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Abstract

We study the stochastic vertex cover problem. In this problem, G = (V,E) is an arbitrary
known graph and G? is an unknown random subgraph of G where each edge e is realized
independently with probability p. Edges of G? can only be verified using edge queries. The goal
in this problem is to find a minimum vertex cover of G? using a small number of queries.

Our main result is designing an algorithm that returns a vertex cover of G? with size at most
(3/2+ε) times the expected size of the minimum vertex cover, using only O(n/εp) non-adaptive
queries. This improves over the best-known 2-approximation algorithm by Behnezhad, Blum
and Derakhshan [SODA’22] who also show that Ω(n/p) queries are necessary to achieve any
constant approximation.

Our guarantees also extend to instances where edge realizations are not fully independent.
We complement this upperbound with a tight 3/2-approximation lower bound for stochastic
graphs whose edges realizations demonstrate mild correlations.
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1 Introduction

In the stochastic vertex cover problem, we are given an arbitrary base graph G = (V,E) with n
vertices but we do not know which edges in E actually exist. Rather each edge e ∈ E is realized
independently with a given existence probability pe ∈ (0, 1], forming a subgraph G?. Our goal is to
find a minimum vertex cover of G?. While G? is unknown, one can verify its edge set by querying
edges e ∈ E. Of interest, then, are algorithms that query a small subset of edges and, based on
the outcome of these queries, find a near-optimal vertex cover of G?. How small should the set
of queried edged be? The gold standard in these problems is to non-adaptively issue a number of
queries that is linear in the number of vertices and polynomial in inverse probability p = mine∈E pe.

While these stochastic settings are primarily concerned with information theoretical ques-
tions, most positive results have focused on problems whose non-stochastic counterparts admit
computationally-efficient algorithms. Instances include minimum spanning tree [GV04, GV06], all
pairs shortest paths [Von07], maximum matching [BDH+15, BDH+20b, AKL16, AKL17, BR18,
YM18, BDF+19, AB19, BFHR19, BDH20a, BD20], 2-approximate minimum vertex cover, and
bipartite minimum vertex cover [BBD22]. This emphasis on efficiently solvable problems is not
accidental. By and large, structurally-simple properties and heuristics that had long played a key
role in understanding and designing computationally efficient algorithms have been used to guide
an algorithm in its choice of queries, e.g., the Tutte-Berge witness sets [AKL16], short augmenting
paths [BDH+15], local computation [BDH20a], and greedy heuristics [BBD22].

On the other hand, for vertex cover beyond a 2-approximation, and other computationally hard
regimes, lack of structurally-simple properties has been a barrier towards solving the stochastic
variants of the problems. A natural question here is whether it is possible to obtain any positive
results for problems that lack these structure? In this work, we consider this question for the
minimum vertex cover problem.

Question 1. Can we achieve a better than 2-approximation for the stochastic minimum vertex
cover problem despite the lack of computationally efficient algorithms for this problem?

Our paper answers this question in the affirmative. At a high level, we introduce an algorithm
that returns a vertex cover of G? with probability 1 whose expected size is at most 3/2 + ε times
that of the minimum vertex cover of G?, for any desirably small ε. The following theorem, which
is formally stated in Section 5, presents our main result.

Theorem 1.1 (Upper-bound). For any ε ∈ (0, 0.1), there is an algorithm (namely Algorithm 3)
that returns a (3/2 + ε)-approximate solution for the stochastic minimum vertex cover problem
using O(n/εp) queries.

The number of queries used in this algorithm is asymptotically optimal since [BBD22] show
that Ω(n/p) queries are necessary to achieve any constant approximation ratio. Interestingly, the
approximation guarantees of Theorem 1.1 continue to hold even if edges of G? are correlated (see
Section 7.) This allows us to handle mild correlations in the realization of G?. That is, even if O(n)
edges are allowed to be realized in a correlated way1, we can still achieve a (3/2 + ε)-approximate
solution using only O(n/εp) queries. Our next result shows that for such mildly correlated processes,
a 3/2-approximation is the best one can hope to get when using O(n/εp) queries. The following
theorem, which is formally stated in Section 7, presents our lower bound.

Theorem 1.2 (Informal Lower Bound). There is a stochastic process for generating G? with O(n)

1For a formal definition of a stochastic process with O(n) correlated edges, see Definition 7.1
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correlated edges, such that any algorithm that returns a vertex cover of G? using only O(n/εp)
queries, must have an approximation ratio of at least (3/2− ε) with probability 1− o(1).

Theorems 1.1 and 1.2 together demonstrate that our results are tight if there are mild cor-
relations between the edges of G?, which can readily exist in practical applications. Moreover,
this shows that to further go beyond the 3/2-approximation one must fully leverage independence
across all edges. Indeed, a similar characterization was given for the stochastic matching problem
by [AKL16] and [AB19].

Mild Correlations and Independence in Stochastic Optimization. Correlated realizations
have been considered in several stochastic combinatorial optimization problems [ADSY12, AP13,
AKL16, AB19, BDH+20b, GKMR11]. For the stochastic matching problem, mildly correlated
graphs were first considered by [AKL16] who, in addition to their algorithmic results, provide
a construction of stochastic graphs with only O(n) correlated edges which does not admit better
than 2/3-approximation. Our lower-bound too uses a similar construction with only O(n) correlated
edges. Later, [AB19] use an elegant matching sparsifier of [BS15] to design a 2/3-approximation
algorithm closing the gap for mildly correlated graphs. The tight characterization of what is possible
for mildy correlated graphs in the stochastic matching problem also paved the way for obtaining a
(1 − ε) approximation ratio for the fully independent setting by [BDH20a]. To fully leverage the
independence across all edges, [BDH20a] crucially utilize (1− ε)-approximate matching algorithms
designed in the LOCAL model of computation. This subsequently resulted in a (1+ε)−approximate
stochastic vertex cover for bipartite graphs [BBD22]. However, the absence of better than 2-
approximation algorithms for minimum vertex cover in the LOCAL model may be seen as an obstacle
in breaking the 3/2 barrier for the stochastic vertex cover on fully independent graphs.

Algorithm Design Overview. To achieve a 3/2-approximation, we start with two approaches
to solving the stochastic minimum vertex cover problem that give 2-approximations. Our final
algorithm is the result of carefully combining insights from these two approaches.

All of the algorithms in this work follow the same blueprint: We consider a set P ⊆ V and the
induced subgraph H = G[V \P ]. We then query all the edges of H to realize H? and take its vertex
cover M . Our algorithm then returns S = P ∪M . We note that S is a vertex cover of G?, since
any edge of G? that is not covered by P is covered by M . Our algorithms and their guarantees only
differ in their choice of P .

We give two 2-approximation algorithms that employ different principles in their choice of P .
Algorithm 1 hallucinates a random subgraph of G, namely G1, and uses P that is a minimum vertex
cover of G1. On the other hand, Algorithm 2 estimates the probability that any vertex v ∈ V would
belong to the minimum vertex cover of G?, denoted by cv, and uses P = {v | cv > 1/2}. While
both of these algorithms achieve a 2-approximation in the worst-case, their performance guarantees
differs based on the distribution of cv’s. In particular, both of these algorithms over-include some
vertices — i.e., include a vertex that does not belong to the minimum vertex cover — but they differ
in the type of vertices they over-include. As our analysis shows, the first algorithm significantly
over-includes vertices that have a very small cv, but the second algorithm only over-includes vertices
with cv >

1
2 .

Our 3/2-approximation algorithm (Algorithm 3) combines these two insights to define the set
P = P1 ∪ P2. It first chooses τ that carefully balances the contribution of vertices with cv > τ to
the expected size of the minimum vertex cover. For vertices whose cv ∈ [1 − τ − ε, τ ], we use the
style of Algorithm 1 and only include them in P1 if they also belong to a minimum vertex cover of a
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hallucinated random subgraph. For the set of vertices with cv > τ , we use the style of Algorithm 2
and include all of them in P2. Our analysis carefully balances out the over-inclusion of vertices to
achieve a 3/2-approximation.

As presented above, our algorithm requires the knowledge of cvs , i.e., the probability that
a vertex belongs to the minimum vertex cover. However, our algorithms and analysis extend
immediately to use estimated values of cv, which can be calculated efficiently when given an oracle
for the minimum vertex cover problem. Moreover, our approach can readily work with significant
mis-estimates of cv, e.g., it achieves 3/2 + ε times the approximation factor of any oracle for the
minimum vertex cover problem. We discuss this further in Section 6.

2 Notation

We work with a known arbitrary graph G = (V,E) and existence probability pe ∈ (0, 1] for each
e ∈ E. We consider a random subgraph G? in which every edge e ∈ E is realized with probability
pe, independently. We denote p = mine∈E pe.

Let MVC denote a function that given any input graph outputs a minimum vertex cover of that
graph. We may also refer to this as the minimum vertex cover oracle. We define OPT = MVC(G?)
to be the optimal solution of our problem. Note that OPT is a random variable since G? itself is a
random realization of G. We also let opt = E[|OPT|] be the expected size of this optimal solution.
Moreover, for any vertex v ∈ V , we define

cv = Pr[v ∈ OPT],

which is the probability that v joins the optimal solution. This implies
∑

v∈V cv = opt. Similarly,
for any edge e = (u, v) in graph G, we let ce be the probability that this edge is covered by OPT.
That is,

c(u,v) = Pr[u ∈ OPT or v ∈ OPT].

When cvs and ces are not known in advance, we use a polynomial number of calls to a minimum
vertex cover oracle to estimate them within arbitrary accuracy. See Section 6 for more details
regarding these estimates.

3 Warm Up – Beating 2-Approximation

In this section, we start by discussing two simplified variants of our 3/2-approximate algorithm.
Both of these algorithms have the worst case approximation ratio of 2. However, their performance
varies for different instances of the problem. One of them has a better performance if a large portion
of OPT comes from vertices with smaller cv’s while the other one prefers a large portion of OPT
to be from vertices with larger cv’s. After discussing these two algorithms, we will show how, due
to their opposing nature, running the best of the two algorithms beats the 2-approximation ratio.
Finally, we explore how this observation inspires the design of our 3/2-approximation algorithm.

All the algorithms we design in this paper follow a similar framework. In all of them, we first
pick a subset of vertices P and commit to adding them to the final vertex cover. As a result, we only
need to query the edges not covered by these vertices. We denote this subgraph by H. Formally,
H = G[V \ P ] is the subgraph induced in G by V \ P . After querying H, we find a vertex cover of
its realized edges which we denote by M . Finally, we output P ∪M . Our algorithms mainly differ
in their choice of P . See Figure 1 for an illustration of our framework.
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P

H = G[V \ P ]

Commit vertices to the
final vertex cover

Query to find realization H?

Figure 1: A commit, then query approach. After committing vertices of P to the final vertex
cover, we query the subgraph of edges not covered by P which we denote by H. This is the subgraph
of G induced by V \ P . The output of our algorithm is P ∪M where M is a vertex cover of H?.

We make the following observation about our algorithm framework.

Observation 3.1. Let P ⊆ V and H = G[V \P ] be the induced subgraph on V \P . Let H? be the
realization of the edges of H and M be a vertex cover of H?. Then, P ∪M is a vertex cover of G?.

The simplest way of picking M is for it to be a minimum vertex cover of all the realized edges
of H (i.e. H?). However, sometimes, for the sake of analysis we require M to be a vertex cover of
H satisfying a certain property. In particular, we want Pr[v ∈M ] = cv. We achieve this by letting
M be a minimum vertex cover of all the realized edges of H and a hallucination of G \H. We will
explain this in more detail in the following algorithm.

The first 2-approximate algorithm. To construct the subset P , this algorithm (formally stated
as Algorithm 1) hallucinates a random realization of G and lets P be its minimum vertex cover.
Following the aforementioned framework, the next step is to find M : a vertex cover of H?. In order
to do that, the algorithm hallucinates another realization of G by including any edge e ∈ G \ H
with probability pe, independently, and including edges of H?. Finally, it finds an MVC of this
realization denoted by M , and outputs P ∪M .

Algorithm 1. A 2-approximation stochastic vertex cover algorithm

1 Let G1 be a random realization of G containing any edge e ∈ G independently w.p. pe.
2 P ← MVC(G1)
3 Let H be the subgraph induced in G by V \ P .
4 Query subgraph H and let H? be its realization.
5 Let G2 be a subgraph of G containing all the edges in H? and any edge e ∈ G \H

independently w.p. pe.
6 M ← MVC(G2)
7 Return P ∪M

We will first prove that this algorithm queries only O(n/p) edges, that is |H| = O(n/p). This
is due to the fact that, by definition, none of the edges of H are realized in G1 since otherwise, one
of its vertices should be in vertex cover P (which is a contradiction). For any subgraph with more
than n/p edges the probability of none of its edges being in G1 is at most (1 − p)n/p. Moreover
since H is an induced subgraph of G, there are at most 2n possibilities for it. By an application of
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union bound, we see that w.h.p., H has at most n/p edges. That is:

Pr[|H| ≤ n/p] ≥ 1− 2n(1− p)n/p ≥ 1− 2n

en
= 1− (2/e)n.

We state this observation below for future reference.

Observation 3.2. Let G be a random realization of G containing any edge e ∈ G independently
with probability pe, and let M be a minimum vertex cover of G. The number of edges in G not
covered by M is O(n/p).

As mentioned earlier, it is only for the sake of analysis that we do not simply let M be an
arbitrary minimum vertex cover of H?. Instead, we use M = MVC(G2) since it satisfies that
Pr[v ∈ M ] = cv. This is due to the fact that G2 and G? are drawn from the same distribution,
i.e., G2 contains any edge e independently with probability pe. Below, we state this observation
formally.

Observation 3.3. Let H be a subgraph of G and H? be its actual realization. Moreover, we define
G2 to be a subgraph of G containing all the edges in H? and any edge e ∈ G \H independently with
probability pe. If M is a minimum vertex cover of G2 it satisfies Pr[v ∈M ] = cv.

As a result of this observation and the fact that P also comes from the same distribution as
OPT, we get E[|P ∪M |] ≤ 2opt which implies that Algorithm 1 is a 2-approximation. However, we
claim that depending on the the way cv’s are distributed this algorithm may result in a better than
2 approximation ratio. First of all, observe that G1 and G2 are two independent random variables.
The only way in which G1 impacts the construction of G2 is in determining which of its edges come
from the actual realization and which ones are hallucinated. Nonetheless, G2 contains any edge e
with probability pe independently from other edges and from G1. This implies that P = MVC(G1)
and M = MVC(G2) are also two independent random variables. Therefore, any vertex v joins P
and M independently with probability cv which means

Pr[v ∈ P ∪M ] = 1− (1− cv)2 = cv(2− cv). (1)

Since cv(2−cv) ≈ 2cv for cv → 0, the worst case scenario for this algorithm is when all vertices have
very small cvs. On the other hand, if for all the vertices we have cv ≥ 0.5 then, cv(2− cv) ≤ 1.5cv
which results in an approximation ratio of 3/2 (our desired bound). Having established this, we
will next discuss another 2-approximation algorithm with an opposite nature. This algorithm has
a better performance if a large portion of the optimal solution comes from vertices with small cvs.

The second 2-approximate algorithm. This algorithm (formally stated as Algorithm 2) is not
exactly a 2-approximation. Instead, it finds a (2 + O(ε))-approximate vertex cover using O(n/εp)
queries for any ε ∈ (0, 0.1). In this algorithm, we set P = {v ∈ V : cv ≥ 0.5 − ε}. The rest of the
algorithm follows our standard framework similar to Algorithm 1.
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Algorithm 2. A (2 +O(ε))-approximation stochastic vertex cover algorithm

1 Define P = {v ∈ V : cv ≥ 0.5− ε}.
2 Let H be the subgraph induced in G by V \ P .
3 Query subgraph H and let H? be its realization.
4 Let G be a subgraph of G containing all the edges in H? and any edge e ∈ G \H

independently w.p. pe.
5 M ← MVC(G)
6 Return P ∪M

We will first discuss why the above mentioned algorithm queries only O(n/εp) edges. To put
Observation 3.2 differently, the expected number of edges in G not covered by OPT, or equivalently∑

e(1 − ce), is O(n/p). Using Markov’s inequality, this implies that the number of edges with
ce < 1−ε is upper-bounded by O(n/εp). Since both end-points of any edge e ∈ H have cv < 0.5−ε,
all these edges have ce ≤ 1− 2ε. Hence, there are at most O(n/εp) of them.

We will next prove that Algorithm 2 is a (2+O(ε))-approximation. Clearly, for any vertex v ∈ P
we have Pr[v ∈ P ∪M ] = 1. Moreover, any v /∈ P joins M with probability cv (by Observation 3.3)
which implies Pr[v ∈ P ∪M ] = cv. As a result

E[|P ∪M |] =
∑
v∈P

Pr[v ∈ P ∪M ] +
∑
v/∈P

Pr[v ∈ P ∪M ] = E[|P |] +
∑
v/∈P

cv. (2)

Let us define α to be the fraction of the optimal solution not in P . That is

α =

∑
v/∈P cv

opt
.

Since, by definition, any vertex v ∈ P satisfies cv ≥ 0.5− ε we have

E[|P |]× (0.5− ε) ≤
∑
v∈P

cv = opt−
∑
v/∈P

cv = (1− α)opt,

which gives us

E[|P |] ≤ (1− α)opt

0.5− ε
.

Combining this with (2) gives us

E[|P ∪M | = E[|P |] +
∑
v/∈P

cv ≤
(1− α)opt

0.5− ε
+ αopt = opt

1− α(0.5 + ε)

0.5− ε
= opt(2− α+O(ε)),

(3)

and implies the (2 +O(ε))-approximation ratio. Observe that this bound is tight only when α = 0.
If for an instance of the problem, a large number of vertices have cv < 0.5− ε and as a result α is
large, this algorithm achieves a better approximation ratio.

3.1 Beating 2-approximation

As discussed above, Algorithm 2 has a better performance when a large portion of OPT comes from
vertices with cv < 0.5− ε while Algorithm 1 is almost the opposite. Therefore, an idea for beating
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the 2-approximation ratio is to run the best of these two. We will prove that doing so achieves an
approximation ratio of 5/3 +O(ε). Given parameter ε ∈ (0, 0.1), let us recall the definition of α as

α =

∑
v:cv<0.5−ε cv

opt
. (4)

Moreover, let S1 and S2 be the solutions outputted by Algorithm 1 and Algorithm 2 respectively.
As an upper-bound for |S1| we have

E[|S1|] =
∑
v∈V

Pr[v ∈ S1]
(1)
=
∑
v∈V

cv(2− cv) ≤
∑

v:cv≥0.5−ε
(1.5 + ε) · cv +

∑
v:cv<0.5−ε

2 · cv

(4)
= (1.5 + ε)(1− α)opt + 2αopt = opt(1.5 + 0.5α+O(ε)).

Moreover, by (3) we have
E[|S2|] = opt(2− α+O(ε))

Therefore, the approximation ratio achieved by running the best of these two algorithms is upper-
bounded by

max
[
(2− α+O(ε)), (1.5 + 0.5α+O(ε))

]
We observe that this term is minimized for α = 1/3 which results in an approximation ratio of
5/3 +O(ε). This analysis is tight since both algorithms achieve this approximation ratio when 2/3
of OPT comes from vertices with cv = 0.5 and the rest from vertices with cv → 0.

4 The (3/2 + ε)-Approximation Algorithm

Inspired by the above algorithms, in this section, we design a 3/2-approximation algorithm. Through-
out this section, we assume that cvs are known in advance. We relax this assumption in Section 6
by directly estimating cvs to an arbitrary desirable accuracy with polynomial number of calls to a
minimum vertex cover oracle.

Similar to Algorithm 1 and Algorithm 2, this algorithm first picks a subset of vertices P and
commits to including them in the final solution and then queries the edges not covered by them,
i.e., H = G[V \ P ]. The algorithm first picks a threshold τ which may vary for different instances.
Based on this threshold and cv of the vertices it commits to including the set P = P1 ∪ P2. For
vertices whose cv ∈ [1 − τ − ε, τ ], we use the style of Algorithm 1 and only include them in P1

if they also belong to a minimum vertex cover of a hallucinated random subgraph. For the set of
vertices with cv > τ , we use the style of Algorithm 2 and include all of them in P2.

Consider a solution S for a given instance of the problem. If we claim that S is an (3/2 + ε)-
approximate solution, we need to show∑

v∈V
Pr[v ∈ S] ≤ (3/2 + ε) · opt = (3/2 + ε)

∑
v∈V

cv.

In other words, S should satisfy∑
v∈V

(
(3/2 + ε) · cv − Pr[v ∈ S]

)
≥ 0.
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Inspired by this, for any vertex v, we define the budget of this vertex as

bv = max
(

(3/2 + ε) · cv − Pr[v ∈ S], 0
)

(5)

and its cost as

σv = max
(

Pr[v ∈ S]− (3/2 + ε) · cv, 0
)

(6)

Proving that S is an 3/2-approximate solution is equivalent to showing that we can use the budget
of vertices with bv > 0, to pay the cost of the vertices with σv > 0. Formally,

Claim 4.1. Let S be a vertex cover of G?. Also, for any vertex v ∈ V , consider bv and σv defined
respectively in (5) and (6). If S satisfies∑

v∈V
bv −

∑
v∈V

σv ≥ 0,

then E[|S|] ≤ (3/2 + ε)opt.

Proof. Since for any vertex v ∈ V , we have

bv − σv = max
(

(1.5 + ε) · cv − Pr[v ∈ S], 0
)
−max

(
Pr[v ∈ S]− (1.5 + ε) · cv, 0

)
= (1.5 + ε) · cv − Pr[v ∈ S],

We get ∑
v∈V

(bv − σv) =
∑
v∈V

(
(1.5 + ε) · cv − Pr[v ∈ S]

)
=
∑
v∈V

(1.5 + ε) · cv −
∑
v∈V

Pr[v ∈ S]

= (1.5 + ε)opt− E[|S|].

Therefore, inequality
∑

v∈V (bv − σv) ≥ 0 in the statement of this claim also implies

(1.5 + ε)opt− E[|S|] ≥ 0,

and as a result we have E[|S|] ≤ (1.5 + ε)opt, completing the proof of this claim.

We observe that if S is found by Algorithm 1, then vertices with cv < (0.5− ε) have a positive
cost. On the other hand, if S is found by Algorithm 2, all these vertices have a positive budget.
Based on this observation, we want a threshold τ such that:

• If Algorithm 1 is run on {v ∈ V : cv ∈ [1 − τ − ε, τ ]}, then we can pay the cost of vertices
with cv < (0.5− ε) in this set using the budget of the ones with cv > (0.5− ε).

• If Algorithm 2 is run on the rest of the vertices, we can use the budget of the vertices with
cv < 1− τ − ε to pay the cost of the vertices with cv > τ .

We claim that setting τ to be the smallest number in [0.5, 1] satisfying∑
v:cv>τ

cv ≤
∑

v:cv<1−τ−ε
cv

8



gives us these properties. However, clearly, we cannot just run two separate algorithms on these two
subsets of vertices since there can potentially be a large number of edges between them. Therefore,
we need to prove that following this intuition does not force us to query a large number of edges.
We formally state our 3/2-approximate algorithm below as Algorithm 3. Later, in Section 5, we
prove that for any ε ∈ (0, 0.1) this algorithm outputs a (3/2 + ε)-approximate vertex cover using
only O(n/εp) queries.

Algorithm 3. Our 3/2-approximation algorithm.

1 Let G1 be a random realization of G containing any edge e ∈ G independently with
probability pe.

2 C ← MVC(G1).
3 Let τ be the smallest number in [0.5, 1] such that

∑
v:cv>τ

cv ≤
∑

v:cv<1−τ−ε cv.

4 P ← {v ∈ V : cv > τ} ∪ {v ∈ V : cv ∈ [1− τ − ε, τ ] and v ∈ C}.
5 Let H be the subgraph induced in G by V \ P .
6 Query edges in H and let H? be its realization
7 return P ∪MVC(H?).

First, since this algorithm follows our standard framework, by Observation 3.1 it outputs a
vertex cover of G?. Note that in this algorithm, any vertex in set {v ∈ V : cv ∈ [1−τ−ε, τ ]} joins set
P iff it is in vertex cover C, This is similar to the way Algorithm 1 constructs P . Therefore for any
vertex v in this set, the probability of v joining P in Algorithm 3 is the same as that of Algorithm 1.
On the other hand, from the rest of the vertices, i.e., {v ∈ V : cv < 1− τ − ε or τ < cv], P includes
any vertex with τ < cv. These are the only vertices in this set with cv ≥ 0.5− ε. Therefore, this is
similar to the way Algorithm 2 constructs set P .

5 The Analysis

In the following lemma we prove that the number of edges queried by our algorithm is O(n/εp).

Lemma 5.1. Subgraph H from Algorithm 3 satisfies E[|H|] = O( nεp).

Proof. Consider an edge e = (u, v). We will first show that if e ∈ H, then either ce ≤ 1 − ε or it
is not covered in C. Assume w.l.o.g. that cv ≥ cu. Since e ∈ H, we know that v /∈ P and u /∈ P
which implies cv ≤ τ since otherwise v joins P . We will prove our claim by considering all possible
values of cu.

• cu ≥ 1 − τ − ε: Since we know cv ≥ cu and cv ≤ τ , in this case both cu and cv are in
[1−τ−ε, τ ]. Thus, e joins H iff both its end-points are not in C which means e is not covered
in C.

• cu < 1 − τ − ε: Since we know cv ≤ τ , this implies cv + cu ≤ 1 − ε. Moreover, since for any
edge cv + cu ≥ ce holds, we get ce ≤ 1− ε.

As a result, we have

|H| ≤ |{e : ce ≤ 1− ε}|+ |{e : e not covered by C}|.
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Observation 3.2, states that the number of edges not covered by an MVC of a random realization
of G is O(n/p). This directly implies

E[|{e : e not covered by C}|] = O(n/p).

Since OPT itself is an MVC of a random realization of G, Observation 3.2 also implies

E|{e : e not covered by OPT}|] =
∑
e

(1− ce) = O(n/p).

Using Markov’s inequality, this gives us

E[|{e : ce ≤ 1− ε}|] = E[|{e : 1− ce > ε}|] ≤

(∑
e∈G

(1− ce)

)
/ε = O(n/εp).

Putting these inequalities together, we conclude

E[|H|] ≤ E[|{e : ce ≤ 1− ε}|+ |{e : e not covered by C}|] = O(n/εp),

completing the proof of this claim.

As we mentioned before, for the sake of analysis, we need for the vertex cover of H? to include
any vertex v with probability cv. In order to achieve this, we need to make a slight change to the
algorithm. We explain the modified algorithm below.

Algorithm 4. An algorithm used only for analysis.

1 Consider subgraph H and subset of vertices P from Algorithm 3
2 Query subgroup H and let H? be its realization.
3 Let H̄ ← G \H
4 Let H̄ be a random realization of H̄ containing each of its edges e independently with

probability pe.
5 M ← MVC(H? ∪ H̄).
6 return M ∪ P .

In the rest of the paper we will prove our desired approximation ratio for Algorithm 4 instead
of Algorithm 3. However, for that to work we first need the following observation.

Observation 5.2. Let S1 and S2 be respectively the outputs of Algorithm 3 and Algorithm 4. We
have E[|S1|] ≤ E[|S2|].

Proof. Note that both S1 and S2 contain P and a vertex cover of H?. Since the vertex cover of
H? in Algorithm 3 is the smallest one, the output of this algorithm is not larger than that of
Algorithm 4.

We are now ready to prove the main lemma about the size of the solution outputted by Algo-
rithm 4. The lemma is sated below.

Lemma 5.3. Let S be the the output of Algorithm 4. We have

E[|S|] ≤ (3/2 + ε)opt.

10



Proof. By Claim 4.1, to prove this lemma it suffices to show∑
v∈V

bv −
∑
v∈V

σv ≥ 0

where bv and σv, the budget and cost of vertex v are respectively defined in (5) and (6). To prove
this, we divide the vertices of our graph V to three disjoint subsets V1, V2, and V3 and prove this
equation for them separately. That is, for any Vi we prove∑

v∈Vi

bv −
∑
v∈Vi

σv ≥ 0. (7)

We define these subsets as follows (visialized in Figure 2):

• V1 = {v : 0.5− ε ≤ cv ≤ 0.5}.

• V2 = {v : cv > τ} ∪ {v : cv < 1− τ − ε}.

• V3 = {v : 0.5 < cv ≤ τ} ∪ {v : 1− τ − ε ≤ cv < 0.5− ε}.

We will prove Equation (7) for subsets V1, V2 and V3 respectively in Lemma 5.5, Lemma 5.6, and
Lemma 5.7.

Since these three subsets are disjoint and satisfy V = V1 ∪ V2 ∪ V3, we get

∑
v∈V

bv −
∑
v∈V

σv =
∑
i

∑
v∈Vi

bv −
∑
v∈Vi

σv

 ≥ 0 (8)

completing the proof of this lemma.

0 1− τ − ε 0.5− ε 0.5 τ 1

Lemma 5.5

Lemma 5.7

Lemma 5.6

Figure 2: Managing vertex costs for different values of cv. For set V1 (the green area),
we prove in Lemma 5.5 that the vertices in this set have no cost. For set V2 (the red area), in
Lemma 5.6 we use the budget of the vertices in {v : cv < 1− τ − ε} to pay the cost of the vertices
in {v : cv > τ}. Finally, for set V3 (the blue area), in Lemma 5.7 we use the budget of vertices in
{v : 0.5 < cv ≤ τ} to pay the cost of the vertices in {v : 1− τ − ε ≤ cv < 0.5− ε}.

Before stating the three aforementioned lemmas formally, we need the following claim which we
will use to prove them.

11



Claim 5.4. Consider τ defined in Algorithm 3, and let S be the output of Algorithm 4. For any
vertex v with cv ∈ [1− τ − ε, τ ], we have Pr[v ∈ S] = cv(2− cv).

Proof. Consider M and P from Algorithm 4. Recall that the algorithm outputs M ∪ P . That is
S = M ∪ P . Set P itself is defined in Algorithm 3 as

P = {v ∈ V : cv > τ} ∪ {v ∈ V : cv ∈ [1− τ − ε, τ ] and v ∈ C},

where C is a minimum vertex cover of a random realization of G. This implies that for any v with
cv ∈ [1− τ − ε, τ ], we have

Pr[v ∈ S] = Pr[v ∈ C ∪M ].

Since M and C are minimum vertex covers of two independent realizations of G, we get

Pr[v ∈M ] = Pr[v ∈ C ∪M ] = Pr[v ∈ C] + Pr[v ∈M ]− Pr[v ∈M ]× Pr[v ∈ C] = 2cv − c2
v.

This concludes the proof of this claim.

Lemma 5.5. Consider τ from Algorithm 3, and define V1 = {v : 0.5− ε ≤ cv ≤ 0.5}. We have∑
v∈V1

bv −
∑
v∈V1

σv ≥ 0,

where bv and σv, the budget and cost of vertex v are defined in (5) and (6) with respect to the
solution S outputted by Algorithm 4.

Proof. By Claim 5.4, for any vertex v ∈ V1, we have Pr[v ∈ S] = cv(2 − cv). Combining this with
the fact that any vertex in V1 satisfies cv > 0.5− ε, we get

Pr[v ∈ S] ≤ cv(2− 0.5 + ε) = cv(1.5 + ε).

This means that for any vertex v ∈ V1, we have bv = (1.5 + ε)cv − Pr[v ∈ S] ≥ 0 and σv = 0, and
as a result ∑

v∈V1

bv −
∑
v∈V1

σv ≥ 0,

completing the proof of this claim.

Lemma 5.6. Consider τ defined in Algorithm 3, and let V2 = {v : cv > τ} ∪ {v : cv < 1− τ − ε}.
This set satisfies ∑

v∈V2

bv −
∑
v∈V2

σv ≥ 0,

where bv and σv, the budget and cost of vertex v are defined in (5) and (6) with respect to the
solution S outputted by Algorithm 4.

Proof. Let us start by defining

A = {v : cv > τ} and B = {v : cv < 1− τ − ε},

where V2 = A ∪ B. Consider sets P and M from Algorithm 4 which form its output. That is
S = M ∪ P . Note that by definition of P we have A ⊂ P and as a result Pr[v ∈ S] = 1 for any
v ∈ A. Therefore,

bv − σv
(6),(5)

= max
(

(1.5 + ε)cv −Pr[v ∈ S], 0
)
−max

(
Pr[v ∈ S]− (1.5 + ε)cv, 0

)
= (1.5 + ε)cv − 1.

12



Moreover, we have B∩P = ∅ and by Observation 3.3, for any u ∈ B we have Pr[u ∈M ] = cu. This
implies Pr[u ∈ S] = cu and as a result the budget of vertex u is

bu = max
(

(1.5 + ε)cu − Pr[v ∈ P ∪M ], 0
)

= (1.5 + ε)cu − cu = cu(0.5 + ε),

and σu = 0. Putting these together gives us∑
v∈V2

(bv − σv) =
∑
v∈A

(bv − σv) +
∑
u∈B

(bu − σu) =
∑
v∈A

(
(1.5 + ε)cv − 1

)
+
∑
u∈B

(0.5 + ε)cu

= (1.5 + ε)
∑
v∈A

cv − |A|+ (0.5 + ε)
∑
u∈B

cu.

Note that by definition of τ , we have
∑

v∈A cv ≤
∑

u∈B cu. Thus, we can write

∑
v∈V2

(bv − σv) = (1.5 + ε)
∑
v∈A

cv − |A|+ (0.5 + ε)
∑
u∈B

cu

≥ (2 + 2ε)
∑
v∈A

cv − |A|.

Since for any vertex v ∈ A we have cv > τ ≥ 0.5, this implies∑
v∈V2

(bv − σv) ≥ (2 + 2ε)
∑
v∈A

cv − |A| ≥ (2 + 2ε)
∑
v∈A

0.5− |A| ≥ ε|A| ≥ 0.

This concludes the proof.

Lemma 5.7. Consider τ defined in Algorithm 3, and let

V3 = {v : 0.5 < cv ≤ τ} ∪ {v : 1− τ − ε ≤ cv < 0.5− ε},

This set satisfies ∑
v∈V3

bv −
∑
v∈V3

σv ≥ 0,

where bv and σv, the budget and cost of vertex v are defined in (5) and (6) with respect to the
solution S outputted by Algorithm 4.

Due to having a detailed and lengthy proof, we designate Section 5.1 to the proof of this lemma.

Below, we restate our main theorem and give a formal proof for the approximation ratio and the
number of queries that our algorithm requires. Later in Section 6, we explain how we can get the
same bounds using only (n log n/ε2) calls to the MVC oracle.

Theorem 1.1 (restated). For any ε ∈ (0, 0.1), Algorithm 3 finds a vertex cover of G? with the
expected size of at most (1.5 + ε)opt by querying O(n/εp) total edges.

Proof. Due to Lemma 5.1, we know that Algorithm 3 only requires O(n/εp) queries. Let S be
the solution outputted by Algorithm 3. By Observation 3.1, S is a vertex cover of G? and by
Observation 5.2 its expected size is upper-bounded by the output of Algorithm 4. In Lemma 5.3,
we prove that the output of Algorithm 4 is upper-bounded by (1.5 + ε)opt. Putting these together
implies that S is a vertex cover of G? with the expected size of at most (1.5 + ε)opt.

13



5.1 Proof of Lemma 5.7

Let us define subsets

A = {v : 0.5 < cv ≤ τ} and B = {v : 1− τ − ε ≤ cv < 0.5− ε},

where V3 = A ∪B. By Claim 5.4, for any vertex v ∈ V3, we have Pr[v ∈ S] = cv(2− cv), thus

Pr[v ∈ S]− (1.5 + ε)cv = cv(2− cv)− (1.5 + ε)cv = (0.5− ε)cv − c2
v.

Observe that for vertices in v ∈ A this term is non-positive, therefore this vertex has a zero cost
and a budget of

bv = c2
v − (0.5− ε) · cv.

On the other hand since (0.5 − ε)cu − c2
u > 0 holds for any vertex u ∈ B, this vertex has a zero

budget and a cost of
σu = (0.5− ε) · cu − c2

u

Now, we will show that we can use the budget of vertices in A to pay the cost of the vertices in
B. Proving that this is possible heavily relies on the way threshold τ is chosen.

To complete the proof of this lemma, we need the two following claims.

Claim 5.8. For any pair of vertices u ∈ B and v ∈ A, if cu ≥ 1− cv − ε, then

bv − σu ≥ (σu/cu)(cv − cu).

Proof. We start by proving σu/cu ≤ bv/cv as follows.

σu/cu =
(0.5− ε) · cu − c2

u

cu
= 0.5− ε− cu

≤ 0.5− ε− (1− cv − ε) = cv − 0.5 =
c2
v − (0.5− ε) · cv

cv
− ε

≤ bv/cv − ε
< bv/cv. (9)

Thus, we can write

bv − σu = cv(bv/cv)− cu(σu/cu)
(9)

≥ (σu/cu)(cv − cu),

completing the proof of this claim.

Claim 5.9. Let us sort the vertices in B in the increasing order of their cu with ui denoting
the i-th vertex. We claim that for any i ∈ |B| it is possible to pay the cost of the vertices in
Bi = {u ∈ B : cu ≤ cui} with the budget of vertices in Ai = {v ∈ A : cv ≥ 1− cui − ε}. That is∑

v∈Ai

bv −
∑
u∈Bi

σu ≥ 0. (10)

Proof. In order to prove this claim, we prove the following stronger inequality via induction.

∑
v∈Ai

bv −
∑
u∈Bi

σu ≥ (σui/cui)

∑
v∈Ai

cv −
∑
u∈Bi

cu

. (11)
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Doing so proves this claim since by definition of τ , for any i ∈ |B| we have∑
v∈Ai

cv −
∑
u∈Bi

cu ≥ 0. (12)

As the base case of i = 1, we need to prove that Equation 10 holds for A1 = {v ∈ A : cv ≥ 1−cu1−ε}
and B1 = {u1}. That is

∑
v∈A1

bv − σu1 ≥ (σu1/cu1)

∑
v∈A1

cv − cu1

. (13)

Since for any v ∈ A1, we have cv ≥ 1− cu1 − ε, this inequality follows from Claim 5.8 proving
our base case. Now, as the induction step, we will prove Equation (10) for i = j assuming that it
holds for i = j − 1. We can write∑

v∈Aj

bv −
∑
u∈Bj

σu =
∑

v∈Aj−1

bv +
∑

v∈Aj\Aj−1

bv −
∑

u∈Bj−1

σu − σuj

≥
(
σuj−1/cuj−1

) ∑
v∈Aj−1

cv −
∑

u∈Bj−1

cu

+

 ∑
v∈Bj\Bj−1

bv − σuj


≥
(
σuj/cuj

) ∑
v∈Aj−1

cv −
∑

u∈Bj−1

cu

+

 ∑
v∈Bj\Bj−1

bv − σuj

,
where the second inequality is due to the induction hypothesis and the last one is due to

σuj−1/cuj−1 ≥ σuj/cuj .

To prove the induction step, it suffices to show that the following holds.

∑
v∈Bj\Bj−1

bv − σuj ≥
(
σuj/cuj

) ∑
v∈Bj\Bj−1

cv − cuj

.
Note that this is a general version of Equation (13) above. Observe that by definition, for any
u ∈ Bj \Bj−1 we have cv ≥ 1− cuj − ε. Thus, by Claim 5.8, we get

∑
v∈Bj\Bj−1

bv − σuj ≥
∑

v∈Bj\Bj−1

(σuj/cuj )(cv − cuj ) ≥
(
σuj/cuj

) ∑
v∈Bj\Bj−1

cv − cuj

.
This concludes the induction step and the proof of this lemma.

Observe that proving Claim 5.9 also completes the proof of Lemma 5.7. Let x = |B|. Correctness
of Claim 5.9 for i = x implies ∑

v∈A
bv −

∑
u∈B

σu ≥ 0.

Since vertices in A have a zero cost, this also implies∑
v∈V3

(bv − σu) ≥ 0,

completing the proof of Lemma 5.7.
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6 Working with Approximate cvs

In this section, we discuss how we can implement Algorithm 3 with only polynomial calls to the
MVC oracle. We also discuss in Remark 6.3 that this oracle need not be exact. Note that in
Algorithm 3, we need to know cv of all the vertices (i.e., the probability that a vertex belongs to
the minimum vertex cover). We can compute them exactly if we do not limit the number of calls
to the oracle. However, we claim that it is possible to use an estimated value of these parameters
in Algorithm 3 and still get the same bounds. In the algorithm below we first find an estimate for
any cv and then feed them to Algorithm 3.

Algorithm 5. Oracle-efficient 3/2-approximation algorithm

1 Draw t = n2

8ε2
ln(2n/δ) realizations of G and denote them by G1, . . . ,Gt.

2 For any i ∈ [t], let Ci = MVC(G1).
3 For any vertex v ∈ V , let c̄v be be the fraction of Ci’s that contain v.
4 Run Algorithm 3 with parameters c̄vs and ε′ = ε/2 (instead of cvs and ε).

We first show that Algorithm 5 returns c̄vs that are within ε/2n of the respective cvs, with high
probability.

Claim 6.1. Setting δ = 1/n in Algorithm 5, we get |cv − c̄v| ≤ ε/2n for all v ∈ V with probability
at least 1− 1/n.

Proof. This proof follows from a simple application of the Hoeffding bound. Let α = ε/2n. Let
Xv
i = 1(v ∈ Ci) be an indicator variable for whether v ∈ Ci. Note that Xv

i is a Bernoulli random
variable with E[Xv

i ] = cv for any i and v ∈ V . Furthermore, c̄v = 1
t

∑t
i=1X

v
i . Using Hoeffding and

union bound, we have

Pr[∃v ∈ V s.t. |c̄v − cv| ≥ α] ≤ n · Pr

[∣∣∣∣∣1t
t∑
i=1

Xv
i − cv

∣∣∣∣∣ ≥ α
]
≤ 2n exp

(
−2tα2

)
≤ δ = 1/n,

where the last inequality is by the choice of t = 1
2α2 ln

(
2n
δ

)
.

Next, we show that Algorithm 5 returns a vertex cover of G? which w.h.p. has expected size of
at most (3/2 + ε)opt +O(ε) and queries only O(n/pε) edges.

Theorem 6.2. For any ε ∈ (0, 0.1), Algorithm 5 finds a vertex cover of G? with the expected
size of at most (3/2 + ε)opt + O(ε) by querying O(n/εp) total edges. Moreover, this algorithm is
oracle-efficient.

Proof sketch. We will first give an upper-bound on the number of queries (edges in H for Algo-
rithm 3). Let α = ε/2n. Following the proof of Lemma 5.1, it is easy to verify that if e = (u, v) ∈ H,
then either c̄v + c̄u ≤ 1− ε′ or it is not covered in C. By Claim 6.1, w.h.p., we have |cv − c̄v| ≤ α.
Therefore, w.h.p., either e satisfies cv + cu ≤ 1− ε′ + 2α ≤ 1− ε or it is not covered in C. Similar
to the proof of Lemma 5.1, this gives us |H| = O(n/εp).

We next bound the approximation ratio of Algorithm 5. Let τ be the parameter in Algorithm 3
which is run with parameters c̄vs and ε′ = ε/2 (instead of cvs and ε). That is τ is the smallest
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number in [0.5, 1] such that
∑

v:c̄v>τ
c̄v ≤

∑
v:c̄v<1−τ−ε′ c̄v. We will partition the vertices to disjoint

subsets based on the value of τ .

• A = {v ∈ V : c̄v > τ}.

• B = {v ∈ V : c̄v ∈ [1− τ − ε, τ ]}.

• C = {v ∈ V : c̄v < 1− τ − ε}.

Let S be the vertex cover outputted by this algorithm. By Algorithm 3, vertices in set A join S
with probability one, and vertices in set C join this vertex cover with probability cv (the probability
of v joining opt). Moreover, following the proof of Claim 5.4 we can verify that vertices in B join
S with probability 2cv − c2

v. That is

E[|S|] =
∑
v∈A

1 +
∑
v∈B

(cv − c2
v) +

∑
v∈C

cv.

To prove our desired approximation ratio we will show

E[|S|] ≤ (3/2 + ε)opt +O(ε).

Recall Equation 8 which we use in proving Lemma 5.3:∑
v∈V

bv −
∑
v∈V

σv ≥ 0.

Following our proof steps, one can verify that if Algorithm 3 is run with parameters c̄v instead of
cvs, this equation implies∑

v∈A
1 +

∑
v∈B

(2c̄v − c̄2
v) +

∑
v∈C

c̄v − (3/2 + ε)opt ≤ 0. (14)

Since due to Claim 6.1, for all v ∈ V , we have |cv − c̄v| ≤ ε/2n with high probability, the following
equation also holds with high probability:

∑
v∈A

1 +
∑
v∈B

(2c̄v − c̄2
v) +

∑
v∈C

c̄v − E[|S|] =
∑
v∈B

(2c̄v − c̄2
v − 2cv + c2

v) +
∑
v∈C

(cv − c̄v) ≥ −2n(ε/2n) ≥ −ε.

(15)

Combining this with (14) gives us E[|S|]− ε− (3/2 + ε)opt ≤ 0 and subsequently

E[|S|] ≤ (3/2 + ε)opt +O(ε).

This completes the proof sketch.

Remark 6.3. We remark that the MVC oracle used in the above discussion need not be exact.
Our analysis simply gets an approximation factor relative to the total sum of cvs, which is relative
to the approximation power of the oracle’s. Thus, our results can be seen as obtaining a 3/2α + ε
approximation factor given access to an α-approximate oracle. One benefit of this observation is that
it can directly tap into efficient heuristics, such as highly optimized integer programming tools, that
are known to work well in practice and achieve highly optimal results, even though provably-efficient
approximation algorithms of similar quality does not exist in theory.
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7 Tightness Under Mild Correlation

In the previous sections, we exhibited an algorithm that gives a (3/2+ε)-approximation for stochas-
tic graphs that have independently realized edges. Indeed, the analysis given in the previous section
continues to hold for graphs with a small number of correlated edges. In this section, we show that
for such graphs, a (3/2 + ε) approximation factor is tight. That is, we exhibit a stochastic graph
with just a few correlated edges and show that any non-adaptive algorithm must have an approx-
imation factor of (3/2 − ε) on this graph with high probability. Our arguments are based on the
arguments given in Section 6 of [AKL16].

Definition 7.1 (Mildly Correlated Graph). We say that an stochastic graph G = (V,E) is mildly
correlated if the edge set E can be partitioned into sets E1 and E2 such that the following are
satisfied:

• The edges in E1 are realized independently from each other: for any S1 ⊆ E1

Pr
⋂
e∈S1

{e ∈ Gr} =
∏
e∈S1

Pr[e ∈ Gr]

• The edges in E1 are realized independently from those in E2: for any S1 ⊆ E1 and S2 ⊆ E2,

Pr

 ⋂
e∈S1

{e ∈ Gr}
∣∣∣∣ ⋂
e∈S2

{e ∈ Gr}

 =
∏
e∈S1

Pr[e ∈ Gr]

• E2 is small: |E2| = O(n).

Notably, in our definition of a mildly correlated graph, the realizations of edges in E2 may depend
on those in E1: we make no assumptions on probabilities of the form

Pr

 ⋂
e∈S2

{e ∈ Gr}
∣∣∣∣ ⋂
e∈S1

{e ∈ Gr}

,
where S1 ⊆ E1 and S2 ⊆ E2.

Remark 7.2. Given any mildly correlated stochastic graph G, and a parameter ε ∈ (0, 0.1), Algo-
rithm 3, outputs a vertex cover of G? with expected size of at most (3/2 + ε) using only O(n/εp)
queries without knowledge of the edge partitions E1 and E2.

Proof. To see this, we first show that Algorithm 4 queries at most O(n/εp) edges. Looking more
closely at our argument in Lemma 5.1, our only use of the independence assumption comes from
our use of Observation 3.2. Thus, to show that Lemma 5.1 holds in the case of mildly correlated
graphs, it suffices to prove that Observation 3.2 holds in this setting as well. Formally, we show
that if G is a random realization of a mildly correlated stochastic graph G, then the number of
edges in G not covered by M is at most O(n/p). As before, let H = G[V \M ] be the subgraph
induced by the complement of the vertex cover M . Again, we must have that none of the edges of
H are realized in G else one of the vertices of H must lie in the vertex cover M . Letting E1 and E2

be the subsets of the graph’s edge set E as guaranteed by definition 7.1, we define H1 = H ∩G[E1]
and H2 = H ∩G[E2]. Notice that as |E2| = O(n), we find that

Pr[|H| ≥ O(n/p)] = P [|H1|+ |H2| ≥ O(n/p)] ≤ Pr[|H1| ≥ O(n/p)] ≤ (2/e)n
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where in the final inequality, we invoke Observation 3.2 on the stochastic graph G[E1], which does
have independently realized edges. Thus, |H| does remain small even in this setting, and Lemma
5.1 can be applied directly to see that we only sample O(n/εp) edges.

Next, we show that the approximation guarantee continues to hold in this setting. The re-
maining analysis presented in Section 5 follows with just a simple change to Algorithm 4: when
we sample realizations H̄ from H̄ in line 4 of the algorithm, we should do so conditioned on the
realization H? that we obtain in line 2. We note that our algorithm (Algorithm 3) does not actu-
ally require such capability to function, and we only use Algorithm 4 for the purposes of analysis.
Once we make this change, we again have that the vertex cover M given in Algorithm 4 is drawn
independently from the same distribution as the true minimum vertex cover, which is all that is
required for the remaining analysis to follow. Thus, Algorithm 3 gives the desired approximation
ratio of 1.5 + ε while only sampling O(n/εp) edges.

Figure 3: A graphical depiction of G. The middle 2n vertices (with edges depicted by the gray
rectangle) is given by the Ruzsa-Szemerédi graph, and its edges are realized independently. We then
select M∗ (boxed) uniformly at random from the induced matchings, and realize the corresponding
exterior edges for all vertices not in M∗. With high probability, any algorithm that non-adaptively
queries only O(n) edges must cover almost every edge of M∗ (as depicted on the left, with vertices
in the cover shown in black), but only the few edges in M∗ that are actually realized must be
covered (as depicted on the right).

Theorem 1.2 (restated). There exists a mildly correlated stochastic graph G for which every
non-adaptive algorithm must have an approximation ratio of at least 1.5−ε with probability 1−o(1).

Proof. We define G as follows. First, let an (r, t)-Ruzsa-Szemerédi graph be a bipartite graph on
2n vertices whose edge set may be partitioned into t induced matchings of size r. Such graphs exist
for r = n

2 − ε1 and t = nΩ(1/ log logn) [GKK12]. We define the base graph of G by starting with such
a graph, and then augmenting it by adding one additional vertex and exterior edge for each of the
2n vertices in the Rusza-Szemerèdi graph. We then realize all of the edges of the Rusza-Szemerèdi
graph independently with pe = ε2 for all edges e in the edge set. Next, we select one of these
induced matchings M1,M2, . . . ,Mt at random, and call it M∗. For each of the O(n) vertices of the
Rusza-Szemerèdi graph that do not participate in M∗, we realize its respective exterior edge. It is
easy to see that this stochastic graph is mildly correlated, following Definition 7.1 with E1 denoting
the edges of the Ruzsa-Szemerédi graph and E2 denoting the exterior edges.

To see that every non-adaptive algorithm must have an approximation ratio of at least 1.5− ε,
observe that as the algorithm may query at most O(n) = o(r · t) edges, it follows from a simple
counting argument that the set of edges that the algorithm queries must contain o(r) edges for all
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but an o(1) fraction of the matchings M1, . . . ,Mt. Thus, with probability 1 − o(1), the algorithm
must cover r − o(r) edges in M∗, and must further cover every exterior edge corresponding to
vertices not in M∗. As the edges in M∗ and the exterior edges do not coincide, it follows that with
probability 1− o(1), the size of the vertex cover returned by any non-adapative algorithm must be
equal to

2(n− r)︸ ︷︷ ︸
# exterior edges that must be covered

+ r − o(r)︸ ︷︷ ︸
# edges in M∗ that must be covered

= 1.5n+ ε1 − o(n)

However, observe that by the Chernoff bound, the probability that more than 2nε2 edges in M∗

are realized is upper bounded by o(1). Thus, with probability 1 − o(1), the size of the minimum
vertex cover of G is given by

2(n− r)︸ ︷︷ ︸
# exterior edges that must be covered

+ 2nε2︸︷︷︸
# edges in M∗ that must be covered

= n(1 + 2ε2) + ε1

It thus follows by the union bound that with probability 1− o(1) any such algorithm must have an
approximation ratio of

1.5n+ ε1 − o(n)

n(1 + 2ε2) + ε1
→ 1.5

1 + 2ε2
≥ 1.5− ε

for sufficiently large n, and appropriate choice of ε2 (note here that this parameter does not depend
on n, only ε).
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