Check for
Updates

Locally Consistent Decomposition of Strings with Applications to
Edit Distance Sketching

Sudatta Bhattacharya*
sudatta@iuuk.mff.cuni.cz
Computer Science Institute of Charles University
Prague, Czech Republic

ABSTRACT

In this paper we provide a new locally consistent decomposition
of strings. Each string x is decomposed into blocks that can be
described by grammars of size 5(k) (using some amount of ran-
domness). If we take two strings x and y of edit distance at most k
then their block decomposition uses the same number of grammars
and the i-th grammar of x is the same as the i-th grammar of y
except for at most k indexes i. The edit distance of x and y equals
to the sum of edit distances of pairs of blocks where x and y differ.
Our decomposition can be used to design a sketch of size O(k?)
for edit distance, and also a rolling sketch for edit distance of size
O(k?). The rolling sketch allows to update the sketched string by
appending a symbol or removing a symbol from the beginning of
the string.

CCS CONCEPTS

« Theory of computation — Sketching and sampling.

KEYWORDS

Edit distance, sketching, string decomposition, locally consistent
parsing

ACM Reference Format:

Sudatta Bhattacharya and Michal Koucky. 2023. Locally Consistent De-
composition of Strings with Applications to Edit Distance Sketching. In
Proceedings of the 55th Annual ACM Symposium on Theory of Computing
(STOC °23), June 20-23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3564246.3585239

1 INTRODUCTION

Edit distance is a measure of similarity of two strings. It measures
how many symbols one has to insert, delete or substitute in a string
x to get a string y. The measure has many applications from text
processing to bioinformatics. The edit distance ED(x,y) of two
strings x and y can be computed in time O(n?) by a classic dynamic

“Partially supported by the Grant Agency of the Czech Republic under the grant
agreement no. 19-27871X.

T Partially supported by the Grant Agency of the Czech Republic under the grant
agreement no. 19-27871X. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sktodowska-Curie
grant agreement No. 823748 (H2020-MSCA-RISE project CoSP).

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

STOC °23, June 20-23, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585239

219

Michal Koucky "
koucky@iuuk.mff.cuni.cz
Computer Science Institute of Charles University
Prague, Czech Republic

programming algorithm [29]. Save for poly-log improvements in the
running time [15, 25], the best known running time for edit distance
computation is O(n+k?) [22], where k = ED(x, y). Assuming Strong
Exponential Time Hypothesis (SETH) this running time cannot be
substantially improved [2]. The conditional lower bound does not
exclude some approximation algorithms, though, and there was a
recent progress on computing edit distance in almost-linear time
to within some constant factor approximation [1, 7, 8, 20].
Another problem for edit distance that saw a major progress in
recent years is sketching. In sketching we want to map a string
x to a short sketch skgl?c (x) so that from sketches skﬁ?{ (x) and

skﬁ?{(y) of two strings x and y we can compute their edit dis-
tance, either exactly or approximately. Apriori it is not even ob-
vious that short sketches for edit distance exist. In a surprising
construction, Belazzougui and Zhang [4] gave an exact edit dis-
tance sketch of size O(k® log5 n) bits. The sketch size was then
improved to O(k* logz(g) log n) bits by Jin, Nelson and Wu [16],
where the ED(x, y) was computed exactly from the sketches with
probability at least 1 — §, if ED(x, y) < k. The current best sketch
is of size O(k? log® n) bits and was given by Kociumaka, Porat and
Starikovskaya [19]. [16] gives a lower bound Q(k) on the size of a
sketch for exact edit distance.

The major problem in edit distance computation as well as in
sketching is how to align the matching parts of two strings x and
y. Finding an optimal alignment of two strings is the crux in the
computation of edit distance and its sketching. In sketching finding
a good alignment is even more challenging as we do not have both
strings in our hands simultaneously to look for the matching. To the
best of our knowledge, to resolve this issue all edit distance sketches
use CGK random walk on strings [9] which allows to embed the edit
distance metrics into Hamming distance metrics with distortion
O(k). The walk implicitly fixes some reasonably good matching
between the two strings. Going from the CGK random walk to a
sketch is non-trivial undertaking and all three sketch results rely
on sophisticated machinery to achieve it.

In this paper we provide a new technique to align two strings x
and y in oblivious manner. In nutshell, we provide a decomposition
procedure that breaks x and y into the same number of “short”
blocks so that at most k pairs of blocks in the decomposition of
x and y differ, and all other pairs of blocks are matching in an
optimal alignment. So the edit distance of x and y is the sum of edit
distances of the differing blocks. To be more specific our blocks
are not short in their length but they are short in the sense that
each of them can be described by a context-free grammar of size
O(k). Our decomposition algorithm constructs the grammars. Our
decomposition is based on locally consistent parsing of strings a

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3564246.3585239
https://doi.org/10.1145/3564246.3585239
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585239&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20-23, 2023, Orlando, FL, USA

technique similar to the one used in [3, 6, 17, 28] and hash based
partitioning similar to [30]. Our main technical result is:

THEOREM 1.1 (STRING DECOMPOSITION). There is an algorithm
running in time O(nk) that for each string x of length at most n
produces grammars G, ..., GY¥ such that with probability at least
1-0(1/+/n),x = eval(GY) - - - eval(Gy) and each of the grammars is
of size O(k). Furthermore, for any two strings x and y of edit distance
at most k with grammars G7, ...,G} and Gil/, el Gg, resp., that are
produced by the algorithm using the same randomness, the following
is true simultaneously with probability at least 4/5:

(1) s=5s’,

(2 Gy

and

(3) ED(x,y) = ¥,; ED(eval(GY), eval(G})).

y . L. .
G; ,foralli € {1,...,s} except for at most k indices i,

Here, for a grammar G, eval(G) denotes its evaluation. Our de-
composition can be used immediately to give an embedding of edit
distance into Hamming distance with distortion O(k). It also readily
yields a sketch for exact edit distance of size O(k?):

THEOREM 1.2 (SKETCH FOR EDIT DISTANCE). There is a randomized
, , ED . .
sketching algorithm Skn,k that on an input string x of length at most

n produces a sketch skg?C (x) of size O(k?) in time O(nk), and a

comparison algorithm running in time O(k?) such that given two
sketches skﬁ?c (x) and skii(y) for two strings x and y of length at
most n obtained using the same randomness of the sketching algorithm
outputs with probability at least 1 — 1/n (over the randomness of the
sketching and comparison algorithms) the edit distance of x and y if
it is less than k and oo otherwise.

Furthermore, we can also provide a rolling sketch, a sketch in
which we can update the stored string by appending a symbol or
removing its first symbol.

THEOREM 1.3 (ROLLING SKETCH FOR EDIT DISTANCE). There are al-
gorithms Append(sky, a), Remove(skgx, a), and Compare (skx, sky)
such that for integer parameters k < m:

(1) Given a sketch sky representing a string x and a symbol a,
Append(sky, a) outputs a sketch skxq for the string xa in time
O(k?).

(2) Given a sketch skqy representing a string ax for a symbol a,
Remove(skqx, a) outputs a sketch sky for the string x in time
O(k?).

(3) Given two sketches sky and sky representing strings x and
y obtained from the same random sketch for empty string
using two sequences of at most m operations Append and
Remove, Compare(sky, sky) calculates the edit distance of
x and y if it is less than k, and outputs oo otherwise. The
algorithm Compare(sky, sky) runs in time 5(k2).

All the sketches are of size O(k?). The probability that any of the
algorithms fails or produces incorrect output is at most 1/m over
the initial randomness of the sketch for empty string and internal
randomness of the algorithms.

We remark that we did not attempt to optimize the running time
of either of our algorithms, or poly-log factors in the sketch sizes,
and we believe that both parameters can be readily improved by

220

Sudatta Bhattacharya and Michal Koucky

usual amortization techniques of processing symbols in batches
of size O(k). We believe that building the sketch in the first theo-
rem can be done in time O(n) using fast multi-point polynomial
evaluation for O(k)-wise independent hash functions, the update
time in the last theorem can be improved to 5(1) by buffering O(k)
symbols that shall be inserted or removed without affecting the
other parameters of the algorithm.

Another distinguishing feature of our decomposition procedure
compared to the technique of CGK random walks is its paralleliz-
ability. CGK random walk seems inherently sequential whereas our
decomposition procedure can be easily parallelized. We believe that
our decomposition will allow for further applications beyond our
simple sketches.

1.1 Related Work

The problem of embedding edit distance to other distance measures,
like Hamming distance, 1, etc. has been studied extensively. In [9],
the authors have given a randomized embedding from edit distance
to Hamming distance, where any string x € {0, 1}" can be mapped
to a string f(x) € {0,1}3", given a random string r € {0, 1}101%2 n
such that, ED(x,y)/2 < Ham(f(x), f(y)) < O(ED(x,y)?) with
probability at least 2/3. Batu, Ergun and Sahinalp [3] have in-
troduced a dimensionality reduction technique, where any string
x of length n can be mapped to a string f(x) of length at most
n/r, for any parameter r, with a distortion of 5(r). They used the
locally consistent parsing technique for their embedding. Ostro-
vsky and Rabani [26] gave an embedding from edit distance to
1 distance with a distortion of O(+/lognloglogn). Jowhari [17]
also gave a randomized embedding from edit distance to #; dis-
tance with a distortion of O(log nlog* n). He used the embedding
given by Cormode and Muthukrishnan [12] who showed that any
string x of length n can be mapped to a vector f(x) of length
m = O(2"1°8m) such that for any pair of strings x, y of length n
each, ED(x,y)/2 < |If (x) - f(y)ll < O(lognlog™ n) - ED(x,y).
Since the size of the vector was too large, [17] used random hashing
to get his final embedding.

1.2 Our Techniques

We first provide the intuition for our technique. We would like to
break a string x into small blocks obliviously so that when a string
y is broken by the same procedure, the difference between x and y
caused by the edit operations is confined within the corresponding
blocks of x and y, and the overall decomposition is not affected
by them. For random binary strings x and y this could be done
fairly easily: look on all the (overlapping) windows of log n con-
secutive bits in each of the strings and for each window decide
at random whether to make a break at that window or not. To
make it consistent between x and y use some random hash func-
tion H : {0, l}k’g" — {0,...,D — 1} so that if the hash function
evaluates to 0 on a given window then start a next block of the
decomposition. If we chose D suitably, say D > 10k log n, then we
are unlikely to start a new block in any window which is affected
by the the at most k edit operations on x and y. In that case we
obtain the desired decomposition. Hence, decomposing random
strings x and y is easy.

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching

The issue is what to do with non-random strings. Consider for
example strings x and y that are very sparse, so they contain vn
ones sprinkled within the vast ocean of zeros. The hash function H
will see mostly windows of 0’s and occasionally a window of the
form 0710'°8(")~i=1 The decomposition will have no effect on such
strings despite the fact that the string might contain Q(+/n) bits of
entropy.

However, we can compress such sparse strings: replace stretches
of zeros by some binary encoded information about their length, and
try to break the strings again. Still, this will fail if in our example the
stretches of zeros are replaced by stretches of some repeated pattern
such as (01)*. So we need slightly more general compression which
will compress any log n bits into log(n)/2 bits. By repeating the
sequence of steps: split and compress, we will eventually get the
desired decomposition of each string.

Our actual algorithm mimics the above intuition. It is techni-
cally easier to work with a larger alphabet, so we extend the input
alphabet ¥ by adding special compression symbols into the work
alphabet I'. (Without loss of generalization we can assume that
is of size O(n3) otherwise we can hash each symbol of our input
strings using some perfect hash function into an alphabet of size
O(n®) without affecting the edit distance of a given pair of strings.)
To split a string we will use a random O(k)-wise independent hash
function H : T2 — {0,...,D — 1}, for D = ©(klogn). I the hash
function is zero on a pair of consecutive symbols in a string, we
start a new block of the decomposition on the first symbol in the
pair.

Then in each resulting block we replace stretches of repeated
symbols by a special compression symbol from I’ representing the
block, and we use a pair-wise independent hash function C : T? —
(T \ ¥) to compress non-overlapping pairs of symbols into one
symbol. This latter step requires some care as we have to make
sure that we select non-overlapping pairs in the same way in x
and y. For the selection of non-overlapping pairs we use the locally
consistent coloring of Cole and Vishkin [11, 23, 24] where the
selection of pairs depends only on the context of O(log* n) symbols.
The compression reduces the size of each block by a factor of 2/3.
We repeat the compress and split process for O(log n) iterations
until each compressed block of x is of size at most 2. Decompression
of each block then gives us the desired decomposition of x. (See
Fig. 1 for an illustration.)

It is natural and convenient to represent each of the blocks by
a context-free grammar which corresponds to the compression
process. We can argue that the grammars will be of size O(D log n)
with high probability. So we can represent each string by a sequence
of small grammars so that if x and y are at edit distance at most k
then at most k pairs of their grammars will differ, and the sum of
the edit distances of differing pairs is the edit distance of x and y.
Note, that edit distance of two strings represented by context-free
grammars can be computed efficiently [14]. These are the main
ideas behind our decomposition algorithm, and we provide more
details in Section 3

Building a sketch from the string decomposition is straightfor-
ward: We encode each grammar in binary using fixed number of
bits, and we use off-the-shelf sketch for Hamming distance to sketch
the sequence of grammars. As the Hamming distance sketch does

221

STOC ’23, June 20-23, 2023, Orlando, FL, USA

not recover identical bits but only the mismatched bits we make
sure that if two grammars differ then their binary encoding differ
in every bit. Over binary alphabet this might be impossible but over
large alphabets one could use error-correcting codes to achieve the
desired effect of recovering the differing grammars; for simplicity
we use the Karp-Rabin fingerprint of the whole grammar to encode
the binary 0 and 1 distinctly. See Section 3.3 for the details of our
encoding and Section 3.4 for details of the sketch for edit distance.

To design a rolling sketch for edit distance where we can extend
the represented string by a new symbol or repeatedly remove the
first symbol of the represented string we will employ our decom-
position technique together with the rolling sketch for Hamming
distance of Clifford, Kociumaka, and Porat [10]. We will argue that
appending a new symbol to a string affects only some fixed number
of grammars in the decomposition of a string. There is a certain
threshold T so that except for the last T grammars the decompo-
sition of a string stays the same regardless of how many other
symbols are appended. Hence, we will keep a buffer of at most T
active grammars corresponding to the recently added symbols, and
upon addition of a new symbol we will only update those gram-
mars. We are guaranteed that the grammars before this threshold
will stay the same forever, so we can commit them into the rolling
Hamming sketch (in the form of their binary encoding.) Similarly,
we will keep a buffer of up-to T active grammars that capture the
symbols that were deleted from the sketch most recently. Once they
become “mature” enough we can commit them by removing their
binary encoding from the rolling Hamming sketch. (See Fig. 3 for
an illustration.) This allows to maintain a rolling sketch for edit
distance.

Evaluation of an edit distance query on two rolling sketches will
use their Hamming sketch to recover differing committed grammars.
Together with the active grammars of inserted and deleted symbols
this provides enough information for evaluating the edit distance
query. Technical details are explained in Section 4. In Section 5 we
give a table of parameters used throughout the paper.

2 NOTATIONS AND PRELIMINARIES

For any string x = x1x2x2...x, and integers p, q, x[p] denotes
xp, x[p, q] represents substring x” = x, ... x4 of x, and x[p, q) =
x[p,q—1].If ¢ < p, then x[p, q] is the empty string ¢. x[p,...]
represents x[p, |x|], where |x| is the length of x. "-"-operator is
used to denote concatenation, e.g x - y is the concatenation of
two strings x and y. Dict(x) = {x[i,i + 1],i € [n — 1]}, is the
dictionary of string x, which stores all pairs of consecutive symbols
that appear in x. For strings x and y, ED(x,y) is the minimum
number of modifications (edit operations) required to change x into
y, where a single modification can be adding a character, deleting
a character or substituting a character in x. All logarithms are
based-2 unless stated otherwise. For integers p > ¢, Z?: p i = 0 by
definition regardless of a;’s.

2.1 Grammars

Let ¥ C T be two alphabets and # ¢ T'. A grammar G is a set of
rules of the type ¢ — ab or ¢ — a’, where ¢ € (T U {#}) \ 3,
a,b € T and r € N. ¢ is the left hand side of the rule, and ab
or a” is the right hand side of the rule. # is the starting symbol.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

The size |G| of the grammar is the number of rules in G. We only
consider grammars where each a € I'U {#} appears on the left hand
side of at most one rule of G, we call such grammars deterministic.
(We assume that rules of the form ¢ — a” are stored in implicit
(compressed) form.) The eval(G) is the string from X* obtained
from # by iterative rewriting of the intermediate results by the
rules from G. If the rewriting process never stops or stops with
a string not from ¥*, eval(G) is undefined. Observe, that we can
replace each rule of the type ¢ — a” by a collection of at most
2[log r] new rules of the other type using some auxiliary symbols.
Hence, for each grammar G there is another grammar G’ using only
the first type of the rules such that eval(G) = eval(G’) and |G’| <
|G|-2[log |eval(G)|]. Using a depth-first traversal of a deterministic
grammar G we can calculate its evaluation size |eval(G)| in time
O(|G]). Given a deterministic grammar G and an integer m less or
equal to its evaluation size, we can construct in time O(|G|) another
grammar G’ of size O(|G|) such that eval(G’) = eval(G)[m,...].
G’ will use some new auxiliary symbols. Given a deterministic
grammar G, using a depth-first traversal on symbols reachable from
the starting symbol # we can identify in time O(|G|) the smallest
sub-grammar G’ C G with the same evaluation.

We will use the following observation of Ganesh, Kociumaka,
Lincoln and Saha [14]:

PROPOSITION 2.1 ([14]). There is an algorithm that on input of two
grammars Gy and Gy of size at most m computes the edit distance
k of eval(Gy) and eval(Gy) in time O((m + k?) - poly(log m + n)),
where n = |eval(Gy)| + |eval(Gy)|.

2.2 Rolling Hamming Distance Sketch

For two strings x and y of the same length, we define their mismatch
information MIS(x, y) = {(i, x[i],y[i]); i € {1,...,|x|} and x[i] #
y[i]}. The Hamming distance of x and y is Ham(x, y) = |MIS(x, y)|.

There exist various sketches for Hamming distance, which allow
to compute Hamming distance with low error probability [13, 21].
Moreover, [10, 27] also allow to retrieve the mismatch informa-
tion. For our purposes we will use the sketch given by Clifford,
Kociumaka, and Porat [10].

Let k < n be integers and p > n> be a prime. [10] give a ran-

domized sketch for Hamming distance skf2™ : {1,...,p — 1}* —
= nk,p

{0,...,p— 1}fe+d computable in time O(n) with the following prop-

erties.!

PROPOSITION 2.2 ([10]). There is a randomized algorithm working
in time O(k log® p) that given sketches ski{akl’; (x) and sklzé;c’,r;(y) of
two strings x and y of length £ < n constructed using the same ran-
domness decides whether Ham(x, y) < k, and if so returns MIS(x, y),
with probability of error at most 1/n over the randomness of the
sketches and the internal randomness of the algorithm.

They also construct the following update procedures for their
sketch. We will use them to construct a rolling sketch for edit
distance.

IClifford, Kociumaka and Porat have the sketch size only k + 3 elements but we
include as an extra item the randomness of the sketch, which is a single element from
{o,..., p — 1} used to compute Karp-Rabin fingerprint.

222

Sudatta Bhattacharya and Michal Koucky

PROPOSITION 2.3 (LEMMA 2.3 OF [10]). For x € {1,...,p}" of
length less than n and a € {1,...,p}, in time O(klogp) we can
compute:

(1) ski?é‘; (xa) and skam Ham

n,k,p n,k,p
2) skfll’?é‘;) (x) given skzak?;(xa) or skfll’?;";)(ax), and a.

(ax), given sk (x) and a.

Corollary 2.5 of [10] states that appending a character to a sketch
of x can be done even faster namely in amortized time O(log p).

2.3 Locally Consistent Coloring

The following color reduction procedure allows for locally consis-
tent parsing of strings. The technique was originally proposed by
Cole and Vishkin [11] and further studied by Linial [23, 24].

PrROPOSITION 2.4 ([11, 23, 24]). There exists a function Fcyr, :
™ — {1,2,3}* with the following properties. Let R = log" |T| + 20.
For each string x € T'* in which no two consecutive symbols are the
same:

(1) |Fevp(x)| = |x| and Foy(x) can be computed in time O(R -
Ix1).

(2) Fori € {1,...,|x|}, the i-th symbol of Fcyy(x) is a function
of symbols of x only in positions {i —R,i —R+1...,i+R}.

(3) No two consecutive symbols of Foy(x) are the same.

(4) Out of every three consecutive symbols of Fcyy,(x) at least one
of them is 1.

(5) If |x| = 1 then FoyL(x) = 3, and otherwise Foyy (x) starts by
1 and ends by either 2 or 3.

The first three items are standard for R = log" |T'| + 10. The other
two can be obtained by a simple modification of the output of the
standard function.

3 DECOMPOSITION ALGORITHM

In this section we describe our main technical tool that we have
developed. It is a randomized procedure that splits a string x into
blocks BY, B}, ..., B{ and for each block it produces a grammar
of size at most S = 5(k) Furthermore, if BY, Bg, ..., BY is the
decomposition for a string x and BY, Bzy, .. .,B;‘, is the decompo-
sition for a string y, obtained using the same randomness, where
ED(x,y) < k then with good probability, s = s” and BY = Biy for
all but k indices i. The edit distance of x and y can be calculated as
ED(x,y) = ¥; ED(B], Biy) where i ranges over the differing blocks.

First we provide an overview of the algorithm, specific details
are given in the next sub-section. The decomposition procedure
proceeds in O(log n) rounds. In each round, the algorithm maintains
a decomposition of x into compressed blocks. In each round each
block of size at least two is first compressed and then split. The
compression is done by compressing pairs of consecutive symbols
into one using a randomly chosen pair-wise independent hash
function Cp : T2 — T, where ¢ is the round number (level). Non-
overlapping pairs of symbols are chosen for compression using
a locally consistent coloring so that every three symbols shrink to
at most two. Prior to the compression of pairs we replace each
repeated sequence a” of a symbol a, r > 2, by a special character
rar

The splitting procedure uses a O(k)-wise independent hash func-
tion Hy : T? — {0,...,D — 1} to select places where to subdivide

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching

each block into sub-blocks, where D = 5(k) is a suitable parameter.
We start a new block at each consecutive pair of symbols ab, where
Hy(ab) = 0.

After O(log n) rounds, each block is compressed into at most
two symbols and we output a grammar that can generate the block.

For the correctness of the algorithm we will need to establish
several properties of the algorithm. Some of these properties are re-
lated to behaviour on a single string x, others analyze the behaviour
of the procedure on a pair of strings x and y of edit distance at most
k.

The properties we want from the algorithm when it runs on x are
the following: In each round, each block should be compressed by
factor at least 2/3 while the size of the required grammar capturing
the compression should be O(k). The former is achieved by the
design of the compression procedure. The latter goal is provided
by the property of the splitting procedure which makes sure that
each block B = b1by - by, resulting from a split has small dictio-

nary Dict(B) = {b;bjy1,i = 1,...,m — 1}. In particular, we require
|Dict(B)| = O(k). The grammar size will be proportional to this
dictionary.

For the compression procedure we require that it preserves infor-
mation so the function Cy is one-to-one on each Dict(B). Since the
total size of all dictionaries is bounded by O(n) this can be easily
achieved by picking C; at random provided that its range size is
Q(nd).

Additionally, we need the following property to hold on a pair of
strings x and y of edit distance at most k with good probability: The
splitting procedure should never split x or y in a region which is
affected by edit operations that transform x to y (for some canonical
choice of those operations.) The total size of those regions will be
again O(k) so we can satisfy this property if each pair of symbols
has probability at most 1/ O(k) to start a new block. This constrains
the choice of the range size for the splitting function Hp.

In the next section we describe the decomposition algorithm
fully, and then we establish its properties.

3.1 Algorithm Description

Let n be an upper bound on the length of the input string and
k < nbe given. Set L = [logs, n] + 3 to be an upper bound on the

decomposition depth. Let % be an input alphabet of size at most n3,
Sc={ci,co...,c 3t and Xy = {rqr,a € ZUZ.,r € {2,3,...,n}}
be auxiliary pair-wise disjoint alphabets. Let ' = X U X, U %, be the
working alphabet, and # be a symbol not in T. Notice |T| = O(n® +
|Z]). We call symbols from =0 = 3 level-0 compression symbols, and
for £ > 1, symbols from X% = {c;, (¢ — 1)n® < i < ¢n3} are level-£
compression symbols. Additionally, symbols from %&£ = {r,, € 3,
a is alevel-(£ — 1) compression symbol} are also level-£ compression
symbols.

Let R = log™ [T'| + 20, D = 110R(L + 1)k and S = 30DLlogn + 6
be parameters. The algorithm is a recursive algorithm of depth
at most L. It starts by selecting at random several hash functions:

For ¢ =1,...,L, it selects at random a compression hash function
Cr : T? — 3¢ from a pair-wise independent hash family, and for
¢ =0,...,L, it selects at random a splitting function Hy : rz -

{0,...,D — 1} from a (5D log n)-wise independent hash family.

223

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Main building blocks of the algorithm are functions Compress
and Split. The first one compresses strings by a factor of 2/3, and the
other splits strings at random points. Their pseudo-code is provided
as Algorithm 1 and 2. We describe them next.

Compress. The function Compress(B, ¢) takes as input a string
B over alphabet T of length at least two, and an integer £ > 1, which
denotes the level number. Divide B into minimum number of blocks
By,...,Bm, B = B1ByBs... By, so that in each B; either all the
characters are the same, i.e. Bj = a” for some a € I'and r > 2, or no
two adjacent characters are the same. The first step is to compress
the B;’s which contain repeated characters by simply replacing the
whole B; with the symbol ry |p, |, where a is the repeated character.
Then for the remaining blocks, the following compression is applied:
Let B; be an uncompressed block. Each character of B; is colored
by applying Fcyy (B;). Divide B; into blocks B; = B{Bj ... B, such
that for each B ; only the first character is colored 1. Now, according
to Proposition 2.4, length of each B;. is either 2 or 3. If B;. = ab,
replace it with Cr(ab) else if B} = abc, replace it with Cy(ab) - c,
where a,b,c € T. The actual pseudo-code given below performs
the compression of blocks of repeats in two stages, where in the
first stage we replace the repeated sequence a” by rg , - #, and then
in the next stage we remove the extra symbol #. This simplifies
analysis in Lemma 3.10. Assuming that C, can be evaluated in time
O(1), the running time of Compress(B, £) is dominated by the time
needed to compute Fcyy -coloring of blocks which is O(R - |B) in
total.

Algorithm 1: Compress(B,)
Input: String B over alphabet I of length at least two, and
level number ¢.
Output: String B”” over alphabet T

Divide B = B1ByBj3 . .. By, into minimum number of blocks
so that each maximal subword a” of B, fora € T and r > 2,
is one of the blocks.

for eachi € {1,...,m} do

if B; = a’, wherer > 2 then Set B] = ry, - # and color
rar by 1and # by 2.2;

4 else Set B; = B; and color each symbol of B] according

to FevL(Bi);

5 end

Set B = B/B)--- By, B

while i < |B’| do

8 if B’[i+1] =#then B” =B"” - B[i];

9 else B” =B" - Cy(B'[i,i +1]);

i=i+2.

if i < |B’| and B’[i] is not colored 1 then
B’ =B" -Bl[i],i=i+1;

-

[F I N

eg,andi=1.

o

N1

10
11

end
Return B”.

12

13

’Ifa = rp,s for some b € T and s € N, then set B;. = rp,s - #. However, such
a situation should never happen during the execution of the algorithm as level-£
compression symbol can be introduced only at level ¢.

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Split. The function takes as input a string B over alphabet I of
length at least two, and an integer ¢ > 1. The function splits the
string B into smaller blocks. The algorithm works as follows: For
eachi € {2,...,|B| — 1}, if Hy(B[i, i + 1]) = 0, start a new block at
position i. The running time of Split(B, ¢) is dominated by the time
to evaluate Hp at |B| — 2 points.

Algorithm 2: Split(B, ¢)
Input: String B over alphabet I' of length at least two, and
level number ¢.
Output: A sequence of strings (By, B, . .
alphabet T

., Bs) over

1 Letiy <---<igbealli€{2,...,|B| — 1} where
Hy(Bli, i+ 1]) = 0. Set s = 0 if no such i exists.

2 Letip =1and is4; = |B| + 1.

3 For j=0,...,s, set Bj = B[ij,ij+1).

4 Return (Bg, By, ..., Bs).

The main recursive step of the algorithm is encompassed in func-
tion Process. The function gets a block B € I'* as its input. The
block might have already been compressed previously, so the func-
tion also gets dictionaries that allow decompression of the block. If
the block is already of length at most two, then the function outputs
the block. Otherwise it compresses the block B using Compress,
then it subdivides the compressed block using Split, and invokes
itself recursively on each sub-block. For the output, each block is
represented by a grammar. The grammar is reconstructed from the
compressed block and its dictionaries by a simple bread-first search
algorithm provided in the function Grammar.

Algorithm 3: Process(B, (D1, D2, ...,Dy-1),£)

Input: String B € T'*, a sequence of dictionaries D; € T for
decompressing B, and level number ¢.
Output: A sequence of blocks of B each encoded by a
grammar.

1 if |B| < 2 then Output
Grammar (B, (D1, Do, ..

2 A = Compress(B,).

s (Bo,Bi,...,Bs) = Split(A, £).

4 Fori=0,...,s, Process(Bj, (D1, ..

.,Dp_1),£ — 1) and return ;

., D_1, Dict(B)), £ +1).

To decompose an input string x into blocks, we first apply func-
tion Split(x, 0) to x and then invoke Process(B, (), 1) on each of the
obtained blocks B. Breaking the string x into sub-blocks guarantees
that each block passed to Process has small dictionary whereas the
dictionary of x could have been arbitrarily large.

3.2 Correctness of the Decomposition
Algorithm

Our goal is to establish the following theorem which is a stronger
version of Theorem 1.1:

224

Sudatta Bhattacharya and Michal Koucky

Algorithm 4: Grammar(B, (D1, Dy, ..., Dy), £)

Input: String B € I'*, a sequence of dictionaries D; C T for
decompressing B.
Output: The smallest grammar G for B based on the
dictionaries D; and hash functions Cy, ..., Cy.
1 LetC={ce.:
c appears in B or r¢, appears in B for some r}. // Symbols
needed to decompress B
2 G={#— B}.
3 for j=¢...,1do
4 for each ab € Dj do
if Cj(ab) € C then G =G U {Cj(ab) — ab},
6 C=CU{ceZsce{ablorre, e
{a, b} for some r} ;

7 end

s end

9 For each rq, appearing in any of the rules in G, add
rar — a toG.

o Return G.

=

THEOREM 3.1. Let x and y be a pair of strings of length at most n
withED(x,y) < k. Let GY,...,GY and Gly, e Gsy, be the sequence
of grammars output by the decomposition algorithm on input x and
y respectively, using the same choice of random functions Cy,...,Cr,
and Hy, . .., Hy.. The following is true for n large enough:

(1) With probability at least 1 — 2/n, x = eval(GY) - - - eval(GY)

andy = eval(Gly) e eval(Gsy,).

(2) With probability at least 1 — 2/~/n, foralli € {1,...,s} and

je{l,....s'} |G;f|,|Gjy| <S.

(3) With probability at least 9/10, s s/, Gl?‘ = Gly, for all

i €{1,...,s} except for at most k indices i, and ED(x,y) =
¥ ED(eval(GY), eval(G))).

By union bound, all three parts happen simultaneously with
probability at least 9/10 — 2/n — 1/+/n which is > 4/5 for n large
enough.

To prove the theorem we make some simple observations about
the algorithm, first.

LEMMA 3.2. For any string B of length at least two, and £ > 1,
|Compress(B,)| < %|B| + 1 and |Compress(B, £)| < |B|.

Proor. Let B = B1B2Bs...B,,; be as in the procedure. Every
block B; that equals to a”, for some a and r > 2, is reduced to one
symbol by the compression. The other blocks are colored using
FeyL(+) and compressed. Unless a block B; is of size one, the col-
oring induces division of the block B; into subwords of size two
or three, where the former is compressed into one symbol and the
latter into two symbols. Hence, each such a block is compressed
to at most 2/3 of its size. So the only blocks B; that do not shrink
are of size one, and are sandwiched between blocks of repeated
symbols (that shrink by a factor of at least two). The worst-case
situation is when m is odd, blocks B; are of size one for odd i, and of
size two for even i. In that case the original string B shrinks to size
|_§|B|J + 1. This proves the first inequality. The second inequality

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching

is also clear from the analysis above: The only time the string does
not shrink is if it is of size one. O

COROLLARY 3.3. On a string B of length at most n, the depth of
the recursive calls of Process is at most L.

Indeed, from the previous lemma it follows that each block after ¢
compressions and splits is of size at most (2/3)¢|B| + 3. Hence, after
L = [logs/, n] + 3 recursive calls Process must stop the recursion.

LEmMMA 3.4. Let B € T* be of length at most n, and ¢ € {0,...,L}.
Let (Bo,Bi,...,Bs) = Split(B, £) where Hy : T — {0,...,D — 1}
is chosen at random from (5D log n)-wise independent hash fam-
ily. Then with probability at least 1 — 1/n3,for all j € {0,...,s},
[Dict(Bj)| < 5Dlogn.

Proor. If for some j € {0,...,s}, [Dict(Bj)| > 5Dlogn, then
there exists 1 < r < t < |B| such that |Dict(B[r, t])| = 5Dlogn
and for all i € {r,...,t — 1}, Hy(B[i,i + 1]) # 0. (Pick r to be
the position in B of the second symbol of B; and r some later
position in Bj.) For a fixed r and ¢ with |Dict(B[r, t])| = 5D logn,
Pryg, [Vi € {r,....t — 1} He(B[i,i +1]) # 0] < (1 - %)SDI%" by
the (5D log n)-wise independence of H,. Hence, Pry, [31 < r <
t < |B|, |Dict(B[r,t])| =5Dlogn and Vi € {r,...,t—1}, H¢(B[i, i+

5Dlogn
1]) # 0] < |BJ? (1 - Il)) < nZe~Slogn < q1/p3, O
LEMMA 3.5. ForB e T*,¢ <L,D1,Dy,...,Dp C T'?, Grammar(B,
(D1, ..., Dpg),) outputs a grammar G of size at most 3|B|+6 X; |Dj|,

and runs in time O(|B| + >i |Dil)-

Proor. The main loop of the algorithm iterates over all the pairs
from Dj. In each iteration we can add a rule of the type ¢ — ab to
G. Hence, the number of such rules in G is at most |B| + 2 }}; | Dj|.
Last, we add to G rules for symbols from ¥, that appear on right
hand sides of rules in G. This increases the size of G by at most
factor of 3. If C is stored using some efficient data structure such as
binary search trees or hash tables, each iteration takes 5(1) time.
(We assume that evaluation of C;(-) takes O(1).) Hence, the total
running time is bounded by claimed bound. O

During processing of a string x, there are at most Ln calls to the
function Split. (The actual number of calls is O(n) as the strings
shrink exponentially but our simple upper bound suffices.) The
probability that any one of them would produce a block with dic-
tionary larger than 5D log n is at most Ln/n3. We can conclude the
next corollary which implies the second item of Theorem 3.1.

COROLLARY 3.6. Forn large enough, on a string x of length at most
n, processing the string x produces a sequence of grammars each of
size at most S = 30DL log n + 6 with probability at least 1 — 1/n.

For the grammars produced by the algorithm to be deterministic,
we need that each Cy is one-to-one on Dict(B) for each block B
on which Compress(B, ¢) is invoked. That will happen with high
probability by a standard argument:

LEMMA 3.7. Let B € T* be of length at mostn and ¢ € {1,...,L}.
LetCp : T2 — {c;, (¢—-1)n® < i < £n®} be chosen at random from a
pair-wise independent family of hash functions. Then with probability
at least 1 — |B|/n?, Cy is one-to-one on Dict(B).

225

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Proor. For two distinct elements from Dict(B), the probability
of a collision for randomly chosen Cy is at most 1/n>. By the union
bound, the probability that C; is not one-to-one on Dict(Bj) is at
most |Dict(B)|?/n? < |B|/n? as |Dict(B)| < |B| < n. o

During processing of a string x, there are at most Ln calls to
the function Compress. For a fixed level £ € {1,...,L}, the total
size of blocks B for which Compress(B, ¢) is invoked is at most n.
By the previous lemma and the union bound, the probability that
during any of those calls Compress(B, £) uses a function Cy that is
not one-to-one on Dict(B) is at most 1/n. If all the hash functions
C1,Cy,...,Cyr that are used to compress blocks of x are one-to-one
on their respective blocks then the grammars that Grammar pro-
duces will be deterministic, and they will evaluate to their respective
blocks of x. (We can actually conclude a stronger statement that
each C; will be one-to-one on the union of all blocks at level £ with
high probability.) We can conclude the next corollary which implies
the first item of Theorem 3.1.

COROLLARY 3.8. Forn large enough, on a string x of length at most
n, with probability at least 1 — L/n, processing the string x produces a
sequence of grammarsGi, . . ., Gs such thatx = eval(Gy) - - - eval(Gs).

At this point we can estimate the running time of the decompo-
sition algorithm. We can let the algorithm fail, and produce some
trivial decomposition of x, whenever Split produces a block with
dictionary larger than 5D log n. If it does not fail, then all grammars
are of size at most S which is O(k). There are at most n of them so
time spent in Grammar(. . .) is bounded by O(nk). The total time
spent in Compress(. . .) is proportional to the sum of sizes of all non-
trivial blocks over all levels of recursion which is O(nL) = 5(n) (A
more accurate estimate on the total size of blocks is O(n) since the
blocks are shrinking geometrically in each iteration.) This means
that the time to execute all calls to Compress is O(nLR) = 5(n).
The time spent in Split(...) is dominated by the time needed to
evaluate Hy. The number of evaluation points at a given level ¢ is
proportional to the total size of all blocks at that level. Since Hy can
be evaluated at a single point in time O(D logn) = O(k), we geta
trivial upper bound O(nLD logn) = O(nk) on time spent in Split.
Hence, in total the decomposition procedure runs in time O(nk).
(We believe that the total running time can be improved to O(n)
on average. One could argue that in expectation the number of
grammars the procedure produces is O(n/k) as the average block
size a string x is decomposed into should be at least Q(D/logn).
So we believe that the total running time of calls to Grammar is
O(n). Using multi-point evaluation of (5D log n)-wise independent
hash functions we could reduce the time for evaluation of Hy on a
given level to 0 (n).)

PROPOSITION 3.9. Given k < n, the running time of the decom-
position algorithm on a string x of length at most n is O(nk) with
probability at least 1 — 1/n.

It remains to address the properties of the algorithm run on a pair
of strings x and y of edit distance at most k to establish Theorem 3.1.
For the pair of strings x and y we fix a canonical decomposition of
x and y to be a sequence of words wg, wy, .. Uy U1 - -
v € IT'* such that x = wouywiugws - - - U Wi, Y = WU W1 * * * O Wi
and |u;|, [v;] < 1 for all i. By the definition of edit distance such a

Wi, Uiy

STOC ’23, June 20-23, 2023, Orlando, FL, USA

decomposition exists: each pair (u;, v;) represents one edit opera-
tion, and we fix one such decomposition to be canonical. Observe,
if we now partition x into blocks B, ..., By so that each B;‘ starts
within one of the w;’s, and we partition y into blocks BY,...,B!
so that each block Biy starts at the corresponding location in wj as
BY, then ED(x,y) = ¥, ED(BY, BY).

We need to understand what happens with the decomposition
of x and y when we apply the Compress function. Let x = uwo
and x” = Compress(x, £) = u’w’v’, for some u, w,0,u’w’v’ € T*.
We say that a symbol ¢ in w’ comes from the compression of w if
either it is directly copied from w by Compress, or it is the image
¢ = Cy(ab) of a pair of symbols ab where a belongs to w, or ¢ = rq,
replaced a block a” where the first symbol of a” belongs to w. w’
is the compression of w if it consists precisely of the symbols that
come from the compression of w. Furthermore, we say a symbol c
in w’ comes weakly from the compression of w if either it is directly
copied from w by Compress, or it is the image ¢ = Cp(ab) of a pair
of symbols ab where a or b belong to w, or ¢ = rq, replaced a
block a” where some symbol of a” belongs to w. w’ is the weak
compression of w if it consists precisely of the symbols that come
weakly from the compression of w. Notice, a weak compression of
w might contain and extra symbol at the beginning compared to
the compression of w.

The following lemma captures what compression does to the
canonical decomposition of x and y. (See Fig. 2 for illustration.)

LEmMA 3.10. Letx, y be strings overT, and letx’ = Compress(x, £)
and y’ = Compress(y,£). Let X = wouiwiupwz - - - Ugwg and y =
WoUIW102W2 - - - UgWq for some strings wi, u; and v; where fori €
{1,...,q}, |uil, |oil <4R+24.

Then there arewo, 1,.. 6,1’ ul,. .. q’ U € T'* such that
fori e {1,. ..,q} [u]], lof] < 4R+24 x' = WOu w Tuswy - u('] q
andy’ = wjoiwioyw, - - -0 w,. Moreover, each w is the compression
of the same subword of w; in both x and y.

For each x = wouiwiugws - - - igwg, y = woulwwzwz S UgWg
and ¢ we fix one choice of wé, o w(;, ué, e uq, .. U satisfy-

ing the lemma. We will refer to it as the canonical decomposztzon of
x" and y’ induced by the decomposition of x and y as given by the
lemma.

Proor. The first stage of Compress replaces maximal blocks of
repeated symbols by shortcuts. To simplify our analysis first we
will reassign blocks of repeated symbols among neighboring blocks
of wj, u; and vj, resp., so each maximal block of symbols in x and y
is fully contained in one of the words w;, u; or v;.

Fori=1,...,q—1we define words w(l) and parameters a;, b; €
T and k;, k.’ € N as follows: If w; contains at least two distinct sym-

0k

bols let w; = a Ly so that k; and kl.’ are maximum possible,

otherwise w;

e

a; i for some a; and k; (k; might be zero), and we set
=¢,b; = a; and kl.’ =0.Let wy = wél)bg‘,) for maximum possi-
ble k{ and some symbol by. Let wq = agq w(l) for maximum possible
..,q, we let u(l) = b - 1ulafi.

(1) (1, (1) (1)
Wo ¥ Wl "’”q Wq

kq and some symbol aq. For i=1,.

()_bzl

andyzwél) il) 1()

! Hence, x =

() (1)
Uqg Wq -

Similarly, v

226

Sudatta Bhattacharya and Michal Koucky

Next, if there is a maximal block of symbols a” contained in

(l)w(l) <1) starting in us() and ending in u() ,s #t, weadd

all the symbols of the a” to the end of u()
(1) (1)

and remove them from the

otheru; ’,i=s+1,...,t (Notice, w; ’ = efors < i < t because of

the definition of w'!) and 4 will become empty fors < i < t.) We
do this for all maximal blocks of repeated symbols that span multiple

(1)

(1) . We perform similar moves on v; ’’s. After all of those moves

we denote the resulting subwords by wi(z) , ul.(z), and 052) . (Notice,

wl.(z) = wl.(l) for all i.) We have: x = wéz)uiz) wl(z) e uf(lz) w((Iz) and
y = wéz)vf) wl(z) e UC(IZ) W((IZ). At this stage, each maximal block

of repeated symbols in x or y is contained in one of the subwords
wl.(z), ufz) and 0(2)

The first stage of Compress replaces each maximal block a”,
r > 2, by a sequence rg ,#, and we apply this procedure on each

(2) (2) (2)
> U;
i(3)’ and 053), Observe, fori=1,..

This is because every u; is transformed into u.(z) by appending or

(3) _

subword w; , and v;

e
w®,

to obtain corresponding subwords

4 |ul.(3)|, |0§3)| < 4R+28.

prependlng possibly empty block of repeated symbols, i.e., u;
a"u;b" for some a,b,r,r’, or removing its content entirely. Each

) i longer

than the original by at most 4 symbols. Similarly for U;).

Next, coloring function Fcyy, is used on parts of x and y that are
not obtained from repeated symbols; the two symbols replacing
each repeated block are colored by 1 and 2, resp. We refer to this
as {1, 2,3}-coloring. At most R first and last symbols of each w(3)
might be colored differently in x and y as the color of each symbol
depends on the context of at most R symbols on either side of

the symbol, and that context might differ in x and y. Hence, only
(3) (3),

block of repeats is reduced to two symbols so each u;

symbols near the border of w; s and

NOR
l
wi(3) are colored the same in both x and y. The coloring is then
used to make decisions on which pairs of symbols are compressed

into one.

that are in vicinity of u;

s, resp., might get different colors. All the other symbols of

We will let u] be the symbols that come from the compression
of symbols in ul.<3), the first up-to R + 2 symbols of wl.<3), and the

last up-to R + 3 symbols of wl.(f)l. Next we specify precisely which

(3) (3)

symbols of w;” and w;”; are considered to be compressed into

g if [wP] = R+3, let
X be the position of the first symbol in w() among positions
R +1,R+ 2,R + 3 which is colored 1 in x by the {1, 2, 3}-coloring.

If|w.(3)| < R+3,lets¥ = 1. Next, if|w.(3)| > 2R + 3 set t] to be
3,

symbols belonging to u;. For i = 0,...

the first position from left colored 1 among the symbols of w;
positions R+1, R+2, R+3 counting from right. If |wi(3) | < 2R+3, set
t¥ to be equal to s¥. For i = 0, if |w(§3)| > R+3 then redefine s = 1.
For i = g, redefine tg = |w((13) |+1 and if |w§3)| < R+3 then redefine

sf; to t;‘ . Similarly, define siy and tiy based on the {1, 2, 3}-coloring
of y.
Notice, s} # ¢} iff siy * tiy. Furthermore, if s¥ # ¢ then either

i€{q0}or |wi(3)| >2R+3s0s) = siy and t} = tiy as the symbols

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching

;3) are colored the same in x and y. We
w1 u® w1, 5%)

OIENINC NG
tiop Wiyl o7

wi(g) [1, siy). We let w] be the compression of Wi(?’) [siy, tiy),

Hence, ul’ comes from the compression of at most |”i(3) [+2R+5 <
6R + 33 symbols. Since each symbol after a symbol colored 1 is
removed by the compression, and each consecutive triple of symbols
contains at least one symbol colored by 1, the at most 6R+27 symbols
are compressed into at most (6R + 33) - 2/3 + 2 = 4R + 24 symbols.
So u] is of length at most 4R + 24. Similarly for v]. i

R-away from either end of w

’ ; (3) 4
let u] to be the compression of w;”; [t |,

and similarly, o to be the compression of wl(f)l [|w

The following generalization of the previous lemma will be useful
to design a rolling sketch. It considers situation where x and y are
prefixed by some strings u and v, resp., that we want to ignore
from the analysis. The proof of the lemma is a straightforward
modification of the above proof.

LemMMA 3.11. Let x,y,u,v € I'*, and let u’x” = Compress(ux, £)
andv’y’ = Compress(vy, £), where x’ is the weak compression of x,
andy’ is the weak compression of y. Let x = ugwoui witlzwy - - - UgWg
andy = vowou1W102W2 - - - UgWq for some strings wi, u; andv; where
fori € {0,...,q}, |uil, |vi]| < 4R+24. Then there arewé, w{, o w('], u’,

’ ’ ’ ’ ’ . ’ ’
Ufsee s Ugy VG, 0,0 € T such that fori € {0,...,q}, |ujl, [v]] <
4R+ 24, x" = ugwiuiwiuywy - - ugwg and y’ = ogwioiwy - - ogwg.

Moreover, each w! is the compression of the same subword of w; in
both x and y.

Let x € X*. Let Hy, Hy, . . .,Hp,C1,Co,...,Cr be chosen. We de-
fine inductively the trace of the algorithm on x at level £ > 0 to
consist of sequences B¥(£,1),...,B*(¢, sif) € I'*, of auxiliary se-
quences A¥(¢,1),...,A*(¢, sz,‘) e I'" and t;fl, el tZsij € N. Their
meaning is: B¥(#, i) is compressed into A¥(#,i) and that is split
into blocks BX*(¢ + 1, j) for tt)’(+1,i <j< t?+1,i+1’ (See Fig. 1 for
illustration.)?

Set

B*(0,1),...,B%(0,sy) = Split(x, 0).
For ¢ = 1,...,L we define B*(£,1),...,B*(¢, sjf) inductively. Set
tZl =1Fori=1,...,s5_,if [B¥(£ - 1,i)| > 2, then

A*(¢ - 1,i) = Compress(B* (¢ — 1,1), £),
and for (By, By, ..., Bs) = Split(A* (£ — 1,i), £) set
Bx(f, t;fi) = By, Bx([, t()’fi +1)=By, ..., Bx(f, t;(,i +s) = Bs

and), =t} +s+ LIf [BX(£ - 1,1)| < 3, then set B¥(¢,¢};) and
A*(£ - 1,i) to B¥(£ - 1,i), and t; , = t;; + 1. For j = s7_,, set
o \ }

¢ = lejar

Furthermore, for x andy € 3*, £,i > 0, define a canonical decom-
position of blocks A* (¢, i), BX(¢, i), AY(¢,i), BY(£, i) inductively as
follows. Let A*(~1,1) = x and AY(-1,1) = y. Let t*, | = 1,¢X, , =

_ y _ vy _ y _
2, sfl =1, t—1,1 =1, t—1,2 =2, and s7; =1 Let
A¥(-1,1) = wouywitiawy - - - upwr &
Ay(—l, 1) = wourwi0aW2 « - - U Wi

3To avoid double and triple indexes we use our notation B¥ (¢, i) and A* (¢, i) instead
of the usual B} ; and A7 ;.

227

STOC ’23, June 20-23, 2023, Orlando, FL, USA

z | B¥(0,1) | B(0,2) | | B™(0,s3) |
compress
[ow | [wom | e
| - s
le 11) 5 (1,2) | |(1.3)E(1,4)5(1.5)|
compress
e w1l

| split |

B=(2,i) Be(2,i+1)

Figure 1: The hierachical decomposition of x.

be the canonical decomposition of the pair x and y.

For ¢ > 0 and j € {1,...,s}}, let i be such that tszl’i <j<
tjf_l’l.+1 andm = j — t;‘_l’i. Then B*(¢, j) is the m-th block of
Split(A* (¢ — 1, i),). If the decomposition of A* (¢ — 1, i) is defined
and is equal to woui witaws - - - UgWg, for some u;, w; € I'*, then the
decomposition of B¥(?, j) is the restriction of the decomposition
of A¥(¢£ — 1,i) to symbols of the m-th block of Split(A* (£ — 1,), £).
Otherwise the decomposition of BX (¢, j) is undefined. Similarly for
BY(¢, j). (See Fig. 2.)

For ¢ > 0Oand j € {1,...,s;}, if BX(£, j) and BY(¢, j) have de-
fined decompositions B* (¢, j) = wouiwiuz - - - ugwg and BY(¢, j) =
WU W102W3 - - - UgWq for some u;, v;, w; € T, thenwelet A* (¢, j) =
TRV W:I and AY(¢, j) = wjoiwioj - wy be their canon-
ical decomposition induced by B*(¢, j) and B*(¢, j) as given by
Lemma 3.10.

B(£,4)| wo(y3) | ui(£,d) | wi(lyd) | wallyd) | walyd)| ‘ wq(£,1)
A \ \ 1 1 // //
compress N \ Y y’ r’ i ‘
wh (£, 1) uQ(e,i)le(e,i) uh(lyi)| wh(lyd) e wl (6, 9)
T T
b o
split I i i I
BT(£+1,5)
wo(€+1,5) ui(€+1,5) wi(+1,5)

Figure 2: Decomposition of B*(¢,i) after compression and
split.

To conclude item 3 of Theorem 3.1 we want to argue that x and
y are recursively split into sub-blocks that respect their canonical
decomposition. So we want all splits of blocks to occur in matching
parts of x and y. For A*(¢£ — 1,i) with canonical decomposition
WoU WilpW2 - - - UgWgq We say that Split(A¥ (£ 1,), £) makes unde-
sirable split if it starts a new block at a position j that either belongs
to one of the uq,us, .. ., Ug Or is the first or last symbol of one of
the wo, w1, ..., wg. Recall, Split(A* (£ - 1,1),£) starts a new block
at each position j such that Hy(A*(¢ — 1,i)[j,j + 1]) = 0. Since
Hp is chosen at random a given position starts a new block with
probability 1/D.

For AY(¢—1, i) with canonical decomposition w(’)vlwivg g Wt,z’
we say that Split(AY (¢ — 1, i),) makes undesirable split if it starts a
new block at position j that either belongs to one of the vy, vy, . .

7

., g

STOC ’23, June 20-23, 2023, Orlando, FL, USA

or is the first or last symbol of one of the w('), w{, coow AT (0 -
1,i) and AY(¢ — 1, i) have matching canonical decomposition (that
is ¢ = ¢’ and each w; = w}) and both Split(A* (¢ — 1,i),¢) and
Split(AY (¢ - 1, i), £) make no undesirable split then A* (¢ — 1,i) and
AY(¢f - 1,i) are split in the same number of blocks with matching
canonical decomposition as they are split at the same positions in
the corresponding w;’s.

For given ¢ € {0,..., L}, if no undesirable split happens during
Split(A* (¢ — 1,1i), ¢’) and Split(AY (¢’ —1,i),¢’), for any ¢’ < £ and
i, then for each ¢’ < ¢, the number of blocks B*(¢’,i) and BY(¢’, i)
will be the same, i.e., s}, = sg, and blocks B* (¢/,i) and BY(¢’, i) will
have matching canonical decomposition. The total number of u;’s in
canonical decomposition of all B¥ (¢/,i),i = 1,.. ., t[’ﬁ, will be at most
k, and similarly for v;’s. Thus, there will be at most (4R+24+2)k+2
positions where an undesirable split can happen in Split(A* (¢ —
1,1), £) for any i. Similarly, there are at most (4R +26)k + 2 positions
where an undesirable split can happen in Split(AY(¢ — 1,i), £). By
union bound, the probability that an undesirable split happens in
some Split(AY (¢ — 1,i),£) or Split(A¥Y (¢ — 1,i), £), for some ¢ and i,
is at most 2(4R + 28)k(L +1)/D < 11Rk(L +1)/D < 1/10.

Thus, if no undesirable split happens there are at most k indices i
for which the canonical decomposition of B* (¢, i) contains some u;.
All other blocks B¥ (¢, i) have a canonical decomposition consisting
of a single block wy, for various wy depending on ¢ and i. Similarly,
the canonical decomposition of BY(¢,i) contains v; if and only
if BX(¢, i) contains uj. Blocks BY (¢, i) that do not contain v; are
identical to B¥(#, i) so they have the same grammar.

Hence, if no undesirable split happens, item 3 of Theorem 3.1
will be satisfied.

The following theorem generalizes item 3 of Theorem 3.1 and it
will be useful to construct the rolling sketch in Section 4.

THEOREM 3.12. Letu,v,x,y € X* be strings such that |ux|, loy| <
n and ED(x,y) < k. LetGY,...,GY and Gly, .. .,GSZ{ be the sequence
of grammars output by the decomposition algorithm on input ux and
vy respectively, using the same choice of random functions Cy, ...,Cr
and Hy, . . ., Hp. With probability at least 1 —1/5 the following is true:
There exist integersr,r’, t,t’ such thats —t =s" —t/,

x =eval(Gy)[r,...] - eval(G},) - - -eval(GY) &

t+1
y= eval(th,)[r/,] eval(G;{H) e eval(GSZ{), and

ED(x,y) = ED(eval(G})[r,...], eval(G;{) [r,...1
+ Z ED(eval(G%,.), eval(th,H.)).

t+i
i>0
Its proof is a minor modification of the proof above and its sketch
is provided in the full version [5].

3.3 Encoding a Grammar

We will set a parameter N > n® to be a suitable integer: Let Fg :
{0,1}* — {1,..., N} be a hash function picked at random, such as
Karp-Rabin fingerprint [18], so for any two strings u,0 € {0, 1}*, if
u # v then Prp, [Fkr (u) = Fxr(0)] < (Jul +|o])/N.

Set M = 3S - [1 + log |T'|]. We will encode a grammar G over
T of length at most S given by our decomposition algorithm by a
string Enc(G) over alphabet {1, ..., 2N} of length M. The encoding
is obtained as follows: First, order the rules of the grammar G

228

Sudatta Bhattacharya and Michal Koucky

lexicographically. Then encode the rules in binary one by one using
3-[1+log |T'|] bits for each rule. (The extra bit allows to mark unused
symbols.) This gives a binary string of length at most M, which we
pad by zeros to the length precisely M. We call the resulting binary
string Bin(G). Compute hg = Fxr(Bin(G)). We replace each 0 in
Bin(G) by hg, and each 1 in Bin(G) by N + hg to obtain the string
Enc(G). Clearly, Enc(G) is a string over alphabet {1,...,2N} of
length exactly M. The encoding can be computed in time O(M).
For completeness, we encode any grammar G of length more than
S or that uses rules with more than two symbols on the right as
Enc(G) = 1M,
By the property of Fxr the following holds.

LEMMA 3.13. Let G,G’ be two grammars of size at most S output
by our decomposition algorithm. Let Fgr be chosen at random.

(1) Enc(G) € {1,...,2N}M.

(2) If G = G’ then Enc(G) = Enc(G).

(3) If G # G’ then Enc(G) = Enc(G’) with probability at most
2M/N.

(4) IfEnc(G) # Enc(G”) thenHam(Enc(G), Enc(G”")) = M, that
is they differ in every symbol.

3.4 Edit Distance Sketch

Let n and k < n be two parameters, and p > 2N + 1 be a prime
such that p > (nM)3. For a string x € =* of length at most n, we
compute its sketch by running first the decomposition algorithm of
Theorem 3.1 to get grammars G1, G, . . ., Gs. Encode each grammar
G; by encoding Enc(G;) from Section 3.3 using the same Fxr picked
at random. Concatenate the encoding to get a string w = Enc(Gy) -
Enc(Gy) - - - Enc(Gg). Calculate the Hamming sketch skfll,f‘r‘:;,, p(w)
on w for strings of length n” = nM and Hamming distance at most
k’ = kM from Section 2.2. Set the sketch skgl?C (x) = skHamp(w).

n’,k’,
The calculation of sk&?< (x) can be done in time O(nk) as the number
of grammars is at most n and each grammar requires O(k) time to
be encoded into binary. The Hamming sketch can be constructed
in time O(nk). (We believe that on average we expect only O(n/k)
grammars to be produced for a given string x so the actual running
time should be O(n) on average.)

THEOREM 3.14. Letx,y € X" be strings of length at most n such
that ED(x,y) < k. Let skil?c (x) and skgrl)c(y) be obtained using the
same randomness for the de’composition aigorithm and the same choice
of Fxr. With probability at least 2/3, we can calculate ED(x, y) from
ski) (x) and sk (y).

Assume that the output of the decomposition algorithm on x
and y satisfies all the conclusions of Theorem 3.12. In particular,
for x we get eval(GY) - eval(GY) - - - eval(GY) and for y we get
eval(Gf) .- ~eval(Gsy), for some s < n, each of the grammars is
of size at most S, ED(x, y) = 3; ED(eval(G}), eval(Giy)), and the
number of pairs G} and Giy where G} # Gl.y is at most k. Assume
that Fig is chosen so that Enc(G}’) # Enc(Glry) for each of the pairs
where Gf and Gl:y differ.

In order to determine ED(x, y), we recover the (Hamming) mis-
match information between Enc(GY) - Enc(G3) - - - Enc(Gy') and

Enc(Gly) . Enc(Gél") ---Enc(GY) from sk&?< (x) and sk&i(y). That

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching

gives grammars G} and Gl.y, for all i where G # Giy . (Whenever
the two grammars differ, their encoding differ in every symbol by
Lemma 3.13 so we can recover them from the Hamming mismatch
information.) Calculating the edit distance of each of the pair of
differing grammars using the algorithm from Proposition 2.1 we
recover ED(x, y) as the sum of their edit distances.

The sum is correct unless some of the assumptions fail: The
probability that the grammar decomposition fails (does not have
properties from Theorem 3.1) for the pair x and y is at most 1/5 for
n large enough. The probability that the choice of Fxp fails (two
distinct grammars have the same encoding) is at most 2kM/N <
1/n by the choice of N. The probability that the Hamming distance
sketch fails to recover the mismatch information between all the
grammars is at most 1/n. So in total, the probability that the output
of the algorithm is incorrect is at most 1/3.

The running time of the comparison algorithm is O(k?): The
Hamming mismatch information can be recovered in time o) (kM) =
O(k?) (Proposition 2.2), then we build the < k mismatched gram-
mars in time O(k?), and run the edit distance computation on the
pairs of grammars in time ;% O(k + kl.z) < O(k?), where k; is
the edit distance of the i-th pair of mismatched grammars. (We
interrupt the edit distance computation if it takes more time than
O(k?) which would indicate ED(x, y) > k.)

To decide whether ED(x,y) > k we note that on input x and
y, the Hamming sketch either outputs the correct mismatched
places if their number is < k’ or it outputs co if there are more
mismatches than that or the sequences sketched by the Hamming
sketch are of different length. (We assume that the Hamming sketch
knows the number of symbols it is sketching.) In the co-case we
know that there are more than k different pairs of grammars or the
decomposition of x and y failed, and we can report ED(x, y) > k.In
the other case we try to calculate the edit distance of the differing
pairs of grammars. If we spend more than O(k?) time on it or we get
a number larger than k then we report ED(x, y) > k. This correctly
decides whether ED(x, y) > k with probability at least 2/3.

To prove Theorem 1.2 we build a more robust sketch by taking
clog n independent copies of the sketch sk&%. To calculate the edit
distance of two sketched strings we run the edit distance calcula-
tion on each of the corresponding pairs of copies, and output the
majority answer. A usual application of Chernoff bound shows that
the probability of correct answer is at least 1 — 1/n for suitable
constant ¢ > 0.

4 ROLLING SKETCH FOR EDIT DISTANCE

In this section we will construct the rolling sketch of Theorem 1.3.
We will use two auxiliary claims. The first one addresses how much
a compression of a string w might change depending on what is
appended to it. Their proofs are omitted due to space limitations
but can be found in the full version [5].

LEMMA 4.1. Let £ € {0,...,L} and v,u,w € T*. Let w'u’
Compress(wu, £) and let w'’v’ = Compress(wo, £), where w’ is
the compression of w when compressing wu and w”’ is the com-
pression of w when compressing wo. Let t = |w’| — 3(R + 1) or
t=|wu'|—|ul —3(R+1). Thenw’[1,t] = w”[1,¢].

229

STOC ’23, June 20-23, 2023, Orlando, FL, USA

The next lemma addresses how much the overall decomposition
of a string x might change if we append a suffix z to it.

LEMMA 4.2. Letx,z € 2%, |xz| < n. LetHy,...,Hr,Cy,...,Cr, be
given. Let G, G5, ..., GY be the output of the decomposition algo-
rithm on input x, and Gi‘z, G;‘Z, el Gf,z be the output of the decom-
position algorithm on input xz using the given hash functions. Let
T =L(3R+6).

(1) GF =G* foralli=1...,s-T.

@) x| < ST feval (G2

The second part says that if x is decomposed into s grammars by
itself, then it can be recovered from the first s + T grammars for xz.
Hence, appending extra symbols to x cannot increase the number
of grammars that cover x by more than T.

Let m > k and n > 10m® be integers. A rolling sketch for a
string obtained by up-to m insertions (to the right end) and m
deletions (from the left end) from an empty word consists of three
data structures: insertion buffer, deletion buffer and a Hamming
distance sketch sk’I;I,a]?,lp, where k’ = (4T + 1)(k + 2)M, n’ = nM
and p > n'? is a chosen prime.

The insertion buffer maintains a buffer of committed grammars
Gs—47+1> Gs—4T+2s - - - » Gs and a buffer of active grammars Gi, e G;,
t < T. The deletion buffer is similar, it maintains a buffer of com-
mitted grammars Gy_41+1, Gr—4T+2, - - ., G and a buffer of active
grammars Gd, o G;i,, t’ < T. The Hamming sketch is a sketch of
grammars Gy_a7+1, Gr—2T+2, - - - » Gs—2T, each encoded as a string
of length M over the alphabet {1,...,2N}.

In addition to that, the sketch keeps track of the current value
of r and s, and remembers a collection of pair-wise independent
hash functions Cy, . .., Cr, a collection of (5D log n)-wise indepen-
dent hash functions Hy, ..., Hy, and randomness for Karp-Rabin
fingerprint to compute binary encoding of grammars. The hash
functions and the randomness of Karp-Rabin fingerprint are chosen
at random when creating the sketch for empty string. This extra
information requires O (k) bits to specify.

Initially, the committed grammars in the insertion and deletion
buffers are all treated as empty sets, there are no active grammars
in the insertion or deletion buffers sot =t =0 and s =r = 0.

For u,x € 3%, if in total a string ux was inserted into the sketch
then Gy, ..., Gs, Gi, el G; represents ux, that is ux is the concate-
nation of the evaluation of the grammars. If in total the string u was
deleted from the sketch, then Gy, ..., Gy, Gf, el Gfd represents u.
(See Fig. 3 for an illustration.)

Appending a symbol. When we append additional symbol a to the
sketch we modify input buffers as follows: We update the active
grammars G, .. G; by appending a as explained further below.
Say the update produces grammars G7/, . . ., G;,’ If ¢ < T then the
produced grammars will become the active grammars, and no more
changes are done to the sketch. Otherwise we commit the first ¢’ —T
grammars G{i, .. .,Glff_T one-by-one into the committed buffer as
grammars Ggy1, - - - , Gs4—1 and we keep the remaining grammars
as the active grammars.

Committing a grammar Gs41 into the committed buffer will trig-
ger addition of Gs_y741 into the Hamming sketch at the end of the
represented sequence of grammars (if s — 2T + 1 > 0), and removing
the grammar Gg_4741 from the committed buffer. For insertion into

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Sudatta Bhattacharya and Michal Koucky

committed grammars active grammars

Insertion buffer — Gs—art1 | Gs_or | e | G, || Gi Gi |
Groari1 | G, | Gs_arta | Gs2r | <— Hamming sketch
| Gr_arir | Gr_2r41 | G. || G¢ G4 | <—— Deletion buffer

committed grammars

active grammars

Figure 3: Rolling sketch.

the Hamming sketch, the grammar G;_,741 is encoded into binary
as in Section 3.3 and then the binary string is encoded using the
Karp-Rabin fingerprint Fxr of all the grammars Gg_471+1, - -
instead of only the grammar Gs_s7141. (Thus, a change in any of
the neighboring grammars will trigger a recovery of also the gram-
mar Gg_y7+1 When calculating a mismatch information from the
Hamming sketch.) We repeat this process for each grammar being
committed.

By the second part of Lemma 4.2 ¢’ < t + T < 2T so we will
commit at most T = O(1) grammars. It takes time O(MT) = O(k)
to prepare the binary encoding of each of the committed grammars,
and O(k?) to insert it into the Hamming sketch. The update of the
active grammars takes 5(k) time as described below. So in total
this step takes O(k?) time.

-,Gs+15

Removing a symbol. Deletion buffer works in manner similar to in-
sertion buffer, we add the removed symbol a to the active grammars,
but when committing the grammar G,41, we use Fgr-fingerprint
of all the grammars G,_4T41, . . ., Gr41 to encode grammar G,_aT41
which is then removed from the beginning of the sequence of gram-
mars represented by the Hamming sketch (if r — 2T + 1 > 0), i.e.,
we update the Hamming sketch to reflect this removal. Similarly to
appending a symbol, this step takes time O(k?).

Active grammar update. The update of active grammars Gi, s Gi
when appending a is done as follows. G, . .., G, Gi, e G; repre-
sents ux so we need to calculate the grammars for uxa. We claim
that only the active grammars might change: At some point, G
became committed so at that time there was T active grammars
following it. If at that point the grammars together represented a
string z, by appending more symbols to z we cannot change gram-
mars Gi,Gj,...,Gs according to the first part of Lemma 4.2. So
appending a to ux will affect only the active grammars.

From the analysis in the proof of Lemma 4.2 it follows that for £ €
{0,...,1}if B¥*(¢,1),..., B (¢, s:fy) is the trace of the decompo-
sition algorithm on ux at level ¢, and B¥*4(¢, 1), ..., B¥*4(¢, sz,cya)
is the trace on uxa, then their difference spans at most £(3R + 6)
last symbols of B¥¥(¢,1) - - - B¥X (¢, szfy).

So instead of decompressing the active grammars completely,
adding a and recompressing them back, we only decompress the
necessary part of each trace B¥* (¢, 1) - - - B¥* (¢, s;,cy). Let # — v; be
the starting rule of the active grammar G;. Starting from the string
v1-0vy---0;, foreach £ =1L,..., 1, we iteratively rewrite all level-¢
symbols in the string using the appropriate grammars while only
maintaining at most T last symbols of the resulting string. (Care

230

has to be taken to maintain information about any sequence a”
stretching from those T last symbols to the left.)

We add a to the resulting string and re-apply compress and split
procedures for levels 0, 1,. .., ¢ — 1 to recompress only the part of
the trace affected by modifications. As we perform the compression
of symbols we maintain a set G of all grammar rules needed for
decompression. (We initialize G with the union of all rules from
the active grammars Gi, el G; minus the starting rules, and we
iteratively add new rules coming from the recompression.) For the
recompression we need to know the context of up-to R+ 1 symbols
preceding the modified part of the trace. On the other hand, the
modification can affect the recompression of up-to R + 1 symbols
to the left from the left-most modified symbol in the trace. Those
R+ 1 symbols all happen to be within the decompressed suffix of
the trace of size at most T.

Eventually, we get a new level-L trace B4*%(L, szya —t'+1),...,
B¥Xa(L, szya), for some ¢’. Each new grammar Gj'.i is obtained by
taking the grammar GU {# — B"*4(L, szcya —t’+Jj)} and removing
from it all useless rules. This can be done in time O(|G|). (See
Section 2.1).

Overall the update of active grammars on insertion of a sin-
gle symbol will require O(LT) = O(1) evaluations of split hash
functions Hy, . .., Hy, O(LT) = O(1) evaluations of compress hash
functions Cy,...,Cr, and O(T(LT + 2;:1 |G§|)) time to produce

the new grammars. As the total size of the grammars is O(k) and
the time to evaluate Hy at a single point is also O(k), the overall
time for the update of active grammars is O(k). We provide a more
detailed description of the update procedure in the full version [5].

Edit distance evaluation. Consider strings x and y of length at most m

and edit distance at most k. Consider the rolling sketch skﬁf}jmg (x)
for x obtained by inserting symbols ux and removing syﬁlbols u,
for some u € * where |ux| < m. Consider also the rolling sketch
for y obtained by inserting symbols vy and removing symbols v, for
some v € 3* where |oy| < m. Both sketches should use the same
randomness that is to start from the same sketch for empty string.

The rolling sketch for x consists of the insertion buffer with
committed grammars G;‘,f_ AT+1° G;‘x_ AT+ G;‘x and with ac-
tive grammars G*%, .. ., G;if , and the deletion buffer with commit-

X X X o
ted grammars er_ AT4D er_ AT4 - Gl and active grammars

Gf", .. Gf,’,ﬁ t"* < T.Its Hamming sketch sketches the sequence

X X X
of grammars er—2T+1’ er—2T+2’ el Gysx—zT‘ Als;) for y, we ha\y/e
the committed insertion grammars Gsy—4T+1’ Gsy—4T+2’ e Gsy’

etc.

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching

We extend the notation so for j € {1,...,t*}, welet GX +j denote
the active grammar G*, and similarly for y. Let d* = s* + t¥ — r*
and dY = sY +tY — r¥. We assume that the hash functions used
to decompose ux and vy into grammars satisfy the probabilistic

conclusion of Theorem 3.12. That means that grammars G}, ...

and GY,... can be aligned from the right so G;.‘ corresponds to
G]?'J—dx+dy’ for j > r* (they might not be identical because of the

edit operations). Without loss of generality we assume that d* > dY.

Before proceeding with the algorithm we first observe that d* —
d¥ < 2T.Let p* > r* + 1 be the index of the grammar G¥, which
produces the first symbol of x when we evaluate all the grammars.
Similarly, p¥ > r¥ + 1 is the index of Ggy which produces the first
symbol of y. By Lemma 4.2 applied on x «<— u and z < x we get
that p¥ < r¥+t*+T < r¥ +2T, and similarly p¥ < rY+2T. By our
assumption on success of Theorem 3.12, s¥ +t* — p* = s¥ —t¥ — p¥.
Hence, s* +t*—s¥—t¥Y = p*—p¥ < r*+2T—r¥-1 < r*—r¥+(2T-1).
Thusd*—d¥Y = s*+t¥ —r*—sY—tY+r¥ < r*—r¥+(2T-1)-r*+r¥ <
2T - 1.

If d* < 10T, then we can recover all the grammars er_ZT oH
Glx_yp4ps -+ > Gox_op from their Hamming sketch by constructing
an auxiliary dummy Hamming sketch sk’ for a sequence of 1’s of
length (s¥ —r*)M and comparing the two sketches. (M is the length
of the encoding of each grammar.) Their mismatch information

X

reveals all the grammars Gfx—zTﬂ’ el G;CX—ZT Since dY < d*, we
can similarly recover all the grammars G7,,_,.. ..., Gsyy—zT from
their Hamming sketch.

We therefore know all the grammars Gfx "y Gfx FOTP G;‘x o
and nyﬂ, ny”, el Gsyyﬁy. We know grammars Gfx, el G[d,iﬁ
and G;iy, ., Gf,z too, that need to be subtracted from our grammars.

As noted in Section 2.1, for each of the grammars we can calculate
its evaluation size. From that information we can easily identify p*
and pY, and shorten the grammars G;x and G;;/y to produce only
symbols of x and y, respectively. We can combine all the grammars
of x into one grammar G¥*, and all the grammars of y into GY, and
run the algorithm of Ganesh, Kociumaka, Lincoln and Saha [14] to
calculate the edit distance of x and y. Since T = O(1), that will take
time O(|G¥| + |GY| + k?) = O(k?).

If d* > 10T then we proceed as follows. Clearly, dY > 8T, so s¥Y —
r¥ > 7T and s* = r* 2 9T. Thus Gl 7, Gix_opip0 -+ Gax 1
and Gryy—2T+1’Gryy—2T+2’ .. .,Gsyysz consist of at least 7T gram-
mars each, and those grammars are sketched by their Hamming
sketches. Although we assume that there is a correspondence be-
tween the grammar G}C , for j > r*, and GY

Jj—d*+dY

X X y y ieali ;
Gr’{—ZT+1’ oo Gi_yrand Gly_,p ... Goy_,p are ml.sahgfled in
their Hamming sketches by d* — d¥ grammars. To rectify this mis-

alignment, we prepend (d* — d¥)M copies of symbol 1 into the

the sequences

Yy Yy 0X
sketch for Gry—2T+1’ el Gsy—zT' Furthermore, if t* < tY then we
append (tY — t¥)M ones into the sketch for ny72T+1, .. ,,Gsyysz,

to rectify the difference in the number of sketched grammars. Oth-

erwise if +* > tY then we append (t* — tY)M ones into the sketch
X X

for Gl _ypyr o G ar

Now we can calculate the mismatch information from the Ham-

ming sketches to find out the pairs of grammars G and G]y_ dxady’
j = r* + 1, that are different.

231

STOC ’23, June 20-23, 2023, Orlando, FL, USA
: X X X y :
If for some j € {r*+1,...,r*+2T}, Gj and Gj—dX+dy differ then

because we use the Karp-Rabin fingerprint of the two grammars
to encode also the neighboring grammars up-to distance 2T, we

recover from the sketch all the grammars G and GY , for
J j—dX+dY
Jj =r*+1,...,r" + 2T. By counting the evaluation size of each

of those grammars and comparing it with the evaluation size of
active grammars in deletion buffers of x and y, resp., we identify
p* and p¥, and how much the grammars G¥, and G, should be
shortened to produce only symbols of x and y. After shortening G;x

and Ggy we calculate the edit distance of their evaluation. We sum
it up with the edit distance of evaluation of each pair of grammars
G}f and G;?'_ gx gy fOr j > p*, that was identified as mismatch by
the Hamming distance sketch or that belongs among the active
grammars in insertion buffers of either x or y. There will be at most
T mismatched pairs involving the active grammars, and (4T + 1)k
pairs identified by the Hamming sketch.

In the remaining case when Gj.c and GV

Jj—dx+dY
all j € {r* +1,...,r* + 2T}, we might not be able to recover all
those grammars from the Hamming sketches, and we might not be

able to identify p* and pY. However, since G¥, = ny, we know

are identical for

that the part of x produced by G;]‘x is either a prefix or suffix of the

part of y produced by G;/y. The difference in the size of the two
parts is the edit distance of the two parts. The difference is given by
the difference between the total evaluation size of active grammars
in the deletion buffer of x, and the total evaluation size of active

grammars in the deletion buffer of y together with grammars Gry _p
y

for j=0,...,d* —dY — 1. The latter grammars are in the commit-
ted deletion buffer of y and they agree with G ... G| yx_ -

Hence, the edit distance of the parts of x and y coming from G;x

and ny can be determined. All other mismatching pairs of gram-
mars are identified by the Hamming sketch or are among active
grammars of the insertion buffers. So we proceed as in the previous
case to calculate their contribution to the edit distance of x and y.
The edit distance of x and y is the sum of those edit distances.

We see that in both the cases we need the Hamming sketch to
be able to recover at least T mismatched grammars at the very
end caused by the dummy padding, 4T grammars at the beginning

corresponding to GfX—2T+1’ Gfx—zﬂ.z’ e, GfX+2T, 2T neighbors of
Gfx +o7 to the right, and at most (4T + 1)k mismatched grammars

caused by the edit operations between x and y. This is less than
M(4T + 1) (k + 2) which is the number of mismatches our Hamming
sketch can recover.

The time needed to compare the sketched strings can be bounded
as follows: In total the procedure generates at most O(Tk) pairs of
grammars of total size O(k?) on which it runs edit distance com-
putation from Proposition 2.1. If those edit distance computations
take total time more than O (k?) we can terminate them as we know
the overall edit distance is larger than k. Recovering differing gram-
mars from the Hamming distance sketch takes time 5(k')= 5(k2).
Their follow-up processing such as counting their evaluation size
and shortening them is proportional to their total size which is
O(k?). Hence, the time for comparing strings is O(k?).

STOC ’23, June 20-23, 2023, Orlando, FL, USA

Failure probability. The analysis of the failure probability is omitted
due to space limitations and can be found in the full version [5].

5 TABLE OF PARAMETERS

l Definition [Asymptotics [Meaning Reference ‘
R=1log" T'| +20 log*n compression| Sec. 2.3
locality
L=Tlogs,nl+3 |logn recursion Sec. 3,
depth Cor. 3.3

D =110c—R(L+1)k | klognlog*n | 1/splitting | Sec. 3,
probability | Lem. 3.4
S=30DLlogn+6 | klog®nlog*n| maximum | Sec. 3,

grammar Thm. 3.1
size

M =3S-[1+log T[] | klog*nlog* n| grammar Sec. 3.3
encoding
size

T =L(3R+6) log nlog® n locality Sec. 4,
of suffix | Lem. 4.2
changes

Nx>n’ n3 Fxr range | Sec.3.3
size

ACKNOWLEDGEMENTS

The authors benefited greatly from discussions with Nicole Wein
who took part in the initial stages of this project. The second author
also benefited from many discussions on edit distance with Mike
Saks. We are grateful to Tomasz Kociumaka for providing us with
a reference for Proposition 2.1. We thank anonymous reviewers for
their comments.

REFERENCES

[1] Alexandr Andoni and Negev Shekel Nosatzki. 2020. Edit Distance in Near-Linear

Time: it’s a Constant Factor. In 61st IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy

Irani (Ed.). IEEE, 990-1001. https://doi.org/10.1109/FOCS46700.2020.00096

Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in

Strongly Subquadratic Time (Unless SETH is False). In Proceedings of the Forty-

Seventh Annual ACM on Symposium on Theory of Computing (Portland, Oregon,

USA) (STOC ’15). ACM, New York, NY, USA, 51-58.

[3] Tugkan Batu, Funda Ergun, and Cenk Sahinalp. 2006. Oblivious String Embed-
dings and Edit Distance Approximations. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm (Miami, Florida) (SODA °06). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 792-801.

[4] Djamal Belazzougui and Qin Zhang. 2016. Edit Distance: Sketching, Streaming,
and Document Exchange. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS). 51-60. https://doi.org/10.1109/FOCS.2016.15

[5] Sudatta Bhattacharya and Michal Koucky. 2023. Locally consistent decomposition
of strings with applications to edit distance sketching. CoRR abs/2302.04475 (2023).
arXiv:2302.04475

[6] Or Birenzwige, Shay Golan, and Ely Porat. 2020. Locally Consistent Parsing for
Text Indexing in Small Space. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
Shuchi Chawla (Ed.). SIAM, 607-626. https://doi.org/10.1137/1.9781611975994.37

[7] Joshua Brakensiek and Aviad Rubinstein. 2020. Constant-factor approximation

of near-linear edit distance in near-linear time. In Proccedings of the 52nd An-

nual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Konstantin

Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia

Chuzhoy (Eds.). ACM, 685-698. https://doi.org/10.1145/3357713.3384282

Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucky, and

Michael E. Saks. 2018. Approximating Edit Distance within Constant Factor in

Truly Sub-Quadratic Time. In 59th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2018. 979-990. https://doi.org/10.1109/FOCS.2018.00096

&

=

232

—_

9]

[10

[11

[13]

(14]

(15]

[17

[18

[19]

[21

[22]

[23

[24]

[25

[26

[27

(28]

[29

[30

Sudatta Bhattacharya and Michal Koucky

Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucky. 2016. Stream-
ing algorithms for embedding and computing edit distance in the low distance
regime. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 712-725.
Raphaél Clifford, Tomasz Kociumaka, and Ely Porat. 2019. The streaming k-
mismatch problem. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019. SIAM, 1106-1125. https://doi.org/10.1137/1.
9781611975482.68

Richard Cole and Uzi Vishkin. 1986. Deterministic coin tossing and accelerat-
ing cascades: micro and macro techniques for designing parallel algorithms. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing
(STOC). 206-219. https://doi.org/10.1145/12130.12151

Graham Cormode and S. Muthukrishnan. 2002. The string edit distance match-
ing problem with moves. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA.
667-676.

Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J Strauss, and
Rebecca N Wright. 2006. Secure multiparty computation of approximations. ACM
transactions on Algorithms (TALG) 2, 3 (2006), 435-472.

Arun Ganesh, Tomasz Kociumaka, Andrea Lincoln, and Barna Saha. 2022. How
Compression and Approximation Affect Efficiency in String Distance Measures.
In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA.
2867-2919. https://doi.org/10.1137/1.9781611977073.112

Szymon Grabowski. 2016. New tabulation and sparse dynamic programming
based techniques for sequence similarity problems. Discrete Applied Mathematics
212 (2016), 96-103.

Ce Jin, Jelani Nelson, and Kewen Wu. 2021. An Improved Sketching Algorithm for
Edit Distance. In 38th International Symposium on Theoretical Aspects of Computer
Science, STACS 2021, (LIPIcs, Vol. 187). 45:1-45:16. https://doi.org/10.4230/LIPIcs.
STACS.2021.45

Hossein Jowhari. 2012. Efficient Communication Protocols for Deciding Edit
Distance. In Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana,
Slovenia, September 10-12, 2012. Proceedings. 648—658.

Richard M. Karp and Michael O. Rabin. 1987. Efficient randomized pattern-
matching algorithms. IBM Journal of Research and Development 31, 2 (1987),
249-260. https://doi.org/10.1147/rd.312.0249

Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. 2021. Small-space and
streaming pattern matching with k edits. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS). 885-896. https://doi.org/10.1109/
FOCS52979.2021.00090

Michal Koucky and Michael E. Saks. 2020. Constant factor approximations to
edit distance on far input pairs in nearly linear time. In Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy (Eds.). ACM, 699-712. https://doi.org/10.1145/3357713.3384307

Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. 1998. Efficient search for
approximate nearest neighbor in high dimensional spaces. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing. 614-623.

Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. 1998. Incremental
String Comparison. SIAM J. Comput. 27, 2 (April 1998), 557-582.

Nathan Linial. 1987. Distributive Graph Algorithms-Global Solutions from Local
Data. In 28th Annual Symposium on Foundations of Computer Science, FOCS. IEEE
Computer Society, 331-335. https://doi.org/10.1109/SFCS.1987.20

Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput.
21, 1(1992), 193-201. https://doi.org/10.1137/0221015

William J. Masek and Michael S. Paterson. 1980. A faster algorithm computing
string edit distances. J. Comput. System Sci. 20, 1 (1980), 18 - 31.

Rafail Ostrovsky and Yuval Rabani. 2007. Low distortion embeddings for edit
distance. J. ACM 54, 5 (2007), 23. https://doi.org/10.1145/1284320.1284322

Ely Porat and Ohad Lipsky. 2007. Improved Sketching of Hamming Distance with
Error Correcting. In Combinatorial Pattern Matching, 18th Annual Symposium,
CPM, Vol. 4580. Springer, 173-182. https://doi.org/10.1007/978-3-540-73437-6_19
Siileyman Cenk Sahinalp and Uzi Vishkin. 1994. Symmetry breaking for suffix
tree construction. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada. ACM, 300-309.
https://doi.org/10.1145/195058.195164

Robert A. Wagner and Michael J. Fischer. 1974. The String-to-String Correction
Problem. 7. ACM 21, 1 (Jan. 1974), 168-173.

Haoyu Zhang and Qin Zhang. 2019. MinJoin: Efficient Edit Similarity Joins
via Local Hash Minima. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Anchorage, AK, USA) (KDD
’19). Association for Computing Machinery, New York, NY, USA, 1093-1103.
https://doi.org/10.1145/3292500.3330853

Received 2022-11-07; accepted 2023-02-06

https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1109/FOCS.2016.15
https://arxiv.org/abs/2302.04475
https://doi.org/10.1137/1.9781611975994.37
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.1145/12130.12151
https://doi.org/10.1137/1.9781611977073.112
https://doi.org/10.4230/LIPIcs.STACS.2021.45
https://doi.org/10.4230/LIPIcs.STACS.2021.45
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.1145/1284320.1284322
https://doi.org/10.1007/978-3-540-73437-6_19
https://doi.org/10.1145/195058.195164
https://doi.org/10.1145/3292500.3330853

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Techniques

	2 Notations and Preliminaries
	2.1 Grammars
	2.2 Rolling Hamming Distance Sketch
	2.3 Locally Consistent Coloring

	3 Decomposition Algorithm
	3.1 Algorithm Description
	3.2 Correctness of the Decomposition Algorithm
	3.3 Encoding a Grammar
	3.4 Edit Distance Sketch

	4 Rolling Sketch for Edit Distance
	5 Table of Parameters
	References

