
Locally Consistent Decomposition of Strings with Applications to
Edit Distance Sketching

Sudatta Bhattacharya∗

sudatta@iuuk.m�.cuni.cz
Computer Science Institute of Charles University

Prague, Czech Republic

Michal Koucký†

koucky@iuuk.m�.cuni.cz
Computer Science Institute of Charles University

Prague, Czech Republic

ABSTRACT

In this paper we provide a new locally consistent decomposition

of strings. Each string G is decomposed into blocks that can be

described by grammars of size $̃ (:) (using some amount of ran-

domness). If we take two strings G and ~ of edit distance at most :

then their block decomposition uses the same number of grammars

and the 8-th grammar of G is the same as the 8-th grammar of ~

except for at most : indexes 8 . The edit distance of G and ~ equals

to the sum of edit distances of pairs of blocks where G and ~ di�er.

Our decomposition can be used to design a sketch of size $̃ (:2)
for edit distance, and also a rolling sketch for edit distance of size

$̃ (:2). The rolling sketch allows to update the sketched string by

appending a symbol or removing a symbol from the beginning of

the string.

CCS CONCEPTS

• Theory of computation→ Sketching and sampling.

KEYWORDS

Edit distance, sketching, string decomposition, locally consistent

parsing

ACM Reference Format:

Sudatta Bhattacharya and Michal Koucký. 2023. Locally Consistent De-

composition of Strings with Applications to Edit Distance Sketching. In

Proceedings of the 55th Annual ACM Symposium on Theory of Computing

(STOC ’23), June 20–23, 2023, Orlando, FL, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3564246.3585239

1 INTRODUCTION

Edit distance is a measure of similarity of two strings. It measures

how many symbols one has to insert, delete or substitute in a string

G to get a string ~. The measure has many applications from text

processing to bioinformatics. The edit distance ED(G,~) of two
strings G and~ can be computed in time$ (=2) by a classic dynamic

∗Partially supported by the Grant Agency of the Czech Republic under the grant
agreement no. 19-27871X.
†Partially supported by the Grant Agency of the Czech Republic under the grant
agreement no. 19-27871X. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie
grant agreement No. 823748 (H2020-MSCA-RISE project CoSP).

STOC ’23, June 20–23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9913-5/23/06.
https://doi.org/10.1145/3564246.3585239

programming algorithm [29]. Save for poly-log improvements in the

running time [15, 25], the best known running time for edit distance

computation is$ (=+:2) [22], where: = ED(G,~). Assuming Strong

Exponential Time Hypothesis (SETH) this running time cannot be

substantially improved [2]. The conditional lower bound does not

exclude some approximation algorithms, though, and there was a

recent progress on computing edit distance in almost-linear time

to within some constant factor approximation [1, 7, 8, 20].

Another problem for edit distance that saw a major progress in

recent years is sketching. In sketching we want to map a string

G to a short sketch skED
=,:
(G) so that from sketches skED

=,:
(G) and

skED
=,:
(~) of two strings G and ~ we can compute their edit dis-

tance, either exactly or approximately. Apriori it is not even ob-

vious that short sketches for edit distance exist. In a surprising

construction, Belazzougui and Zhang [4] gave an exact edit dis-

tance sketch of size $ (:8 log5 =) bits. The sketch size was then

improved to $ (:3 log2 (=
X
) log=) bits by Jin, Nelson and Wu [16],

where the ED(G,~) was computed exactly from the sketches with

probability at least 1 − X , if ED(G,~) ≤ : . The current best sketch

is of size $ (:2 log3 =) bits and was given by Kociumaka, Porat and

Starikovskaya [19]. [16] gives a lower bound Ω(:) on the size of a

sketch for exact edit distance.

The major problem in edit distance computation as well as in

sketching is how to align the matching parts of two strings G and

~. Finding an optimal alignment of two strings is the crux in the

computation of edit distance and its sketching. In sketching �nding

a good alignment is even more challenging as we do not have both

strings in our hands simultaneously to look for the matching. To the

best of our knowledge, to resolve this issue all edit distance sketches

use CGK random walk on strings [9] which allows to embed the edit

distance metrics into Hamming distance metrics with distortion

$ (:). The walk implicitly �xes some reasonably good matching

between the two strings. Going from the CGK random walk to a

sketch is non-trivial undertaking and all three sketch results rely

on sophisticated machinery to achieve it.

In this paper we provide a new technique to align two strings G

and ~ in oblivious manner. In nutshell, we provide a decomposition

procedure that breaks G and ~ into the same number of “short”

blocks so that at most : pairs of blocks in the decomposition of

G and ~ di�er, and all other pairs of blocks are matching in an

optimal alignment. So the edit distance of G and ~ is the sum of edit

distances of the di�ering blocks. To be more speci�c our blocks

are not short in their length but they are short in the sense that

each of them can be described by a context-free grammar of size

$̃ (:). Our decomposition algorithm constructs the grammars. Our

decomposition is based on locally consistent parsing of strings a

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

219

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3564246.3585239
https://doi.org/10.1145/3564246.3585239
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3564246.3585239&domain=pdf&date_stamp=2023-06-02

STOC ’23, June 20–23, 2023, Orlando, FL, USA Suda�a Bha�acharya and Michal Koucký

technique similar to the one used in [3, 6, 17, 28] and hash based

partitioning similar to [30]. Our main technical result is:

Theorem 1.1 (String decomposition). There is an algorithm

running in time $̃ (=:) that for each string G of length at most =

produces grammars �G
1 , . . . ,�

G
B such that with probability at least

1−$ (1/
√
=), G = eval(�G

1) · · · eval(�
G
B) and each of the grammars is

of size $̃ (:). Furthermore, for any two strings G and ~ of edit distance

at most : with grammars�G
1 , . . . ,�

G
B and�

~
1 , . . . ,�

~
B′ , resp., that are

produced by the algorithm using the same randomness, the following

is true simultaneously with probability at least 4/5:
(1) B = B ′,
(2) �G

8 = �
~
8 , for all 8 ∈ {1, . . . , B} except for at most : indices 8 ,

and

(3) ED(G,~) = ∑
8 ED(eval(�G

8), eval(�
~
8)).

Here, for a grammar � , eval(�) denotes its evaluation. Our de-
composition can be used immediately to give an embedding of edit

distance into Hamming distance with distortion$ (:). It also readily
yields a sketch for exact edit distance of size $̃ (:2):

Theorem 1.2 (Sketch for edit distance). There is a randomized

sketching algorithm skED
=,:

that on an input string G of length at most

= produces a sketch skED
=,:
(G) of size $̃ (:2) in time $̃ (=:), and a

comparison algorithm running in time $̃ (:2) such that given two

sketches skED
=,:
(G) and skED

=,:
(~) for two strings G and ~ of length at

most= obtained using the same randomness of the sketching algorithm

outputs with probability at least 1 − 1/= (over the randomness of the

sketching and comparison algorithms) the edit distance of G and ~ if

it is less than : and∞ otherwise.

Furthermore, we can also provide a rolling sketch, a sketch in

which we can update the stored string by appending a symbol or

removing its �rst symbol.

Theorem 1.3 (Rolling sketch for edit distance). There are al-

gorithmsAppend(B:G , 0), Remove(B:0G , 0), andCompare(B:G , B:~)
such that for integer parameters : ≤ <:

(1) Given a sketch B:G representing a string G and a symbol 0,

Append(B:G , 0) outputs a sketch B:G0 for the string G0 in time

$̃ (:2).
(2) Given a sketch B:0G representing a string 0G for a symbol 0,

Remove(B:0G , 0) outputs a sketch B:G for the string G in time

$̃ (:2).
(3) Given two sketches B:G and B:~ representing strings G and

~ obtained from the same random sketch for empty string

using two sequences of at most < operations Append and

Remove, Compare(B:G , B:~) calculates the edit distance of
G and ~ if it is less than : , and outputs ∞ otherwise. The

algorithm Compare(B:G , B:~) runs in time $̃ (:2).
All the sketches are of size $̃ (:2). The probability that any of the

algorithms fails or produces incorrect output is at most 1/< over

the initial randomness of the sketch for empty string and internal

randomness of the algorithms.

We remark that we did not attempt to optimize the running time

of either of our algorithms, or poly-log factors in the sketch sizes,

and we believe that both parameters can be readily improved by

usual amortization techniques of processing symbols in batches

of size $̃ (:). We believe that building the sketch in the �rst theo-

rem can be done in time $̃ (=) using fast multi-point polynomial

evaluation for $̃ (:)-wise independent hash functions, the update

time in the last theorem can be improved to $̃ (1) by bu�ering $̃ (:)
symbols that shall be inserted or removed without a�ecting the

other parameters of the algorithm.

Another distinguishing feature of our decomposition procedure

compared to the technique of CGK random walks is its paralleliz-

ability. CGK random walk seems inherently sequential whereas our

decomposition procedure can be easily parallelized. We believe that

our decomposition will allow for further applications beyond our

simple sketches.

1.1 Related Work

The problem of embedding edit distance to other distance measures,

like Hamming distance, ℓ1, etc. has been studied extensively. In [9],

the authors have given a randomized embedding from edit distance

to Hamming distance, where any string G ∈ {0, 1}= can be mapped

to a string 5 (G) ∈ {0, 1}3= , given a random string A ∈ {0, 1}log2 = ,
such that, ED(G,~)/2 ≤ Ham(5 (G), 5 (~)) ≤ $ (ED(G,~)2) with
probability at least 2/3. Batu, Ergun and Sahinalp [3] have in-

troduced a dimensionality reduction technique, where any string

G of length = can be mapped to a string 5 (G) of length at most

=/A , for any parameter A , with a distortion of $̃ (A). They used the

locally consistent parsing technique for their embedding. Ostro-

vsky and Rabani [26] gave an embedding from edit distance to

ℓ1 distance with a distortion of $ (
√
log= log log=). Jowhari [17]

also gave a randomized embedding from edit distance to ℓ1 dis-

tance with a distortion of $ (log= log∗ =). He used the embedding

given by Cormode and Muthukrishnan [12] who showed that any

string G of length = can be mapped to a vector 5 (G) of length
< = $ (2= log=), such that for any pair of strings G,~ of length =

each, ED(G,~)/2 ≤ ∥ 5 (G) − 5 (~)∥ℓ1 ≤ $ (log= log∗ =) · ED(G,~).
Since the size of the vector was too large, [17] used random hashing

to get his �nal embedding.

1.2 Our Techniques

We �rst provide the intuition for our technique. We would like to

break a string G into small blocks obliviously so that when a string

~ is broken by the same procedure, the di�erence between G and ~

caused by the edit operations is con�ned within the corresponding

blocks of G and ~, and the overall decomposition is not a�ected

by them. For random binary strings G and ~ this could be done

fairly easily: look on all the (overlapping) windows of log= con-

secutive bits in each of the strings and for each window decide

at random whether to make a break at that window or not. To

make it consistent between G and ~ use some random hash func-

tion � : {0, 1}log= → {0, . . . , � − 1} so that if the hash function

evaluates to 0 on a given window then start a next block of the

decomposition. If we chose � suitably, say � ≥ 10: log=, then we

are unlikely to start a new block in any window which is a�ected

by the the at most : edit operations on G and ~. In that case we

obtain the desired decomposition. Hence, decomposing random

strings G and ~ is easy.

220

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching STOC ’23, June 20–23, 2023, Orlando, FL, USA

The issue is what to do with non-random strings. Consider for

example strings G and ~ that are very sparse, so they contain
√
=

ones sprinkled within the vast ocean of zeros. The hash function �

will see mostly windows of 0’s and occasionally a window of the

form 0810log(=)−8−1. The decomposition will have no e�ect on such

strings despite the fact that the string might contain Ω(
√
=) bits of

entropy.

However, we can compress such sparse strings: replace stretches

of zeros by some binary encoded information about their length, and

try to break the strings again. Still, this will fail if in our example the

stretches of zeros are replaced by stretches of some repeated pattern

such as (01)∗. So we need slightly more general compression which

will compress any log= bits into log(=)/2 bits. By repeating the

sequence of steps: split and compress, we will eventually get the

desired decomposition of each string.

Our actual algorithm mimics the above intuition. It is techni-

cally easier to work with a larger alphabet, so we extend the input

alphabet Σ by adding special compression symbols into the work

alphabet Γ. (Without loss of generalization we can assume that Σ

is of size $ (=3) otherwise we can hash each symbol of our input

strings using some perfect hash function into an alphabet of size

$ (=3) without a�ecting the edit distance of a given pair of strings.)

To split a string we will use a random $̃ (:)-wise independent hash
function � : Γ2 → {0, . . . , � − 1}, for � = Θ(: log=). If the hash
function is zero on a pair of consecutive symbols in a string, we

start a new block of the decomposition on the �rst symbol in the

pair.

Then in each resulting block we replace stretches of repeated

symbols by a special compression symbol from Γ representing the

block, and we use a pair-wise independent hash function � : Γ2 →
(Γ \ Σ) to compress non-overlapping pairs of symbols into one

symbol. This latter step requires some care as we have to make

sure that we select non-overlapping pairs in the same way in G

and ~. For the selection of non-overlapping pairs we use the locally

consistent coloring of Cole and Vishkin [11, 23, 24] where the

selection of pairs depends only on the context of$ (log∗ =) symbols.

The compression reduces the size of each block by a factor of 2/3.
We repeat the compress and split process for $ (log=) iterations
until each compressed block of G is of size at most 2. Decompression

of each block then gives us the desired decomposition of G . (See

Fig. 1 for an illustration.)

It is natural and convenient to represent each of the blocks by

a context-free grammar which corresponds to the compression

process. We can argue that the grammars will be of size$ (� log=)
with high probability. So we can represent each string by a sequence

of small grammars so that if G and ~ are at edit distance at most :

then at most : pairs of their grammars will di�er, and the sum of

the edit distances of di�ering pairs is the edit distance of G and ~.

Note, that edit distance of two strings represented by context-free

grammars can be computed e�ciently [14]. These are the main

ideas behind our decomposition algorithm, and we provide more

details in Section 3

Building a sketch from the string decomposition is straightfor-

ward: We encode each grammar in binary using �xed number of

bits, and we use o�-the-shelf sketch for Hamming distance to sketch

the sequence of grammars. As the Hamming distance sketch does

not recover identical bits but only the mismatched bits we make

sure that if two grammars di�er then their binary encoding di�er

in every bit. Over binary alphabet this might be impossible but over

large alphabets one could use error-correcting codes to achieve the

desired e�ect of recovering the di�ering grammars; for simplicity

we use the Karp-Rabin �ngerprint of the whole grammar to encode

the binary 0 and 1 distinctly. See Section 3.3 for the details of our

encoding and Section 3.4 for details of the sketch for edit distance.

To design a rolling sketch for edit distance where we can extend

the represented string by a new symbol or repeatedly remove the

�rst symbol of the represented string we will employ our decom-

position technique together with the rolling sketch for Hamming

distance of Cli�ord, Kociumaka, and Porat [10]. We will argue that

appending a new symbol to a string a�ects only some �xed number

of grammars in the decomposition of a string. There is a certain

threshold) so that except for the last) grammars the decompo-

sition of a string stays the same regardless of how many other

symbols are appended. Hence, we will keep a bu�er of at most)

active grammars corresponding to the recently added symbols, and

upon addition of a new symbol we will only update those gram-

mars. We are guaranteed that the grammars before this threshold

will stay the same forever, so we can commit them into the rolling

Hamming sketch (in the form of their binary encoding.) Similarly,

we will keep a bu�er of up-to) active grammars that capture the

symbols that were deleted from the sketch most recently. Once they

become “mature” enough we can commit them by removing their

binary encoding from the rolling Hamming sketch. (See Fig. 3 for

an illustration.) This allows to maintain a rolling sketch for edit

distance.

Evaluation of an edit distance query on two rolling sketches will

use their Hamming sketch to recover di�ering committed grammars.

Together with the active grammars of inserted and deleted symbols

this provides enough information for evaluating the edit distance

query. Technical details are explained in Section 4. In Section 5 we

give a table of parameters used throughout the paper.

2 NOTATIONS AND PRELIMINARIES

For any string G = G1G2G2 . . . G= and integers ?, @, G [?] denotes
G? , G [?, @] represents substring G ′ = G? . . . G@ of G , and G [?, @) =
G [?, @ − 1]. If @ < ? , then G [?, @] is the empty string Y. G [?, . . .]
represents G [?, |G |], where |G | is the length of G . "·"-operator is
used to denote concatenation, e.g G · ~ is the concatenation of

two strings G and ~. Dict(G) = {G [8, 8 + 1], 8 ∈ [= − 1]}, is the
dictionary of string G , which stores all pairs of consecutive symbols

that appear in G . For strings G and ~, ED(G,~) is the minimum

number of modi�cations (edit operations) required to change G into

~, where a single modi�cation can be adding a character, deleting

a character or substituting a character in G . All logarithms are

based-2 unless stated otherwise. For integers ? > @,
∑@
8=? 08 = 0 by

de�nition regardless of 08 ’s.

2.1 Grammars

Let Σ ⊆ Γ be two alphabets and # ∉ Γ. A grammar � is a set of

rules of the type 2 → 01 or 2 → 0A , where 2 ∈ (Γ ∪ {#}) \ Σ,
0, 1 ∈ Γ and A ∈ N. 2 is the left hand side of the rule, and 01

or 0A is the right hand side of the rule. # is the starting symbol.

221

STOC ’23, June 20–23, 2023, Orlando, FL, USA Suda�a Bha�acharya and Michal Koucký

The size |� | of the grammar is the number of rules in � . We only

consider grammars where each 0 ∈ Γ∪{#} appears on the left hand

side of at most one rule of � , we call such grammars deterministic.

(We assume that rules of the form 2 → 0A are stored in implicit

(compressed) form.) The eval(�) is the string from Σ
∗ obtained

from # by iterative rewriting of the intermediate results by the

rules from � . If the rewriting process never stops or stops with

a string not from Σ
∗, eval(�) is unde�ned. Observe, that we can

replace each rule of the type 2 → 0A by a collection of at most

2⌈log A⌉ new rules of the other type using some auxiliary symbols.

Hence, for each grammar� there is another grammar� ′ using only
the �rst type of the rules such that eval(�) = eval(� ′) and |� ′ | ≤
|� | ·2⌈log |eval(�) |⌉. Using a depth-�rst traversal of a deterministic

grammar � we can calculate its evaluation size |eval(�) | in time

$ (|� |). Given a deterministic grammar � and an integer< less or

equal to its evaluation size, we can construct in time$ (|� |) another
grammar � ′ of size $ (|� |) such that eval(� ′) = eval(�) [<, . . .].
� ′ will use some new auxiliary symbols. Given a deterministic

grammar� , using a depth-�rst traversal on symbols reachable from

the starting symbol # we can identify in time $ (|� |) the smallest

sub-grammar � ′ ⊆ � with the same evaluation.

We will use the following observation of Ganesh, Kociumaka,

Lincoln and Saha [14]:

Proposition 2.1 ([14]). There is an algorithm that on input of two

grammars �G and �~ of size at most< computes the edit distance

: of eval(�G) and eval(�~) in time $ ((< + :2) · poly(log< + =)),
where = = |eval(�G) | + |eval(�~) |.

2.2 Rolling Hamming Distance Sketch

For two strings G and~ of the same length, we de�ne theirmismatch

information MIS(G,~) = {(8, G [8], ~ [8]); 8 ∈ {1, . . . , |G |} and G [8] ≠
~ [8]}. The Hamming distance of G and~ isHam(G,~) = |MIS(G,~) |.

There exist various sketches for Hamming distance, which allow

to compute Hamming distance with low error probability [13, 21].

Moreover, [10, 27] also allow to retrieve the mismatch informa-

tion. For our purposes we will use the sketch given by Cli�ord,

Kociumaka, and Porat [10].

Let : ≤ = be integers and ? ≥ =3 be a prime. [10] give a ran-

domized sketch for Hamming distance skHam
=,:,?

: {1, . . . , ? − 1}∗ →
{0, . . . , ? − 1}:+4 computable in time $̃ (=) with the following prop-

erties.1

Proposition 2.2 ([10]). There is a randomized algorithm working

in time $ (: log3 ?) that given sketches skHam
=,:,?
(G) and skHam

=,:,?
(~) of

two strings G and ~ of length ℓ ≤ = constructed using the same ran-

domness decides whether Ham(G,~) ≤ : , and if so returnsMIS(G,~),
with probability of error at most 1/= over the randomness of the

sketches and the internal randomness of the algorithm.

They also construct the following update procedures for their

sketch. We will use them to construct a rolling sketch for edit

distance.

1Cli�ord, Kociumaka and Porat have the sketch size only : + 3 elements but we
include as an extra item the randomness of the sketch, which is a single element from
{0, . . . , ? − 1} used to compute Karp-Rabin �ngerprint.

Proposition 2.3 (Lemma 2.3 of [10]). For G ∈ {1, . . . , ?}∗ of
length less than = and 0 ∈ {1, . . . , ?}, in time $ (: log?) we can
compute:

(1) skHam
=,:,?
(G0) and skHam

=,:,?
(0G), given skHam

=,:,?
(G) and 0.

(2) skHam
=,:,?
(G) given skHam

=,:,?
(G0) or skHam

=,:,?
(0G), and 0.

Corollary 2.5 of [10] states that appending a character to a sketch

of G can be done even faster namely in amortized time $ (log?).

2.3 Locally Consistent Coloring

The following color reduction procedure allows for locally consis-

tent parsing of strings. The technique was originally proposed by

Cole and Vishkin [11] and further studied by Linial [23, 24].

Proposition 2.4 ([11, 23, 24]). There exists a function �CVL :

Γ
∗ → {1, 2, 3}∗ with the following properties. Let ' = log∗ |Γ | + 20.

For each string G ∈ Γ∗ in which no two consecutive symbols are the

same:

(1) |�CVL (G) | = |G | and �CVL (G) can be computed in time $ (' ·
|G |).

(2) For 8 ∈ {1, . . . , |G |}, the 8-th symbol of �CVL (G) is a function
of symbols of G only in positions {8 − ', 8 − ' + 1 . . . , 8 + '}.

(3) No two consecutive symbols of �CVL (G) are the same.

(4) Out of every three consecutive symbols of �CVL (G) at least one
of them is 1.

(5) If |G | = 1 then �CVL (G) = 3, and otherwise �CVL (G) starts by
1 and ends by either 2 or 3.

The �rst three items are standard for ' = log∗ |Γ | + 10. The other
two can be obtained by a simple modi�cation of the output of the

standard function.

3 DECOMPOSITION ALGORITHM

In this section we describe our main technical tool that we have

developed. It is a randomized procedure that splits a string G into

blocks �G1 , �
G
2 , . . . , �

G
B and for each block it produces a grammar

of size at most (= $̃ (:). Furthermore, if �G1 , �
G
2 , . . . , �

G
B is the

decomposition for a string G and �
~
1 , �

~
2 , . . . , �

G
B′ is the decompo-

sition for a string ~, obtained using the same randomness, where

ED(G,~) ≤ : then with good probability, B = B ′ and �G8 = �
~
8 for

all but : indices 8 . The edit distance of G and ~ can be calculated as

ED(G,~) = ∑
8 ED(�G8 , �

~
8) where 8 ranges over the di�ering blocks.

First we provide an overview of the algorithm, speci�c details

are given in the next sub-section. The decomposition procedure

proceeds in$ (log=) rounds. In each round, the algorithmmaintains

a decomposition of G into compressed blocks. In each round each

block of size at least two is �rst compressed and then split. The

compression is done by compressing pairs of consecutive symbols

into one using a randomly chosen pair-wise independent hash

function �ℓ : Γ2 → Γ, where ℓ is the round number (level). Non-

overlapping pairs of symbols are chosen for compression using

a locally consistent coloring so that every three symbols shrink to

at most two. Prior to the compression of pairs we replace each

repeated sequence 0A of a symbol 0, A ≥ 2, by a special character

r0,A .

The splitting procedure uses a $̃ (:)-wise independent hash func-
tion �ℓ : Γ

2 → {0, . . . , � − 1} to select places where to subdivide

222

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching STOC ’23, June 20–23, 2023, Orlando, FL, USA

each block into sub-blocks, where � = $̃ (:) is a suitable parameter.

We start a new block at each consecutive pair of symbols 01, where

�ℓ (01) = 0.

After $ (log=) rounds, each block is compressed into at most

two symbols and we output a grammar that can generate the block.

For the correctness of the algorithm we will need to establish

several properties of the algorithm. Some of these properties are re-

lated to behaviour on a single string G , others analyze the behaviour

of the procedure on a pair of strings G and ~ of edit distance at most

: .

The properties we want from the algorithmwhen it runs on G are

the following: In each round, each block should be compressed by

factor at least 2/3 while the size of the required grammar capturing

the compression should be $̃ (:). The former is achieved by the

design of the compression procedure. The latter goal is provided

by the property of the splitting procedure which makes sure that

each block � = 1112 · 1< resulting from a split has small dictio-

nary Dict(�) = {1818+1, 8 = 1, . . . ,< − 1}. In particular, we require

|Dict(�) | = $̃ (:). The grammar size will be proportional to this

dictionary.

For the compression procedure we require that it preserves infor-

mation so the function �ℓ is one-to-one on each Dict(�). Since the
total size of all dictionaries is bounded by $̃ (=) this can be easily

achieved by picking �ℓ at random provided that its range size is

Ω(=3).
Additionally, we need the following property to hold on a pair of

strings G and~ of edit distance at most : with good probability: The

splitting procedure should never split G or ~ in a region which is

a�ected by edit operations that transform G to~ (for some canonical

choice of those operations.) The total size of those regions will be

again $̃ (:) so we can satisfy this property if each pair of symbols

has probability at most 1/$̃ (:) to start a new block. This constrains

the choice of the range size for the splitting function �ℓ .

In the next section we describe the decomposition algorithm

fully, and then we establish its properties.

3.1 Algorithm Description

Let = be an upper bound on the length of the input string and

: ≤ = be given. Set ! = ⌈log3/2 =⌉ + 3 to be an upper bound on the

decomposition depth. Let Σ be an input alphabet of size at most =3,

Σ2 = {c1, c2, . . . , c!=3 } and ΣA = {r0,A , 0 ∈ Σ∪Σ2 , A ∈ {2, 3, . . . , =}}
be auxiliary pair-wise disjoint alphabets. Let Γ = Σ∪Σ2 ∪ΣA be the
working alphabet, and # be a symbol not in Γ. Notice |Γ | = $ (=5 +
|Σ|). We call symbols from Σ

0
2 = Σ level-0 compression symbols, and

for ℓ ≥ 1, symbols from Σ
ℓ
2 = {c8 , (ℓ − 1)=3 < 8 ≤ ℓ=3} are level-ℓ

compression symbols. Additionally, symbols from Σ
ℓ
A = {r0,A ∈ ΣA ,

0 is a level-(ℓ − 1) compression symbol} are also level-ℓ compression

symbols.

Let ' = log∗ |Γ | + 20, � = 110'(! + 1): and (= 30�! log= + 6
be parameters. The algorithm is a recursive algorithm of depth

at most !. It starts by selecting at random several hash functions:

For ℓ = 1, . . . , !, it selects at random a compression hash function

�ℓ : Γ
2 → Σ

ℓ
2 from a pair-wise independent hash family, and for

ℓ = 0, . . . , !, it selects at random a splitting function �ℓ : Γ2 →
{0, . . . , � − 1} from a (5� log=)-wise independent hash family.

Main building blocks of the algorithm are functions Compress

and Split. The �rst one compresses strings by a factor of 2/3, and the
other splits strings at random points. Their pseudo-code is provided

as Algorithm 1 and 2. We describe them next.

Compress. The function Compress(�, ℓ) takes as input a string
� over alphabet Γ of length at least two, and an integer ℓ ≥ 1, which

denotes the level number. Divide � into minimum number of blocks

�1, . . . , �< , � = �1�2�3 . . . �< , so that in each �8 either all the

characters are the same, i.e. �8 = 0A for some 0 ∈ Γ and A ≥ 2, or no

two adjacent characters are the same. The �rst step is to compress

the �8 ’s which contain repeated characters by simply replacing the

whole �8 with the symbol r0, |�8 | , where 0 is the repeated character.

Then for the remaining blocks, the following compression is applied:

Let �8 be an uncompressed block. Each character of �8 is colored

by applying �CVL (�8). Divide �8 into blocks �8 = �′1�
′
2 . . . �

′
B , such

that for each �′9 only the �rst character is colored 1. Now, according
to Proposition 2.4, length of each �′9 is either 2 or 3. If �′9 = 01,

replace it with �ℓ (01) else if �′9 = 012 , replace it with �ℓ (01) · 2 ,
where 0, 1, 2 ∈ Γ. The actual pseudo-code given below performs

the compression of blocks of repeats in two stages, where in the

�rst stage we replace the repeated sequence 0A by r0,A · #, and then

in the next stage we remove the extra symbol #. This simpli�es

analysis in Lemma 3.10. Assuming that�ℓ can be evaluated in time

$ (1), the running time of Compress(�, ℓ) is dominated by the time

needed to compute �CVL-coloring of blocks which is $ (' · |� |) in
total.

Algorithm 1: Compress(�, ℓ)
Input: String � over alphabet Γ of length at least two, and

level number ℓ .

Output: String �′′ over alphabet Γ.

1 Divide � = �1�2�3 . . . �< into minimum number of blocks

so that each maximal subword 0A of �, for 0 ∈ Γ and A ≥ 2,

is one of the blocks.

2 for each 8 ∈ {1, . . . ,<} do
3 if �8 = 0A , where A ≥ 2 then Set �′8 = r0,A · # and color

r0,A by 1 and # by 2.2;

4 else Set �′8 = �8 and color each symbol of �′8 according
to �CVL (�8);

5 end

6 Set �′ = �′1�
′
2 · · ·�

′
< , �′′ = Y, and 8 = 1.

7 while 8 < |�′ | do
8 if �′[8 + 1] = # then �′′ = �′′ · �′[8];
9 else �′′ = �′′ ·�ℓ (�′[8, 8 + 1]);

10 8 = 8 + 2.
11 if 8 ≤ |�′ | and �′[8] is not colored 1 then

�′′ = �′′ · �′[8], 8 = 8 + 1 ;
12 end

13 Return �′′.

2If 0 = r1,B for some 1 ∈ Γ and B ∈ N, then set �′8 = r1,AB · #. However, such
a situation should never happen during the execution of the algorithm as level-ℓ
compression symbol can be introduced only at level ℓ .

223

STOC ’23, June 20–23, 2023, Orlando, FL, USA Suda�a Bha�acharya and Michal Koucký

Split. The function takes as input a string � over alphabet Γ of

length at least two, and an integer ℓ ≥ 1. The function splits the

string � into smaller blocks. The algorithm works as follows: For

each 8 ∈ {2, . . . , |� | − 1}, if �ℓ (� [8, 8 + 1]) = 0, start a new block at

position 8 . The running time of Split(�, ℓ) is dominated by the time

to evaluate �ℓ at |� | − 2 points.

Algorithm 2: Split(�, ℓ)
Input: String � over alphabet Γ of length at least two, and

level number ℓ .

Output: A sequence of strings (�0, �1, . . . , �B) over
alphabet Γ.

1 Let 81 < · · · < 8B be all 8 ∈ {2, . . . , |� | − 1} where
�ℓ (� [8, 8 + 1]) = 0. Set B = 0 if no such 8 exists.

2 Let 80 = 1 and 8B+1 = |� | + 1.
3 For 9 = 0, . . . , B , set � 9 = � [8 9 , 8 9+1).
4 Return (�0, �1, . . . , �B).

The main recursive step of the algorithm is encompassed in func-

tion Process. The function gets a block � ∈ Γ
∗ as its input. The

block might have already been compressed previously, so the func-

tion also gets dictionaries that allow decompression of the block. If

the block is already of length at most two, then the function outputs

the block. Otherwise it compresses the block � using Compress,

then it subdivides the compressed block using Split, and invokes

itself recursively on each sub-block. For the output, each block is

represented by a grammar. The grammar is reconstructed from the

compressed block and its dictionaries by a simple bread-�rst search

algorithm provided in the function Grammar.

Algorithm 3: Process(�, (�1, �2, . . . , �ℓ−1), ℓ)
Input: String � ∈ Γ∗, a sequence of dictionaries �8 ⊆ Γ

2 for

decompressing �, and level number ℓ .

Output: A sequence of blocks of � each encoded by a

grammar.

1 if |� | ≤ 2 then Output

Grammar(�, (�1, �2, . . . , �ℓ−1), ℓ − 1) and return ;

2 � = Compress(�, ℓ).
3 (�0, �1, . . . , �B) = Split(�, ℓ).
4 For 8 = 0, . . . , B , Process(�8 , (�1, . . . , �ℓ−1,Dict(�)), ℓ + 1).

To decompose an input string G into blocks, we �rst apply func-

tion Split(G, 0) to G and then invoke Process(�, (), 1) on each of the

obtained blocks �. Breaking the string G into sub-blocks guarantees

that each block passed to Process has small dictionary whereas the

dictionary of G could have been arbitrarily large.

3.2 Correctness of the Decomposition

Algorithm

Our goal is to establish the following theorem which is a stronger

version of Theorem 1.1:

Algorithm 4: Grammar(�, (�1, �2, . . . , �ℓ), ℓ)
Input: String � ∈ Γ∗, a sequence of dictionaries �8 ⊆ Γ

2 for

decompressing �.

Output: The smallest grammar � for � based on the

dictionaries �8 and hash functions �1, . . . ,�ℓ .

1 Let � = {2 ∈ Σ2 :

2 appears in � or r2,A appears in � for some A }. // Symbols

needed to decompress �

2 � = {#→ �}.
3 for 9 = ℓ, . . . , 1 do

4 for each 01 ∈ � 9 do

5 if � 9 (01) ∈ � then � = � ∪ {� 9 (01) → 01},
6 � = � ∪ {2 ∈ Σ2 ; 2 ∈ {0, 1} or r2,A ∈

{0, 1} for some A } ;
7 end

8 end

9 For each r0,A appearing in any of the rules in � , add

r0,A → 0A to � .

10 Return � .

Theorem 3.1. Let G and ~ be a pair of strings of length at most =

with ED(G,~) ≤ : . Let �G
1 , . . . ,�

G
B and �

~
1 , . . . ,�

~
B′ be the sequence

of grammars output by the decomposition algorithm on input G and

~ respectively, using the same choice of random functions �1, . . . ,�!

and �0, . . . , �! . The following is true for = large enough:

(1) With probability at least 1 − 2/=, G = eval(�G
1) · · · eval(�

G
B)

and ~ = eval(�~
1) · · · eval(�

~
B′).

(2) With probability at least 1 − 2/
√
=, for all 8 ∈ {1, . . . , B} and

9 ∈ {1, . . . , B ′}, |�G
8 |, |�

~
9 | ≤ (.

(3) With probability at least 9/10, B = B ′, �G
8 = �

~
8 , for all

8 ∈ {1, . . . , B} except for at most : indices 8 , and ED(G,~) =∑
8 ED(eval(�G

8), eval(�
~
8)).

By union bound, all three parts happen simultaneously with

probability at least 9/10 − 2/= − 1/
√
= which is ≥ 4/5 for = large

enough.

To prove the theorem we make some simple observations about

the algorithm, �rst.

Lemma 3.2. For any string � of length at least two, and ℓ ≥ 1,

|Compress(�, ℓ) | ≤ 2
3 |� | + 1 and |Compress(�, ℓ) | < |� |.

Proof. Let � = �1�2�3 . . . �< be as in the procedure. Every

block �8 that equals to 0
A , for some 0 and A ≥ 2, is reduced to one

symbol by the compression. The other blocks are colored using

�CVL (·) and compressed. Unless a block �8 is of size one, the col-

oring induces division of the block �8 into subwords of size two

or three, where the former is compressed into one symbol and the

latter into two symbols. Hence, each such a block is compressed

to at most 2/3 of its size. So the only blocks �8 that do not shrink

are of size one, and are sandwiched between blocks of repeated

symbols (that shrink by a factor of at least two). The worst-case

situation is when< is odd, blocks �8 are of size one for odd 8 , and of

size two for even 8 . In that case the original string � shrinks to size

⌊ 23 |� |⌋ + 1. This proves the �rst inequality. The second inequality

224

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching STOC ’23, June 20–23, 2023, Orlando, FL, USA

is also clear from the analysis above: The only time the string does

not shrink is if it is of size one. □

Corollary 3.3. On a string � of length at most =, the depth of

the recursive calls of Process is at most !.

Indeed, from the previous lemma it follows that each block after ℓ

compressions and splits is of size at most (2/3)ℓ |� | + 3. Hence, after
! = ⌈log3/2 =⌉ + 3 recursive calls Process must stop the recursion.

Lemma 3.4. Let � ∈ Γ∗ be of length at most =, and ℓ ∈ {0, . . . , !}.
Let (�0, �1, . . . , �B) = Split(�, ℓ) where �ℓ : Γ2 → {0, . . . , � − 1}
is chosen at random from (5� log=)-wise independent hash fam-

ily. Then with probability at least 1 − 1/=3, for all 9 ∈ {0, . . . , B},
|Dict(� 9) | ≤ 5� log=.

Proof. If for some 9 ∈ {0, . . . , B}, |Dict(� 9) | > 5� log=, then

there exists 1 < A < C ≤ |� | such that |Dict(� [A, C]) | = 5� log=

and for all 8 ∈ {A, . . . , C − 1}, �ℓ (� [8, 8 + 1]) ≠ 0. (Pick A to be

the position in � of the second symbol of � 9 and A some later

position in � 9 .) For a �xed A and C with |Dict(� [A, C]) | = 5� log=,

Pr�ℓ
[∀8 ∈ {A, . . . , C − 1}, �ℓ (� [8, 8 + 1]) ≠ 0] ≤

(
1 − 1

�

)5� log=
by

the (5� log=)-wise independence of �ℓ . Hence, Pr�ℓ
[∃1 < A <

C ≤ |� |, |Dict(� [A, C]) | = 5� log= and ∀8 ∈ {A, . . . , C −1}, �ℓ (� [8, 8 +
1]) ≠ 0] ≤ |� |2

(
1 − 1

�

)5� log=
≤ =24−5 log= ≤ 1/=3 . □

Lemma 3.5. For � ∈ Γ∗, ℓ ≤ !, �1, �2, . . . , �ℓ ⊆ Γ
2, Grammar(�,

(�1, . . . , �ℓ), ℓ) outputs a grammar� of size at most 3|� | + 6∑8 |�8 |,
and runs in time $̃ (|� | +∑8 |�8 |).

Proof. The main loop of the algorithm iterates over all the pairs

from � 9 . In each iteration we can add a rule of the type 2 → 01 to

� . Hence, the number of such rules in � is at most |� | + 2∑8 |�8 |.
Last, we add to � rules for symbols from ΣA that appear on right

hand sides of rules in � . This increases the size of � by at most

factor of 3. If� is stored using some e�cient data structure such as

binary search trees or hash tables, each iteration takes $̃ (1) time.

(We assume that evaluation of � 9 (·) takes $ (1).) Hence, the total
running time is bounded by claimed bound. □

During processing of a string G , there are at most != calls to the

function Split. (The actual number of calls is $ (=) as the strings
shrink exponentially but our simple upper bound su�ces.) The

probability that any one of them would produce a block with dic-

tionary larger than 5� log= is at most !=/=3. We can conclude the

next corollary which implies the second item of Theorem 3.1.

Corollary 3.6. For = large enough, on a string G of length at most

=, processing the string G produces a sequence of grammars each of

size at most (= 30�! log= + 6 with probability at least 1 − 1/=.

For the grammars produced by the algorithm to be deterministic,

we need that each �ℓ is one-to-one on Dict(�) for each block �

on which Compress(�, ℓ) is invoked. That will happen with high

probability by a standard argument:

Lemma 3.7. Let � ∈ Γ∗ be of length at most = and ℓ ∈ {1, . . . , !}.
Let�ℓ : Γ

2 → {c8 , (ℓ − 1)=3 < 8 ≤ ℓ=3} be chosen at random from a

pair-wise independent family of hash functions. Then with probability

at least 1 − |� |/=2, �ℓ is one-to-one on Dict(�).

Proof. For two distinct elements from Dict(�), the probability
of a collision for randomly chosen �ℓ is at most 1/=3. By the union

bound, the probability that �ℓ is not one-to-one on Dict(� 9) is at
most |Dict(�) |2/=3 ≤ |� |/=2 as |Dict(�) | ≤ |� | ≤ =. □

During processing of a string G , there are at most != calls to

the function Compress. For a �xed level ℓ ∈ {1, . . . , !}, the total
size of blocks � for which Compress(�, ℓ) is invoked is at most =.

By the previous lemma and the union bound, the probability that

during any of those calls Compress(�, ℓ) uses a function �ℓ that is

not one-to-one on Dict(�) is at most 1/=. If all the hash functions

�1,�2, . . . ,�! that are used to compress blocks of G are one-to-one

on their respective blocks then the grammars that Grammar pro-

duces will be deterministic, and theywill evaluate to their respective

blocks of G . (We can actually conclude a stronger statement that

each�ℓ will be one-to-one on the union of all blocks at level ℓ with

high probability.) We can conclude the next corollary which implies

the �rst item of Theorem 3.1.

Corollary 3.8. For = large enough, on a string G of length at most

=, with probability at least 1−!/=, processing the string G produces a

sequence of grammars�1, . . . ,�B such thatG = eval(�1) · · · eval(�B).

At this point we can estimate the running time of the decompo-

sition algorithm. We can let the algorithm fail, and produce some

trivial decomposition of G , whenever Split produces a block with

dictionary larger than 5� log=. If it does not fail, then all grammars

are of size at most (which is $̃ (:). There are at most = of them so

time spent in Grammar(. . .) is bounded by $̃ (=:). The total time

spent inCompress(. . .) is proportional to the sum of sizes of all non-

trivial blocks over all levels of recursion which is$ (=!) = $̃ (=). (A
more accurate estimate on the total size of blocks is $ (=) since the
blocks are shrinking geometrically in each iteration.) This means

that the time to execute all calls to Compress is $ (=!') = $̃ (=).
The time spent in Split(. . .) is dominated by the time needed to

evaluate �ℓ . The number of evaluation points at a given level ℓ is

proportional to the total size of all blocks at that level. Since �ℓ can

be evaluated at a single point in time $ (� log=) = $̃ (:), we get a
trivial upper bound $ (=!� log=) = $̃ (=:) on time spent in Split.

Hence, in total the decomposition procedure runs in time $̃ (=:).
(We believe that the total running time can be improved to $̃ (=)
on average. One could argue that in expectation the number of

grammars the procedure produces is $̃ (=/:) as the average block
size a string G is decomposed into should be at least Ω(�/log=).
So we believe that the total running time of calls to Grammar is

$̃ (=). Using multi-point evaluation of (5� log=)-wise independent
hash functions we could reduce the time for evaluation of �ℓ on a

given level to $̃ (=).)

Proposition 3.9. Given : ≤ =, the running time of the decom-

position algorithm on a string G of length at most = is $̃ (=:) with
probability at least 1 − 1/=.

It remains to address the properties of the algorithm run on a pair

of strings G and~ of edit distance at most : to establish Theorem 3.1.

For the pair of strings G and ~ we �x a canonical decomposition of

G and ~ to be a sequence of wordsF0,F1, . . . ,F: , D8 , . . . , D: , E1, . . . ,

E: ∈ Γ∗ such that G = F0D1F1D2F2 · · ·D:F: , ~ = F0E1F1 · · · E:F:

and |D8 |, |E8 | ≤ 1 for all 8 . By the de�nition of edit distance such a

225

STOC ’23, June 20–23, 2023, Orlando, FL, USA Suda�a Bha�acharya and Michal Koucký

decomposition exists: each pair (D8 , E8) represents one edit opera-
tion, and we �x one such decomposition to be canonical. Observe,

if we now partition G into blocks �G1 , . . . , �
G
B so that each �G8 starts

within one of the F 9 ’s, and we partition ~ into blocks �
~
1 , . . . , �

~
B

so that each block �
~
8 starts at the corresponding location inF 9 as

�G8 , then ED(G,~) = ∑
8 ED(�G8 , �

~
8).

We need to understand what happens with the decomposition

of G and ~ when we apply the Compress function. Let G = DFE

and G ′ = Compress(G, ℓ) = D ′F ′E ′, for some D,F, E,D ′F ′E ′ ∈ Γ
∗.

We say that a symbol 2 in F ′ comes from the compression of F if

either it is directly copied fromF by Compress, or it is the image

2 = �ℓ (01) of a pair of symbols 01 where 0 belongs toF , or 2 = r0,A

replaced a block 0A where the �rst symbol of 0A belongs toF .F ′

is the compression ofF if it consists precisely of the symbols that

come from the compression ofF . Furthermore, we say a symbol 2

inF ′ comes weakly from the compression ofF if either it is directly

copied fromF by Compress, or it is the image 2 = �ℓ (01) of a pair
of symbols 01 where 0 or 1 belong to F , or 2 = r0,A replaced a

block 0A where some symbol of 0A belongs to F . F ′ is the weak
compression ofF if it consists precisely of the symbols that come

weakly from the compression ofF . Notice, a weak compression of

F might contain and extra symbol at the beginning compared to

the compression ofF .

The following lemma captures what compression does to the

canonical decomposition of G and ~. (See Fig. 2 for illustration.)

Lemma 3.10. LetG,~ be strings over Γ, and letG ′ = Compress(G, ℓ)
and ~′ = Compress(~, ℓ). Let G = F0D1F1D2F2 · · ·D@F@ and ~ =

F0E1F1E2F2 · · · E@F@ for some strings F8 , D8 and E8 where for 8 ∈
{1, . . . , @}, |D8 |, |E8 | ≤ 4' + 24.

Then there areF ′0,F
′
1, . . . ,F

′
@, D
′
1, . . . , D

′
@, E
′
1, . . . , E

′
@ ∈ Γ∗ such that

for 8 ∈ {1, . . . , @}, |D ′8 |, |E
′
8 | ≤ 4' + 24, G ′ = F ′0D

′
1F
′
1D
′
2F
′
2 · · ·D

′
@F
′
@

and~′ = F ′0E
′
1F
′
1E
′
2F
′
2 · · · E

′
@F
′
@ . Moreover, eachF ′8 is the compression

of the same subword ofF8 in both G and ~.

For each G = F0D1F1D2F2 · · ·D@F@ , ~ = F0E1F1E2F2 · · · E@F@

and ℓ we �x one choice ofF ′0, . . . ,F
′
@, D
′
0, . . . , D

′
@, E
′
0, . . . , E

′
@ satisfy-

ing the lemma. We will refer to it as the canonical decomposition of

G ′ and ~′ induced by the decomposition of G and ~ as given by the

lemma.

Proof. The �rst stage of Compress replaces maximal blocks of

repeated symbols by shortcuts. To simplify our analysis �rst we

will reassign blocks of repeated symbols among neighboring blocks

ofF8 , D8 and E8 , resp., so each maximal block of symbols in G and ~

is fully contained in one of the wordsF8 , D8 or E8 .

For 8 = 1, . . . , @ − 1 we de�ne wordsF (1)8 and parameters 08 , 18 ∈
Γ and :8 , :

′
8 ∈ N as follows: IfF8 contains at least two distinct sym-

bols let F8 = 0
:8
8 F
(1)
8 1

:′8
8 so that :8 and :

′
8 are maximum possible,

otherwiseF8 = 0
:8
8 for some 08 and :8 (:8 might be zero), and we set

F
(1)
8 = Y, 18 = 08 and :

′
8 = 0. LetF0 = F

(1)
0 1

:′0
0 for maximum possi-

ble: ′0 and some symbol10. LetF@ = 0
:@
@ F

(1)
@ for maximum possible

:@ and some symbol 0@ . For 8 = 1, . . . , @, we let D
(1)
8 = 1

:′8−1
8−1 D80

:8
8 .

Similarly, E
(1)
8 = 1

:′8−1
8−1 E80

:8
8 . Hence, G = F

(1)
0 D

(1)
1 F

(1)
1 · · ·D

(1)
@ F

(1)
@

and ~ = F
(1)
0 E

(1)
1 F

(1)
1 · · · E

(1)
@ F

(1)
@ .

Next, if there is a maximal block of symbols 0A contained in

D
(1)
B F

(1)
B · · ·D (1)C starting in D

(1)
B and ending in D

(1)
C , B ≠ C , we add

all the symbols of the0A to the end ofD
(1)
B and remove them from the

other D
(1)
8 , 8 = B + 1, . . . , C . (Notice,F (1)8 = Y for B < 8 < C because of

the de�nition ofF
(1)
8 , andD

(1)
8 will become empty for B < 8 < C .) We

do this for all maximal blocks of repeated symbols that spanmultiple

D
(1)
8 . We perform similar moves on E

(1)
8 ’s. After all of those moves

we denote the resulting subwords byF
(2)
8 , D

(2)
8 , and E

(2)
8 . (Notice,

F
(2)
8 = F

(1)
8 for all 8 .) We have: G = F

(2)
0 D

(2)
1 F

(2)
1 · · ·D

(2)
@ F

(2)
@ and

~ = F
(2)
0 E

(2)
1 F

(2)
1 · · · E

(2)
@ F

(2)
@ . At this stage, each maximal block

of repeated symbols in G or ~ is contained in one of the subwords

F
(2)
8 , D

(2)
8 , and E

(2)
8 .

The �rst stage of Compress replaces each maximal block 0A ,

A ≥ 2, by a sequence r0,A #, and we apply this procedure on each

subword F
(2)
8 , D

(2)
8 , and E

(2)
8 to obtain corresponding subwords

F
(3)
8 ,D

(3)
8 , and E

(3)
8 . Observe, for 8 = 1, . . . , @, |D (3)8 |, |E

(3)
8 | ≤ 4'+28.

This is because every D8 is transformed into D
(3)
8 by appending or

prepending possibly empty block of repeated symbols, i.e., D
(3)
8 =

0AD81
A ′ for some 0, 1, A, A ′, or removing its content entirely. Each

block of repeats is reduced to two symbols so each D
(3)
8 is longer

than the original by at most 4 symbols. Similarly for E
(3)
8 .

Next, coloring function �CVL is used on parts of G and ~ that are

not obtained from repeated symbols; the two symbols replacing

each repeated block are colored by 1 and 2, resp. We refer to this

as {1, 2, 3}-coloring. At most ' �rst and last symbols of eachF
(3)
8

might be colored di�erently in G and ~ as the color of each symbol

depends on the context of at most ' symbols on either side of

the symbol, and that context might di�er in G and ~. Hence, only

symbols near the border of F
(3)
8 that are in vicinity of D

(3)
8 ’s and

E
(3)
8 ’s, resp., might get di�erent colors. All the other symbols of

F
(3)
8 are colored the same in both G and ~. The coloring is then

used to make decisions on which pairs of symbols are compressed

into one.

We will let D ′8 be the symbols that come from the compression

of symbols in D
(3)
8 , the �rst up-to ' + 2 symbols of F

(3)
8 , and the

last up-to ' + 3 symbols ofF
(3)
8−1. Next we specify precisely which

symbols of F
(3)
8 and F

(3)
8−1 are considered to be compressed into

symbols belonging to D ′8 . For 8 = 0, . . . , @, if |F (3)8 | ≥ ' + 3, let
BG8 be the position of the �rst symbol in F

(3)
8 among positions

' + 1, ' + 2, ' + 3 which is colored 1 in G by the {1, 2, 3}-coloring.
If |F (3)8 | < ' + 3, let BG8 = 1. Next, if |F (3)8 | ≥ 2' + 3 set CG8 to be

the �rst position from left colored 1 among the symbols ofF
(3)
8 at

positions '+1, '+2, '+3 counting from right. If |F (3)8 | < 2'+3, set
CG8 to be equal to BG8 . For 8 = 0, if |F (3)0 | ≥ ' + 3 then rede�ne BG0 = 1.

For 8 = @, rede�ne CG@ = |F (3)@ | +1 and if |F
(3)
@ | < '+3 then rede�ne

BG@ to CG@ . Similarly, de�ne B
~
8 and C

~
8 based on the {1, 2, 3}-coloring

of ~.

Notice, BG8 ≠ CG8 i� B
~
8 ≠ C

~
8 . Furthermore, if BG8 ≠ CG8 then either

8 ∈ {@, 0} or |F (3)8 | ≥ 2' + 3 so BG8 = B
~
8 and CG8 = C

~
8 as the symbols

226

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching STOC ’23, June 20–23, 2023, Orlando, FL, USA

'-away from either end ofF
(3)
8 are colored the same in G and ~. We

let D ′8 to be the compression ofF
(3)
8−1 [C

G
8−1, |F

(3)
8−1 |] ·D

(3)
8 ·F (3)8 [1, B

G
8)

and similarly, E ′8 to be the compression ofF
(3)
8−1 [C

~
8−1, |F

(3)
8−1 |] · E

(3)
8 ·

F
(3)
8 [1, B

~
8). We letF ′8 be the compression ofF

(3)
8 [B

~
8 , C

~
8).

Hence,D ′8 comes from the compression of at most |D (3)8 |+2'+5 ≤
6' + 33 symbols. Since each symbol after a symbol colored 1 is

removed by the compression, and each consecutive triple of symbols

contains at least one symbol colored by 1, the atmost 6'+27 symbols

are compressed into at most (6' + 33) · 2/3 + 2 = 4' + 24 symbols.

So D ′8 is of length at most 4' + 24. Similarly for E ′8 . □

The following generalization of the previous lemmawill be useful

to design a rolling sketch. It considers situation where G and ~ are

pre�xed by some strings D and E , resp., that we want to ignore

from the analysis. The proof of the lemma is a straightforward

modi�cation of the above proof.

Lemma 3.11. Let G,~,D, E ∈ Γ
∗, and let D ′G ′ = Compress(DG, ℓ)

and E ′~′ = Compress(E~, ℓ), where G ′ is the weak compression of G ,

and~′ is the weak compression of~. Let G = D0F0D1F1D2F2 · · ·D@F@

and ~ = E0F0E1F1E2F2 · · · E@F@ for some stringsF8 ,D8 and E8 where

for 8 ∈ {0, . . . , @}, |D8 |, |E8 | ≤ 4'+24. Then there areF ′0,F
′
1, . . . ,F

′
@, D
′
0,

D ′1, . . . , D
′
@, E
′
0, E
′
1, . . . , E

′
@ ∈ Γ∗ such that for 8 ∈ {0, . . . , @}, |D ′8 |, |E

′
8 | ≤

4' + 24, G ′ = D ′0F
′
0D
′
1F
′
1D
′
2F
′
2 · · ·D

′
@F
′
@ and ~′ = E ′0F

′
0E
′
1F
′
1 · · · E

′
@F
′
@ .

Moreover, each F ′8 is the compression of the same subword of F8 in

both G and ~.

Let G ∈ Σ∗. Let �0, �1, . . . , �!,�1,�2, . . . ,�! be chosen. We de-

�ne inductively the trace of the algorithm on G at level ℓ ≥ 0 to

consist of sequences �G (ℓ, 1), . . . , �G (ℓ, BGℓ) ∈ Γ
∗, of auxiliary se-

quences �G (ℓ, 1), . . . , �G (ℓ, BGℓ) ∈ Γ
∗ and CGℓ,1, . . . , C

G
ℓ,BGℓ +1

∈ N. Their
meaning is: �G (ℓ, 8) is compressed into �G (ℓ, 8) and that is split

into blocks �G (ℓ + 1, 9) for CGℓ+1,8 ≤ 9 < CGℓ+1,8+1. (See Fig. 1 for

illustration.)3

Set

�G (0, 1), . . . , �G (0, BG0) = Split(G, 0) .
For ℓ = 1, . . . , ! we de�ne �G (ℓ, 1), . . . , �G (ℓ, BGℓ) inductively. Set
CGℓ,1 = 1. For 8 = 1, . . . , BGℓ−1, if |�

G (ℓ − 1, 8) | ≥ 2, then

�G (ℓ − 1, 8) = Compress(�G (ℓ − 1, 8), ℓ),
and for (�0, �1, . . . , �B) = Split(�G (ℓ − 1, 8), ℓ) set

�G (ℓ, CGℓ,8) = �0, �G (ℓ, CGℓ,8 + 1) = �1, . . . , �G (ℓ, CGℓ,8 + B) = �B

and CGℓ,8+1 = CGℓ,8 + B + 1. If |�
G (ℓ − 1, 8) | < 3, then set �G (ℓ, CGℓ,8) and

�G (ℓ − 1, 8) to �G (ℓ − 1, 8), and CGℓ,8+1 = CGℓ,8 + 1. For 9 = BGℓ−1, set
BGℓ = CGℓ,9+1.

Furthermore, for G and~ ∈ Σ∗, ℓ, 8 ≥ 0, de�ne a canonical decom-

position of blocks �G (ℓ, 8), �G (ℓ, 8), �~ (ℓ, 8), �~ (ℓ, 8) inductively as

follows. Let �G (−1, 1) = G and �~ (−1, 1) = ~. Let CG−1,1 = 1, CG−1,2 =

2, BG−1 = 1, C
~
−1,1 = 1, C

~
−1,2 = 2, and B

~
−1 = 1. Let

�G (−1, 1) = F0D1F1D2F2 · · ·D:F: &

�~ (−1, 1) = F0E1F1E2F2 · · · E:F:

3To avoid double and triple indexes we use our notation �G (ℓ, 8) and�G (ℓ, 8) instead
of the usual �G

ℓ,8 and�
G
ℓ,8 .

Bx(0,1) Bx(0,2)x

Ax(0,1)

Bx(0, sx
0
)

Ax(0,2) Ax(0, sx
0
).

(1,2)(1,1) (1,4) (1,5) (1, j) . . . (1, sx

1)

split

compress

(1,3)

(1,2)

compress

(1,1)Ax

Bx(2, i) Bx(2, i+ 1)

split

. . .

.

.

Bx

Figure 1: The hierachical decomposition of G .

be the canonical decomposition of the pair G and ~.

For ℓ ≥ 0 and 9 ∈ {1, . . . , BGℓ }, let 8 be such that CGℓ−1,8 ≤ 9 <

CGℓ−1,8+1 and < = 9 − CGℓ−1,8 . Then �G (ℓ, 9) is the <-th block of

Split(�G (ℓ − 1, 8), ℓ). If the decomposition of �G (ℓ − 1, 8) is de�ned
and is equal toF0D1F1D2F2 · · ·D@F@ , for someD8 ,F8 ∈ Γ∗, then the
decomposition of �G (ℓ, 9) is the restriction of the decomposition

of �G (ℓ − 1, 8) to symbols of the<-th block of Split(�G (ℓ − 1, 8), ℓ).
Otherwise the decomposition of �G (ℓ, 9) is unde�ned. Similarly for

�~ (ℓ, 9). (See Fig. 2.)
For ℓ ≥ 0 and 9 ∈ {1, . . . , BGℓ }, if �

G (ℓ, 9) and �~ (ℓ, 9) have de-
�ned decompositions �G (ℓ, 9) = F0D1F1D2 · · ·D@F@ and �~ (ℓ, 9) =
F0E1F1E2F2 · · · E@F@ for someD8 , E8 ,F8 ∈ Γ∗, thenwe let�G (ℓ, 9) =
F ′0D

′
1F
′
1D
′
2 · · ·F

′
@ and �~ (ℓ, 9) = F ′0E

′
1F
′
1E
′
2 · · ·F

′
@ be their canon-

ical decomposition induced by �G (ℓ, 9) and �G (ℓ, 9) as given by

Lemma 3.10.

w0(ℓ, i)

w′

0
(ℓ, i)

u1(ℓ, i) w1(ℓ, i) u2(ℓ, i) w2(ℓ, i) wq(ℓ, i)

u′

1
(ℓ, i) w′

q
(ℓ, i)

.

.

Bx(ℓ, i)

compress

u1(ℓ+ 1, j)

Bx(ℓ+ 1, j)

split

w0(ℓ+ 1, j) w1(ℓ+ 1, j)

w′

1
(ℓ, i) u′

2
(ℓ, i) w′

2
(ℓ, i)

Figure 2: Decomposition of �G (ℓ, 8) after compression and

split.

To conclude item 3 of Theorem 3.1 we want to argue that G and

~ are recursively split into sub-blocks that respect their canonical

decomposition. So we want all splits of blocks to occur in matching

parts of G and ~. For �G (ℓ − 1, 8) with canonical decomposition

F0D1F1D2F2 · · ·D@F@ we say that Split(�G (ℓ −1, 8), ℓ) makes unde-

sirable split if it starts a new block at a position 9 that either belongs

to one of the D1, D2, . . . , D@ or is the �rst or last symbol of one of

the F0,F1, . . . ,F@ . Recall, Split(�G (ℓ − 1, 8), ℓ) starts a new block

at each position 9 such that �ℓ (�G (ℓ − 1, 8) [9, 9 + 1]) = 0. Since

�ℓ is chosen at random a given position starts a new block with

probability 1/� .
For�~ (ℓ−1, 8)with canonical decompositionF ′0E1F

′
1E2 · · · E@′F

′
@′

we say that Split(�~ (ℓ − 1, 8), ℓ) makes undesirable split if it starts a

new block at position 9 that either belongs to one of the E1, E2, . . . , E@′

227

STOC ’23, June 20–23, 2023, Orlando, FL, USA Suda�a Bha�acharya and Michal Koucký

or is the �rst or last symbol of one of theF ′0,F
′
1, . . . ,F

′
@′ . If �

G (ℓ −
1, 8) and �~ (ℓ − 1, 8) have matching canonical decomposition (that

is @ = @′ and each F 9 = F ′9) and both Split(�G (ℓ − 1, 8), ℓ) and
Split(�~ (ℓ − 1, 8), ℓ) make no undesirable split then�G (ℓ − 1, 8) and
�~ (ℓ − 1, 8) are split in the same number of blocks with matching

canonical decomposition as they are split at the same positions in

the correspondingF 9 ’s.

For given ℓ ∈ {0, . . . , !}, if no undesirable split happens during

Split(�G (ℓ ′− 1, 8), ℓ ′) and Split(�~ (ℓ ′− 1, 8), ℓ ′), for any ℓ ′ < ℓ and

8 , then for each ℓ ′ < ℓ , the number of blocks �G (ℓ ′, 8) and �~ (ℓ ′, 8)
will be the same, i.e., BGℓ′ = B

~
ℓ′ , and blocks �

G (ℓ ′, 8) and �~ (ℓ ′, 8) will
havematching canonical decomposition. The total number ofD 9 ’s in

canonical decomposition of all�G (ℓ ′, 8), 8 = 1, . . . , CGℓ′ , will be atmost

: , and similarly for E 9 ’s. Thus, there will be at most (4'+24+2): +2
positions where an undesirable split can happen in Split(�G (ℓ −
1, 8), ℓ) for any 8 . Similarly, there are at most (4' +26): +2 positions
where an undesirable split can happen in Split(�~ (ℓ − 1, 8), ℓ). By
union bound, the probability that an undesirable split happens in

some Split(�~ (ℓ − 1, 8), ℓ) or Split(�~ (ℓ − 1, 8), ℓ), for some ℓ and 8 ,

is at most 2(4' + 28): (! + 1)/� ≤ 11': (! + 1)/� ≤ 1/10.
Thus, if no undesirable split happens there are at most : indices 8

for which the canonical decomposition of �G (ℓ, 8) contains someD 9 .

All other blocks �G (ℓ, 8) have a canonical decomposition consisting

of a single blockF0, for variousF0 depending on ℓ and 8 . Similarly,

the canonical decomposition of �~ (ℓ, 8) contains E 9 if and only

if �G (ℓ, 8) contains D 9 . Blocks �~ (ℓ, 8) that do not contain E 9 are

identical to �G (ℓ, 8) so they have the same grammar.

Hence, if no undesirable split happens, item 3 of Theorem 3.1

will be satis�ed.

The following theorem generalizes item 3 of Theorem 3.1 and it

will be useful to construct the rolling sketch in Section 4.

Theorem 3.12. Let D, E, G,~ ∈ Σ∗ be strings such that |DG |, |E~ | ≤
= and ED(G,~) ≤ : . Let�G

1 , . . . ,�
G
B and�

~
1 , . . . ,�

~
B′ be the sequence

of grammars output by the decomposition algorithm on input DG and

E~ respectively, using the same choice of random functions�1, . . . ,�!

and�0, . . . , �! . With probability at least 1−1/5 the following is true:
There exist integers A, A ′, C, C ′ such that B − C = B ′ − C ′,

G = eval(�G
C) [A, . . .] · eval(�G

C+1) · · · eval(�
G
B) &

~ = eval(�~
C ′) [A

′, . . .] · eval(�~
C ′+1) · · · eval(�

~
B′), 0=3

ED(G,~) = ED(eval(�G
C) [A, . . .], eval(�

~
C ′) [A

′, . . .])

+
∑

8>0

ED(eval(�G
C+8), eval(�

~
C ′+8)) .

Its proof is a minor modi�cation of the proof above and its sketch

is provided in the full version [5].

3.3 Encoding a Grammar

We will set a parameter # ≥ =3 to be a suitable integer: Let �KR :

{0, 1}∗ → {1, . . . , # } be a hash function picked at random, such as

Karp-Rabin �ngerprint [18], so for any two strings D, E ∈ {0, 1}∗, if
D ≠ E then Pr�KR [�KR (D) = �KR (E)] ≤ (|D | + |E |)/# .

Set " = 3(· ⌈1 + log |Γ |⌉. We will encode a grammar � over

Γ of length at most (given by our decomposition algorithm by a

string Enc(�) over alphabet {1, . . . , 2# } of length" . The encoding

is obtained as follows: First, order the rules of the grammar �

lexicographically. Then encode the rules in binary one by one using

3· ⌈1+log |Γ |⌉ bits for each rule. (The extra bit allows tomark unused

symbols.) This gives a binary string of length at most" , which we

pad by zeros to the length precisely" . We call the resulting binary

string Bin(�). Compute ℎ� = �KR (Bin(�)). We replace each 0 in

Bin(�) by ℎ� , and each 1 in Bin(�) by # + ℎ� to obtain the string

Enc(�). Clearly, Enc(�) is a string over alphabet {1, . . . , 2# } of
length exactly " . The encoding can be computed in time $ (").
For completeness, we encode any grammar � of length more than

(or that uses rules with more than two symbols on the right as

Enc(�) = 1" .

By the property of �KR the following holds.

Lemma 3.13. Let �,� ′ be two grammars of size at most (output

by our decomposition algorithm. Let �KR be chosen at random.

(1) Enc(�) ∈ {1, . . . , 2# }" .

(2) If � = � ′ then Enc(�) = Enc(� ′).
(3) If � ≠ � ′ then Enc(�) = Enc(� ′) with probability at most

2"/# .

(4) If Enc(�) ≠ Enc(� ′) thenHam(Enc(�), Enc(� ′)) = " , that

is they di�er in every symbol.

3.4 Edit Distance Sketch

Let = and : ≤ = be two parameters, and ? ≥ 2# + 1 be a prime

such that ? ≥ (=")3. For a string G ∈ Σ
∗ of length at most =, we

compute its sketch by running �rst the decomposition algorithm of

Theorem 3.1 to get grammars�1,�2, . . . ,�B . Encode each grammar

�8 by encoding Enc(�8) from Section 3.3 using the same �KR picked

at random. Concatenate the encoding to get a stringF = Enc(�1) ·
Enc(�2) · · · Enc(�B). Calculate the Hamming sketch skHam=′,<′,? (F)
onF for strings of length =′ = =" and Hamming distance at most

: ′ = :" from Section 2.2. Set the sketch skED
=,:
(G) = skHam

=′,:′,? (F).
The calculation of skED

=,:
(G) can be done in time $̃ (=:) as the number

of grammars is at most = and each grammar requires $̃ (:) time to

be encoded into binary. The Hamming sketch can be constructed

in time $̃ (=:). (We believe that on average we expect only $̃ (=/:)
grammars to be produced for a given string G so the actual running

time should be $̃ (=) on average.)

Theorem 3.14. Let G,~ ∈ Σ∗ be strings of length at most = such

that ED(G,~) ≤ : . Let skED
=,:
(G) and skED

=,:
(~) be obtained using the

same randomness for the decomposition algorithm and the same choice

of �KR. With probability at least 2/3, we can calculate ED(G,~) from
skED

=,:
(G) and skED

=,:
(~).

Assume that the output of the decomposition algorithm on G

and ~ satis�es all the conclusions of Theorem 3.12. In particular,

for G we get eval(�G
1) · eval(�

G
2) · · · eval(�

G
B) and for ~ we get

eval(�~
1) · · · eval(�

~
B), for some B ≤ =, each of the grammars is

of size at most (, ED(G,~) = ∑
8 ED(eval(�G

8), eval(�
~
8)), and the

number of pairs �G
8 and �

~
8 where �G

8 ≠ �
~
8 is at most : . Assume

that �KR is chosen so that Enc(�G
8) ≠ Enc(�~

8) for each of the pairs

where �G
8 and �

~
8 di�er.

In order to determine ED(G,~), we recover the (Hamming) mis-

match information between Enc(�G
1) · Enc(�

G
2) · · · Enc(�

G
B) and

Enc(�~
1) · Enc(�

~
2) · · · Enc(�

~
B) from skED

=,:
(G) and skED

=,:
(~). That

228

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching STOC ’23, June 20–23, 2023, Orlando, FL, USA

gives grammars �G
8 and �

~
8 , for all 8 where �

G
8 ≠ �

~
8 . (Whenever

the two grammars di�er, their encoding di�er in every symbol by

Lemma 3.13 so we can recover them from the Hamming mismatch

information.) Calculating the edit distance of each of the pair of

di�ering grammars using the algorithm from Proposition 2.1 we

recover ED(G,~) as the sum of their edit distances.

The sum is correct unless some of the assumptions fail: The

probability that the grammar decomposition fails (does not have

properties from Theorem 3.1) for the pair G and ~ is at most 1/5 for
= large enough. The probability that the choice of �KR fails (two

distinct grammars have the same encoding) is at most 2:"/# <

1/= by the choice of # . The probability that the Hamming distance

sketch fails to recover the mismatch information between all the

grammars is at most 1/=. So in total, the probability that the output

of the algorithm is incorrect is at most 1/3.
The running time of the comparison algorithm is $̃ (:2): The

Hammingmismatch information can be recovered in time $̃ (:") =
$̃ (:2) (Proposition 2.2), then we build the ≤ : mismatched gram-

mars in time $̃ (:2), and run the edit distance computation on the

pairs of grammars in time
∑
8<: $̃ (: + :28) ≤ $̃ (:2), where :8 is

the edit distance of the 8-th pair of mismatched grammars. (We

interrupt the edit distance computation if it takes more time than

$̃ (:2) which would indicate ED(G,~) > : .)

To decide whether ED(G,~) > : we note that on input G and

~, the Hamming sketch either outputs the correct mismatched

places if their number is ≤ : ′ or it outputs ∞ if there are more

mismatches than that or the sequences sketched by the Hamming

sketch are of di�erent length. (We assume that the Hamming sketch

knows the number of symbols it is sketching.) In the ∞-case we
know that there are more than : di�erent pairs of grammars or the

decomposition of G and ~ failed, and we can report ED(G,~) > : . In

the other case we try to calculate the edit distance of the di�ering

pairs of grammars. If we spendmore than $̃ (:2) time on it or we get

a number larger than : then we report ED(G,~) > : . This correctly

decides whether ED(G,~) > : with probability at least 2/3.
To prove Theorem 1.2 we build a more robust sketch by taking

2 log= independent copies of the sketch skED
=,:

. To calculate the edit

distance of two sketched strings we run the edit distance calcula-

tion on each of the corresponding pairs of copies, and output the

majority answer. A usual application of Cherno� bound shows that

the probability of correct answer is at least 1 − 1/= for suitable

constant 2 > 0.

4 ROLLING SKETCH FOR EDIT DISTANCE

In this section we will construct the rolling sketch of Theorem 1.3.

We will use two auxiliary claims. The �rst one addresses how much

a compression of a string F might change depending on what is

appended to it. Their proofs are omitted due to space limitations

but can be found in the full version [5].

Lemma 4.1. Let ℓ ∈ {0, . . . , !} and E,D,F ∈ Γ
∗. Let F ′D ′ =

Compress(FD, ℓ) and let F ′′E ′ = Compress(FE, ℓ), where F ′ is
the compression of F when compressing FD and F ′′ is the com-

pression of F when compressing FE . Let C = |F ′ | − 3(' + 1) or
C = |F ′D ′ | − |D | − 3(' + 1). ThenF ′[1, C] = F ′′[1, C].

The next lemma addresses how much the overall decomposition

of a string G might change if we append a su�x I to it.

Lemma 4.2. Let G, I ∈ Σ∗, |GI | ≤ =. Let �0, . . . , �!,�1, . . . ,�! be

given. Let �G
1 ,�

G
2 , . . . ,�

G
B be the output of the decomposition algo-

rithm on input G , and �GI
1 ,�GI

2 , . . . ,�GI
B′ be the output of the decom-

position algorithm on input GI using the given hash functions. Let

) = !(3' + 6).
(1) �G

8 = �GI
8 for all 8 = 1 . . . , B −) .

(2) |G | ≤ ∑min(B+),B′)
8=1 |eval(�GI

8) |.
The second part says that if G is decomposed into B grammars by

itself, then it can be recovered from the �rst B +) grammars for GI.

Hence, appending extra symbols to G cannot increase the number

of grammars that cover G by more than) .

Let < ≥ : and = ≥ 10<3 be integers. A rolling sketch for a

string obtained by up-to < insertions (to the right end) and <

deletions (from the left end) from an empty word consists of three

data structures: insertion bu�er, deletion bu�er and a Hamming

distance sketch skHam
=′,:′,? , where :

′
= (4) + 1) (: + 2)" , =′ = ="

and ? ≥ =′3 is a chosen prime.

The insertion bu�er maintains a bu�er of committed grammars

�B−4)+1,�B−4)+2, . . . ,�B and a bu�er of active grammars�8
1, . . . ,�

8
C ,

C ≤) . The deletion bu�er is similar, it maintains a bu�er of com-

mitted grammars �A−4)+1,�A−4)+2, . . . ,�A and a bu�er of active

grammars �3
1 , . . . ,�

3
C ′ , C
′ ≤) . The Hamming sketch is a sketch of

grammars �A−2)+1,�A−2)+2, . . . ,�B−2) , each encoded as a string

of length" over the alphabet {1, . . . , 2# }.
In addition to that, the sketch keeps track of the current value

of A and B , and remembers a collection of pair-wise independent

hash functions �1, . . . ,�! , a collection of (5� log=)-wise indepen-
dent hash functions �0, . . . , �! , and randomness for Karp-Rabin

�ngerprint to compute binary encoding of grammars. The hash

functions and the randomness of Karp-Rabin �ngerprint are chosen

at random when creating the sketch for empty string. This extra

information requires $̃ (:) bits to specify.

Initially, the committed grammars in the insertion and deletion

bu�ers are all treated as empty sets, there are no active grammars

in the insertion or deletion bu�ers so C = C ′ = 0 and B = A = 0.

For D, G ∈ Σ∗, if in total a string DG was inserted into the sketch

then �1, . . . ,�B ,�
8
1, . . . ,�

8
C represents DG , that is DG is the concate-

nation of the evaluation of the grammars. If in total the stringD was

deleted from the sketch, then �1, . . . ,�A ,�
3
1 , . . . ,�

3
C3

represents D.

(See Fig. 3 for an illustration.)

Appending a symbol.When we append additional symbol 0 to the

sketch we modify input bu�ers as follows: We update the active

grammars �8
1, . . . ,�

8
C by appending 0 as explained further below.

Say the update produces grammars � ′81 , . . . ,�
′8
C ′ . If C

′ ≤) then the

produced grammars will become the active grammars, and no more

changes are done to the sketch. Otherwise we commit the �rst C ′−)
grammars � ′81 , . . . ,�

′8
C ′−) one-by-one into the committed bu�er as

grammars�B+1, · · · ,�B+C ′−) and we keep the remaining grammars

as the active grammars.

Committing a grammar�B+1 into the committed bu�er will trig-

ger addition of �B−2)+1 into the Hamming sketch at the end of the

represented sequence of grammars (if B − 2) + 1 > 0), and removing

the grammar�B−4)+1 from the committed bu�er. For insertion into

229

STOC ’23, June 20–23, 2023, Orlando, FL, USA Suda�a Bha�acharya and Michal Koucký

Gs−4T+1 Gs−2T Gs G
i
1 G

i
t

. . .

˜Gr−2T+1 G̃r Gs−4T+1 Gs−2TGr−2T . . .

= =

≃ ≃

committed grammars active grammars

committed grammars

Insertion buffer

Hamming sketch

Deletion bufferGr

.

=

. . .

Gr−2T+1

≃

. . .

.Gr−4T+1 G
d
1 G

d

t
′. . .

active grammars

. . .

Figure 3: Rolling sketch.

the Hamming sketch, the grammar �B−2)+1 is encoded into binary

as in Section 3.3 and then the binary string is encoded using the

Karp-Rabin �ngerprint �KR of all the grammars �B−4)+1, . . . ,�B+1,
instead of only the grammar �B−2)+1. (Thus, a change in any of

the neighboring grammars will trigger a recovery of also the gram-

mar �B−2)+1 when calculating a mismatch information from the

Hamming sketch.) We repeat this process for each grammar being

committed.

By the second part of Lemma 4.2 C ′ ≤ C +) ≤ 2) so we will

commit at most) = $̃ (1) grammars. It takes time $ (")) = $̃ (:)
to prepare the binary encoding of each of the committed grammars,

and $̃ (:2) to insert it into the Hamming sketch. The update of the

active grammars takes $̃ (:) time as described below. So in total

this step takes $̃ (:2) time.

Removing a symbol. Deletion bu�er works in manner similar to in-

sertion bu�er, we add the removed symbol 0 to the active grammars,

but when committing the grammar �A+1, we use �KR-�ngerprint
of all the grammars�A−4)+1, . . . ,�A+1 to encode grammar�A−2)+1
which is then removed from the beginning of the sequence of gram-

mars represented by the Hamming sketch (if A − 2) + 1 > 0), i.e.,

we update the Hamming sketch to re�ect this removal. Similarly to

appending a symbol, this step takes time $̃ (:2).

Active grammar update. The update of active grammars �8
1, . . . ,�

8
C

when appending 0 is done as follows. �1, . . . ,�B ,�
8
1, . . . ,�

8
C repre-

sents DG so we need to calculate the grammars for DG0. We claim

that only the active grammars might change: At some point, �B

became committed so at that time there was) active grammars

following it. If at that point the grammars together represented a

string I, by appending more symbols to I we cannot change gram-

mars �1,�1, . . . ,�B according to the �rst part of Lemma 4.2. So

appending 0 to DG will a�ect only the active grammars.

From the analysis in the proof of Lemma 4.2 it follows that for ℓ ∈
{0, . . . , 1} if �DG (ℓ, 1), . . . , �DG (ℓ, BG~ℓ) is the trace of the decompo-

sition algorithm on DG at level ℓ , and �DG0 (ℓ, 1), . . . , �DG0 (ℓ, BG~0ℓ)
is the trace on DG0, then their di�erence spans at most ℓ (3' + 6)
last symbols of �DG (ℓ, 1) · · ·�DG (ℓ, BG~ℓ).

So instead of decompressing the active grammars completely,

adding 0 and recompressing them back, we only decompress the

necessary part of each trace �DG (ℓ, 1) · · ·�DG (ℓ, BG~ℓ). Let #→ E8 be

the starting rule of the active grammar �8 . Starting from the string

E1 · E2 · · · EC , for each ℓ = !, . . . , 1, we iteratively rewrite all level-ℓ

symbols in the string using the appropriate grammars while only

maintaining at most) last symbols of the resulting string. (Care

has to be taken to maintain information about any sequence 0A

stretching from those) last symbols to the left.)

We add 0 to the resulting string and re-apply compress and split

procedures for levels 0, 1, . . . , ℓ − 1 to recompress only the part of

the trace a�ected by modi�cations. As we perform the compression

of symbols we maintain a set � of all grammar rules needed for

decompression. (We initialize � with the union of all rules from

the active grammars �8
1, . . . ,�

8
C minus the starting rules, and we

iteratively add new rules coming from the recompression.) For the

recompression we need to know the context of up-to ' + 1 symbols

preceding the modi�ed part of the trace. On the other hand, the

modi�cation can a�ect the recompression of up-to ' + 1 symbols

to the left from the left-most modi�ed symbol in the trace. Those

' + 1 symbols all happen to be within the decompressed su�x of

the trace of size at most) .

Eventually, we get a new level-! trace �DG0 (!, BG~0
!
− C ′ + 1), . . . ,

�DG0 (!, BG~0
!
), for some C ′. Each new grammar � ′89 is obtained by

taking the grammar� ∪{#→ �DG0 (!, BG~0
!
−C ′+ 9)} and removing

from it all useless rules. This can be done in time $ (|� |). (See
Section 2.1).

Overall the update of active grammars on insertion of a sin-

gle symbol will require $ (!)) = $̃ (1) evaluations of split hash
functions �0, . . . , �! , $ (!)) = $̃ (1) evaluations of compress hash

functions �1, . . . ,�! , and $ () (!) + ∑C
9=1 |�8

9 |)) time to produce

the new grammars. As the total size of the grammars is $̃ (:) and
the time to evaluate �ℓ at a single point is also $̃ (:), the overall
time for the update of active grammars is $̃ (:). We provide a more

detailed description of the update procedure in the full version [5].

Edit distance evaluation.Consider strings G and~ of length at most<

and edit distance at most : . Consider the rolling sketch sk
Rolling

<,:
(G)

for G obtained by inserting symbols DG and removing symbols D,

for some D ∈ Σ∗ where |DG | ≤ <. Consider also the rolling sketch

for ~ obtained by inserting symbols E~ and removing symbols E , for

some E ∈ Σ
∗ where |E~ | ≤ <. Both sketches should use the same

randomness that is to start from the same sketch for empty string.

The rolling sketch for G consists of the insertion bu�er with

committed grammars �G
BG−4)+1, �

G
BG−4)+2, . . . , �

G
BG and with ac-

tive grammars�8G
1 , . . . ,�8G

CG , and the deletion bu�er with commit-

ted grammars �G
AG−4)+1, �

G
AG−4)+2, . . . , �

G
AG and active grammars

�3G
1 , . . . ,�3G

C ′G , C
′G ≤) . Its Hamming sketch sketches the sequence

of grammars �G
AG−2)+1,�

G
AG−2)+2, . . . ,�

G
BG−2) . Also for ~, we have

the committed insertion grammars �
~
B~−4)+1,�

~
B~−4)+2, . . . ,�

~
B~ ,

etc.

230

Locally Consistent Decomposition of Strings with Applications to Edit Distance Sketching STOC ’23, June 20–23, 2023, Orlando, FL, USA

We extend the notation so for 9 ∈ {1, . . . , CG }, we let�G
BG+9 denote

the active grammar �8G
9 , and similarly for ~. Let 3G = BG + CG − AG

and 3~ = B~ + C~ − A~ . We assume that the hash functions used

to decompose DG and E~ into grammars satisfy the probabilistic

conclusion of Theorem 3.12. That means that grammars �G
A , . . .

and �
~
A , . . . can be aligned from the right so �G

9 corresponds to

�
~

9−3G+3~ , for 9 ≥ AG (they might not be identical because of the

edit operations). Without loss of generality we assume that3G ≥ 3~ .

Before proceeding with the algorithm we �rst observe that 3G −
3~ < 2) . Let ?G ≥ AG + 1 be the index of the grammar �G

?G which

produces the �rst symbol of G when we evaluate all the grammars.

Similarly, ?~ ≥ A~ + 1 is the index of �~
?~ which produces the �rst

symbol of ~. By Lemma 4.2 applied on G ← D and I ← G we get

that ?G ≤ AG + C ′G +) ≤ AG +2) , and similarly ?~ ≤ A~ +2) . By our
assumption on success of Theorem 3.12, BG + CG −?G = B~ − C~ −?~ .
Hence, BG+CG−B~−C~ = ?G−?~ ≤ AG+2)−A~−1 ≤ AG−A~+(2)−1).
Thus3G−3~ = BG+CG−AG−B~−C~+A~ ≤ AG−A~+(2)−1)−AG+A~ ≤
2) − 1.

If 3G < 10) , then we can recover all the grammars �G
AG−2)+1,

�G
AG−2)+2, . . . ,�

G
BG−2) from their Hamming sketch by constructing

an auxiliary dummy Hamming sketch B: ′ for a sequence of 1’s of
length (BG −AG)" and comparing the two sketches. (" is the length

of the encoding of each grammar.) Their mismatch information

reveals all the grammars �G
AG−2)+1, . . . ,�

G
BG−2) Since 3~ ≤ 3G , we

can similarly recover all the grammars �
~
A~−2)+1, . . . ,�

~
B~−2) from

their Hamming sketch.

We therefore know all the grammars �G
AG+1,�

G
AG+2, . . . ,�

G
BG+CG

and �G
A~+1,�

~
A~+2, . . . ,�

~
B~+C~ . We know grammars �3G

1 , . . . ,�3G
C ′G

and�
3~
1 , . . . ,�

3~
C ′~ too, that need to be subtracted from our grammars.

As noted in Section 2.1, for each of the grammars we can calculate

its evaluation size. From that information we can easily identify ?G

and ?~ , and shorten the grammars �G
?G and �

~
?~ to produce only

symbols of G and ~, respectively. We can combine all the grammars

of G into one grammar �G , and all the grammars of ~ into �~ , and

run the algorithm of Ganesh, Kociumaka, Lincoln and Saha [14] to

calculate the edit distance of G and ~. Since) = $̃ (1), that will take
time $̃ (|�G | + |�~ | + :2) = $̃ (:2).

If 3G ≥ 10) then we proceed as follows. Clearly, 3~ ≥ 8) , so B~−
A~ ≥ 7) and BG − AG ≥ 9) . Thus �G

AG−2)+1,�
G
AG−2)+2, . . . ,�

G
BG−2)

and �
~
A~−2)+1,�

~
A~−2)+2, . . . ,�

~
B~−2) consist of at least 7) gram-

mars each, and those grammars are sketched by their Hamming

sketches. Although we assume that there is a correspondence be-

tween the grammar �G
9 , for 9 ≥ AG , and �

~

9−3G+3~ the sequences

�G
AG−2)+1, . . . ,�

G
BG−2) and �

~
A~−2)+1, . . . ,�

~
B~−2) are misaligned in

their Hamming sketches by 3G − 3~ grammars. To rectify this mis-

alignment, we prepend (3G − 3~)" copies of symbol 1 into the

sketch for �
~
A~−2)+1, . . . ,�

~
B~−2) . Furthermore, if CG < C~ then we

append (C~ − CG)" ones into the sketch for �
~
A~−2)+1, . . . ,�

~
B~−2) ,

to rectify the di�erence in the number of sketched grammars. Oth-

erwise if CG > C~ then we append (CG − C~)" ones into the sketch

for �G
AG−2)+1, . . . ,�

G
BG−2) .

Now we can calculate the mismatch information from the Ham-

ming sketches to �nd out the pairs of grammars �G
9 and �

~

9−3G+3~ ,

9 ≥ AG + 1, that are di�erent.

If for some 9 ∈ {AG +1, . . . , AG +2) },�G
9 and�

~

9−3G+3~ di�er then

because we use the Karp-Rabin �ngerprint of the two grammars

to encode also the neighboring grammars up-to distance 2) , we

recover from the sketch all the grammars �G
9 and �

~

9−3G+3~ , for

9 = AG + 1, . . . , AG + 2) . By counting the evaluation size of each

of those grammars and comparing it with the evaluation size of

active grammars in deletion bu�ers of G and ~, resp., we identify

?G and ?~ , and how much the grammars �G
?G and �

~
?~ should be

shortened to produce only symbols of G and~. After shortening�G
?G

and �
~
?~ we calculate the edit distance of their evaluation. We sum

it up with the edit distance of evaluation of each pair of grammars

�G
9 and �

~

9−3G+3~ , for 9 > ?G , that was identi�ed as mismatch by

the Hamming distance sketch or that belongs among the active

grammars in insertion bu�ers of either G or ~. There will be at most

) mismatched pairs involving the active grammars, and (4) + 1):
pairs identi�ed by the Hamming sketch.

In the remaining case when �G
9 and �

~

9−3G+3~ are identical for

all 9 ∈ {AG + 1, . . . , AG + 2) }, we might not be able to recover all

those grammars from the Hamming sketches, and we might not be

able to identify ?G and ?~ . However, since �G
?G = �

~
?~ , we know

that the part of G produced by�G
?G is either a pre�x or su�x of the

part of ~ produced by �
~
?~ . The di�erence in the size of the two

parts is the edit distance of the two parts. The di�erence is given by

the di�erence between the total evaluation size of active grammars

in the deletion bu�er of G , and the total evaluation size of active

grammars in the deletion bu�er of~ together with grammars�
~
A~−9 ,

for 9 = 0, . . . , 3G − 3~ − 1. The latter grammars are in the commit-

ted deletion bu�er of ~ and they agree with �G
AG+1, . . . ,�

G
AG+3G−3~ .

Hence, the edit distance of the parts of G and ~ coming from �G
?G

and �
~
?~ can be determined. All other mismatching pairs of gram-

mars are identi�ed by the Hamming sketch or are among active

grammars of the insertion bu�ers. So we proceed as in the previous

case to calculate their contribution to the edit distance of G and ~.

The edit distance of G and ~ is the sum of those edit distances.

We see that in both the cases we need the Hamming sketch to

be able to recover at least) mismatched grammars at the very

end caused by the dummy padding, 4) grammars at the beginning

corresponding to �G
AG−2)+1,�

G
AG−2)+2, . . . ,�

G
AG+2) , 2) neighbors of

�G
AG+2) to the right, and at most (4) + 1): mismatched grammars

caused by the edit operations between G and ~. This is less than

" (4) +1) (: +2) which is the number of mismatches our Hamming

sketch can recover.

The time needed to compare the sketched strings can be bounded

as follows: In total the procedure generates at most $ ():) pairs of
grammars of total size $̃ (:2) on which it runs edit distance com-

putation from Proposition 2.1. If those edit distance computations

take total time more than $̃ (:2) we can terminate them as we know

the overall edit distance is larger than : . Recovering di�ering gram-

mars from the Hamming distance sketch takes time $̃ (: ′) = $̃ (:2).
Their follow-up processing such as counting their evaluation size

and shortening them is proportional to their total size which is

$̃ (:2). Hence, the time for comparing strings is $̃ (:2).

231

STOC ’23, June 20–23, 2023, Orlando, FL, USA Suda�a Bha�acharya and Michal Koucký

Failure probability. The analysis of the failure probability is omitted

due to space limitations and can be found in the full version [5].

5 TABLE OF PARAMETERS

De�nition Asymptotics Meaning Reference

' = log∗ |Γ | + 20 log∗ = compression

locality

Sec. 2.3

! = ⌈log3/2 =⌉ + 3 log= recursion

depth

Sec. 3,

Cor. 3.3

� = 1102−'(!+1): : log= log∗ = 1/splitting
probability

Sec. 3,

Lem. 3.4

(= 30�! log= + 6 : log3 = log∗ = maximum

grammar

size

Sec. 3,

Thm. 3.1

" = 3(· ⌈1+log |Γ |⌉ : log4 = log∗ = grammar

encoding

size

Sec. 3.3

) = !(3' + 6) log= log∗ = locality

of su�x

changes

Sec. 4,

Lem. 4.2

≥ =3 =3 �KR range

size

Sec. 3.3

ACKNOWLEDGEMENTS

The authors bene�ted greatly from discussions with Nicole Wein

who took part in the initial stages of this project. The second author

also bene�ted from many discussions on edit distance with Mike

Saks. We are grateful to Tomasz Kociumaka for providing us with

a reference for Proposition 2.1. We thank anonymous reviewers for

their comments.

REFERENCES
[1] Alexandr Andoni and Negev Shekel Nosatzki. 2020. Edit Distance in Near-Linear

Time: it’s a Constant Factor. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, Sandy
Irani (Ed.). IEEE, 990–1001. https://doi.org/10.1109/FOCS46700.2020.00096

[2] Arturs Backurs and Piotr Indyk. 2015. Edit Distance Cannot Be Computed in
Strongly Subquadratic Time (Unless SETH is False). In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing (Portland, Oregon,
USA) (STOC ’15). ACM, New York, NY, USA, 51–58.

[3] Tuğkan Batu, Funda Ergun, and Cenk Sahinalp. 2006. Oblivious String Embed-
dings and Edit Distance Approximations. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm (Miami, Florida) (SODA ’06). Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 792–801.

[4] Djamal Belazzougui and Qin Zhang. 2016. Edit Distance: Sketching, Streaming,
and Document Exchange. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS). 51–60. https://doi.org/10.1109/FOCS.2016.15

[5] Sudatta Bhattacharya andMichal Koucký. 2023. Locally consistent decomposition
of strings with applications to edit distance sketching. CoRR abs/2302.04475 (2023).
arXiv:2302.04475

[6] Or Birenzwige, Shay Golan, and Ely Porat. 2020. Locally Consistent Parsing for
Text Indexing in Small Space. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020,
Shuchi Chawla (Ed.). SIAM, 607–626. https://doi.org/10.1137/1.9781611975994.37

[7] Joshua Brakensiek and Aviad Rubinstein. 2020. Constant-factor approximation
of near-linear edit distance in near-linear time. In Proccedings of the 52nd An-
nual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy (Eds.). ACM, 685–698. https://doi.org/10.1145/3357713.3384282

[8] Diptarka Chakraborty, Debarati Das, Elazar Goldenberg, Michal Koucký, and
Michael E. Saks. 2018. Approximating Edit Distance within Constant Factor in
Truly Sub-Quadratic Time. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018. 979–990. https://doi.org/10.1109/FOCS.2018.00096

[9] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. 2016. Stream-
ing algorithms for embedding and computing edit distance in the low distance
regime. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016. 712–725.

[10] Raphaël Cli�ord, Tomasz Kociumaka, and Ely Porat. 2019. The streaming k-
mismatch problem. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019. SIAM, 1106–1125. https://doi.org/10.1137/1.
9781611975482.68

[11] Richard Cole and Uzi Vishkin. 1986. Deterministic coin tossing and accelerat-
ing cascades: micro and macro techniques for designing parallel algorithms. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing
(STOC). 206–219. https://doi.org/10.1145/12130.12151

[12] Graham Cormode and S. Muthukrishnan. 2002. The string edit distance match-
ing problem with moves. In Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA.
667–676.

[13] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin J Strauss, and
Rebecca NWright. 2006. Secure multiparty computation of approximations. ACM
transactions on Algorithms (TALG) 2, 3 (2006), 435–472.

[14] Arun Ganesh, Tomasz Kociumaka, Andrea Lincoln, and Barna Saha. 2022. How
Compression and Approximation A�ect E�ciency in String Distance Measures.
In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA.
2867–2919. https://doi.org/10.1137/1.9781611977073.112

[15] Szymon Grabowski. 2016. New tabulation and sparse dynamic programming
based techniques for sequence similarity problems. Discrete Applied Mathematics
212 (2016), 96–103.

[16] Ce Jin, Jelani Nelson, and KewenWu. 2021. An Improved Sketching Algorithm for
Edit Distance. In 38th International Symposium on Theoretical Aspects of Computer
Science, STACS 2021, (LIPIcs, Vol. 187). 45:1–45:16. https://doi.org/10.4230/LIPIcs.
STACS.2021.45

[17] Hossein Jowhari. 2012. E�cient Communication Protocols for Deciding Edit
Distance. In Algorithms - ESA 2012 - 20th Annual European Symposium, Ljubljana,
Slovenia, September 10-12, 2012. Proceedings. 648–658.

[18] Richard M. Karp and Michael O. Rabin. 1987. E�cient randomized pattern-
matching algorithms. IBM Journal of Research and Development 31, 2 (1987),
249–260. https://doi.org/10.1147/rd.312.0249

[19] Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. 2021. Small-space and
streaming pattern matching with : edits. In 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science (FOCS). 885–896. https://doi.org/10.1109/
FOCS52979.2021.00090

[20] Michal Koucký and Michael E. Saks. 2020. Constant factor approximations to
edit distance on far input pairs in nearly linear time. In Proccedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Konstantin
Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy (Eds.). ACM, 699–712. https://doi.org/10.1145/3357713.3384307

[21] Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. 1998. E�cient search for
approximate nearest neighbor in high dimensional spaces. In Proceedings of the
thirtieth annual ACM symposium on Theory of computing. 614–623.

[22] Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. 1998. Incremental
String Comparison. SIAM J. Comput. 27, 2 (April 1998), 557–582.

[23] Nathan Linial. 1987. Distributive Graph Algorithms-Global Solutions from Local
Data. In 28th Annual Symposium on Foundations of Computer Science,FOCS. IEEE
Computer Society, 331–335. https://doi.org/10.1109/SFCS.1987.20

[24] Nathan Linial. 1992. Locality in Distributed Graph Algorithms. SIAM J. Comput.
21, 1 (1992), 193–201. https://doi.org/10.1137/0221015

[25] William J. Masek and Michael S. Paterson. 1980. A faster algorithm computing
string edit distances. J. Comput. System Sci. 20, 1 (1980), 18 – 31.

[26] Rafail Ostrovsky and Yuval Rabani. 2007. Low distortion embeddings for edit
distance. J. ACM 54, 5 (2007), 23. https://doi.org/10.1145/1284320.1284322

[27] Ely Porat and Ohad Lipsky. 2007. Improved Sketching of Hamming Distance with
Error Correcting. In Combinatorial Pattern Matching, 18th Annual Symposium,
CPM, Vol. 4580. Springer, 173–182. https://doi.org/10.1007/978-3-540-73437-6_19

[28] Süleyman Cenk Sahinalp and Uzi Vishkin. 1994. Symmetry breaking for su�x
tree construction. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada. ACM, 300–309.
https://doi.org/10.1145/195058.195164

[29] Robert A. Wagner and Michael J. Fischer. 1974. The String-to-String Correction
Problem. J. ACM 21, 1 (Jan. 1974), 168–173.

[30] Haoyu Zhang and Qin Zhang. 2019. MinJoin: E�cient Edit Similarity Joins
via Local Hash Minima. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Anchorage, AK, USA) (KDD
’19). Association for Computing Machinery, New York, NY, USA, 1093–1103.
https://doi.org/10.1145/3292500.3330853

Received 2022-11-07; accepted 2023-02-06

232

https://doi.org/10.1109/FOCS46700.2020.00096
https://doi.org/10.1109/FOCS.2016.15
https://arxiv.org/abs/2302.04475
https://doi.org/10.1137/1.9781611975994.37
https://doi.org/10.1145/3357713.3384282
https://doi.org/10.1109/FOCS.2018.00096
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.1145/12130.12151
https://doi.org/10.1137/1.9781611977073.112
https://doi.org/10.4230/LIPIcs.STACS.2021.45
https://doi.org/10.4230/LIPIcs.STACS.2021.45
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1109/FOCS52979.2021.00090
https://doi.org/10.1145/3357713.3384307
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1137/0221015
https://doi.org/10.1145/1284320.1284322
https://doi.org/10.1007/978-3-540-73437-6_19
https://doi.org/10.1145/195058.195164
https://doi.org/10.1145/3292500.3330853

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Our Techniques

	2 Notations and Preliminaries
	2.1 Grammars
	2.2 Rolling Hamming Distance Sketch
	2.3 Locally Consistent Coloring

	3 Decomposition Algorithm
	3.1 Algorithm Description
	3.2 Correctness of the Decomposition Algorithm
	3.3 Encoding a Grammar
	3.4 Edit Distance Sketch

	4 Rolling Sketch for Edit Distance
	5 Table of Parameters
	References

