends them to I. In addition,

D allocates to each veri�er D random virtual secret-sharing

parties by sampling a random D × E matrix �8 , and sends

to V8 the “names” of the virtual parties and their shares,

(�8 , s8 := �8 · 1B , r8 := �8 · 1A ). Since E ≫ D< , with

a very high probability the row-span (�8 )8∈[<] does not

include the unit vector e1 = (1, 0, . . . , 0), which means that

all the messages that the veri�ers receive from D reveal no

information about B and A .

(2) 2-round veri�cation phase: As in the previous protocol, the

intermediate publishes a random non-zero scalar 2 and a

linear combination of the secret sharing randomizers 1 :=

1B + 2 · 1A , and the dealerD announces whether veri�cation

succeeds by verifying the above equality. In addition, in

the second round, every veri�erV8 does the following: (a)

broadcasts a public complaint if its local authenticators are

inconsistent with the published information, i.e., if �8 · 1 ≠

s8 + 2 · r8 ; and (b) privately sends to each receiver % 9 , 9 ∈ [=],

a random linear combination of his B-shares (t8, 9 , a8, 9 :=

t8, 9 · �8 , B8, 9 := t8, 9 · s8 ), where t8, 9 ← F
D is a random row

vector.

(3) Single-round selective opening phase: To open the secret B ,

the intermediate I broadcasts the vector 1B to all the parties.

After this, each receiver %8 locally computes a vote for each

veri�er V9 and rejects the opening if at least one veri�er

votes against the opening. The receiver %8 thinks that the

veri�erV9 votes against the opening if the following condi-

tions hold: (1)V9 did not broadcast a complaint8, (2)V9 did

not abort, and (3) there is an inconsistency a8, 9 · 1B ≠ B8, 9 .

Observe that this phase can be executed in parallel to the sec-

ond round of the veri�cation phase, so that if the veri�cation

phase failed the opening is simply ignored.

Analysis (sketch). It is not hard to see that correctness and pri-

vacy hold even if none of the veri�ers are honest. For unforgeability,

8Again, in case of a complaint the veri�er (who always operates honestly) claims that
the dealer is cheating, and so it’s safe to accept the opening without worrying about
forgery.

assume that D is honest, I is corrupt, some veri�er, sayV1 is hon-

est, and the veri�cation phase succeeds. By following the previous

argument, unforgeability boils down to showing that the vector

a1, 9 that an honest receiver % 9 gets fromV1 is (almost) uniformly

distributed. Moreover, this should hold even when conditioning on

the adversary’s view that consists of all the vectors a1,ℓ that V1

sent to the corrupted receivers. To see this, observe that the vec-

tors a = (a1,1, . . . , a1,=) were generated by taking = random linear

combinations ) = (t1,1, . . . , t1,=) of the rows of a random matrix

�1. Since ) is likely to be linearly independent (as each t1, 9 is of

dimension D ≫ =) and since �1 is uniform, the outcome a is also

uniform.

For nonrepudiation, assume that D is corrupt and I is honest,

and let V8 be any veri�er that did not abort. If �8 · 1B ≠ s8 then

even weakly-corruptV8 is likely to broadcast a public complaint

(the argument is similar to the one used in the previous scheme);

Otherwise, �8 · 1B = s8 and all the local authenticators that were

sent byV8 will be consistent. In any case, no honest party rejects

due toV8 .

Finally, for agreement, we show that even ifD and I are corrupt,

if the veri�cation phase succeeds, then all the honest receivers

are likely to see, for every (possibly weakly-corrupt) veri�er V8 ,

the same vote. This is trivially true if V8 aborts or broadcast a

complaint. If this is not the case, then, except with probability of

1/|F| = negl(=, ^) over the choice of the linear combination t8, 9 ,

the local equation tested by an honest receiver % 9 , which can be

written as t8, 9 · (�8 ·1B ) = t8, 9 · (s8 ) holds if and only ifV8 ’s equation

�8 · 1B = s8 holds.

Multiple-authenticators variant. It will be useful to consider a

variant of the protocol in which everyV8 sends multiple authenti-

cators (t:8,9 , a
:
8,9 := t

:
8,9 ·�8 , B:8,9 := t

:
8,9 · s8 ):∈[ℓ ] to every receiver

% 9 . Accordingly, in the opening phase, % 9 will treat any inequality

of the form a
:
8,9 · 1B ≠ B:8,9 for some : ∈ [ℓ], as an inconsistency,

and will reject accordingly (unless V8 aborted or issued a public

complaint). We think of the random tape ofV8 as composed of ℓ

blocks where the :th block consists of all the vectors (t:8,9 ) 9∈[=] . By

slightly modifying the parameters D and E , we can securely support

this extension even if the adversary partially controls the choice of

the linear combinations t:8,9 of non-honest veri�ersV8 . Speci�cally,

if eitherD or I is corrupt, the adversary will be allowed to choose,

for every non-honestV8 , all the random tape except for one block

that is sampled uniformly at random and remains unknown to the

adversary. (If D and I are honest then we allow the adversary to

pick all the vectors t:8,9 that are generated byV8 .)

2.1.2 Step II: Emulating the Verifiers. We return to the standard

model with = parties %1, . . . , %= where at most C < =/2 of them

are corrupt. We consider the multiple-authenticators variant of

the protocol in the simpli�ed model as the outer protocol, and we

use a virtualization technique to emulate the veri�ers in a round-

preserving way. For ease of presentation, we assume that the parties

have an access to an idealized single-round signature scheme which

is also linearly homomorphic. That is, if a signer � signs to � over

secrets (B1, . . . , B@) then � can pick any vector of coe�cients # 9 =

(# 9 [1], . . . , # 9 [@]) and privately open the vector of coe�cients and

linear combination (#,
∑

8∈[@ ] # 9 [8] · B8 ) to some party % 9 while
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certifying that these values were “signed” by �. The opening is

designated to % 9 , and so we use the terms � signs to � and � opens

to % 9 . While it may seem paradoxical to make this assumption at

this point, we will later see that it can be replaced with a weak form

of interactive signatures, and thus can be easily realized.

The emulation. We identify the veri�ers with all subsets of C

parties that do not include D and I, so< =
(=−2

C

)

.9 In a nutshell,

messages that will be sent to the virtual veri�erV8 will be delivered

to all the parties in the corresponding committee, and whenever

V8 sends a message, we let each party in the committee send the

message as well where the message will be computed with respect

to his own independent randomness. We think of V8 as weakly

corrupt if it contains a corrupt party % 9 . If all the parties inV8 are

honest, the virtual party will be viewed as an honest party.

In more detail, we think of the distribution phase and veri�ca-

tion phase as a three-round protocol. In the �rst round of the outer

protocol, i.e., in the distribution phase, D sends everyV8 a vector

(�8 , s8 , r8 ). We emulate this step by lettingD pass these values to ev-

ery % 9 inV8 together with linear private-opening (LPO) signatures.

To make sure thatD sent the same vector to all parties inV8 , we let

the parties perform a public secure pairwise comparison of those

values in the following way. For everyV8 and every % 9 and %: in

V8 , we let % 9 sign a random pad r8, 9,: to %: in the �rst round using

the LPO signature, and both parties broadcast (�8 , s8 , r8 ) + r8, 9,: in

the second round. Any inconsistency in the broadcasts implies that

the comparison failed, in which case we think ofV8 as an aborting

veri�er.

In the third round of the outer protocol, i.e., in the second round

of the veri�cation phase, everyV8 veri�es that �8 · 1 = s8 + 2 · r8 ,

and also generates ℓ authenticators and sends them to the receivers.

We emulate this step by letting every % 9 inV8 , verify that �8 · 1 =

s8 + 2 · r8 , using the vector (�8 , s8 , r8 ) that % 9 received from D, and

broadcast a public complaint if equality does not hold. If any % 9 in

V8 broadcasts a complaint, we think ofV8 as a complaining veri�er.

We set the number of authenticators generated by every veri�er

V8 to be ℓ = C , and we let every %: inV8 generate a random vector

t
:
8,9 for every % 9 , and privately open to % 9 the values (t

:
8,9 , a

:
8,9 :=

t
:
8,9 ·�8 , B:8,9 := t

:
8,9 ·s8 ) which are linear combinations of the values

on which D signed to P: . That is, every party in V8 generates a

single authenticator for % 9 . (If % 9 rejects the opening of %: , then % 9
simply ignores the authenticator of %: .)

Analysis. For honest D and I, we allowed all the veri�ers to

be non-honest in the outer protocol. Observe that every veri�er

V8 contains a corrupt party, that can broadcast a false complaint.

However, since a complainingV8 is equivalent to an abortingV8
in the outer protocol, this behavior is allowed. In addition, whenD

is honest, the unforgeability of the LPO signature implies that for

every non-abortingV8 , all authenticators generated by the parties

inV8 are of the correct form (t
:
8,9 , t

:
8,9 ·�8 , t

:
8,9 ·s8 ). If, in addition, I is

corrupt, then there exists a veri�er that contains only honest parties

that acts exactly like an honest veri�er in the outer protocol, and

the adversary has no information about the internal state of this

veri�er. Moreover, every veri�er V8 contains at least one honest

9This is the point where complexity becomes exponential in =.

party %: , for which the authenticators (t:8,9 ) 9∈[=] are uniformly

distributed, and the adversary has no information about the vectors

corresponding to the honest parties.

When D is corrupt, everyV8 contains at least one honest party,

and ifV8 did not abort then the honest parties inV8 agree on the

values (�8 , s8 , r8 ). This means that for everyV8 at least one authen-

ticator is honestly generated. However, the authenticators that the

corrupt parties generate are not necessarily consistent with the

values (�8 , s8 , r8 ) that the honest parties hold. To solve this problem,

we observe that each pair of parties %ℓ and %: in a non-aborting

V8 already publicly agreed (via broadcast) on the masked values

b8,ℓ,: = (�8 , s8 , r8 ) +r8,ℓ,: . Also %ℓ signed the random pad r8,ℓ,: to %: ,

and since b8,ℓ,: is public, this signature is e�ectively a signature on

the “plaintext” (�8 , s8 , r8 ). In particular, %: can prove to any party

% 9 that her authenticator, (t
:
8,9 , a

:
8,9 := t

:
8,9 ·�8 , B:8,9 := t

:
8,9 · s8 ), is

consistent with %ℓ , by opening to % 9 the linear combinations of the

random pad r8,ℓ,: that correspond to t
:
8,9 . (See the full version [9]

for details.)

Realizing the linear private-opening signatures. So far we assumed

that we have an idealized version of the linear private-opening

signatures. To replace these signatures we construct information-

theoretic linear private-opening signatures. Since the openings are

private, we do not require agreement and show that such a scheme

can be realized with a single round of distribution, two rounds of

veri�cation, and a single round of opening that can be executed

in parallel to the second round of veri�cation. Our construction

follows the blueprints presented in previous works [48, 50]. (Full

details appear in the full version of this paper [9].) Despite their

interactive nature, our signatures can be employed in the above

protocol without increasing the round complexity. The distribution

phase is executed in the �rst round, and the veri�cation phase

is executed in the second and third round. A failures of an LPO

veri�cation, which is a public event, is translated to an “abort”

of the corresponding virtual veri�er. The �nal construction of the

(1, 2, 1)-signature scheme satis�es several additional properties (e.g.,

linearity and re�ned versions of openings) that are needed later for

the other constructions. See the full version [9]for details.

2.2 From VSS to General MPC

At a high level, our (long and winding) road to round-optimal

general MPC has few additional steps. First, we note that our VSS

scheme satis�es some useful properties for the construction of

round-optimal general MPC protocol. We then use those properties

to construct (standard) single-input functionalities, and show how

to enhance SIF to augmented SIF. Finally, we use augmented single

input functionalities for the construction of round-optimal general

MPC. We continue with a short explanation about each step.

2.5-rounds VSS.. In order to obtain round-optimal protocols, we

need to perform operations on the shares before the execution of

VSS terminated. This idea can be traced back to [5], and was used

in several papers on round-optimal MPC [7, 8]. We call the shares

that the parties received in the �rst round of the VSS protocol

tentative shares, and we observe that in some special cases we can

perform linear operations over those shares. In the �rst special

case, a single dealer shared many secrets B1, . . . , B< , and the parties
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securely compute a linear function
∑

8∈[<] U8 · B8 of the secrets

already in the third round of VSS. In the second special case there are

two dealersD1 andD2 that share the secrets B1 and B2, respectively,

and the parties securely compute the value B1 − B2 already in the

third round. See the full version [9] for more details.

Single input functionalities. Recently, [8] implicitly showed a

round-preserving transformation from a VSS scheme that allows

performing linear operations over the tentative shares into a pro-

tocol for single input functionalities. We follow this blueprint and

show that it can be adopted to the statistical setting as well. Roughly,

the transformation has two steps: (1) Based on VSS, we construct

a three-round protocol for triple secret sharing (TSS) that allows a

dealer D to share a triple (0, 1, 2) among the parties via VSS, and

also prove in zero-knowledge that the triple satis�es 2 = 01; and

(2) We use the TSS protocol in order to construct a three-round SIF

protocol for a degree-2 functionality by letting the dealer shares its

inputs and all the degree-2 monomials (via TSS) and then let the

parties compute linear operations over the tentative shares. Since

general SIF non-interactively reduces to degree-2 SIF [37], we get a

3-round SIF protocol.

While this approach is su�cient for the construction of SIF, it is

insu�cient for the construction of an augmented SIF, since a party

%8 cannot convince the other parties of the validity of its outputs. In

order to obtain an augmented SIF, we �rst present a new primitive,

called veri�able sharing and transferring (VST), that allows a dealer

D to share a secret B among the parties via VSS, while delegating

the ability to perform the veri�able opening of B to a designated

receiver ' (who also gets to learn the secret). The protocol follows

similar ideas to VSS. Now given a SIF functionality 5 , we realize

an augmented SIF as follows. Instead of delivering the 8th output,

58 (x), privately to %8 , we use SIF to send to all the parties a masked

version of the output 58 (x) +A8 , and share the mask A8 via VST while

delegating the opening to %8 as the receiver. As a result, %8 learns

the output 58 (x) and gets the ability to veri�ably open A8 , and let all

the parties learn 58 (x).
10 For more details, see the full version [9].

From Single Input Functionality to General Multiparty Computa-

tion. To construct a 4-round MPC protocol for general functionali-

ties, we begin with 2-round perfectly secure protocol Πsm against

passive adversaries (e.g., [4]), and use a 3-round augmented SIF to

force an honest behavior while increasing the total round complex-

ity by only one round. This can be viewed as a new round-e�cient

statistical realization of the GMW paradigm [39]. Since the under-

lying protocol Πsm uses private channels, we face a consistency

problem: How should Alice convince Bob and Charlie that she be-

haves well when they have di�erent views on her behavior? To

solve this problem GMW eliminate all private communication and

pass it, encrypted under public-key encryption, over a broadcast

channel, thus providing a common “point of reference” for all the

parties. This public-key assumption was carried to round-e�cient

10In order to construct augmented single input functionalities, we need to execute
multiple instances of VSS, TSS and VST, and perform linear operations over the shares.
All these calls should be correlated, i.e., for every pair of parties (%8 , % 9 ) , all instances of
VSS, TSS, and VST should use the same underlying instance of linear (1,2,1)-signature
with %8 in the role of D and % 9 in the role of I. In order to handle this correlation, it
will be convenient to capture the execution of all VSS, TSS and VST instances by a
single ideal functionality Fsh-comp , that will formalize both the task of sharing values

by the parties and of computing linear operations over the shares.

realizations of the GMW compiler [1, 40], and was recently relaxed

to a symmetric assumption (the existence of commitments) in [10].

We get rid of computational assumptions and present a statistical

variant of this round-e�cient compiler. For this, we exploit the

full power of the augmented SIF protocol and some of its special

properties such as the ability to compute the di�erence between the

outputs of two single input functionalities with di�erent dealers.

For more details, see the full version [9].
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